1
|
Wang H, Wang W, Xie Z, Yang Y, Dai H, Shi F, Ma L, Sui Z, Xia C, Kong X, Zhang L. Overexpression of rice OsNRT1.1A/OsNPF6.3 enhanced the nitrogen use efficiency of wheat under low nitrogen conditions. PLANTA 2024; 259:127. [PMID: 38637411 DOI: 10.1007/s00425-024-04408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
MAIN CONCLUSION Overexpression of OsNRT1.1A promotes early heading and increases the tolerance in wheat under nitrogen deficiency conditions. The application of inorganic nitrogen (N) fertilizers is a major driving force for crop yield improvement. However, the overuse of fertilizers significantly raises production costs and leads to environmental problems, making it critical to enhance crop nitrogen use efficiency (NUE) for the sake of sustainable agriculture. In this study, we created a series of transgenic wheat lines carrying the rice OsNRT1.1A gene, which encodes a nitrate transporter, to investigate its possible application in improving NUE in wheat. The transgenic wheat exhibited traits such as early maturation that were highly consistent with the overexpression of OsNRT1.1A in Arabidopsis and rice. However, we also observed that overexpression of the OsNRT1.1A gene in wheat can facilitate the growth of roots under low N conditions but has no effect on other aspects of growth and development under normal N conditions. Thus, it may lead to the improvement of wheat low N tolerance,which is different from the effects reported in other plants. A field trial analysis showed that transgenic wheat exhibited increased grain yield per plant under low N conditions. Moreover, transcriptome analysis indicated that OsNRT1.1A increased the expression levels of N uptake and utilization genes in wheat, thereby promoting plant growth under low N conditions. Taken together, our results indicated that OsNRT1.1A plays an important role in improving NUE in wheat with low N availability.
Collapse
Affiliation(s)
- Huanhuan Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhencheng Xie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuxin Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongyong Dai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feng Shi
- Laboratory of Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050000, China
| | - Liang Ma
- Laboratory of Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050000, China
| | - Zhifeng Sui
- Laboratory of Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050000, China
| | - Chuan Xia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lichao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
2
|
Fortunato S, Nigro D, Lasorella C, Marcotuli I, Gadaleta A, de Pinto MC. The Role of Glutamine Synthetase (GS) and Glutamate Synthase (GOGAT) in the Improvement of Nitrogen Use Efficiency in Cereals. Biomolecules 2023; 13:1771. [PMID: 38136642 PMCID: PMC10742212 DOI: 10.3390/biom13121771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Cereals are the most broadly produced crops and represent the primary source of food worldwide. Nitrogen (N) is a critical mineral nutrient for plant growth and high yield, and the quality of cereal crops greatly depends on a suitable N supply. In the last decades, a massive use of N fertilizers has been achieved in the desire to have high yields of cereal crops, leading to damaging effects for the environment, ecosystems, and human health. To ensure agricultural sustainability and the required food source, many attempts have been made towards developing cereal crops with a more effective nitrogen use efficiency (NUE). NUE depends on N uptake, utilization, and lastly, combining the capability to assimilate N into carbon skeletons and remobilize the N assimilated. The glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle represents a crucial metabolic step of N assimilation, regulating crop yield. In this review, the physiological and genetic studies on GS and GOGAT of the main cereal crops will be examined, giving emphasis on their implications in NUE.
Collapse
Affiliation(s)
- Stefania Fortunato
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| | - Domenica Nigro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Cecilia Lasorella
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| | - Ilaria Marcotuli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Agata Gadaleta
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Maria Concetta de Pinto
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| |
Collapse
|
3
|
Esposito S, Vitale P, Taranto F, Saia S, Pecorella I, D'Agostino N, Rodriguez M, Natoli V, De Vita P. Simultaneous improvement of grain yield and grain protein concentration in durum wheat by using association tests and weighted GBLUP. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:242. [PMID: 37947927 DOI: 10.1007/s00122-023-04487-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
KEY MESSAGE Simultaneous improvement for GY and GPC by using GWAS and GBLUP suggested a significant application in durum wheat breeding. Despite the importance of grain protein concentration (GPC) in determining wheat quality, its negative correlation with grain yield (GY) is still one of the major challenges for breeders. Here, a durum wheat panel of 200 genotypes was evaluated for GY, GPC, and their derived indices (GPD and GYD), under eight different agronomic conditions. The plant material was genotyped with the Illumina 25 k iSelect array, and a genome-wide association study was performed. Two statistical models revealed dozens of marker-trait associations (MTAs), each explaining up to 30%. phenotypic variance. Two markers on chromosomes 2A and 6B were consistently identified by both models and were found to be significantly associated with GY and GPC. MTAs identified for phenological traits co-mapped to well-known genes (i.e., Ppd-1, Vrn-1). The significance values (p-values) that measure the strength of the association of each single nucleotide polymorphism marker with the target traits were used to perform genomic prediction by using a weighted genomic best linear unbiased prediction model. The trained models were ultimately used to predict the agronomic performances of an independent durum wheat panel, confirming the utility of genomic prediction, although environmental conditions and genetic backgrounds may still be a challenge to overcome. The results generated through our study confirmed the utility of GPD and GYD to mitigate the inverse GY and GPC relationship in wheat, provided novel markers for marker-assisted selection and opened new ways to develop cultivars through genomic prediction approaches.
Collapse
Affiliation(s)
- Salvatore Esposito
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, SS 673 Meters 25200, 71122, Foggia, Italy
| | - Paolo Vitale
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, SS 673 Meters 25200, 71122, Foggia, Italy
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Francesca Taranto
- Institute of Biosciences and Bioresources (CNR-IBBR), Via Amendola 165/A, 70126, Bari, Italy
| | - Sergio Saia
- Department of Veterinary Sciences, University of Pisa, 56129, Pisa, Italy
| | - Ivano Pecorella
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, SS 673 Meters 25200, 71122, Foggia, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Monica Rodriguez
- Department of Agriculture, University of Sassari, Viale Italia, 39, 07100, Sassari, Italy
| | - Vincenzo Natoli
- Genetic Services SRL, Contrada Catenaccio, snc, 71026, Deliceto, FG, Italy
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, SS 673 Meters 25200, 71122, Foggia, Italy.
| |
Collapse
|
4
|
Zayed O, Hewedy OA, Abdelmoteleb A, Ali M, Youssef MS, Roumia AF, Seymour D, Yuan ZC. Nitrogen Journey in Plants: From Uptake to Metabolism, Stress Response, and Microbe Interaction. Biomolecules 2023; 13:1443. [PMID: 37892125 PMCID: PMC10605003 DOI: 10.3390/biom13101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Plants uptake and assimilate nitrogen from the soil in the form of nitrate, ammonium ions, and available amino acids from organic sources. Plant nitrate and ammonium transporters are responsible for nitrate and ammonium translocation from the soil into the roots. The unique structure of these transporters determines the specificity of each transporter, and structural analyses reveal the mechanisms by which these transporters function. Following absorption, the nitrogen metabolism pathway incorporates the nitrogen into organic compounds via glutamine synthetase and glutamate synthase that convert ammonium ions into glutamine and glutamate. Different isoforms of glutamine synthetase and glutamate synthase exist, enabling plants to fine-tune nitrogen metabolism based on environmental cues. Under stressful conditions, nitric oxide has been found to enhance plant survival under drought stress. Furthermore, the interaction between salinity stress and nitrogen availability in plants has been studied, with nitric oxide identified as a potential mediator of responses to salt stress. Conversely, excessive use of nitrate fertilizers can lead to health and environmental issues. Therefore, alternative strategies, such as establishing nitrogen fixation in plants through diazotrophic microbiota, have been explored to reduce reliance on synthetic fertilizers. Ultimately, genomics can identify new genes related to nitrogen fixation, which could be harnessed to improve plant productivity.
Collapse
Affiliation(s)
- Omar Zayed
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 9250, USA;
- Genetics Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Omar A. Hewedy
- Genetics Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Ali Abdelmoteleb
- Botany Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Mohammed Ali
- Maryout Research Station, Genetic Resources Department, Desert Research Center, 1 Mathaf El-Matarya St., El-Matareya, Cairo 11753, Egypt;
| | - Mohamed S. Youssef
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ahmed F. Roumia
- Department of Agricultural Biochemistry, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt;
| | - Danelle Seymour
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 9250, USA;
| | - Ze-Chun Yuan
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
5
|
Ninkuu V, Liu Z, Sun X. Genetic regulation of nitrogen use efficiency in Gossypium spp. PLANT, CELL & ENVIRONMENT 2023; 46:1749-1773. [PMID: 36942358 DOI: 10.1111/pce.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/04/2023]
Abstract
Cotton (Gossypium spp.) is the most important fibre crop, with desirable characteristics preferred for textile production. Cotton fibre output relies heavily on nitrate as the most important source of inorganic nitrogen (N). However, nitrogen dynamics in extreme environments limit plant growth and lead to yield loss and pollution. Therefore, nitrogen use efficiency (NUE), which involves the utilisation of the 'right rate', 'right source', 'right time', and 'right place' (4Rs), is key for efficient N management. Recent omics techniques have genetically improved NUE in crops. We herein highlight the mechanisms of N uptake and assimilation in the vegetative and reproductive branches of the cotton plant while considering the known and unknown regulatory factors. The phylogenetic relationships among N transporters in four Gossypium spp. have been reviewed. Further, the N regulatory genes that participate in xylem transport and phloem loading are also discussed. In addition, the functions of microRNAs and transcription factors in modulating the expression of target N regulatory genes are highlighted. Overall, this review provides a detailed perspective on the complex N regulatory mechanism in cotton, which would accelerate the research toward improving NUE in crops.
Collapse
Affiliation(s)
- Vincent Ninkuu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
6
|
Zhao Y, Islam S, Alhabbar Z, Zhang J, O'Hara G, Anwar M, Ma W. Current Progress and Future Prospect of Wheat Genetics Research towards an Enhanced Nitrogen Use Efficiency. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091753. [PMID: 37176811 PMCID: PMC10180859 DOI: 10.3390/plants12091753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 05/15/2023]
Abstract
To improve the yield and quality of wheat is of great importance for food security worldwide. One of the most effective and significant approaches to achieve this goal is to enhance the nitrogen use efficiency (NUE) in wheat. In this review, a comprehensive understanding of the factors involved in the process of the wheat nitrogen uptake, assimilation and remobilization of nitrogen in wheat were introduced. An appropriate definition of NUE is vital prior to its precise evaluation for the following gene identification and breeding process. Apart from grain yield (GY) and grain protein content (GPC), the commonly recognized major indicators of NUE, grain protein deviation (GPD) could also be considered as a potential trait for NUE evaluation. As a complex quantitative trait, NUE is affected by transporter proteins, kinases, transcription factors (TFs) and micro RNAs (miRNAs), which participate in the nitrogen uptake process, as well as key enzymes, circadian regulators, cross-talks between carbon metabolism, which are associated with nitrogen assimilation and remobilization. A series of quantitative genetic loci (QTLs) and linking markers were compiled in the hope to help discover more efficient and useful genetic resources for breeding program. For future NUE improvement, an exploration for other criteria during selection process that incorporates morphological, physiological and biochemical traits is needed. Applying new technologies from phenomics will allow high-throughput NUE phenotyping and accelerate the breeding process. A combination of multi-omics techniques and the previously verified QTLs and molecular markers will facilitate the NUE QTL-mapping and novel gene identification.
Collapse
Affiliation(s)
- Yun Zhao
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang 050035, China
| | - Shahidul Islam
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Zaid Alhabbar
- Department of Field Crops, College of Agriculture and Forestry, University of Mosul, Mosul 41002, Iraq
| | - Jingjuan Zhang
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Graham O'Hara
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Masood Anwar
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Wujun Ma
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
- College of Agronomy, Qingdao Agriculture University, Qingdao 266109, China
| |
Collapse
|
7
|
Pascual L, Solé-Medina A, Faci I, Giraldo P, Ruiz M, Benavente E. Development and marker-trait relationships of functional markers for glutamine synthetase GS1 and GS2 homoeogenes in bread wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:8. [PMID: 37309364 PMCID: PMC10248667 DOI: 10.1007/s11032-022-01354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/28/2022] [Indexed: 06/14/2023]
Abstract
GS1 and GS2 genes encode, respectively, the main cytosolic and the plastidic isoforms of glutamine synthetase (GS). In the present study, the wheat GS1 and GS2 homoeogenes located in the A, B and D genome chromosomes have been sequenced in a group of 15 bread wheat varieties including landraces, old commercial varieties and modern cultivars. Phenotypic characterization by multi-environment field trials detected significant effects of specific GS homoeogenes on three of the seven agronomic and grain quality traits analyzed. Based on the gene sequence polymorphisms found, biallelic molecular markers that could facilitate marker-assisted breeding were developed for genes GS1A, GS2A and GS2D. The remaining genes encoding main wheat GS were excluded because of being monomorphic (GS1D) or too polymorphic (GS1B and GS2B) in the sequencing panel varieties. A collection of 187 Spanish bread wheat landraces was genotyped for these gene-based molecular markers. Data analyses conducted with phenotypic records reported for this germplasm collection in López-Fernández et al. (Plants-Basel 10: 620, 2021) have revealed the beneficial influence of some individual alleles on thousand-kernel weight (TKW), kernels per spike (KS) and grain protein content. Furthermore, genetic interactions between GS1A, a cytosolic GS isoform coding gene, and GS2A or GS2D, plastidic GS enzyme coding genes, were found to affect TKW and KS. The finding that some alleles at one locus may mask the effect of positive alleles at hypostatic GS loci should be kept in mind if gene pyramiding strategies are attempted for the improvement of N-use efficiency-related traits. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01354-0.
Collapse
Affiliation(s)
- Laura Pascual
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Aida Solé-Medina
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Department of Forest Ecology & Genetics, Forest Research Centre (INIA, CSIC), Ctra. de La Coruña Km 7.5, 28040 Madrid, Spain
| | - Isabel Faci
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- John Innes Centre, Norwich Research Park, Colney, NR4 7UH UK
| | - Patricia Giraldo
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Magdalena Ruiz
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Autovía A2, Km. 36.2, Finca La Canaleja, Alcalá de Henares, Madrid, 28805 Spain
| | - Elena Benavente
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
8
|
Yin H, Sun Q, Lu X, Zhang L, Yuan Y, Gong C, He X, Ma W, Mu P. Identification of the glutamine synthetase (GS) gene family in four wheat species and functional analysis of Ta4D.GSe in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2022; 110:93-106. [PMID: 35716232 PMCID: PMC9468116 DOI: 10.1007/s11103-022-01287-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Drought stress can negatively impact crop yield and quality. Improving wheat yields under drought stress is a major objective of agronomic research. Glutamine synthetase (GS) is a key enzyme of nitrogen metabolism that is critical to plant growth and development in abiotic stress response. However, to date, no systemic characterization of the GS genes has yet been conducted in wheat and its close relatives. We identified a total of 15 GS genes in Triticum aestivum (2n = 6x = 42; AABBDD), as well as 9 GS genes in Triticum dicoccoides (2n = 4x = 28; AABB), 6 in Aegilops tauschii (2n = 2x = 14; DD), and 5 in Triticum urartu (2n = 2x = 14; AA). The 35 GSs were further clustered into five lineages according to the phylogenetic tree. Synteny analysis revealed that the three subgenomes in bread wheat retained extensive synteny between bread wheat and its three relative species. We identified three up-regulated TaGSs (Ta4A.GSe, Ta4B.GSe, and Ta4D.GSe) from transcriptome data after drought and salt stress. Ta4D.GSe was subsequently used for further functional studies, and its subcellular localization were determined in Arabidopsis protoplasts. Its overexpression in Arabidopsis enhanced drought tolerance by increasing the ability of scavenging of reactive oxygen species (ROS) and osmotic adjustment. We identified GS gene family in four wheat species and performed comparative analyses of their relationships, chromosome locations, conserved motif, gene structure, and synteny. The subcellular localization of Ta4D.GSe was detected and its drought tolerance function was demonstrated. Taken together, these findings provide insight into the potential functional roles of the GS genes in abiotic stress tolerance. KEY MESSAGE: This report clearly shows detailed characterization of GS gene family in four wheat species and demonstrates that Ta4D.GSe plays an important role in enhancing drought tolerance by improving the scavenging of ROS and osmotic adjustment ability in Arabidopsis.
Collapse
Affiliation(s)
- Huayan Yin
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qian Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoqing Lu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lufei Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanchao Yuan
- Key Lab of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Cuiling Gong
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyan He
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ping Mu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
9
|
Zhou Z, Geng S, Guan H, Liu C, Qin M, Li W, Shi X, Dai Z, Yao W, Lei Z, Wu Z, Hou J. Dissection of the Genetic Architecture for Quantities of Gliadins Fractions in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:826909. [PMID: 35401644 PMCID: PMC8988047 DOI: 10.3389/fpls.2022.826909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Gliadin is a group of grain storage proteins that confers extensibility/viscosity to the dough and are vital to end-use quality in wheat. Moreover, gliadins are one of the important components for nutritional quality because they contain the nutritional unprofitable epitopes that cause chronic immune-mediated intestinal disorder in genetically susceptible individuals designated celiac disease (CD). The main genetic loci encoding the gliadins were revealed by previous studies; however, the genes related to the content of gliadins and their fractions were less elucidated. To illustrate the genetic basis of the content of gliadins and their fractions comprehensively, a recombinant inbred line (RIL) population that consisted of 196 lines was constructed from the two parents, Luozhen No.1 and Zhengyumai 9987. Quantitative trait loci (QTL) controlling the content of total gliadins and their fractions (ω-, α-, and γ-gliadin) were screened genome-widely under four environments across 2 years. Totally, thirty QTL which explained 1.97-12.83% of the phenotypic variation were detected to be distributed on 17 chromosomes and they were gathered into 12 clusters. One hundred and one pairs of epistatic QTL (E-QTL) were revealed, among which five were involved with the total gliadins and its fractions content QTL located on chromosome 1AS, 1DS, 4DS, 1DL, and 6AS. Three Kompetitive Allele-Specific PCR (KASP) markers were developed from three major QTL clusters located on chromosomes 6A, 6D, and 7D, respectively. The present research not only dissects the genetic loci for improving the content of gliadins and their three fractions, but may also contribute to marker-assisted selection of varieties with appropriate gliadin fractions content for end-use quality and health benefit at the early developmental stages and early breeding generations.
Collapse
Affiliation(s)
- Zhengfu Zhou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shenghui Geng
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Huiyue Guan
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Congcong Liu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Maomao Qin
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenxu Li
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xia Shi
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ziju Dai
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wen Yao
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zhensheng Lei
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zhengqing Wu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinna Hou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
10
|
Amegbor IK, Abe A, Adjebeng-Danquah J, Adu GB. Genetic analysis and yield assessment of maize hybrids under low and optimal nitrogen environments. Heliyon 2022; 8:e09052. [PMID: 35299608 PMCID: PMC8920915 DOI: 10.1016/j.heliyon.2022.e09052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/07/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
Abstract
Development of maize hybrids that possess tolerant genes to low soil nitrogen is critical for long-term maize production in areas with low soil fertility. In this study, estimates for combining ability effects for grain yield and secondary traits of selected inbred lines, identify potential parents for hybrid development and yield potential of the crosses under sub-optimal and optimal N environments. One hundred hybrids were evaluated under sub-optimal and optimal N environments for two years. The experimental layout was a 10 × 10 alpha lattice design with two replications for two experiments. The results obtained showed that, the genotypes evaluated varied for grain yield and the characters measured under sub-optimal and optimal N conditions. Grain yield reduction due to N stress was 40.9%. General and specific combining ability (GCA) and (SCA) effects for mean squares varied for grain yield demonstrating the importance of additive and non-additive genetic effects for the hybrids evaluated under the study conditions. Even though significant variations were detected for GCA and SCA, GCA which is the additive gene action component mainly controlled the heritage of grain yield under both conditions. Inbred line 15 was identified as the superior parent with positive and significant GCA for grain yield under sub-optimal N. Genotypic correlation studies displayed that grain yield was positively correlated with ears per plant under sub-optimal N and was also positively associated with anthesis-silking interval under high N. The hybrids 52, 75, 81 and 37 were identified to be significantly superior in terms of grain yield, ASI and EPP under the two-contrasting conditions. The results suggest that, there is a need for development of low N tolerant inbred lines and hybrids for production under soils with low N status in the Guinea savanna of Ghana for high grain yield to be realised.
Collapse
|
11
|
Yang T, Zhou Q, Wang Q, Wang X, Cai J, Huang M, Jiang D. Effects of Nitrogen Fertilizer on Quality Characteristics of Wheat with the Absence of Different Individual High-Molecular-Weight Glutenin Subunits (HMW-GSs). Int J Mol Sci 2022; 23:ijms23042178. [PMID: 35216291 PMCID: PMC8877987 DOI: 10.3390/ijms23042178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
High-molecular-weight glutenin subunits (HMW-GSs) are important components of gluten, which determine the grain quality of wheat. In this study, we investigated the effects of nitrogen (N) fertilizer application on the synthesis and accumulation of grain protein and gluten quality in wheat lines with different HMW-GSs absent. The results showed that the absence of the HMW-GS in the wheat variety Ningmai 9 significantly decreased the contents of gluten, glutenin macropolymer (GMP), protein compositions, HMW-GS and HMW-GS/LMW-GS. The reduction in glutenins was compensated to some extent by an increase of gliadins. The absence of x-type HMW-GSs (1, 7 and 2 subunits) had a greater effect on gluten and GMP properties than y-type HMW-GSs (8 and 12 subunits). The content of protein compositions, gluten and GMP increased with an increase of N level; however, the increment in wheat lines with the absence of HMW-GS, especially in Ax1a, Bx7a and Dx2a, was lower than that in the wild type under various N levels. The expression level of genes encoding HMW-GSs, and activities of nitrate reductase (NR) and glutamine synthetase (GS), differed significantly among the investigated wheat lines. The reduction in gene expression and activities in Ax1a and Dx2a may account for the reductions in gluten, GMP, protein compositions, HMW-GS and HMW-GS/LMW-GS.
Collapse
|
12
|
Fujita T, Beier MP, Tabuchi-Kobayashi M, Hayatsu Y, Nakamura H, Umetsu-Ohashi T, Sasaki K, Ishiyama K, Murozuka E, Kojima M, Sakakibara H, Sawa Y, Miyao A, Hayakawa T, Yamaya T, Kojima S. Cytosolic Glutamine Synthetase GS1;3 Is Involved in Rice Grain Ripening and Germination. FRONTIERS IN PLANT SCIENCE 2022; 13:835835. [PMID: 35211144 PMCID: PMC8861362 DOI: 10.3389/fpls.2022.835835] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Ammonium is combined with glutamate to form glutamine. This reaction is catalyzed by glutamine synthetase (GS or GLN). Plants harbor several isoforms of cytosolic GS (GS1). Rice GS1;3 is highly expressed in seeds during grain filling and germination, suggesting a unique role in these processes. This study aimed to investigate the role of GS1;3 for rice growth and yield. Tos17 insertion lines for GS1;3 were isolated, and the nitrogen (N), amino acid, and ammonium contents of GS1;3 mutant grains were compared to wild-type grains. The spatiotemporal expression of GS1;3 and the growth and yield of rice plants were evaluated in hydroponic culture and the paddy field. Additionally, the stable isotope of N was used to trace the foliar N flux during grain filling. Results showed that the loss of GS1;3 retarded seed germination. Seeds of GS1;3 mutants accumulated glutamate but did not show a marked change in the level of phytohormones. The expression of GS1;3 was detected at the beginning of germination, with limited promoter activity in seeds. GS1;3 mutants showed a considerably decreased ripening ratio and decreased N efflux in the 12th leaf blade under N deficient conditions. The β-glucuronidase gene expression under control of the GS1;3 promoter was detected in the vascular tissue and aleurone cell layer of developing grains. These data suggest unique physiological roles of GS1;3 in the early stage of seed germination and grain filling under N deficient conditions in rice.
Collapse
Affiliation(s)
- Takayuki Fujita
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Marcel Pascal Beier
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Faculty of Science/Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, Japan
| | | | - Yoshitaka Hayatsu
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Haruka Nakamura
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | - Kazuhiro Sasaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keiki Ishiyama
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Emiko Murozuka
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Mikiko Kojima
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Hitoshi Sakakibara
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yuki Sawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Akio Miyao
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Toshihiko Hayakawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tomoyuki Yamaya
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Division for Interdisciplinary Advanced Research and Education, Tohoku University, Sendai, Japan
| | - Soichi Kojima
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
13
|
Gołębiowska G, Dyda M, Wajdzik K. Quantitative Trait Loci and Candidate Genes Associated with Cold-Acclimation and Microdochium nivale Tolerance/Susceptibility in Winter Triticale (x Triticosecale). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122678. [PMID: 34961149 PMCID: PMC8704164 DOI: 10.3390/plants10122678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Tolerance to pink snow mold caused by Microdochium nivale appears after a cold-hardening period and it is an essential, genotype-dependent, complex quantitative trait for the wintering of triticale (x Triticosecale) and other cereals. Despite long-term studies, a marker for the selection of the tolerant genotypes is still insufficiently recognized. Chlorophyll fluorescence has been reported as a sensitive indicator of stress effects on photosynthesis and can be used to predict plant tolerance. In this study, the genomic regions (QTLs) associated with the level of winter triticale seedlings damage caused by M. nivale infection as well as photosynthesis quantum efficiency and chlorophyll a fluorescence parameters were identified in seedlings of mapping population of 89 doubled haploids lines (DHs) derived from F1 hybrid of cv. 'Hewo' and cv. 'Magnat' accompanied with the genetic map consisting of 20 linkage groups with a total map length 4997.4 cm. Independent experiments performed in controlled conditions revealed 13 regions identified by a composite interval mapping, located on 7A, 1B, 2B, 6B, 7B, 3R, 5R, and 6R linkage groups and related to the PI, PIABS, TRo/CS, ABS/CS, ABS/CSm, ABS/RC, and Qy values as well as M. nivale tolerance T and susceptibility level P expressed by the seedling damage index. Additionally, candidate genes were in silico identified with the sequence position on wheat (2B and 7B) and rye (5R) chromosomes, where relevant QTL regions were found. The most important candidate genes indicated for M. nivale tolerance of cold-hardened triticale seedlings include those coding: sterol 3-beta-glucosyltransferase UGT80A2-like, transcription factor NAI1-like, and flavonol3-sulfotransferase-like proteins on chromosomes 2B and 5R.
Collapse
|
14
|
A New Perspective on the Role of Glutamine Synthetase in Nitrogen Remobilization in Wheat ( Triticum aestivum L.). Int J Mol Sci 2021; 22:ijms222011083. [PMID: 34681741 PMCID: PMC8539157 DOI: 10.3390/ijms222011083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 12/05/2022] Open
Abstract
Glutamine synthetase (GS), a key enzyme in plant nitrogen metabolism, is closely related to nitrogen remobilization. However, how GS isoforms participate in nitrogen remobilization remains unclear. Here, the spatiotemporal expression of the TaGS gene family after anthesis was investigated, and the results showed that TaGS1;1 was mainly encoded by TaGS1;1-6A, while the other isozymes were mainly encoded by TaGS localized on the A and D subgenomes. TaGS1;2-4A/4D had the highest expression level, especially in rachis and peduncle. Furthermore, immunofluorescence showed TaGS1;2 was located in the phloem of rachis and peduncle. GUS (β-glucuronidase) staining confirmed that ProTaGS1;2-4A/4D::GUS activity was mainly present in the vascular system of leaves, roots, and petal of Arabidopsis. Ureides, an important transport form of nitrogen, were mainly synthesized in flag leaves and transported to grains through the phloem of peduncle and rachis during grain filling. TaAAH, which encodes the enzyme that degrades ureides to release NH4+, had a higher expression in rachis and peduncle and was synchronized with the increase in NH4+ concentration in phloem, indicating that NH4+ in phloem is from ureide degradation. Taking the above into account, TaGS1;2, which is highly expressed in the phloem of peduncle and rachis, may participate in N remobilization by assimilating NH4+ released from ureide degradation.
Collapse
|
15
|
Meng X, Wang X, Zhang Z, Xiong S, Wei Y, Guo J, Zhang J, Wang L, Ma X, Tegeder M. Transcriptomic, proteomic, and physiological studies reveal key players in wheat nitrogen use efficiency under both high and low nitrogen supply. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4435-4456. [PMID: 33829261 DOI: 10.1093/jxb/erab153] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
The effective use of available nitrogen (N) to improve crop grain yields provides an important strategy to reduce environmental N pollution and promote sustainable agriculture. However, little is known about the common genetic basis of N use efficiency (NUE) at varying N availability. Two wheat (Triticum aestivum L.) cultivars were grown in the field with high, moderate, and low N supply. Cultivar Zhoumai 27 outperformed Aikang 58 independent of the N supply and showed improved growth, canopy leaf area index, flag leaf surface area, grain number, and yield, and enhanced NUE due to both higher N uptake and utilization efficiency. Further, transcriptome and proteome analyses were performed using flag leaves that provide assimilates for grain growth. The results showed that many genes or proteins that are up- or down-regulated under all N regimes are associated with N and carbon metabolism and transport. This was reinforced by cultivar differences in photosynthesis, assimilate phloem transport, and grain protein/starch yield. Overall, our study establishes that improving NUE at both high and low N supply requires distinct adjustments in leaf metabolism and assimilate partitioning. Identified key genes/proteins may individually or concurrently regulate NUE and are promising targets for maximizing crop NUE irrespective of the N supply.
Collapse
Affiliation(s)
- Xiaodan Meng
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, ZhengzhouChina
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
- School of Biological Sciences, Washington State University, Pullman, WAUSA
| | - Xiaochun Wang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, ZhengzhouChina
| | - Zhiyong Zhang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, ZhengzhouChina
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
| | - Shuping Xiong
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, ZhengzhouChina
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
| | - Yihao Wei
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, ZhengzhouChina
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
| | - Jianbiao Guo
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
| | - Jie Zhang
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
| | - Lulu Wang
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
| | - Xinming Ma
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, ZhengzhouChina
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WAUSA
| |
Collapse
|
16
|
Yang M, Wang C, Hassan MA, Li F, Xia X, Shi S, Xiao Y, He Z. QTL mapping of root traits in wheat under different phosphorus levels using hydroponic culture. BMC Genomics 2021; 22:174. [PMID: 33706703 PMCID: PMC7953759 DOI: 10.1186/s12864-021-07425-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 12/03/2022] Open
Abstract
Background Phosphorus (P) is an important in ensuring plant morphogenesis and grain quality, therefore an efficient root system is crucial for P-uptake. Identification of useful loci for root morphological and P uptake related traits at seedling stage is important for wheat breeding. The aims of this study were to evaluate phenotypic diversity of Yangmai 16/Zhongmai 895 derived doubled haploid (DH) population for root system architecture (RSA) and biomass related traits (BRT) in different P treatments at seedling stage using hydroponic culture, and to identify QTL using 660 K SNP array based high-density genetic map. Results All traits showed significant variations among the DH lines with high heritabilities (0.76 to 0.91) and high correlations (r = 0.59 to 0.98) among all traits. Inclusive composite interval mapping (ICIM) identified 34 QTL with 4.64–20.41% of the phenotypic variances individually, and the log of odds (LOD) values ranging from 2.59 to 10.43. Seven QTL clusters (C1 to C7) were mapped on chromosomes 3DL, 4BS, 4DS, 6BL, 7AS, 7AL and 7BL, cluster C5 on chromosome 7AS (AX-109955164 - AX-109445593) with pleiotropic effect played key role in modulating root length (RL), root tips number (RTN) and root surface area (ROSA) under low P condition, with the favorable allele from Zhongmai 895. Conclusions This study carried out an imaging pipeline-based rapid phenotyping of RSA and BRT traits in hydroponic culture. It is an efficient approach for screening of large populations under different nutrient conditions. Four QTL on chromosomes 6BL (2) and 7AL (2) identified in low P treatment showed positive additive effects contributed by Zhongmai 895, indicating that Zhongmai 895 could be used as parent for P-deficient breeding. The most stable QTL QRRS.caas-4DS for ratio of root to shoot dry weight (RRS) harbored the stable genetic region with high phenotypic effect, and QTL clusters on 7A might be used for speedy selection of genotypes for P-uptake. SNPs closely linked to QTLs and clusters could be used to improve nutrient-use efficiency. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07425-4.
Collapse
Affiliation(s)
- Mengjiao Yang
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Cairong Wang
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.,Agricultural Research Institute of Yili, Yili, 835000, Xinjiang, China
| | - Muhammad Adeel Hassan
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Faji Li
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Shubing Shi
- College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Yonggui Xiao
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.,International Maize and Wheat Improvement Centre (CIMMYT) China Office, c/o CAAS, Beijing, 100081, China
| |
Collapse
|
17
|
Islam S, Zhang J, Zhao Y, She M, Ma W. Genetic regulation of the traits contributing to wheat nitrogen use efficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110759. [PMID: 33487345 DOI: 10.1016/j.plantsci.2020.110759] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 05/25/2023]
Abstract
High nitrogen application aimed at increasing crop yield is offset by higher production costs and negative environmental consequences. For wheat, only one third of the applied nitrogen is utilized, which indicates there is scope for increasing Nitrogen Use Efficiency (NUE). However, achieving greater NUE is challenged by the complexity of the trait, which comprises processes associated with nitrogen uptake, transport, reduction, assimilation, translocation and remobilization. Thus, knowledge of the genetic regulation of these processes is critical in increasing NUE. Although primary nitrogen uptake and metabolism-related genes have been well studied, the relative influence of each towards NUE is not fully understood. Recent attention has focused on engineering transcription factors and identification of miRNAs acting on expression of specific genes related to NUE. Knowledge obtained from model species needs to be translated into wheat using recently-released whole genome sequences, and by exploring genetic variations of NUE-related traits in wild relatives and ancient germplasm. Recent findings indicate the genetic basis of NUE is complex. Pyramiding various genes will be the most effective approach to achieve a satisfactory level of NUE in the field.
Collapse
Affiliation(s)
- Shahidul Islam
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Jingjuan Zhang
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Yun Zhao
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Maoyun She
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Wujun Ma
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia.
| |
Collapse
|
18
|
Sandhu N, Sethi M, Kumar A, Dang D, Singh J, Chhuneja P. Biochemical and Genetic Approaches Improving Nitrogen Use Efficiency in Cereal Crops: A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:657629. [PMID: 34149755 PMCID: PMC8213353 DOI: 10.3389/fpls.2021.657629] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/06/2021] [Indexed: 05/22/2023]
Abstract
Nitrogen is an essential nutrient required in large quantities for the proper growth and development of plants. Nitrogen is the most limiting macronutrient for crop production in most of the world's agricultural areas. The dynamic nature of nitrogen and its tendency to lose soil and environment systems create a unique and challenging environment for its proper management. Exploiting genetic diversity, developing nutrient efficient novel varieties with better agronomy and crop management practices combined with improved crop genetics have been significant factors behind increased crop production. In this review, we highlight the various biochemical, genetic factors and the regulatory mechanisms controlling the plant nitrogen economy necessary for reducing fertilizer cost and improving nitrogen use efficiency while maintaining an acceptable grain yield.
Collapse
|
19
|
Nigro D, Fortunato S, Giove SL, Mazzucotelli E, Gadaleta A. Functional Validation of Glutamine synthetase and Glutamate synthase Genes in Durum Wheat near Isogenic Lines with QTL for High GPC. Int J Mol Sci 2020; 21:ijms21239253. [PMID: 33291583 PMCID: PMC7730160 DOI: 10.3390/ijms21239253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
Durum wheat (Triticum turgidum L. ssp. durum) is a minor crop grown on about 17 million hectares of land worldwide. Several grain characteristics determine semolina's high end-use quality, such as grain protein content (GPC) which is directly related to the final products' nutritional and technological values. GPC improvement could be pursued by considering a candidate gene approach. The glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle represents a bottleneck in the first step of nitrogen assimilation. QTL for GPC have been located on all chromosomes, and several major ones have been reported on 2A and 2B chromosomes, where GS2 and Fd-GOGAT genes have been mapped. A useful and efficient method to validate a putative QTL is the constitution of near-isogenic lines (NILs) by using the marker found to be associated to that QTL. Here, we present the development of two distinct sets of heterogeneous inbred family (HIF)- based NILs segregating for GS2 and Fd-GOGAT genes obtained from heterozygous lines at those loci, as well as their genotypic and phenotypic characterizations. The results allow the validation of the previously identified GPC QTL on 2A and 2B chromosomes, along with the role of these key genes in GPC control.
Collapse
Affiliation(s)
- Domenica Nigro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
- Correspondence: (D.N.); (A.G.); Tel.: +39-0805442997(D.N.); +39-0805442995 (A.G.)
| | | | - Stefania Lucia Giove
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, 70126 Bari, Italy;
| | | | - Agata Gadaleta
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, 70126 Bari, Italy;
- Correspondence: (D.N.); (A.G.); Tel.: +39-0805442997(D.N.); +39-0805442995 (A.G.)
| |
Collapse
|
20
|
Ran L, Yu X, Li Y, Zou J, Deng J, Pan J, Xiong F. Analysis of development, accumulation and structural characteristics of starch granule in wheat grain under nitrogen application. Int J Biol Macromol 2020; 164:3739-3750. [DOI: 10.1016/j.ijbiomac.2020.08.192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022]
|
21
|
Zhao L, Li L, Song L, Liu Z, Li X, Li X. HMW-GS at Glu-B1 Locus Affects Gluten Quality Possibly Regulated by the Expression of Nitrogen Metabolism Enzymes and Glutenin-Related Genes in Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5426-5436. [PMID: 32314918 DOI: 10.1021/acs.jafc.0c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we investigated the effect of high-molecular-weight glutenin subunits (HMW-GSs) on gluten quality and glutenin synthesis based on the cytological, physicochemical, and transcriptional levels using Xinong1718 and its three near-isogenic lines (NILs). Cytological observations showed that the endosperm of Glu-1Bh with Bx14+By15 accumulated more abundant and larger protein bodies at 10 and 16 days after anthesis than the other NILs. Glu-1Bh exhibited higher nitrogen metabolism enzyme gene expression and activity levels. The transcriptional levels of genes encoding HMW-GSs, protein folding, and transcription factors differed significantly among the NILs, and they were highest in Glu-1Bh. Our results demonstrate that variations in the expression patterns of nitrogen metabolism and glutenin synthesis-related genes may account for the differences in the accumulation of glutenin, glutenin macropolymers, and protein bodies, thereby affecting the structural and thermal stability of gluten. These findings provide novel insights into how different HMW-GSs might improve the quality of wheat.
Collapse
Affiliation(s)
- Liye Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, Shaanxi Province 712100, China
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, Shaanxi Province 712100, China
| | - Lijun Song
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, Shaanxi Province 712100, China
| | - Zhenzhen Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, Shaanxi Province 712100, China
| | - Xu Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, Shaanxi Province 712100, China
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
22
|
Identification of quantitative trait loci associated with nitrogen use efficiency in winter wheat. PLoS One 2020; 15:e0228775. [PMID: 32092066 PMCID: PMC7039505 DOI: 10.1371/journal.pone.0228775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/22/2020] [Indexed: 11/26/2022] Open
Abstract
Maintaining winter wheat (Triticum aestivum L.) productivity with more efficient nitrogen (N) management will enable growers to increase profitability and reduce the negative environmental impacts associated with nitrogen loss. Wheat breeders would therefore benefit greatly from the identification and application of genetic markers associated with nitrogen use efficiency (NUE). To investigate the genetics underlying N response, two bi-parental mapping populations were developed and grown in four site-seasons under low and high N rates. The populations were derived from a cross between previously identified high NUE parents (VA05W-151 and VA09W-52) and a shared common low NUE parent, ‘Yorktown.’ The Yorktown × VA05W-151 population was comprised of 136 recombinant inbred lines while the Yorktown × VA09W-52 population was comprised of 138 doubled haploids. Phenotypic data was collected on parental lines and their progeny for 11 N-related traits and genotypes were sequenced using a genotyping-by-sequencing platform to detect more than 3,100 high quality single nucleotide polymorphisms in each population. A total of 130 quantitative trait loci (QTL) were detected on 20 chromosomes, six of which were associated with NUE and N-related traits in multiple testing environments. Two of the six QTL for NUE were associated with known photoperiod (Ppd-D1 on chromosome 2D) and disease resistance (FHB-4A) genes, two were reported in previous investigations, and one QTL, QNue.151-1D, was novel. The NUE QTL on 1D, 6A, 7A, and 7D had LOD scores ranging from 2.63 to 8.33 and explained up to 18.1% of the phenotypic variation. The QTL identified in this study have potential for marker-assisted breeding for NUE traits in soft red winter wheat.
Collapse
|
23
|
Song L, Li L, Zhao L, Liu Z, Xie T, Li X. Absence of Dx2 at Glu-D1 Locus Weakens Gluten Quality Potentially Regulated by Expression of Nitrogen Metabolism Enzymes and Glutenin-Related Genes in Wheat. Int J Mol Sci 2020; 21:ijms21041383. [PMID: 32085665 PMCID: PMC7073084 DOI: 10.3390/ijms21041383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/12/2020] [Accepted: 02/16/2020] [Indexed: 01/11/2023] Open
Abstract
Absence of high-molecular-weight glutenin subunit (HMW-GS) Dx2 weakens the gluten quality, but it is unclear how the absence of Dx2 has these effects. Thus, we investigated the gluten quality in terms of cytological, physicochemical, and transcriptional characteristics using two near-isogenic lines with Dx2 absent or present at Glu-D1 locus. Cytological observations showed that absence of Dx2 delayed and decreased the accumulation of protein bodies (PBs), where fewer and smaller PBs formed in the endosperm. The activity and gene expression levels of nitrogen assimilation and proteolysis enzymes were lower in HMW-D1a without Dx2 than HMW-D1p with Dx2, and thus less amino acid was transported for protein synthesis in the grains. The expression pattern of genes encoding Glu-1Dx2+1Dy12 was similar to those of three transcription factors, where these genes were significantly down-regulated in HMW-D1a than HMW-D1p. Three genes involving with glutenin polymerization were also down-regulated in HMW-D1a. These results may explain the changes in the glutenin and glutenin macropolymer (GMP) levels during grain development. Therefore, we suggest that the lower nitrogen metabolism capacity and expression levels of glutenin synthesis-related genes in HMW-D1a accounted for the lower accumulation of glutenin, GMP, and PBs, thereby weakening the structural‒thermal properties of gluten.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuejun Li
- Correspondence: ; Tel./Fax: +86-29-8708-2022
| |
Collapse
|
24
|
Cu ST, Guild G, Nicolson A, Velu G, Singh R, Stangoulis J. Genetic dissection of zinc, iron, copper, manganese and phosphorus in wheat (Triticum aestivum L.) grain and rachis at two developmental stages. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110338. [PMID: 31928667 DOI: 10.1016/j.plantsci.2019.110338] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 11/10/2019] [Accepted: 11/19/2019] [Indexed: 05/13/2023]
Abstract
The development of high-yielding wheat genotypes containing micronutrient-dense grains are the main priorities of biofortification programs. At the International Maize and Wheat Improvement Center, breeders have successfully crossed high zinc progenitors including synthetic hexaploid wheat, T. dicoccum, T. spelta and landraces to generate high-zinc varieties. In this study, we report a genome-wide association using a wheat diversity panel to dissect the genetics controlling zinc, iron, copper, manganese and phosphorus concentrations in the grain and rachis during grain development and at physiological maturity. Significant marker-trait associations (MTAs) were identified for each nutrient using multi-locus mixed model methodologies. For mature grain, markers that showed significant pleiotropic effects were found on chromosomes 1A, 3B and 5B, of which those on chromosome 5B at ∼95.5 cM were consistent over two growing seasons. Co-located MTAs were identified for the nutrient concentrations in developing grain, rachis and mature grain on multiple chromosomes. The identified genomic regions included putative candidate genes involved in metal uptake and transport and storage protein processing. These findings add to our understanding of the genetics of the five important nutrients in wheat grain and provide information on genetic markers for selecting high micronutrient genotypes.
Collapse
Affiliation(s)
- Suong T Cu
- College of Science and Engineering, Flinders University, SA 5042, Australia.
| | - Georgia Guild
- College of Science and Engineering, Flinders University, SA 5042, Australia
| | - Alison Nicolson
- College of Science and Engineering, Flinders University, SA 5042, Australia
| | - Govindan Velu
- International Maize and Wheat Improvement Centre (CIMMYT), Apdo Postal 6‑641, Mexico, DF, Mexico
| | - Ravi Singh
- International Maize and Wheat Improvement Centre (CIMMYT), Apdo Postal 6‑641, Mexico, DF, Mexico
| | - James Stangoulis
- College of Science and Engineering, Flinders University, SA 5042, Australia
| |
Collapse
|
25
|
Fernie AR, Bachem CWB, Helariutta Y, Neuhaus HE, Prat S, Ruan YL, Stitt M, Sweetlove LJ, Tegeder M, Wahl V, Sonnewald S, Sonnewald U. Synchronization of developmental, molecular and metabolic aspects of source-sink interactions. NATURE PLANTS 2020; 6:55-66. [PMID: 32042154 DOI: 10.1038/s41477-020-0590-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 12/28/2019] [Indexed: 05/02/2023]
Abstract
Plants have evolved a multitude of strategies to adjust their growth according to external and internal signals. Interconnected metabolic and phytohormonal signalling networks allow adaption to changing environmental and developmental conditions and ensure the survival of species in fluctuating environments. In agricultural ecosystems, many of these adaptive responses are not required or may even limit crop yield, as they prevent plants from realizing their fullest potential. By lifting source and sink activities to their maximum, massive yield increases can be foreseen, potentially closing the future yield gap resulting from an increasing world population and the transition to a carbon-neutral economy. To do so, a better understanding of the interplay between metabolic and developmental processes is required. In the past, these processes have been tackled independently from each other, but coordinated efforts are required to understand the fine mechanics of source-sink relations and thus optimize crop yield. Here, we describe approaches to design high-yielding crop plants utilizing strategies derived from current metabolic concepts and our understanding of the molecular processes determining sink development.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| | | | - Yrjö Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - H Ekkehard Neuhaus
- University of Kaiserslautern Pflanzenphysiologie, Kaiserslautern, Germany
| | - Salomé Prat
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Yong-Ling Ruan
- School of Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Sophia Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
26
|
Czyczyło-Mysza IM, Cyganek K, Dziurka K, Quarrie S, Skrzypek E, Marcińska I, Myśków B, Dziurka M, Warchoł M, Kapłoniak K, Bocianowski J. Genetic Parameters and QTLs for Total Phenolic Content and Yield of Wheat Mapping Population of CSDH Lines under Drought Stress. Int J Mol Sci 2019; 20:E6064. [PMID: 31805731 PMCID: PMC6929150 DOI: 10.3390/ijms20236064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 01/29/2023] Open
Abstract
A doubled haploid population of 94 lines from the Chinese Spring × SQ1 wheat cross (CSDH) was used to evaluate additive and epistatic gene action effects on total phenolic content, grain yield of the main stem, grain number per plant, thousand grain weight, and dry weight per plant at harvest based on phenotypic and genotypic observations of CSDH lines. These traits were evaluated under moderate and severe drought stress and compared with well-watered plants. Plants were grown in pots in an open-sided greenhouse. Genetic parameters, such as additive and epistatic effects, affecting total phenolic content, were estimated for eight year-by-drought combinations. Twenty-one markers showed a significant additive effect on total phenolic content in all eight year-by-drought combinations. These markers were located on chromosomes: 1A, 1B, 2A, 2B, 2D, 3A, 3B, 3D, 4A, and 4D. A region on 4AL with a stable QTL controlling the phenolic content, confirmed by various statistical methods is particularly noteworthy. In all years and treatments, three markers significantly linked to QTLs have been identified for both phenols and yield. Thirteen markers were coincident with candidate genes. Our results indicated the importance of both additive and epistatic gene effects on total phenolic content in eight year-by-drought combinations.
Collapse
Affiliation(s)
- Ilona Mieczysława Czyczyło-Mysza
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, 30-239 Kraków, Niezapominajek 21, Poland; (K.C.); (K.D.); (E.S.); (I.M.); (M.D.); (M.W.); (K.K.)
| | - Katarzyna Cyganek
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, 30-239 Kraków, Niezapominajek 21, Poland; (K.C.); (K.D.); (E.S.); (I.M.); (M.D.); (M.W.); (K.K.)
| | - Kinga Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, 30-239 Kraków, Niezapominajek 21, Poland; (K.C.); (K.D.); (E.S.); (I.M.); (M.D.); (M.W.); (K.K.)
| | - Steve Quarrie
- Faculty of Biology, Belgrade University, Studentski trg 16, 11000 Belgrade, Serbia;
| | - Edyta Skrzypek
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, 30-239 Kraków, Niezapominajek 21, Poland; (K.C.); (K.D.); (E.S.); (I.M.); (M.D.); (M.W.); (K.K.)
| | - Izabela Marcińska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, 30-239 Kraków, Niezapominajek 21, Poland; (K.C.); (K.D.); (E.S.); (I.M.); (M.D.); (M.W.); (K.K.)
| | - Beata Myśków
- Department of Plant Genetics, Breeding and Biotechnology, West-Pomeranian University of Technology, Szczecin ul. Słowackiego 17, 71-434 Szczecin, Poland;
| | - Michał Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, 30-239 Kraków, Niezapominajek 21, Poland; (K.C.); (K.D.); (E.S.); (I.M.); (M.D.); (M.W.); (K.K.)
| | - Marzena Warchoł
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, 30-239 Kraków, Niezapominajek 21, Poland; (K.C.); (K.D.); (E.S.); (I.M.); (M.D.); (M.W.); (K.K.)
| | - Kamila Kapłoniak
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, 30-239 Kraków, Niezapominajek 21, Poland; (K.C.); (K.D.); (E.S.); (I.M.); (M.D.); (M.W.); (K.K.)
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland;
| |
Collapse
|
27
|
Swarbreck SM, Wang M, Wang Y, Kindred D, Sylvester-Bradley R, Shi W, Bentley AR, Griffiths H. A Roadmap for Lowering Crop Nitrogen Requirement. TRENDS IN PLANT SCIENCE 2019; 24:892-904. [PMID: 31285127 DOI: 10.1016/j.tplants.2019.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 05/03/2023]
Abstract
Increasing nitrogen fertilizer applications have sustained a growing world population in the 20th century. However, to avoid any further associated environmental damage, new sustainable agronomic practices together with new cultivars must be developed. To date the concept of nitrogen use efficiency (NUE) has been useful in quantifying the processes of nitrogen uptake and utilization, but we propose a shift in focus to consider nitrogen responsiveness as a more appropriate trait to select varieties with lower nitrogen requirements. We provide a roadmap to integrate the regulation of nitrogen uptake and assimilation into varietal selection and crop breeding programs. The overall goal is to reduce nitrogen inputs by farmers growing crops in contrasting cropping systems around the world, while sustaining yields and reducing greenhouse gas (GHG) emissions.
Collapse
Affiliation(s)
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yuan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | | | | | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Alison R Bentley
- The John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge CB3 0LE, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
28
|
iTRAQ-based quantitative analysis reveals proteomic changes in Chinese cabbage (Brassica rapa L.) in response to Plasmodiophora brassicae infection. Sci Rep 2019; 9:12058. [PMID: 31427711 PMCID: PMC6700187 DOI: 10.1038/s41598-019-48608-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023] Open
Abstract
Clubroot disease is one of the major diseases affecting Brassica crops, especially Chinese cabbage (Brassica rapa L. ssp. pekinensis), which is known to be highly susceptible to the disease. In this study, the obligate biotrophic protist Plasmodiophora brassicae Woronin was used to infect the roots of Chinese cabbage seedlings. The disease symptoms were noticeable at 28 and 35 days after inoculation (DAI) in the susceptible (CM) line. Using isobaric tags for relative and absolute quantitation (iTRAQ) analysis, a total of 5,003 proteins of differential abundance were identified in the resistant/susceptible lines, which could be quantitated by dipeptide or polypeptide segments. Gene ontology (GO) analysis indicated that the differentially expressed proteins (DEPs) between the susceptible (CM) and resistant (CCR) lines were associated with the glutathione transferase activity pathway, which could catalyze the combination of glutathione and other electrophilic compounds to protect plants from disease. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the DEPs may be significantly enriched cytokinin signaling or arginine biosynthesis pathways, both of which are responses to stimuli and are plant defense reactions. The cytokinins may facilitate cell division in the shoot, resulting in the hypertrophy and formation of galls and the presentation of typical clubroot symptoms. In this study, the proteomic results provide a new perspective for creating germplasm resistance to P. brassicae, as well as a genetic basis for breeding to improve Chinese cabbage.
Collapse
|
29
|
Shen X, Yuan Y, Zhang H, Guo Y, Zhao Y, Li S, Kong F. The Hot QTL Locations for Potassium, Calcium, and Magnesium Nutrition and Agronomic Traits at Seedling and Maturity Stages of Wheat under Different Potassium Treatments. Genes (Basel) 2019; 10:genes10080607. [PMID: 31409015 PMCID: PMC6722954 DOI: 10.3390/genes10080607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 01/22/2023] Open
Abstract
Potassium (K) is one of the most important mineral nutrients for wheat. In this study, the effects of low K (LK) treatments and the quantitative trait loci (QTLs) for K, calcium (Ca), and magnesium (Mg) use efficiency traits, both at the seedling and maturity stages of wheat, were investigated. The set of “Tainong 18 × Linmai 6” recombinant inbred lines (RILs) were used to identify the QTLs under different K treatments using hydroponic culture and field trials. The majority of K concentrations and content-related traits at seedling and maturity stages decreased with reduced K supply, but the K use efficiency-related traits increased. In contrast, with reduced K supply, the contents of Ca and Mg increased, while the Ca and Mg use efficiency decreased. A total of 217 QTLs for seedling traits and 89 QTLs for adult traits were detected. Four relatively high-frequency QTLs (RHF-QTLs) and 18 QTL clusters (colocation of QTLs for more than two traits) were detected. Eight clusters were detected for K-, Ca-, and Mg-related traits simultaneously. This means that these traits might be controlled by the same QTL. In addition, we highlight that 4B might be an important chromosome regulating the nutrition of K, Ca, and Mg in wheat. The 4B chromosome and four hot QTL clusters, which located 45 QTLs, might be important potential targets for further investigation.
Collapse
Affiliation(s)
- Xing Shen
- State Key Laboratory of Crop Biology/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Yapei Yuan
- State Key Laboratory of Crop Biology/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Han Zhang
- State Key Laboratory of Crop Biology/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Ying Guo
- State Key Laboratory of Crop Biology/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Zhao
- State Key Laboratory of Crop Biology/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Sishen Li
- State Key Laboratory of Crop Biology/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China.
| | - Fanmei Kong
- State Key Laboratory of Crop Biology/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
30
|
Gao Y, de Bang TC, Schjoerring JK. Cisgenic overexpression of cytosolic glutamine synthetase improves nitrogen utilization efficiency in barley and prevents grain protein decline under elevated CO 2. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1209-1221. [PMID: 30525274 PMCID: PMC6576097 DOI: 10.1111/pbi.13046] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/23/2018] [Accepted: 11/09/2018] [Indexed: 05/23/2023]
Abstract
Cytosolic glutamine synthetase (GS1) plays a central role in nitrogen (N) metabolism. The importance of GS1 in N remobilization during reproductive growth has been reported in cereal species but attempts to improve N utilization efficiency (NUE) by overexpressing GS1 have yielded inconsistent results. Here, we demonstrate that transformation of barley (Hordeum vulgare L.) plants using a cisgenic strategy to express an extra copy of native HvGS1-1 lead to increased HvGS1.1 expression and GS1 enzyme activity. GS1 overexpressing lines exhibited higher grain yields and NUE than wild-type plants when grown under three different N supplies and two levels of atmospheric CO2 . In contrast with the wild-type, the grain protein concentration in the GS1 overexpressing lines did not decline when plants were exposed to elevated (800-900 μL/L) atmospheric CO2 . We conclude that an increase in GS1 activity obtained through cisgenic overexpression of HvGS1-1 can improve grain yield and NUE in barley. The extra capacity for N assimilation obtained by GS1 overexpression may also provide a means to prevent declining grain protein levels under elevated atmospheric CO2 .
Collapse
Affiliation(s)
- Yajie Gao
- Department of Plant and Environmental SciencesFaculty of ScienceCopenhagen UniversityFrederiksbergDenmark
| | - Thomas C. de Bang
- Department of Plant and Environmental SciencesFaculty of ScienceCopenhagen UniversityFrederiksbergDenmark
| | - Jan K. Schjoerring
- Department of Plant and Environmental SciencesFaculty of ScienceCopenhagen UniversityFrederiksbergDenmark
| |
Collapse
|
31
|
Michel S, Löschenberger F, Ametz C, Pachler B, Sparry E, Bürstmayr H. Simultaneous selection for grain yield and protein content in genomics-assisted wheat breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1745-1760. [PMID: 30810763 PMCID: PMC6531418 DOI: 10.1007/s00122-019-03312-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/15/2019] [Indexed: 05/10/2023]
Abstract
KEY MESSAGE Large genetic improvement can be achieved by simultaneous genomic selection for grain yield and protein content when combining different breeding strategies in the form of selection indices. Genomic selection has been implemented in many national and international breeding programmes in recent years. Numerous studies have shown the potential of this new breeding tool; few have, however, taken the simultaneous selection for multiple traits into account that is though common practice in breeding programmes. The simultaneous improvement in grain yield and protein content is thereby a major challenge in wheat breeding due to a severe negative trade-off. Accordingly, the potential and limits of multi-trait selection for this particular trait complex utilizing the vast phenotypic and genomic data collected in an applied wheat breeding programme were investigated in this study. Two breeding strategies based on various genomic-selection indices were compared, which (1) aimed to select high-protein genotypes with acceptable yield potential and (2) develop high-yielding varieties, while maintaining protein content. The prediction accuracy of preliminary yield trials could be strongly improved when combining phenotypic and genomic information in a genomics-assisted selection approach, which surpassed both genomics-based and classical phenotypic selection methods both for single trait predictions and in genomic index selection across years. The employed genomic selection indices mitigated furthermore the negative trade-off between grain yield and protein content leading to a substantial selection response for protein yield, i.e. total seed nitrogen content, which suggested that it is feasible to develop varieties that combine a superior yield potential with comparably high protein content, thus utilizing available nitrogen resources more efficiently.
Collapse
Affiliation(s)
- Sebastian Michel
- Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Str. 20, 3430, Tulln, Austria.
| | | | - Christian Ametz
- Saatzucht Donau GesmbH & CoKG, Saatzuchtstrasse 11, 2301, Probstdorf, Austria
| | - Bernadette Pachler
- Saatzucht Donau GesmbH & CoKG, Saatzuchtstrasse 11, 2301, Probstdorf, Austria
| | - Ellen Sparry
- C&M Seeds, 6180 5th Line, Palmerston, ON, N0G 2P0, Canada
| | - Hermann Bürstmayr
- Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
| |
Collapse
|
32
|
Nigro D, Gadaleta A, Mangini G, Colasuonno P, Marcotuli I, Giancaspro A, Giove SL, Simeone R, Blanco A. Candidate genes and genome-wide association study of grain protein content and protein deviation in durum wheat. PLANTA 2019; 249:1157-1175. [PMID: 30603787 DOI: 10.1007/s00425-018-03075-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/19/2018] [Indexed: 05/26/2023]
Abstract
Stable QTL for grain protein content co-migrating with nitrogen-related genes have been identified by the candidate genes and genome-wide association mapping approaches useful for marker-assisted selection. Grain protein content (GPC) is one of the most important quality traits in wheat, defining the nutritional and end-use properties and rheological characteristics. Over the years, a number of breeding programs have been developed aimed to improving GPC, most of them having been prevented by the negative correlation with grain yield. To overcome this issue, a collection of durum wheat germplasm was evaluated for both GPC and grain protein deviation (GPD) in seven field trials. Fourteen candidate genes involved in several processes related to nitrogen metabolism were precisely located on two high-density consensus maps of common and durum wheat, and six of them were found to be highly associated with both traits. The wheat collection was genotyped using the 90 K iSelect array, and 11 stable quantitative trait loci (QTL) for GPC were detected in at least three environments and the mean across environments by the genome-wide association mapping. Interestingly, seven QTL were co-migrating with N-related candidate genes. Four QTL were found to be significantly associated to increases of GPD, indicating that selecting for GPC could not affect final grain yield per spike. The combined approaches of candidate genes and genome-wide association mapping led to a better understanding of the genetic relationships between grain storage proteins and grain yield per spike, and provided useful information for marker-assisted selection programs.
Collapse
Affiliation(s)
- D Nigro
- Department of Soil, Plant and Food Sciences, Genetics and Plant Breeding Section, University of Bari, Bari, Italy
| | - A Gadaleta
- Department of Agricultural and Environmental Science, Research Unit of "Genetics and Plant Biotechnology", University of Bari, Bari, Italy.
| | - G Mangini
- Department of Soil, Plant and Food Sciences, Genetics and Plant Breeding Section, University of Bari, Bari, Italy
| | - P Colasuonno
- Department of Agricultural and Environmental Science, Research Unit of "Genetics and Plant Biotechnology", University of Bari, Bari, Italy
| | - I Marcotuli
- Department of Agricultural and Environmental Science, Research Unit of "Genetics and Plant Biotechnology", University of Bari, Bari, Italy
| | - A Giancaspro
- Department of Agricultural and Environmental Science, Research Unit of "Genetics and Plant Biotechnology", University of Bari, Bari, Italy
| | - S L Giove
- Department of Agricultural and Environmental Science, Research Unit of "Genetics and Plant Biotechnology", University of Bari, Bari, Italy
| | - R Simeone
- Department of Soil, Plant and Food Sciences, Genetics and Plant Breeding Section, University of Bari, Bari, Italy
| | - A Blanco
- Department of Soil, Plant and Food Sciences, Genetics and Plant Breeding Section, University of Bari, Bari, Italy
| |
Collapse
|
33
|
Jiang L, Sun L, Ye M, Wang J, Wang Y, Bogard M, Lacaze X, Fournier A, Beauchêne K, Gouache D, Wu R. Functional mapping of N deficiency‐induced response in wheat yield‐component traits by implementing high‐throughput phenotyping. THE PLANT JOURNAL 2019; 97:1105-1119. [PMID: 30536457 DOI: 10.1111/tpj.14186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/09/2018] [Accepted: 11/23/2018] [Indexed: 05/25/2023]
Affiliation(s)
- Libo Jiang
- Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing 100083 China
| | - Lidan Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding National Engineering Research Center for Floriculture College of Landscape Architecture Beijing Forestry University Beijing 100083 China
| | - Meixia Ye
- Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing 100083 China
| | - Jing Wang
- Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing 100083 China
| | - Yaqun Wang
- Department of Biostatistics Rutgers University New Brunswick NJ 08901 USA
| | - Matthieu Bogard
- Arvalis Institut du Végétal 3‐5 Rue Joseph et Marie Hackin 75116 Paris France
| | - Xavier Lacaze
- Arvalis Institut du Végétal 3‐5 Rue Joseph et Marie Hackin 75116 Paris France
| | - Antoine Fournier
- Arvalis Institut du Végétal 3‐5 Rue Joseph et Marie Hackin 75116 Paris France
| | - Katia Beauchêne
- Arvalis Institut du Végétal 3‐5 Rue Joseph et Marie Hackin 75116 Paris France
| | - David Gouache
- Arvalis Institut du Végétal 3‐5 Rue Joseph et Marie Hackin 75116 Paris France
| | - Rongling Wu
- Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing 100083 China
- Center for Statistical Genetics Departments of Public Health Sciences and Statistics Pennsylvania State University Hershey PA 17033 USA
| |
Collapse
|
34
|
Ma G, Liu W, Li S, Zhang P, Wang C, Lu H, Wang L, Xie Y, Ma D, Kang G. Determining the Optimal N Input to Improve Grain Yield and Quality in Winter Wheat With Reduced Apparent N Loss in the North China Plain. FRONTIERS IN PLANT SCIENCE 2019; 10:181. [PMID: 30853966 PMCID: PMC6396033 DOI: 10.3389/fpls.2019.00181] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 02/05/2019] [Indexed: 05/06/2023]
Abstract
Excessive or improper nitrogen (N) application rates negatively affect crop production and thereby environmental quality, particularly for winter wheat production in the North China Plain. Therefore, it is very important to optimize N fertilizer input to balance grain yield, environmental risk, and benefits under irrigated conditions. Three long-term stationary field experiments including five N levels, from 0 to 300 kg ha-1 [0 (N0), 90 (N90), 180 (N180), 240 (N240), and 300 (N300) kg ha-1] were carried out to investigate the effects of N regime on wheat yield, photosynthesis, and N balance at different sites. The grain yield and protein content increased quadratically with N rate, and the maximum values were 8087 kg ha-1 and 13.9% at N application rates of 250 and 337 kg N ha-1, respectively. N application increased the photosynthetic fluorescence parameters (Pn, Gs, and Tr) and N metabolism enzyme activities (NR and GS) which then increased grain yield. The leaching of soil nitrate into the deeper soil layers ( > 100 cm) increased with higher N fertilization and experimental years. The partial factor productivity (PFPN) was decreased by N because the apparent N loss increased with N application rate. In order to balance grain yield, N use efficiency (NUE), and N loss, the recommended N rate should be 120-171 kg N ha-1, and the corresponding yields and apparent N loss were 7278-7787 ka ha-1 and 22-37 kg ha-1, respectively.
Collapse
Affiliation(s)
- Geng Ma
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Weixing Liu
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shasha Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Panpan Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Chenyang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Chenyang Wang,
| | - Hongfang Lu
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Lifang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Yingxin Xie
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Dongyun Ma
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Guozhang Kang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
35
|
Hu M, Zhao X, Liu Q, Hong X, Zhang W, Zhang Y, Sun L, Li H, Tong Y. Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1858-1867. [PMID: 29577547 PMCID: PMC6181211 DOI: 10.1111/pbi.12921] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 03/01/2018] [Accepted: 03/04/2018] [Indexed: 05/18/2023]
Abstract
The plastidic glutamine synthetase isoform (GS2) plays a key role in nitrogen (N) assimilation. We introduced TaGS2-2Abpro::TaGS2-2Ab, the favourable allele of TaGS2-2A in the winter wheat (Triticum aestivum) variety Ji5265. Transgenic expression of TaGS2-2Ab significantly increased GS2 abundance and GS activity in leaves. Two consecutive field experiments showed the transgenic lines had higher grain yield, spike number, grain number per spike and 1000-grain weight than did the wild type under both low N and high N conditions. Analysis of N use-related traits showed that transgenic expression of TaGS2-2Ab increased root ability to acquire N, N uptake before and after flowering, remobilization of N to grains and N harvest index. Measurement of chlorophyll content and net photosynthesis rate in flag leaves during grain filling stage revealed that the transgenic lines had prolonged leaf functional duration as compared with the wild type. These results suggest that TaGS2 plays important role in N use, and the favourable allele TaGS2-2Ab is valuable in engineering wheat with improved N use efficiency and grain yield.
Collapse
Affiliation(s)
- Mengyun Hu
- Hebei Laboratory of Crop Genetics and BreedingHebei Academy of Agriculture and Forestry SciencesInstitute for Cereal and Oil CropsShijiazhuangChina
| | - Xueqiang Zhao
- State Key Laboratory for Plant Cell and Chromosome EngineeringChinese Academy of SciencesInstitute of Genetics and Developmental BiologyBeijingChina
| | - Qian Liu
- Hebei Laboratory of Crop Genetics and BreedingHebei Academy of Agriculture and Forestry SciencesInstitute for Cereal and Oil CropsShijiazhuangChina
| | - Xia Hong
- State Key Laboratory for Plant Cell and Chromosome EngineeringChinese Academy of SciencesInstitute of Genetics and Developmental BiologyBeijingChina
| | - Wei Zhang
- State Key Laboratory for Plant Cell and Chromosome EngineeringChinese Academy of SciencesInstitute of Genetics and Developmental BiologyBeijingChina
| | - Yingjun Zhang
- Hebei Laboratory of Crop Genetics and BreedingHebei Academy of Agriculture and Forestry SciencesInstitute for Cereal and Oil CropsShijiazhuangChina
| | - Lijing Sun
- Hebei Laboratory of Crop Genetics and BreedingHebei Academy of Agriculture and Forestry SciencesInstitute for Cereal and Oil CropsShijiazhuangChina
| | - Hui Li
- Hebei Laboratory of Crop Genetics and BreedingHebei Academy of Agriculture and Forestry SciencesInstitute for Cereal and Oil CropsShijiazhuangChina
| | - Yiping Tong
- State Key Laboratory for Plant Cell and Chromosome EngineeringChinese Academy of SciencesInstitute of Genetics and Developmental BiologyBeijingChina
| |
Collapse
|
36
|
Czyczyło-Mysza IM, Marcińska I, Skrzypek E, Bocianowski J, Dziurka K, Rančić D, Radošević R, Pekić-Quarrie S, Dodig D, Quarrie SA. Genetic analysis of water loss of excised leaves associated with drought tolerance in wheat. PeerJ 2018; 6:e5063. [PMID: 30002956 PMCID: PMC6037134 DOI: 10.7717/peerj.5063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/04/2018] [Indexed: 01/14/2023] Open
Abstract
Background Wheat is widely affected by drought. Low excised-leaf water loss (ELWL) has frequently been associated with improved grain yield under drought. This study dissected the genetic control of ELWL in wheat, associated physiological, morphological and anatomical leaf traits, and compared these with yield QTLs. Methods Ninety-four hexaploid wheat (Triticum aestivum L.) doubled haploids, mapped with over 700 markers, were tested for three years for ELWL from detached leaf 4 of glasshouse-grown plants. In one experiment, stomata per unit area and leaf thickness parameters from leaf cross-sections were measured. QTLs were identified using QTLCartographer. Results ELWL was significantly negatively correlated with leaf length, width, area and thickness. Major QTLs for ELWL during 0–3 h and 3–6 h were coincident across trials on 3A, 3B, 4B, 5B, 5D, 6B, 7A, 7B, 7D and frequently coincident (inversely) with leaf size QTLs. Yield in other trials was sometimes associated with ELWL and leaf size phenotypically and genotypically, but more frequently under non-droughted than droughted conditions. QTL coincidence showed only ELWL to be associated with drought/control yield ratio. Discussion Our results demonstrated that measures of ELWL and leaf size were equally effective predictors of yield, and both were more useful for selecting under favourable than stressed conditions.
Collapse
Affiliation(s)
| | - Izabela Marcińska
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Edyta Skrzypek
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
| | - Kinga Dziurka
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Dragana Rančić
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | | | | | - Dejan Dodig
- Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Stephen Alexander Quarrie
- Newcastle University Business School, Newcastle upon Tyne, United Kingdom.,Faculty of Biology, Belgrade University, Belgrade, Serbia
| |
Collapse
|
37
|
James D, Borphukan B, Fartyal D, Ram B, Singh J, Manna M, Sheri V, Panditi V, Yadav R, Achary VMM, Reddy MK. Concurrent Overexpression of OsGS1;1 and OsGS2 Genes in Transgenic Rice ( Oryza sativa L.): Impact on Tolerance to Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2018; 9:786. [PMID: 29977247 PMCID: PMC6021690 DOI: 10.3389/fpls.2018.00786] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 05/23/2018] [Indexed: 05/18/2023]
Abstract
Glutamine synthetase (GS) is a key enzyme involved in the nitrogen metabolism of higher plants. Abiotic stresses have adverse effects on crop production and pose a serious threat to global food security. GS activity and expression is known to be significantly modulated by various abiotic stresses. However, very few transgenic overexpression studies of GS have studied its impact on abiotic stress tolerance. GS is also the target enzyme of the broad spectrum herbicide Glufosinate (active ingredient: phosphinothricin). In this study, we investigated the effect of concurrent overexpression of the rice cytosolic GS1 (OsGS1;1) and chloroplastic GS2 (OsGS2) genes in transgenic rice on its tolerance to abiotic stresses and the herbicide Glufosinate. Our results demonstrate that the co-overexpression of OsGS1;1 and OsGS2 isoforms in transgenic rice plants enhanced its tolerance to osmotic and salinity stress at the seedling stage. The transgenic lines maintained significantly higher fresh weight, chlorophyll content, and relative water content than wild type (wt) and null segregant (ns) controls, under both osmotic and salinity stress. The OsGS1;1/OsGS2 co-overexpressing transgenic plants accumulated higher levels of proline but showed lower electrolyte leakage and had lower malondialdehyde (MDA) content under the stress treatments. The transgenic lines showed considerably enhanced photosynthetic and agronomic performance under drought and salinity stress imposed during the reproductive stage, as compared to wt and ns control plants. The grain filling rates of the transgenic rice plants under reproductive stage drought stress (64.6 ± 4.7%) and salinity stress (58.2 ± 4.5%) were significantly higher than control plants, thereby leading to higher yields under these abiotic stress conditions. Preliminary analysis also revealed that the transgenic lines had improved tolerance to methyl viologen induced photo-oxidative stress. Taken together, our results demonstrate that the concurrent overexpression of OsGS1;1 and OsGS2 isoforms in rice enhanced physiological tolerance and agronomic performance under adverse abiotic stress conditions, apparently acting through multiple mechanistic routes. The transgenic rice plants also showed limited tolerance to the herbicide Glufosinate. The advantages and limitations of glutamine synthetase overexpression in crop plants, along with future strategies to overcome these limitations for utilization in crop improvement have also been discussed briefly.
Collapse
Affiliation(s)
- Donald James
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Bhabesh Borphukan
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Dhirendra Fartyal
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Biotechnology, Uttarakhand Technical University, Dehradun, India
| | - Babu Ram
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Biotechnology, Uttarakhand Technical University, Dehradun, India
| | - Jitender Singh
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- National Institute of Plant Genome Research, New Delhi, India
| | - Mrinalini Manna
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vijay Sheri
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Varakumar Panditi
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Renu Yadav
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - V. Mohan M. Achary
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mallireddy K. Reddy
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
38
|
Lei L, Li G, Zhang H, Powers C, Fang T, Chen Y, Wang S, Zhu X, Carver BF, Yan L. Nitrogen use efficiency is regulated by interacting proteins relevant to development in wheat. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1214-1226. [PMID: 29193541 PMCID: PMC5978868 DOI: 10.1111/pbi.12864] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 05/08/2023]
Abstract
Wheat (Triticum aestivum) has low nitrogen use efficiency (NUE). The genetic mechanisms controlling NUE are unknown. Positional cloning of a major quantitative trait locus for N-related agronomic traits showed that the vernalization gene TaVRN-A1 was tightly linked with TaNUE1, the gene shown to influence NUE in wheat. Because of an Ala180 /Val180 substitution, TaVRN-A1a and TaVRN-A1b proteins interact differentially with TaANR1, a protein encoded by a wheat orthologue of Arabidopsis nitrate regulated 1 (ANR1). The transcripts of both TaVRN-A1 and TaANR1 were down-regulated by nitrogen. TaANR1 was functionally characterized in TaANR1::RNAi transgenic wheat, and in a natural mutant with a 23-bp deletion including 10-bp at the 5' end of intron 5 and 13-bp of exon 6 in gDNA sequence in its gDNA sequence, which produced transcript that lacked the full 84-bp exon 6. Both TaANR1 and TaHOX1 bound to the Ala180 /Val180 position of TaVRN-A1. Genetically incorporating favourable alleles from TaVRN-A1, TaANR1 and TaHOX1 increased grain yield from 9.84% to 11.58% in the field. Molecular markers for allelic variation of the genes that regulate nitrogen can be used in breeding programmes aimed at improving NUE and yield in novel wheat cultivars.
Collapse
Affiliation(s)
- Lei Lei
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Genqiao Li
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
- Present address:
Wheat, Peanut and Other Field Crops Research UnitUSDA‐ARSStillwaterOKUSA
| | - Hailin Zhang
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Carol Powers
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Tilin Fang
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Yihua Chen
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Shuwen Wang
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
- Present address:
The Land InstituteSalinaKSUSA
| | - Xinkai Zhu
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
- Present address:
Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou UniversityYangzhouJiangsuChina
| | - Brett F. Carver
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Liuling Yan
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| |
Collapse
|
39
|
Tiwari JK, Plett D, Garnett T, Chakrabarti SK, Singh RK. Integrated genomics, physiology and breeding approaches for improving nitrogen use efficiency in potato: translating knowledge from other crops. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:587-605. [PMID: 32290962 DOI: 10.1071/fp17303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/06/2017] [Indexed: 05/22/2023]
Abstract
Potato plays a key role in global food and nutritional security. Potato is an N fertiliser-responsive crop, producing high tuber yields. However, excessive use of N can result in environmental damage and high production costs, hence improving nitrogen use efficiency (NUE) of potato plants is one of the sustainable options to address these issues and increase yield. Advanced efforts have been undertaken to improve NUE in other plants like Arabidopsis, rice, wheat and maize through molecular and physiological approaches. Conversely, in potato, NUE studies have predominantly focussed on agronomy or soil management, except for a few researchers who have measured gene expression and proteins relevant to N uptake or metabolism. The focus of this review is to adapt knowledge gained from other plants to inform investigation of N metabolism and associated traits in potato with the aim of improving potato NUE using integrated genomics, physiology and breeding methods.
Collapse
Affiliation(s)
- Jagesh K Tiwari
- ICAR-Central Potato Research Institute, Shimla - 171001, Himachal Pradesh, India
| | - Darren Plett
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA 5064, Australia
| | - Trevor Garnett
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA 5064, Australia
| | - Swarup K Chakrabarti
- ICAR-Central Potato Research Institute, Shimla - 171001, Himachal Pradesh, India
| | - Rajesh K Singh
- ICAR-Central Potato Research Institute, Shimla - 171001, Himachal Pradesh, India
| |
Collapse
|
40
|
Su Q, Zhang X, Zhang W, Zhang N, Song L, Liu L, Xue X, Liu G, Liu J, Meng D, Zhi L, Ji J, Zhao X, Yang C, Tong Y, Liu Z, Li J. QTL Detection for Kernel Size and Weight in Bread Wheat ( Triticum aestivum L.) Using a High-Density SNP and SSR-Based Linkage Map. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 30364249 DOI: 10.3389/fpls.2018.0148467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
High-density genetic linkage maps are essential for precise mapping quantitative trait loci (QTL) in wheat (Triticum aestivum L.). In this study, a high-density genetic linkage map consisted of 6312 SNP and SSR markers was developed to identify QTL controlling kernel size and weight, based on a recombinant inbred line (RIL) population derived from the cross of Shixin828 and Kenong2007. Seventy-eight putative QTL for kernel length (KL), kernel width (KW), kernel diameter ratio (KDR), and thousand kernel weight (TKW) were detected over eight environments by inclusive composite interval mapping (ICIM). Of these, six stable QTL were identified in more than four environments, including two for KL (qKL-2D and qKL-6B.2), one for KW (qKW-2D.1), one for KDR (qKDR-2D.1) and two for TKW (qTKW-5A and qTKW-5B.2). Unconditional and multivariable conditional QTL mapping for TKW with respect to TKW component (TKWC) revealed that kernel dimensions played an important role in regulating the kernel weight. Seven QTL-rich genetic regions including seventeen QTL were found on chromosomes 1A (2), 2D, 3A, 4B and 5B (2) exhibiting pleiotropic effects. In particular, clusters on chromosomes 2D and 5B possessing significant QTL for kernel-related traits were highlighted. Markers tightly linked to these QTL or clusters will eventually facilitate further studies for fine mapping, candidate gene discovery and marker-assisted selection (MAS) in wheat breeding.
Collapse
Affiliation(s)
- Qiannan Su
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- The College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xilan Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- The College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- College of Biology and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Na Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China
| | - Liqiang Song
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China
| | - Lei Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Xin Xue
- Anyang Academy of Agricultural Sciences, Anyang, China
| | - Guotao Liu
- Anyang Academy of Agricultural Sciences, Anyang, China
| | - Jiajia Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- The College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Deyuan Meng
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- The College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Liya Zhi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Jun Ji
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xueqiang Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China
| | - Chunling Yang
- Anyang Academy of Agricultural Sciences, Anyang, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China
| | - Junming Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Ren D, Fang X, Jiang P, Zhang G, Hu J, Wang X, Meng Q, Cui W, Lan S, Ma X, Wang H, Kong L. Genetic Architecture of Nitrogen-Deficiency Tolerance in Wheat Seedlings Based on a Nested Association Mapping (NAM) Population. FRONTIERS IN PLANT SCIENCE 2018; 9:845. [PMID: 29997636 PMCID: PMC6028695 DOI: 10.3389/fpls.2018.00845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/31/2018] [Indexed: 05/06/2023]
Abstract
Genetic divergence for nitrogen utilization in germplasms is important in wheat breeding programs, especially for low nitrogen input management. In this study, a nested association mapping (NAM) population, derived from "Yanzhan 1" (a Chinese domesticated cultivar) crossed with "Hussar" (a British domesticated cultivar) and another three semi-wild wheat varieties, namely, "Cayazheda 29" (Triticum aestivum ssp. tibetanum Shao), "Yunnan" (T. aestivum ssp. yunnanense King), and "Yutian" (T. aestivum petropavloski Udats et Migusch), was used to detect quantitative trait loci (QTLs) for nitrogen utilization at the seedling stage. An integrated genetic map was constructed using 2,059 single nucleotide polymorphism (SNP) markers from a 90 K SNP chip, with a total coverage of 2,355.75 cM and an average marker spacing of 1.13 cM. A total of 67 QTLs for RDW (root dry weight), SDW (shoot dry weight), TDW (total dry weight), and RSDW (root to shoot ratio) were identified under normal nitrogen conditions (N+) and nitrogen deficient conditions (N-). Twenty-three of these QTLs were only detected under N- conditions. Moreover, 23 favorable QTLs were identified in the domesticated cultivar Yanzhan 1, 15 of which were detected under N+ conditions, while only four were detected under N- conditions. In contrast, the semi-wild cultivars contributed more favorable N--specific QTLs (eight from Cayazheda 29; nine from Yunnan), which could be further explored for breeding cultivars adapted to nitrogen-deficient conditions. In particular, QRSDW-5A.1 from YN should be further evaluated using high-resolution mapping.
Collapse
Affiliation(s)
- Deqiang Ren
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xiaojian Fang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Peng Jiang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Guangxu Zhang
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Junmei Hu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xiaoqian Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Qing Meng
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Weian Cui
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Shengjie Lan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- *Correspondence: Hongwei Wang, Lingrang Kong,
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- *Correspondence: Hongwei Wang, Lingrang Kong,
| |
Collapse
|
42
|
Su Q, Zhang X, Zhang W, Zhang N, Song L, Liu L, Xue X, Liu G, Liu J, Meng D, Zhi L, Ji J, Zhao X, Yang C, Tong Y, Liu Z, Li J. QTL Detection for Kernel Size and Weight in Bread Wheat ( Triticum aestivum L.) Using a High-Density SNP and SSR-Based Linkage Map. FRONTIERS IN PLANT SCIENCE 2018; 9:1484. [PMID: 30364249 PMCID: PMC6193082 DOI: 10.3389/fpls.2018.01484] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/24/2018] [Indexed: 05/19/2023]
Abstract
High-density genetic linkage maps are essential for precise mapping quantitative trait loci (QTL) in wheat (Triticum aestivum L.). In this study, a high-density genetic linkage map consisted of 6312 SNP and SSR markers was developed to identify QTL controlling kernel size and weight, based on a recombinant inbred line (RIL) population derived from the cross of Shixin828 and Kenong2007. Seventy-eight putative QTL for kernel length (KL), kernel width (KW), kernel diameter ratio (KDR), and thousand kernel weight (TKW) were detected over eight environments by inclusive composite interval mapping (ICIM). Of these, six stable QTL were identified in more than four environments, including two for KL (qKL-2D and qKL-6B.2), one for KW (qKW-2D.1), one for KDR (qKDR-2D.1) and two for TKW (qTKW-5A and qTKW-5B.2). Unconditional and multivariable conditional QTL mapping for TKW with respect to TKW component (TKWC) revealed that kernel dimensions played an important role in regulating the kernel weight. Seven QTL-rich genetic regions including seventeen QTL were found on chromosomes 1A (2), 2D, 3A, 4B and 5B (2) exhibiting pleiotropic effects. In particular, clusters on chromosomes 2D and 5B possessing significant QTL for kernel-related traits were highlighted. Markers tightly linked to these QTL or clusters will eventually facilitate further studies for fine mapping, candidate gene discovery and marker-assisted selection (MAS) in wheat breeding.
Collapse
Affiliation(s)
- Qiannan Su
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- The College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xilan Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- The College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- College of Biology and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
- *Correspondence: Wei Zhang, Junming Li,
| | - Na Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China
| | - Liqiang Song
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China
| | - Lei Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Xin Xue
- Anyang Academy of Agricultural Sciences, Anyang, China
| | - Guotao Liu
- Anyang Academy of Agricultural Sciences, Anyang, China
| | - Jiajia Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- The College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Deyuan Meng
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- The College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Liya Zhi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Jun Ji
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xueqiang Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China
| | - Chunling Yang
- Anyang Academy of Agricultural Sciences, Anyang, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China
| | - Junming Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Wei Zhang, Junming Li,
| |
Collapse
|
43
|
Tegeder M, Masclaux-Daubresse C. Source and sink mechanisms of nitrogen transport and use. THE NEW PHYTOLOGIST 2018; 217:35-53. [PMID: 29120059 DOI: 10.1111/nph.14876] [Citation(s) in RCA: 314] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/09/2017] [Indexed: 05/03/2023]
Abstract
Contents Summary 35 I. Introduction 35 II. Nitrogen acquisition and assimilation 36 III. Root-to-shoot transport of nitrogen 38 IV. Nitrogen storage pools in vegetative tissues 39 V. Nitrogen transport from source leaf to sink 40 VI. Nitrogen import into sinks 42 VII. Relationship between source and sink nitrogen transport processes and metabolism 43 VIII. Regulation of nitrogen transport 43 IX. Strategies for crop improvement 44 X. Conclusions 46 Acknowledgements 47 References 47 SUMMARY: Nitrogen is an essential nutrient for plant growth. World-wide, large quantities of nitrogenous fertilizer are applied to ensure maximum crop productivity. However, nitrogen fertilizer application is expensive and negatively affects the environment, and subsequently human health. A strategy to address this problem is the development of crops that are efficient in acquiring and using nitrogen and that can achieve high seed yields with reduced nitrogen input. This review integrates the current knowledge regarding inorganic and organic nitrogen management at the whole-plant level, spanning from nitrogen uptake to remobilization and utilization in source and sink organs. Plant partitioning and transient storage of inorganic and organic nitrogen forms are evaluated, as is how they affect nitrogen availability, metabolism and mobilization. Essential functions of nitrogen transporters in source and sink organs and their importance in regulating nitrogen movement in support of metabolism, and vegetative and reproductive growth are assessed. Finally, we discuss recent advances in plant engineering, demonstrating that nitrogen transporters are effective targets to improve crop productivity and nitrogen use efficiency. While inorganic and organic nitrogen transporters were examined separately in these studies, they provide valuable clues about how to successfully combine approaches for future crop engineering.
Collapse
Affiliation(s)
- Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Céline Masclaux-Daubresse
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France
| |
Collapse
|
44
|
Monostori I, Szira F, Tondelli A, Árendás T, Gierczik K, Cattivelli L, Galiba G, Vágújfalvi A. Genome-wide association study and genetic diversity analysis on nitrogen use efficiency in a Central European winter wheat (Triticum aestivum L.) collection. PLoS One 2017; 12:e0189265. [PMID: 29283996 PMCID: PMC5746223 DOI: 10.1371/journal.pone.0189265] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/23/2017] [Indexed: 11/18/2022] Open
Abstract
To satisfy future demands, the increase of wheat (Triticum aestivum L.) yield is inevitable. Simultaneously, maintaining high crop productivity and efficient use of nutrients, especially nitrogen use efficiency (NUE), are essential for sustainable agriculture. NUE and its components are inherently complex and highly influenced by environmental factors, nitrogen management practices and genotypic variation. Therefore, a better understanding of their genetic basis and regulation is fundamental. To investigate NUE-related traits and their genetic and environmental regulation, field trials were evaluated in a Central European wheat collection of 93 cultivars at two nitrogen input levels across three seasons. This elite germplasm collection was genotyped on DArTseq® genotypic platform to identify loci affecting N-related complex agronomic traits. To conduct robust genome-wide association mapping, the genetic diversity, population structure and linkage disequilibrium were examined. Population structure was investigated by various methods and two subpopulations were identified. Their separation is based on the breeding history of the cultivars, while analysis of linkage disequilibrium suggested that selective pressures had acted on genomic regions bearing loci with remarkable agronomic importance. Besides NUE, genetic basis for variation in agronomic traits indirectly affecting NUE and its components, moreover genetic loci underlying response to nitrogen fertilisation were also determined. Altogether, 183 marker-trait associations (MTA) were identified spreading over almost the entire genome. We found that most of the MTAs were environmental-dependent. The present study identified several associated markers in those genomic regions where previous reports had found genes or quantitative trait loci influencing the same traits, while most of the MTAs revealed new genomic regions. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArTseq® markers, which will facilitate the understanding of the genetic basis of NUE and agronomically important traits.
Collapse
Affiliation(s)
- István Monostori
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Fruzsina Szira
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Alessandro Tondelli
- CREA Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda (PC), Italy
| | - Tamás Árendás
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Krisztián Gierczik
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
| | - Luigi Cattivelli
- CREA Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda (PC), Italy
| | - Gábor Galiba
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
| | - Attila Vágújfalvi
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| |
Collapse
|
45
|
Deng Z, Cui Y, Han Q, Fang W, Li J, Tian J. Discovery of Consistent QTLs of Wheat Spike-Related Traits under Nitrogen Treatment at Different Development Stages. FRONTIERS IN PLANT SCIENCE 2017; 8:2120. [PMID: 29326735 PMCID: PMC5737097 DOI: 10.3389/fpls.2017.02120] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/29/2017] [Indexed: 05/24/2023]
Abstract
Spike-related traits such as spike length (Sl), fertile spikelet number (Fsn), sterile spikelet number (Ssn), grain number per spike (Gns), and thousand-kernel weight (Tkw) are important factors influencing wheat yield. However, reliably stable markers that can be used for molecular breeding in different environments have not yet been identified. In this study, a double haploid (DH) population was used for quantitative trait locus (QTL) mapping of five spike-related traits under four different nitrogen (N) supply dates in two locations and years. Seventy additive QTLs with phenotypic variation ranging from 4.12 to 34.74% and 10 major epistatic QTLs were identified. Eight important chromosomal regions on five chromosomes (1B, 2B, 2D, 5D, and 6A) were found. Sixteen stable QTLs were detected for which N application had little effect. Among those stable QTLs, QSl.sdau-2D-1, and QSl.sdau-2D-2, with phenotypic variation explained (PVE) of 10.4 and 24.2%, respectively, were flanked by markers Xwmc112 and Xcfd53 in the same order. The QTLs QSsn.sdau-2B-1, QFsn.sdau-2B-1, and QGns.sdau-2B, with PVE ranging from 4.37 to 28.43%, collocated in the Xwmc179-Xbarc373 marker interval. The consistent kernel wheat QTL (QTkw.sdau-6A) on the long arm of chromosome 6A, flanked by SSR markers Xbarc1055 and Xwmc553, showed PVE of 5.87-15.18%. Among these stable QTLs, the two flanking markers Xwmc112 and Xcfd53 have been validated using different varieties and populations for selecting Sl. Therefore, these results will be of great value for marker-assisted selection (MAS) in breeding programs and will accelerate the understanding of the genetic relationships among spike-related traits at the molecular level.
Collapse
Affiliation(s)
- Zhiying Deng
- Group of Wheat Quality Breeding, State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Cooperation Innovation Centre of Efficient Production with High Annual Yield of Wheat and Corn, Agronomy College, Shandong Agricultural University, Tai'an, China
| | - Yong Cui
- Group of Wheat Quality Breeding, State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Cooperation Innovation Centre of Efficient Production with High Annual Yield of Wheat and Corn, Agronomy College, Shandong Agricultural University, Tai'an, China
| | - Qingdian Han
- Horticulture, College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Wenqi Fang
- Group of Wheat Quality Breeding, State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Cooperation Innovation Centre of Efficient Production with High Annual Yield of Wheat and Corn, Agronomy College, Shandong Agricultural University, Tai'an, China
| | - Jifa Li
- Group of Wheat Quality Breeding, State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Cooperation Innovation Centre of Efficient Production with High Annual Yield of Wheat and Corn, Agronomy College, Shandong Agricultural University, Tai'an, China
| | - Jichun Tian
- Group of Wheat Quality Breeding, State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Cooperation Innovation Centre of Efficient Production with High Annual Yield of Wheat and Corn, Agronomy College, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
46
|
Allelic Variants of Glutamine Synthetase and Glutamate Synthase Genes in a Collection of Durum Wheat and Association with Grain Protein Content. DIVERSITY 2017. [DOI: 10.3390/d9040052] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
47
|
Gelli M, Konda AR, Liu K, Zhang C, Clemente TE, Holding DR, Dweikat IM. Validation of QTL mapping and transcriptome profiling for identification of candidate genes associated with nitrogen stress tolerance in sorghum. BMC PLANT BIOLOGY 2017; 17:123. [PMID: 28697783 PMCID: PMC5505042 DOI: 10.1186/s12870-017-1064-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/25/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Quantitative trait loci (QTLs) detected in one mapping population may not be detected in other mapping populations at all the time. Therefore, before being used for marker assisted breeding, QTLs need to be validated in different environments and/or genetic backgrounds to rule out statistical anomalies. In this regard, we mapped the QTLs controlling various agronomic traits in a recombinant inbred line (RIL) population in response to Nitrogen (N) stress and validated these with the reported QTLs in our earlier study to find the stable and consistent QTLs across populations. Also, with Illumina RNA-sequencing we checked the differential expression of gene (DEG) transcripts between parents and pools of RILs with high and low nitrogen use efficiency (NUE) and overlaid these DEGs on to the common validated QTLs to find candidate genes associated with N-stress tolerance in sorghum. RESULTS An F7 RIL population derived from a cross between CK60 (N-stress sensitive) and San Chi San (N-stress tolerant) inbred sorghum lines was used to map QTLs for 11 agronomic traits tested under different N-levels. Composite interval mapping analysis detected a total of 32 QTLs for 11 agronomic traits. Validation of these QTLs revealed that of the detected, nine QTLs from this population were consistent with the reported QTLs in earlier study using CK60/China17 RIL population. The validated QTLs were located on chromosomes 1, 6, 7, 8, and 9. In addition, root transcriptomic profiling detected 55 and 20 differentially expressed gene (DEG) transcripts between parents and pools of RILs with high and low NUE respectively. Also, overlay of these DEG transcripts on to the validated QTLs found candidate genes transcripts for NUE and also showed the expected differential expression. For example, DEG transcripts encoding Lysine histidine transporter 1 (LHT1) had abundant expression in San Chi San and the tolerant RIL pool, whereas DEG transcripts encoding seed storage albumin, transcription factor IIIC (TFIIIC) and dwarfing gene (DW2) encoding multidrug resistance-associated protein-9 homolog showed abundant expression in CK60 parent, similar to earlier study. CONCLUSIONS The validated QTLs among different mapping populations would be the most reliable and stable QTLs across germplasm. The DEG transcripts found in the validated QTL regions will serve as future candidate genes for enhancing NUE in sorghum using molecular approaches.
Collapse
Affiliation(s)
- Malleswari Gelli
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Anji Reddy Konda
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| | - Kan Liu
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
| | - Chi Zhang
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
| | - Thomas E Clemente
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| | - David R Holding
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| | - Ismail M Dweikat
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA.
| |
Collapse
|
48
|
Sweetlove LJ, Nielsen J, Fernie AR. Engineering central metabolism - a grand challenge for plant biologists. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:749-763. [PMID: 28004455 DOI: 10.1111/tpj.13464] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
The goal of increasing crop productivity and nutrient-use efficiency is being addressed by a number of ambitious research projects seeking to re-engineer photosynthetic biochemistry. Many of these projects will require the engineering of substantial changes in fluxes of central metabolism. However, as has been amply demonstrated in simpler systems such as microbes, central metabolism is extremely difficult to rationally engineer. This is because of multiple layers of regulation that operate to maintain metabolic steady state and because of the highly connected nature of central metabolism. In this review we discuss new approaches for metabolic engineering that have the potential to address these problems and dramatically improve the success with which we can rationally engineer central metabolism in plants. In particular, we advocate the adoption of an iterative 'design-build-test-learn' cycle using fast-to-transform model plants as test beds. This approach can be realised by coupling new molecular tools to incorporate multiple transgenes in nuclear and plastid genomes with computational modelling to design the engineering strategy and to understand the metabolic phenotype of the engineered organism. We also envisage that mutagenesis could be used to fine-tune the balance between the endogenous metabolic network and the introduced enzymes. Finally, we emphasise the importance of considering the plant as a whole system and not isolated organs: the greatest increase in crop productivity will be achieved if both source and sink metabolism are engineered.
Collapse
Affiliation(s)
- Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41128, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800, Lyngby, Denmark
- Science for Life Laboratory, Royal Institute of Technology, SE17121, Stockholm, Sweden
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| |
Collapse
|
49
|
Zhang W, Fan X, Gao Y, Liu L, Sun L, Su Q, Han J, Zhang N, Cui F, Ji J, Tong Y, Li J. Chromatin modification contributes to the expression divergence of three TaGS2 homoeologs in hexaploid wheat. Sci Rep 2017; 7:44677. [PMID: 28300215 PMCID: PMC5353557 DOI: 10.1038/srep44677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/13/2017] [Indexed: 01/05/2023] Open
Abstract
Plastic glutamine synthetase (GS2) is responsible for ammonium assimilation. The reason that TaGS2 homoeologs in hexaploid wheat experience different selection pressures in the breeding process remains unclear. TaGS2 were minimally expressed in roots but predominantly expressed in leaves, and TaGS2-B had higher expression than TaGS2-A and TaGS2-D. ChIP assays revealed that the activation of TaGS2-B expression in leaves was correlated with increased H3K4 trimethylation. The transcriptional silencing of TaGS2 in roots was correlated with greater cytosine methylation and less H3K4 trimethylation. Micrococcal nuclease and DNase I accessibility experiments indicated that the promoter region was more resistant to digestion in roots than leaves, which indicated that the closed nucleosome conformation of the promoter region was important to the transcription initiation for the spatial-temporal expression of TaGS2. In contrast, the transcribed regions possess different nuclease accessibilities of three TaGS2 homoeologs in the same tissue, suggesting that nucleosome conformation of the transcribed region was part of the fine adjustment of TaGS2 homoeologs. This study provides evidence that histone modification, DNA methylation and nuclease accessibility coordinated the control of the transcription of TaGS2 homoeologs. Our results provided important evidence that TaGS2-B experienced the strongest selection pressures during the breeding process.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yingjie Gao
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang 050024, China
| | - Lei Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijing Sun
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050035, China
| | - Qiannan Su
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fa Cui
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Jun Ji
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing 100101, China
| | - Junming Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
50
|
Zhang M, Ma D, Ma G, Wang C, Xie X, Kang G. Responses of glutamine synthetase activity and gene expression to nitrogen levels in winter wheat cultivars with different grain protein content. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|