1
|
Yoshioka M, Kishii M, Singh PK, Inoue Y, Vy TTP, Tosa Y, Asuke S. Rmg10, a Novel Wheat Blast Resistance Gene Derived from Aegilops tauschii. PHYTOPATHOLOGY 2024; 114:2113-2120. [PMID: 38870178 DOI: 10.1094/phyto-01-24-0018-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Wheat blast, caused by Pyricularia oryzae (syn. Magnaporthe oryzae) pathotype Triticum (MoT), is a devastating disease that can result in up to 100% yield loss in affected fields. To find new resistance genes against wheat blast, we screened 199 accessions of Aegilops tauschii, the D genome progenitor of common wheat (Triticum aestivum), by seedling inoculation assays with Brazilian MoT isolate Br48 and found 14 resistant accessions. A synthetic hexaploid wheat line (Ldn/KU-2097) derived from a cross between the T. turgidum 'Langdon' (Ldn) and resistant A. tauschii accession KU-2097 exhibited resistance in seedlings and spikes against Br48. In an F2 population derived from 'Chinese Spring' × Ldn/KU-2097, resistant and susceptible individuals segregated in a 3:1 ratio, suggesting that the resistance from KU-2097 is controlled by a single dominant gene. We designated this gene Rmg10. Genetic mapping using an F2:3 population from the same cross mapped the RMG10 locus to the short arm of chromosome 2D. Rmg10 was ineffective against Bangladesh isolates but effective against Brazilian isolates. Field tests in Bolivia showed increased spike resistance in a synthetic octaploid wheat line produced from a cross between common wheat cultivar 'Gladius' and KU-2097. These results suggest that Rmg10 would be beneficial in farmers' fields in South America.
Collapse
Affiliation(s)
- Motohiro Yoshioka
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Masahiro Kishii
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Pawan Kumar Singh
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Yoshihiro Inoue
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Trinh Thi Phuong Vy
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Soichiro Asuke
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
2
|
Li H, Zhu L, Fan R, Li Z, Liu Y, Shaheen A, Nie F, Li C, Liu X, Li Y, Liu W, Yang Y, Guo T, Zhu Y, Bu M, Li C, Liang H, Bai S, Ma F, Guo G, Zhang Z, Huang J, Zhou Y, Song CP. A platform for whole-genome speed introgression from Aegilops tauschii to wheat for breeding future crops. Nat Protoc 2024; 19:281-312. [PMID: 38017137 DOI: 10.1038/s41596-023-00922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/28/2023] [Indexed: 11/30/2023]
Abstract
Breeding new and sustainable crop cultivars of high yields and desirable traits has been a major challenge for ensuring food security for the growing global human population. For polyploid crops such as wheat, introducing genetic variation from wild relatives of its subgenomes is a key strategy to improve the quality of their breeding pools. Over the past decades, considerable progress has been made in speed breeding, genome sequencing, high-throughput phenotyping and genomics-assisted breeding, which now allows us to realize whole-genome introgression from wild relatives to modern crops. Here, we present a standardized protocol to rapidly introgress the entire genome of Aegilops tauschii, the progenitor of the D subgenome of bread wheat, into elite wheat backgrounds. This protocol integrates multiple modern high-throughput technologies and includes three major phases: development of synthetic octaploid wheat, generation of hexaploid A. tauschii-wheat introgression lines (A-WIs) and homozygosis of the generated A-WIs. Our approach readily generates stable introgression lines in 2 y, thus greatly accelerating the generation of A-WIs and the introduction of desirable genes from A. tauschii to wheat cultivars. These A-WIs are valuable for wheat-breeding programs and functional gene discovery. The current protocol can be easily modified and used for introgressing the genomes of wild relatives to other polyploid crops.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Lele Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ruixiao Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zheng Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yifan Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Aaqib Shaheen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Fang Nie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Can Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuqin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuanyuan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wenjuan Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yingying Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Tutu Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yu Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengchen Bu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Chenglin Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Huihui Liang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Feifei Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Zhen Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
3
|
Murgia I, Morandini P. Plant Iron Research in African Countries: Current "Hot Spots", Approaches, and Potentialities. PLANTS (BASEL, SWITZERLAND) 2023; 13:14. [PMID: 38202322 PMCID: PMC10780554 DOI: 10.3390/plants13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024]
Abstract
Plant iron (Fe) nutrition and metabolism is a fascinating and challenging research topic; understanding the role of Fe in the life cycle of plants requires knowledge of Fe chemistry and biochemistry and their impact during development. Plant Fe nutritional status is dependent on several factors, including the surrounding biotic and abiotic environments, and influences crop yield and the nutritional quality of edible parts. The relevance of plant Fe research will further increase globally, particularly for Africa, which is expected to reach 2.5 billion people by 2050. The aim of this review is to provide an updated picture of plant Fe research conducted in African countries to favor its dissemination within the scientific community. Three main research hotspots have emerged, and all of them are related to the production of plants of superior quality, i.e., development of Fe-dense crops, development of varieties resilient to Fe toxicity, and alleviation of Fe deficiency, by means of Fe nanoparticles for sustainable agriculture. An intensification of research collaborations between the African research groups and plant Fe groups worldwide would be beneficial for the progression of the identified research topics.
Collapse
Affiliation(s)
- Irene Murgia
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy;
| | | |
Collapse
|
4
|
Mahjoob MMM, Kamal NM, Gorafi YSA, Tsujimoto H. Genome-wide association study reveals distinct genetic associations related to leaf hair density in two lineages of wheat-wild relative Aegilops tauschii. Sci Rep 2022; 12:17486. [PMID: 36261481 PMCID: PMC9581923 DOI: 10.1038/s41598-022-21713-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2023] Open
Abstract
Wild relatives of modern crops represent a promising source of genetic variation that can be mined for adaptations to climate change. Aegilops tauschii, the D-sub-genome progenitor of bread wheat (Triticum aestivum), constitutes a reservoir of genetic diversity for improving bread wheat performance and environmental resilience. Leaf hairiness plays an essential biological role in plant defense against biotic and abiotic stress. We investigated the natural variation in leaf hair density (LHD) among 293 Ae. tauschii accessions. Genome-wide association studies were performed for LHD with 2430 and 3880 DArTseq derived single nucleotide polymorphism (SNP) markers in two lineages of this species, TauL1 and TauL2, respectively. In TauL1, three marker-trait associations (MTAs) were located on chromosome 2D, whereas in TauL2, eight MTAs were identified, two associations were localized on each of the chromosomes 2D, 3D, 5D, and 7D. The markers explained phenotypic variation (R2) from 9 to 13% in TauL1 and 11 to 36% in TauL2. The QTLs identified in chromosomes 2D and 5D might be novel. Our results revealed more rapid and independent evolution of LHD in TauL2 compared to TauL1. The majority of LHD candidate genes identified are associated with biotic and abiotic stress responses. This study highlights the significance of intraspecific diversity of Ae. tauschii to enhance cultivated wheat germplasm.
Collapse
Affiliation(s)
- Mazin Mahjoob Mohamed Mahjoob
- United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8553, Japan
- Wheat Research Program, Agricultural Research Corporation, P.O. Box 126, Wad Medani, Sudan
| | - Nasrein Mohamed Kamal
- Wheat Research Program, Agricultural Research Corporation, P.O. Box 126, Wad Medani, Sudan
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan
| | - Yasir Serag Alnor Gorafi
- Wheat Research Program, Agricultural Research Corporation, P.O. Box 126, Wad Medani, Sudan
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.
| |
Collapse
|
5
|
Morgounov A, Li H, Shepelev S, Ali M, Flis P, Koksel H, Savin T, Shamanin V. Genetic Characterization of Spring Wheat Germplasm for Macro-, Microelements and Trace Metals. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11162173. [PMID: 36015476 PMCID: PMC9412593 DOI: 10.3390/plants11162173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 06/12/2023]
Abstract
Wheat as a staple food crop is the main source of micro- and macronutrients for most people of the world and is recognized as an attractive crop for biofortification. This study presents a comprehensive investigation of genomic regions governing grain micro- and macroelements concentrations in a panel of 135 diverse wheat accessions through a genome-wide association study. The genetic diversity panel was genotyped using the genotyping-by-sequencing (GBS) method and phenotyped in two environments during 2017−2018. Wide ranges of variation in nutrient element concentrations in grain were detected among the accessions. Based on 33,808 high-quality single nucleotide polymorphisms (SNPs), 2997 marker-element associations (MEAs) with −log10(p-value) > 3.5 were identified, representing all three subgenomes of wheat for 15-grain concentration elements. The highest numbers of MEAs were identified for Mg (499), followed by S (399), P (394), Ni (381), Cd (243), Ca (229), Mn (224), Zn (212), Sr (212), Cu (111), Rb (78), Fe (63), Mo (43), K (32) and Co (19). Further, MEAs associated with multiple elements and referred to as pleiotropic SNPs were identified for Mg, P, Cd, Mn, and Zn on chromosomes 1B, 2B, and 6B. Fifty MEAs were subjected to validation using KASIB multilocational trial at six sites in two years using 39 genotypes. Gene annotation of MEAs identified putative candidate genes that potentially encode different types of proteins related to disease, metal transportation, and metabolism. The MEAs identified in the present study could be potential targets for further validation and may be used in marker-assisted breeding to improve nutrient element concentrations in wheat grain.
Collapse
Affiliation(s)
- Alexey Morgounov
- Agronomy Department, Omsk State Agrarian University, 644008 Omsk, Russia
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences & CIMMYT-China, Beijing 100081, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya 572024, China
| | - Sergey Shepelev
- Agronomy Department, Omsk State Agrarian University, 644008 Omsk, Russia
| | - Mohsin Ali
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences & CIMMYT-China, Beijing 100081, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya 572024, China
| | - Paulina Flis
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Hamit Koksel
- Agronomy Department, Omsk State Agrarian University, 644008 Omsk, Russia
- Department of Nutrition and Dietetics, Istinye University, Istanbul 34010, Turkey
| | - Timur Savin
- Department of Research, S. Seifullin Kazakh Agro Technical University, Nur-Sultan 010011, Kazakhstan
| | - Vladimir Shamanin
- Agronomy Department, Omsk State Agrarian University, 644008 Omsk, Russia
| |
Collapse
|
6
|
Shepelev S, Morgounov A, Flis P, Koksel H, Li H, Savin T, Sharma R, Wang J, Shamanin V. Variation of Macro- and Microelements, and Trace Metals in Spring Wheat Genetic Resources in Siberia. PLANTS (BASEL, SWITZERLAND) 2022; 11:149. [PMID: 35050037 PMCID: PMC8778206 DOI: 10.3390/plants11020149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 05/15/2023]
Abstract
Western Siberia is one of the major spring wheat regions of Russia, cultivating over 7 Mha. The objective of the study was to evaluate the variation of macro- and microelements, and of trace metals in four distinct groups of genetic resources: primary synthetics from CIMMYT (37 entries), primary synthetics from Japan (8), US hard red spring wheat cultivars (14), and material from the Kazakhstan-Siberian Network on Spring Wheat Improvement (KASIB) (74). The experiment was conducted at Omsk State Agrarian University, using a random complete block design with four replicates in 2017 and 2018. Concentrations of 15 elements were included in the analysis: macroelements, Ca, K, Mg, P, and S; microelements, Fe, Cu, Mn, and Zn; toxic trace elements, Cd, Co, Ni; and trace elements, Mo, Rb, and Sr. Protein content was found to be positively correlated with the concentrations of 11 of the elements in one or both years. Multiple regression was used to adjust the concentration of each element, based on significant correlations with agronomic traits and macroelements. All 15 elements were evaluated for their suitability for genetic enhancement, considering phenotypic variation, their share of the genetic component in this variation, as well as the dependence of the element concentration on other traits. Three trace elements (Sr, Mo, and Co) were identified as traits that were relatively easy to enhance through breeding. These were followed by Ca, Cd, Rb, and K. The important biofortification elements Mn and Zn were among the traits that were difficult to enhance genetically. The CIMMYT and Japanese synthetics had significantly higher concentrations of K and Sr, compared to the local check. The Japanese synthetics also had the highest concentrations of Ca, S, Cd, and Mo. The US cultivars had concentrations of Ca as high as the Japanese synthetics, and the highest concentrations of Mg and Fe. KASIB's germplasm had near-average values for most elements. Superior germplasm, with high macro- and microelement concentrations and low trace-element concentrations, was found in all groups of material included.
Collapse
Affiliation(s)
- Sergey Shepelev
- Laboratory of Grains Quality, Omsk State Agrarian University, 644 008 Omsk, Russia; (S.S.); (H.K.)
| | - Alexey Morgounov
- Saudi Arabia Country Office, Food and Agriculture Organization of the United Nations, Riyadh 11421, Saudi Arabia;
| | - Paulina Flis
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Hamit Koksel
- Laboratory of Grains Quality, Omsk State Agrarian University, 644 008 Omsk, Russia; (S.S.); (H.K.)
- Nutrition and Dietetics Department, Istiniye University, Istanbul 34010, Turkey
| | - Huihui Li
- CIMMYT-China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.L.); (J.W.)
| | - Timur Savin
- Department of Science, S. Seifullin Kazakh Agro Technical University, Nur-Sultan 010 000, Kazakhstan;
| | - Ram Sharma
- International Center for Agricultural Research in Dry Areas, Central Asia and the Caucasus Regional Program, Tashkent 100 084, Uzbekistan;
| | - Jingxin Wang
- CIMMYT-China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.L.); (J.W.)
| | - Vladimir Shamanin
- Laboratory of Grains Quality, Omsk State Agrarian University, 644 008 Omsk, Russia; (S.S.); (H.K.)
| |
Collapse
|
7
|
Zhou Y, Bai S, Li H, Sun G, Zhang D, Ma F, Zhao X, Nie F, Li J, Chen L, Lv L, Zhu L, Fan R, Ge Y, Shaheen A, Guo G, Zhang Z, Ma J, Liang H, Qiu X, Hu J, Sun T, Hou J, Xu H, Xue S, Jiang W, Huang J, Li S, Zou C, Song CP. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. NATURE PLANTS 2021; 7:774-786. [PMID: 34045708 DOI: 10.1038/s41477-021-00934-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/30/2021] [Indexed: 05/04/2023]
Abstract
Increasing crop production is necessary to feed the world's expanding population, and crop breeders often utilize genetic variations to improve crop yield and quality. However, the narrow diversity of the wheat D genome seriously restricts its selective breeding. A practical solution is to exploit the genomic variations of Aegilops tauschii via introgression. Here, we established a rapid introgression platform for transferring the overall genetic variations of A. tauschii to elite wheats, thereby enriching the wheat germplasm pool. To accelerate the process, we assembled four new reference genomes, resequenced 278 accessions of A. tauschii and constructed the variation landscape of this wheat progenitor species. Genome comparisons highlighted diverse functional genes or novel haplotypes with potential applications in wheat improvement. We constructed the core germplasm of A. tauschii, including 85 accessions covering more than 99% of the species' overall genetic variations. This was crossed with elite wheat cultivars to generate an A. tauschii-wheat synthetic octoploid wheat (A-WSOW) pool. Laboratory and field analysis with two examples of the introgression lines confirmed its great potential for wheat breeding. Our high-quality reference genomes, genomic variation landscape of A. tauschii and the A-WSOW pool provide valuable resources to facilitate gene discovery and breeding in wheat.
Collapse
Affiliation(s)
- Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Guiling Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Dale Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Feifei Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xinpeng Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Fang Nie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jingyao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Liyang Chen
- Novogene Bioinformatics Institute, Beijing, China
| | - Linlin Lv
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lele Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ruixiao Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yifan Ge
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Aaqib Shaheen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhen Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jianchao Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Huihui Liang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiaolong Qiu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jiamin Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ting Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jingyi Hou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Hongxing Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Shulin Xue
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Beijing, China
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Suoping Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Changsong Zou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
8
|
Pototskaya IV, Shamanin VP, Shepelev SS, Bhatta M, Morgounov AI. Analysis of the Genome D Polymorphism of Synthetic Wheat Obtained on the Basis of Ae. tauschii L. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421020083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Matsuoka Y, Mori N. Reproductive and genetic roles of the maternal progenitor in the origin of common wheat ( Triticum aestivum L.). Ecol Evol 2020; 10:13926-13937. [PMID: 33391691 PMCID: PMC7771132 DOI: 10.1002/ece3.6985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 11/06/2022] Open
Abstract
Common wheat (Triticum aestivum L., AABBDD genome) is thought to have emerged through natural hybridization between Triticum turgidum L. (AABB genome) and Aegilops tauschii Coss. (DD genome). Hybridization barriers and doubling of the trihaploid F1 hybrids' genome (ABD) via unreduced gamete fusion had key roles in the process. However, how T. turgidum, the maternal progenitor, was involved in these mechanisms remains unknown. An artificial cross-experiment using 46 cultivated and 31 wild T. turgidum accessions and a single Ae. tauschii tester with a very short genetic distance to the common wheat D genome was conducted. Cytological and quantitative trait locus analyses of F1 hybrid genome doubling were performed. The crossability and ability to cause hybrid inviability did not greatly differ between the cultivars and wild accessions. The ability to cause hybrid genome doubling was higher in the cultivars. Three novel T. turgidum loci for hybrid genome doubling, which influenced unreduced gamete production in F1 hybrids, were identified. Cultivated T. turgidum might have increased the probability of the emergence of common wheat through its enhanced ability to cause genome doubling in F1 hybrids with Ae. tauschii. The ability enhancement might have involved alterations at a relatively small number of loci.
Collapse
Affiliation(s)
| | - Naoki Mori
- Crop EvolutionGraduate School of Agricultural ScienceKobe UniversityKobeJapan
| |
Collapse
|
10
|
Yang Y, Wan H, Yang F, Xiao C, Li J, Ye M, Chen C, Deng G, Wang Q, Li A, Mao L, Yang W, Zhou Y. Mapping QTLs for enhancing early biomass derived from Aegilops tauschii in synthetic hexaploid wheat. PLoS One 2020; 15:e0234882. [PMID: 32584908 PMCID: PMC7316292 DOI: 10.1371/journal.pone.0234882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022] Open
Abstract
Strong early vigour plays a crucial role in wheat yield improvement by enhancing resource utilization efficiency. Synthetic hexaploid wheat (SHW) combines the elite genes of tetraploid wheat with Aegilops tauschii and has been widely used in wheat genetic improvement for its abundant genetic variation. The two SHWs Syn79 and Syn80 were derived from the crossing of the same tetraploid wheat DOY1 with two different Ae. tauschii accessions, AT333 and AT428, respectively. The Syn80 possessed better early vigour traits than Syn79, theretically caused by their D genome from Ae. tauschii. To dissect their genetic basis in a hexaploid background, 203 recombinant inbred lines (RILs) derived from the cross of Syn79 x Syn80 were developed to detect quantitative trait loci (QTL) for four early biomass related traits: plant height (PH), tiller number (TN), shoot fresh weight (SFW) and shoot dry weight (SDW) per plant, under five different environmental conditions. Determined from the data of SNP markers, two genome regions on 1DS and 7D were stably associated with the four early biomass related traits showing pleiotropic effects. Four stable QTLs QPh.saas-1DS, QTn.saas-1DS, QSfw.saas-1DS and QSdw.saas-1DS explaining 7.92, 15.34, 9.64 and 10.15% of the phenotypic variation, respectively, were clustered in the region of 1DS from AX-94812958 to AX-110910133. Meanwhile, QPh.saas-7D, QTn.saas-7D, QSfw.saas-7D and QSdw.saas-7D were flanked by AX-109917900 and AX-110605376 on 7D, explaining 16.12, 24.35, 15.25 and 13.37% of the phenotypic variation on average, respectively. Moreover, these genomic QTLs on 1DS and 7D enhancing biomass in the parent Syn80 were from Ae. tauschii AT428. These findings suggest that these two QTLs from Ae. tauschii can be expressed stably in a hexaploid background at the jointing stage and be used for wheat improvement.
Collapse
Affiliation(s)
- Yumin Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Areas), Chengdu, China
| | - Hongshen Wan
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Areas), Chengdu, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Fan Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chun Xiao
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jun Li
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Areas), Chengdu, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Meijin Ye
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chunxiu Chen
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Guangmin Deng
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qin Wang
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Areas), Chengdu, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Aili Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Mao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wuyun Yang
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Areas), Chengdu, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- * E-mail: (WY); (YZ)
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- * E-mail: (WY); (YZ)
| |
Collapse
|
11
|
Rasheed A, Takumi S, Hassan MA, Imtiaz M, Ali M, Morgunov AI, Mahmood T, He Z. Appraisal of wheat genomics for gene discovery and breeding applications: a special emphasis on advances in Asia. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1503-1520. [PMID: 31897516 DOI: 10.1007/s00122-019-03523-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
We discussed the most recent efforts in wheat functional genomics to discover new genes and their deployment in breeding with special emphasis on advances in Asian countries. Wheat research community is making significant progress to bridge genotype-to-phenotype gap and then applying this knowledge in genetic improvement. The advances in genomics and phenomics have intrigued wheat researchers in Asia to make best use of this knowledge in gene and trait discovery. These advancements include, but not limited to, map-based gene cloning, translational genomics, gene mapping, association genetics, gene editing and genomic selection. We reviewed more than 57 homeologous genes discovered underpinning important traits and multiple strategies used for their discovery. Further, the complementary advancements in wheat phenomics and analytical approaches to understand the genetics of wheat adaptability, resilience to climate extremes and resistance to pest and diseases were discussed. The challenge to build a gold standard reference genome sequence of bread wheat is now achieved and several de novo reference sequences from the cultivars representing different gene pools will be available soon. New pan-genome sequencing resources of wheat will strengthen the foundation required for accelerated gene discovery and provide more opportunities to practice the knowledge-based breeding.
Collapse
Affiliation(s)
- Awais Rasheed
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
- International Maize and Wheat Improvement Center (CIMMYT), CAAS, 12 Zhongguancun South Street, Beijing, 100081, China.
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan
| | - Muhammad Adeel Hassan
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Muhammad Imtiaz
- International Maize and Wheat Improvement Center (CIMMYT) Pakistan office, c/o National Agriculture Research Center (NARC), Islamabad, Pakistan
| | - Mohsin Ali
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Alex I Morgunov
- International Maize and Wheat Improvement Center (CIMMYT), Yenimahalle, Ankara, 06170, Turkey
| | - Tariq Mahmood
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zhonghu He
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT), CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
12
|
Kuki Y, Ohno R, Yoshida K, Takumi S. Heterologous expression of wheat WRKY transcription factor genes transcriptionally activated in hybrid necrosis strains alters abiotic and biotic stress tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:71-79. [PMID: 32120271 DOI: 10.1016/j.plaphy.2020.02.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/22/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Hybrid necrosis and hybrid chlorosis are sometimes observed in interspecific hybrids between the tetraploid wheat cultivar Langdon and diploid wild wheat Aegilops tauschii. Many WRKY transcription factor genes are dramatically upregulated in necrosis and chlorosis wheat hybrids. Here, we isolated cDNA clones for four wheat WRKY transcription factor genes, TaWRKY49, TaWRKY92, TaWRKY112, and TaWRKY142, that were commonly upregulated in the hybrid necrosis and hybrid chlorosis and belonged to the same clade of the WRKY gene family. Expression patterns of the four TaWRKY genes in response to several stress conditions were similar in wheat seeding leaves. The four TaWRKY-GFP fusion proteins were targeted to the nucleus in onion epidermal cells. The TaWRKY gene expression levels were increased by high salt, dehydration, darkness, and blast fungus treatment in common wheat. Expression of either of the TaWRKY genes increased salinity and osmotic stress tolerance accompanied with overexpression of STZ/Zat10, and induced overexpression of the salicylic acid-signal pathway marker gene AtPR1 in transgenic Arabidopsis. TaWRKY142 expression also induced the jasmonic acid-pathway marker gene AtPDF1.2 and enhanced resistance against the fungal pathogen Colletotrichum higginsianum in transgenic Arabidopsis. These results suggest that the four TaWRKY genes act as integrated hubs of multiple stress signaling pathways in wheat and play important roles in autoimmune response-inducing hybrid necrosis and hybrid chlorosis.
Collapse
Affiliation(s)
- Yasunobu Kuki
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, Kobe, 657-8501, Japan
| | - Ryoko Ohno
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, Kobe, 657-8501, Japan.
| | - Kentaro Yoshida
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, Kobe, 657-8501, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, Kobe, 657-8501, Japan.
| |
Collapse
|
13
|
Okada M, Michikawa A, Yoshida K, Nagaki K, Ikeda TM, Takumi S. Phenotypic effects of the U-genome variation in nascent synthetic hexaploids derived from interspecific crosses between durum wheat and its diploid relative Aegilops umbellulata. PLoS One 2020; 15:e0231129. [PMID: 32240263 PMCID: PMC7117738 DOI: 10.1371/journal.pone.0231129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Aegilops umbellulata is a wild diploid wheat species with the UU genome that is an important genetic resource for wheat breeding. To exploit new synthetic allohexaploid lines available as bridges for wheat breeding, a total of 26 synthetic hexaploid lines were generated through crossing between the durum wheat cultivar Langdon and 26 accessions of Ae. umbellulata. In nascent synthetic hexaploids with the AABBUU genome, the presence of the set of seven U-genome chromosomes was confirmed with U-genome chromosome-specific markers developed based on RNA-seq-derived data from Ae. umbellulata. The AABBUU synthetic hexaploids showed large variations in flowering- and morphology-related traits, and these large variations transmitted well from the parental Ae. umbellulata accessions. However, the variation ranges in most traits examined were reduced under the AABBUU hexaploid background compared with under the diploid parents. The AABBUU and AABBDD synthetic hexaploids were clearly discriminated by several morphological traits, and an increase of plant height and in the number of spikes and a decrease of spike length were commonly observed in the AABBUU synthetics. Thus, interspecific differences in several morphological traits between Ae. umbellulata and A. tauschii largely affected the basic plant architecture of the synthetic hexaploids. In conclusion, the AABBUU synthetic hexaploid lines produced in the present study are useful resources for the introgression of desirable genes from Ae. umbellulata to common wheat.
Collapse
Affiliation(s)
- Moeko Okada
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Asami Michikawa
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kentaro Yoshida
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kiyotaka Nagaki
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Tatsuya M. Ikeda
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization, Fukuyama, Hiroshima, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- * E-mail:
| |
Collapse
|
14
|
Shamanin V, Shepelev S, Pozherukova V, Gultyaeva E, Kolomiets T, Pakholkova E, Morgounov A. Primary hexaploid synthetics: Novel sources of wheat disease resistance. CROP PROTECTION (GUILDFORD, SURREY) 2019; 121:7-10. [PMID: 31274944 PMCID: PMC6559260 DOI: 10.1016/j.cropro.2019.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Climate change is leading to increased occurrence of and yield losses to wheat diseases. Managing these diseases by introducing new, effective and diverse resistance genes into cultivars represents an important component of sustainable wheat production. In 2016 and 2017 a set of primary hexaploid synthetic wheat was studied under high disease pressure: powdery mildew, leaf and stem rust in Omsk; Septoria tritici and S. nodorum in Moscow. A total of 28 synthetics (19 CIMMYT synthetics and 9 Japanese synthetics) were selected as having combined resistance to at least two diseases in both years of testing. Two synthetics (entries 13 and 18) originating from crosses between winter durum wheat Ukrainka odesskaya-1530.94 and various Aegilopes taushii accessions, and four synthetics (entries 20, 21, 23 and 24) from cross between Canadian durum wheat Langdon and Ae. taushii were resistant to all four pathogens. Pathological and molecular markers evaluation of resistance suggests presence of new genes and diverse types of resistance. The novel genetic sources of disease resistance identified in this study can be successfully utilized in wheat breeding.
Collapse
Affiliation(s)
| | | | | | - Elena Gultyaeva
- All-Russian Institute of Plant Protection, Pushkin, 196608, Russia
| | - Tamara Kolomiets
- All-Russian Phytopathology Institute, Moscow Reg, 143050, Russia
| | - Elena Pakholkova
- All-Russian Phytopathology Institute, Moscow Reg, 143050, Russia
| | | |
Collapse
|
15
|
Kishii M. An Update of Recent Use of Aegilops Species in Wheat Breeding. FRONTIERS IN PLANT SCIENCE 2019; 10:585. [PMID: 31143197 PMCID: PMC6521781 DOI: 10.3389/fpls.2019.00585] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/18/2019] [Indexed: 05/16/2023]
Abstract
Aegilops species have significantly contributed to wheat breeding despite the difficulties involved in the handling of wild species, such as crossability and incompatibility. A number of biotic resistance genes have been identified and incorporated into wheat varieties from Aegilops species, and this genus is also contributing toward improvement of complex traits such as yield and abiotic tolerance for drought and heat. The D genome diploid species of Aegilops tauschii has been utilized most often in wheat breeding programs. Other Aegilops species are more difficult to utilize in the breeding because of lower meiotic recombination frequencies; generally they can be utilized only after extensive and time-consuming procedures in the form of translocation/introgression lines. After the emergence of Ug99 stem rust and wheat blast threats, Aegilops species gathered more attention as a form of new resistance sources. This article aims to update recent progress on Aegilops species, as well as to cover new topics around their use in wheat breeding.
Collapse
Affiliation(s)
- Masahiro Kishii
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
16
|
Okada M, Yoshida K, Takumi S. Hybrid incompatibilities in interspecific crosses between tetraploid wheat and its wild diploid relative Aegilops umbellulata. PLANT MOLECULAR BIOLOGY 2017; 95:625-645. [PMID: 29090430 DOI: 10.1007/s11103-017-0677-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 10/22/2017] [Indexed: 05/10/2023]
Abstract
Hybrid abnormalities, severe growth abortion and grass-clump dwarfism, were found in the tetraploid wheat/Aegilops umbellulata hybrids, and the gene expression changes were conserved in the hybrids with those in other wheat synthetic hexaploids. Aegilops umbellulata Zhuk., a diploid goatgrass species with a UU genome, has been utilized as a genetic resource for wheat breeding. Here, we examine the reproductive barriers between tetraploid wheat cultivar Langdon (Ldn) and various Ae. umbellulata accessions by conducting interspecific crossings. Through systematic cross experiments, three types of hybrid incompatibilities were found: seed production failure in crosses, hybrid growth abnormalities and sterility in the ABU hybrids. Hybrid incompatibilities were widely distributed over the entire range of the natural species, and in about 50% of the cross combinations between tetraploid Ldn and Ae. umbellulata accessions, ABU F1 hybrids showed one of two abnormal growth phenotypes: severe growth abortion (SGA) or grass-clump dwarfism. Expression of the shoot meristem maintenance-related and cell cycle-related genes was markedly repressed in crown tissues of hybrids showing SGA, suggesting dysfunction of mitotic cell division in the shoot apices. The grass-clump dwarf phenotype may be explained by down-regulation of wheat APETALA1-like MADS box genes, which act as flowering promoters, and altered expression in crown tissues of the miR156/SPLs module, which controls tiller number and branching. These gene expression changes in growth abnormalities were well conserved between the Ldn/Ae. umbellulata plants and interspecific hybrids from crosses of Ldn and wheat D-genome progenitor Ae. tauschii.
Collapse
Affiliation(s)
- Moeko Okada
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan
| | - Kentaro Yoshida
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi-shi, Saitama, 332-0012, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
17
|
The role of reproductive isolation in allopolyploid speciation patterns: empirical insights from the progenitors of common wheat. Sci Rep 2017; 7:16004. [PMID: 29167543 PMCID: PMC5700127 DOI: 10.1038/s41598-017-15919-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/03/2017] [Indexed: 11/15/2022] Open
Abstract
The ability to cause reproductive isolation often varies among individuals within a plant species. We addressed whether such polymorphism influenced speciation of the allopolyploid common wheat (Triticum aestivum L., AABBDD genome) by evaluating the expression of pre-pollination (outcrossing potential) and post-pollination (crossability) barriers in Aegilops tauschii Coss. (the D genome progenitor). In total, 201 Ae. tauschii accessions representing the entire natural habitat range of the species were used for anther length measurement and artificial crosses with a Triticum turgidum L. (the AB genome progenitor) tester. Intraspecific comparisons showed that both barriers were more strongly expressed in the TauL1 lineage than in the TauL2 lineage. The ability of Ae. tauschii to cause reproductive isolation in the hybridisation with T. turgidum might have markedly influenced common wheat’s speciation by inducing lineage-associated patterns of gene flow. The TauL2 accessions with high potential for natural hybridisation with T. turgidum clustered in the southern coastal Caspian region. This provided phenotypic support for the derivation of the D genome of common wheat from southern Caspian populations. The present study underscored the importance of approaches that incorporate the genealogical and geographic structure of the parental species’ reproductive isolation in understanding the mechanism of plant allopolyploid speciation.
Collapse
|
18
|
Matsuda R, Iehisa JCM, Sakaguchi K, Ohno R, Yoshida K, Takumi S. Global gene expression profiling related to temperature-sensitive growth abnormalities in interspecific crosses between tetraploid wheat and Aegilops tauschii. PLoS One 2017; 12:e0176497. [PMID: 28463975 PMCID: PMC5413045 DOI: 10.1371/journal.pone.0176497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
Triploid wheat hybrids between tetraploid wheat and Aegilops tauschii sometimes show abnormal growth phenotypes, and the growth abnormalities inhibit generation of wheat synthetic hexaploids. In type II necrosis, one of the growth abnormalities, necrotic cell death accompanied by marked growth repression occurs only under low temperature conditions. At normal temperature, the type II necrosis lines show grass-clump dwarfism with no necrotic symptoms, excess tillers, severe dwarfism and delayed flowering. Here, we report comparative expression analyses to elucidate the molecular mechanisms of the temperature-dependent phenotypic plasticity in the triploid wheat hybrids. We compared gene and small RNA expression profiles in crown tissues to characterize the temperature-dependent phenotypic plasticity. No up-regulation of defense-related genes was observed under the normal temperature, and down-regulation of wheat APETALA1-like MADS-box genes, considered to act as flowering promoters, was found in the grass-clump dwarf lines. Some microRNAs, including miR156, were up-regulated, whereas the levels of transcripts of the miR156 target genes SPLs, known to inhibit tiller and branch number, were reduced in crown tissues of the grass-clump dwarf lines at the normal temperature. Unusual expression of the miR156/SPLs module could explain the grass-clump dwarf phenotype. Dramatic alteration of gene expression profiles, including miRNA levels, in crown tissues is associated with the temperature-dependent phenotypic plasticity in type II necrosis/grass-clump dwarf wheat hybrids.
Collapse
Affiliation(s)
- Ryusuke Matsuda
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Julio Cesar Masaru Iehisa
- Departmento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Kouhei Sakaguchi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Ryoko Ohno
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Kentaro Yoshida
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Shigeo Takumi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- * E-mail:
| |
Collapse
|
19
|
Sakaguchi K, Nishijima R, Iehisa JCM, Takumi S. Fine mapping and genetic association analysis of Net2, the causative D-genome locus of low temperature-induced hybrid necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii. Genetica 2016; 144:523-533. [PMID: 27502693 DOI: 10.1007/s10709-016-9920-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/02/2016] [Indexed: 12/20/2022]
Abstract
Hybrid necrosis has been observed in many interspecific hybrids from crosses between tetraploid wheat and the wheat D-genome donor Aegilops tauschii. Type II necrosis is a kind of hybrid incompatibility that is specifically characterized by low-temperature induction and growth suppression. Two complementary genes, Net1 on the AB genome and Net2 on the D genome, putatively control type II necrosis in ABD triploids and synthetic hexaploid wheat. Toward map-based cloning of Net2, a fine map around the Net2 region on 2DS was constructed in this study. Using the draft genome sequence of Ae. tauschii and the physical map of the barley genome, the Net2 locus was mapped within a 0.6 cM interval between two closely linked markers. Although local chromosomal rearrangements were observed in the Net2-corresponding region between the barley/Brachypodium and Ae. tauschii genomes, the two closely linked markers were significantly associated with type II necrosis in Ae. tauschii. These results suggest that these markers will aid efficient selection of Net2 non-carrier individuals from the Ae. tauschii population and intraspecific progeny, and could help with introgression of agriculturally important genes from Ae. tauschii to common wheat.
Collapse
Affiliation(s)
- Kouhei Sakaguchi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan
| | - Ryo Nishijima
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan
| | - Julio Cesar Masaru Iehisa
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan.
| |
Collapse
|
20
|
Gogniashvili M, Jinjikhadze T, Maisaia I, Akhalkatsi M, Kotorashvili A, Kotaria N, Beridze T, Dudnikov AJ. Complete chloroplast genomes of Aegilops tauschii Coss. and Ae. cylindrica Host sheds light on plasmon D evolution. Curr Genet 2016; 62:791-798. [PMID: 26923563 DOI: 10.1007/s00294-016-0583-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/11/2016] [Accepted: 02/13/2016] [Indexed: 10/22/2022]
Abstract
Hexaploid wheat (Triticum aestivum L., genomes AABBDD) originated in South Caucasus by allopolyploidization of the cultivated Emmer wheat T. dicoccum (genomes AABB) with the Caucasian Ae. tauschii ssp strangulata (genomes DD). Genetic variation of Ae. tauschii is an important natural resource, that is why it is of particular importance to investigate how this variation was formed during Ae. tauschii evolutionary history and how it is presented through the species area. The D genome is also found in tetraploid Ae. cylindrica Host (2n = 28, CCDD). The plasmon diversity that exists in Triticum and Aegilops species is of great significance for understanding the evolution of these genera. In the present investigation the complete nucleotide sequence of plasmon D (chloroplast DNA) of nine accessions of Ae. tauschii and two accessions of Ae. cylindrica are presented. Twenty-eight SNPs are characteristic for both TauL1 and TauL2 accessions of Ae. tauschii using TauL3 as a reference. Four SNPs are additionally observed for TauL2 lineage. The longest (27 bp) indel is located in the intergenic spacer Rps15-ndhF of SSC. This indel can be used for simple determination of TauL3 lineage among Ae. tauschii accessions. In the case of Ae. cylindrica additionally 7 SNPs were observed. The phylogeny tree shows that chloroplast DNA of TauL1 and TauL2 diverged from the TauL3 lineage. TauL1 lineage is relatively older then TauL2. The position of Ae. cylindrica accessions on Ae. tauschii phylogeny tree constructed on chloroplast DNA variation data is intermediate between TauL1 and TauL2. The complete nucleotide sequence of chloroplast DNA of Ae. tauschii and Ae. cylindrica allows to refine the origin and evolution of D plasmon of genus Aegilops.
Collapse
Affiliation(s)
- Mari Gogniashvili
- Institute of Molecular Genetics, Agricultural University of Georgia, #240 D. Agmashenebeli Alley, 0159, Tbilisi, Georgia.
| | | | - Inesa Maisaia
- Institute of Botany, Ilia State University, Tbilisi, Georgia
| | - Maia Akhalkatsi
- Institute of Botany, Ilia State University, Tbilisi, Georgia
| | - Adam Kotorashvili
- National Centre for Disease Control and Public Health, Tbilisi, Georgia
| | - Nato Kotaria
- National Centre for Disease Control and Public Health, Tbilisi, Georgia
| | - Tengiz Beridze
- Institute of Molecular Genetics, Agricultural University of Georgia, #240 D. Agmashenebeli Alley, 0159, Tbilisi, Georgia
| | | |
Collapse
|
21
|
Takamatsu K, Iehisa JCM, Nishijima R, Takumi S. Comparison of gene expression profiles and responses to zinc chloride among inter- and intraspecific hybrids with growth abnormalities in wheat and its relatives. PLANT MOLECULAR BIOLOGY 2015; 88:487-502. [PMID: 26081164 DOI: 10.1007/s11103-015-0338-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/09/2015] [Indexed: 06/04/2023]
Abstract
Hybrid necrosis is a well-known reproductive isolation mechanism in plant species, and an autoimmune response is generally considered to trigger hybrid necrosis through epistatic interaction between disease resistance-related genes in hybrids. In common wheat, the complementary Ne1 and Ne2 genes control hybrid necrosis, defined as type I necrosis. Two other types of hybrid necrosis (type II and type III) have been observed in interspecific hybrids between tetraploid wheat and Aegilops tauschii. Another type of hybrid necrosis, defined here as type IV necrosis, has been reported in F1 hybrids between Triticum urartu and some accessions of Triticum monococcum ssp. aegilopoides. In types I, III and IV, cell death occurs gradually starting in older tissues, whereas type II necrosis symptoms occur only under low temperature. To compare comprehensive gene expression patterns of hybrids showing growth abnormalities, transcriptome analysis of type I and type IV necrosis was performed using a wheat 38k oligo-DNA microarray. Defense-related genes including many WRKY transcription factor genes were dramatically up-regulated in plants showing type I and type IV necrosis, similarly to other known hybrid abnormalities, suggesting an association with an autoimmune response. Reactive oxygen species generation and necrotic cell death were effectively inhibited by ZnCl2 treatment in types I, III and IV necrosis, suggesting a significant association of Ca(2+) influx in upstream signaling of necrotic cell death in wheat hybrid necrosis.
Collapse
Affiliation(s)
- Kiyofumi Takamatsu
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan
| | | | | | | |
Collapse
|
22
|
Accelerated senescence and enhanced disease resistance in hybrid chlorosis lines derived from interspecific crosses between tetraploid wheat and Aegilops tauschii. PLoS One 2015; 10:e0121583. [PMID: 25806790 PMCID: PMC4373817 DOI: 10.1371/journal.pone.0121583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 02/13/2015] [Indexed: 11/19/2022] Open
Abstract
Hybrid chlorosis, a type of hybrid incompatibility, has frequently been reported in inter- and intraspecific crosses of allopolyploid wheat. In a previous study, we reported some types of growth abnormalities such as hybrid necrosis and observed hybrid chlorosis with mild or severe abnormalities in wheat triploids obtained in crosses between tetraploid wheat cultivar Langdon and four Ae. tauschii accessions and in their derived synthetic hexaploids. However, the molecular mechanisms underlying hybrid chlorosis are not well understood. Here, we compared cytology and gene expression in leaves to characterize the abnormal growth in wheat synthetics showing mild and severe chlorosis. In addition, we compared disease resistance to wheat blast fungus. In total 55 and 105 genes related to carbohydrate metabolism and 53 and 89 genes for defense responses were markedly up-regulated in the mild and severe chlorosis lines, respectively. Abnormal chloroplasts formed in the mesophyll cells before the leaves yellowed in the hybrid chlorosis lines. The plants with mild chlorosis showed increased resistance to wheat blast and powdery mildew fungi, although significant differences only in two, third internode length and maturation time, out of the examined agricultural traits were found between the wild type and plants showing mild chlorosis. These observations suggest that senescence might be accelerated in hybrid chlorosis lines of wheat synthetics. Moreover, in wheat synthetics showing mild chlorosis, the negative effects on biomass can be minimized, and they may show substantial fitness under pathogen-polluted conditions.
Collapse
|
23
|
Nishijima R, Iehisa JCM, Matsuoka Y, Takumi S. The cuticular wax inhibitor locus Iw2 in wild diploid wheat Aegilops tauschii: phenotypic survey, genetic analysis, and implications for the evolution of common wheat. BMC PLANT BIOLOGY 2014; 14:246. [PMID: 25224598 PMCID: PMC4172845 DOI: 10.1186/s12870-014-0246-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/10/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Cuticular wax production on plant surfaces confers a glaucous appearance and plays important roles in plant stress tolerance. Most common wheat cultivars, which are hexaploid, and most tetraploid wheat cultivars are glaucous; in contrast, a wild wheat progenitor, Aegilops tauschii, can be glaucous or non-glaucous. A dominant non-glaucous allele, Iw2, resides on the short arm of chromosome 2D, which was inherited from Ae. tauschii through polyploidization. Iw2 is one of the major causal genes related to variation in glaucousness among hexaploid wheat. Detailed genetic and phylogeographic knowledge of the Iw2 locus in Ae. tauschii may provide important information and lead to a better understanding of the evolution of common wheat. RESULTS Glaucous Ae. tauschii accessions were collected from a broad area ranging from Armenia to the southwestern coastal part of the Caspian Sea. Linkage analyses with five mapping populations showed that the glaucous versus non-glaucous difference was mainly controlled by the Iw2 locus in Ae. tauschii. Comparative genomic analysis of barley and Ae. tauschii was then used to develop molecular markers tightly linked with Ae. tauschii Iw2. Chromosomal synteny around the orthologous Iw2 regions indicated that some chromosomal rearrangement had occurred during the genetic divergence leading to Ae. tauschii, barley, and Brachypodium. Genetic associations between specific Iw2-linked markers and respective glaucous phenotypes in Ae. tauschii indicated that at least two non-glaucous accessions might carry other glaucousness-determining loci outside of the Iw2 locus. CONCLUSION Allelic differences at the Iw2 locus were the main contributors to the phenotypic difference between the glaucous and non-glaucous accessions of Ae. tauschii. Our results supported the previous assumption that the D-genome donor of common wheat could have been any Ae. tauschii variant that carried the recessive iw2 allele.
Collapse
Affiliation(s)
- Ryo Nishijima
- />Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501 Japan
| | - Julio C M Iehisa
- />Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501 Japan
| | - Yoshihiro Matsuoka
- />Department of Bioscience, Fukui Prefectural University, Matsuoka, Eiheiji, Yoshida, Fukui 910-1195 Japan
| | - Shigeo Takumi
- />Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501 Japan
| |
Collapse
|
24
|
Iehisa JCM, Matsuura T, Mori IC, Yokota H, Kobayashi F, Takumi S. Identification of quantitative trait loci for abscisic acid responsiveness in the D-genome of hexaploid wheat. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:830-841. [PMID: 24877675 DOI: 10.1016/j.jplph.2014.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 06/03/2023]
Abstract
In crop species such as wheat, abiotic stresses and preharvest sprouting reduce grain yield and quality. The plant hormone abscisic acid (ABA) plays important roles in abiotic stress tolerance and seed dormancy. In previous studies, we evaluated ABA responsiveness of 67 Aegilops tauschii accessions and their synthetic hexaploid wheat lines, finding wide variation that was due to the D-genome. In this study, quantitative trait locus (QTL) analysis was performed using an F2 population derived from crosses of highly ABA-responsive and less-responsive synthetic wheat lines. A significant QTL was detected on chromosome 6D, in a similar location to that reported for ABA responsiveness using recombinant inbred lines derived from common wheat cultivars Mironovskaya 808 and Chinese Spring. A comparative map and physiological and expression analyses of the 6D QTL suggested that this locus involved in line differences among wheat synthetics is different from that involved in cultivar differences in common wheat. The common wheat 6D QTL was found to affect seed dormancy and the regulation of cold-responsive/late embryogenesis abundant genes during dehydration. However, in synthetic wheat, we failed to detect any association of ABA responsiveness with abiotic stress tolerance or seed dormancy, at least under our experimental conditions. Development of near-isogenic lines will be important for functional analyses of the synthetic wheat 6D QTL.
Collapse
Affiliation(s)
- Julio C M Iehisa
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Hirokazu Yokota
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Fuminori Kobayashi
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan.
| |
Collapse
|
25
|
Iehisa JCM, Shimizu A, Sato K, Nishijima R, Sakaguchi K, Matsuda R, Nasuda S, Takumi S. Genome-wide marker development for the wheat D genome based on single nucleotide polymorphisms identified from transcripts in the wild wheat progenitor Aegilops tauschii. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:261-71. [PMID: 24158251 DOI: 10.1007/s00122-013-2215-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/14/2013] [Indexed: 05/19/2023]
Abstract
13,347 high-confidence SNPs were discovered through transcriptome sequencing of Aegilops tauschii, which are useful for genomic analysis and molecular breeding of hexaploid wheat. In organisms with large and complex genomes, such as wheat, RNA-seq analysis is cost-effective for discovery of genome-wide single nucleotide polymorphisms (SNPs). In this study, deep sequencing of the spike transcriptome from two Aegilops tauschii accessions representing two major lineages led to the discovery of 13,347 high-confidence (HC) SNPs in 4,872 contigs. After removing redundant SNPs detected in the leaf transcriptome from the same accessions in an earlier study, 10,589 new SNPs were discovered. In total, 5,642 out of 5,808 contigs with HC SNPs were assigned to the Ae. tauschii draft genome sequence. On average, 732 HC polymorphic contigs were mapped in silico to each Ae. tauschii chromosome. Based on the polymorphic data, we developed markers to target the short arm of chromosome 2D and validated the polymorphisms using 20 Ae. tauschii accessions. Of the 29 polymorphic markers, 28 were successfully mapped to 2DS in the diploid F2 population of Ae. tauschii. Among ten hexaploid wheat lines, which included wheat synthetics and common wheat cultivars, 25 of the 43 markers were polymorphic. In the hexaploid F2 population between a common wheat cultivar and a synthetic wheat line, 23 of the 25 polymorphic markers between the parents were available for genotyping of the F2 plants and 22 markers mapped to chromosome 2DS. These results indicate that molecular markers that developed from polymorphisms between two distinct lineages of Ae. tauschii might be useful for analysis not only of the diploid, but also of the hexaploid wheat genome.
Collapse
|
26
|
Matsuoka Y, Takumi S, Nasuda S. Genetic mechanisms of allopolyploid speciation through hybrid genome doubling: novel insights from wheat (Triticum and Aegilops) studies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:199-258. [PMID: 24529724 DOI: 10.1016/b978-0-12-800255-1.00004-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polyploidy, which arises through complex genetic and ecological processes, is an important mode of plant speciation. This review provides an overview of recent advances in understanding why plant polyploid species are so ubiquitous and diverse. We consider how the modern framework for understanding genetic mechanisms of speciation could be used to study allopolyploid speciation that occurs through hybrid genome doubling, that is, whole genome doubling of interspecific F1 hybrids by the union of male and female unreduced gametes. We outline genetic and ecological mechanisms that may have positive or negative impacts on the process of allopolyploid speciation through hybrid genome doubling. We also discuss the current status of studies on the underlying genetic mechanisms focusing on the wheat (Triticum and Aegilops) hybrid-specific reproductive phenomena that are well known but deserve renewed attention from an evolutionary viewpoint.
Collapse
Affiliation(s)
- Yoshihiro Matsuoka
- Department of Bioscience, Fukui Prefectural University, Matsuoka, Eiheiji, Yoshida, Fukui, Japan.
| | - Shigeo Takumi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Shuhei Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
27
|
Matsuoka Y, Nasuda S, Ashida Y, Nitta M, Tsujimoto H, Takumi S, Kawahara T. Genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species. PLoS One 2013; 8:e68310. [PMID: 23950867 PMCID: PMC3738567 DOI: 10.1371/journal.pone.0068310] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/28/2013] [Indexed: 11/19/2022] Open
Abstract
The complex process of allopolyploid speciation includes various mechanisms ranging from species crosses and hybrid genome doubling to genome alterations and the establishment of new allopolyploids as persisting natural entities. Currently, little is known about the genetic mechanisms that underlie hybrid genome doubling, despite the fact that natural allopolyploid formation is highly dependent on this phenomenon. We examined the genetic basis for the spontaneous genome doubling of triploid F1 hybrids between the direct ancestors of allohexaploid common wheat (Triticum aestivum L., AABBDD genome), namely Triticumturgidum L. (AABB genome) and Aegilopstauschii Coss. (DD genome). An Ae. tauschii intraspecific lineage that is closely related to the D genome of common wheat was identified by population-based analysis. Two representative accessions, one that produces a high-genome-doubling-frequency hybrid when crossed with a T. turgidum cultivar and the other that produces a low-genome-doubling-frequency hybrid with the same cultivar, were chosen from that lineage for further analyses. A series of investigations including fertility analysis, immunostaining, and quantitative trait locus (QTL) analysis showed that (1) production of functional unreduced gametes through nonreductional meiosis is an early step key to successful hybrid genome doubling, (2) first division restitution is one of the cytological mechanisms that cause meiotic nonreduction during the production of functional male unreduced gametes, and (3) six QTLs in the Ae. tauschii genome, most of which likely regulate nonreductional meiosis and its subsequent gamete production processes, are involved in hybrid genome doubling. Interlineage comparisons of Ae. tauschii's ability to cause hybrid genome doubling suggested an evolutionary model for the natural variation pattern of the trait in which non-deleterious mutations in six QTLs may have important roles. The findings of this study demonstrated that the genetic mechanisms for hybrid genome doubling could be studied based on the intrinsic natural variation that exists in the parental species.
Collapse
Affiliation(s)
| | - Shuhei Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Yasuyo Ashida
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Miyuki Nitta
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Hisashi Tsujimoto
- Laboratory of Molecular Breeding, Arid Land Research Center, Tottori University, Tottori-shi, Tottori, Japan
| | - Shigeo Takumi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Taihachi Kawahara
- Laboratory of Crop Evolution, Plant Germ-plasm Institute, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto, Japan
| |
Collapse
|
28
|
Duszynska D, McKeown PC, Juenger TE, Pietraszewska-Bogiel A, Geelen D, Spillane C. Gamete fertility and ovule number variation in selfed reciprocal F1 hybrid triploid plants are heritable and display epigenetic parent-of-origin effects. THE NEW PHYTOLOGIST 2013; 198:71-81. [PMID: 23368793 DOI: 10.1111/nph.12147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 12/08/2012] [Indexed: 05/10/2023]
Abstract
Polyploidy and hybridization play major roles in plant evolution and reproduction. To investigate the reproductive effects of polyploidy and hybridization in Arabidopsis thaliana, we analyzed fertility of reciprocal pairs of F1 hybrid triploids, generated by reciprocally crossing 89 diploid accessions to a tetraploid Ler-0 line. All F1 hybrid triploid genotypes exhibited dramatically reduced ovule fertility, while variation in ovule number per silique was observed across different F1 triploid genotypes. These two reproductive traits were negatively correlated suggesting a trade-off between increased ovule number and ovule fertility. Furthermore, the ovule fertility of the F1 hybrid triploids displayed both hybrid dysgenesis and hybrid advantage (heterosis) effects. Strikingly, both reproductive traits (ovule fertility, ovule number) displayed epigenetic parent-of-origin effects between genetically identical reciprocal F1 hybrid triploid pairs. In some F1 triploid genotypes, the maternal genome excess F1 hybrid triploid was more fertile, whilst for other accessions the paternal genome excess F1 hybrid triploid was more fertile. Male gametogenesis was not significantly disrupted in F1 triploids. Fertility variation in the F1 triploid A. thaliana is mainly the result of disrupted ovule development. Overall, we demonstrate that in F1 triploid plants both ovule fertility and ovule number are subject to parent-of-origin effects that are genome dosage-dependent.
Collapse
Affiliation(s)
- Dorota Duszynska
- Plant and AgriBiosciences Centre (PABC), School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Peter C McKeown
- Plant and AgriBiosciences Centre (PABC), School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Thomas E Juenger
- Section of Integrative Biology & Institute for Cellular and Molecular Biology, University of Texas, 1 University Station C0930, Austin, TX, USA
| | - Anna Pietraszewska-Bogiel
- Plant and AgriBiosciences Centre (PABC), School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, 9000, Ghent, Belgium
| | - Charles Spillane
- Plant and AgriBiosciences Centre (PABC), School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
29
|
Iehisa JCM, Shimizu A, Sato K, Nasuda S, Takumi S. Discovery of high-confidence single nucleotide polymorphisms from large-scale de novo analysis of leaf transcripts of Aegilops tauschii, a wild wheat progenitor. DNA Res 2012; 19:487-97. [PMID: 23125207 PMCID: PMC3514859 DOI: 10.1093/dnares/dss028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Construction of high-resolution genetic maps is important for genetic and genomic research, as well as for molecular breeding. Single nucleotide polymorphisms (SNPs) are the predominant class of genetic variation and can be used as molecular markers. Aegilops tauschii, the D-genome donor of common wheat, is considered a valuable genetic resource for wheat improvement. Our previous study implied that Ae. tauschii accessions can be genealogically divided into two major lineages. In this study, the transcriptome of two Ae. tauschii accessions from each lineage, lineage 1 (L1) and 2 (L2), was sequenced, yielding 9435 SNPs and 739 insertion/deletion polymorphisms (indels) after de novo assembly of the reads. Based on 36 contig sequences, 31 SNPs and six indels were validated on 20 diverse Ae. tauschii accessions. Because almost all of the SNP markers were polymorphic between L1 and L2, and the D-genome donor of common wheat is presumed to belong to L2, these markers are available for D-genome typing in crosses between common wheat varieties and L1-derived synthetic wheat. Due to the conserved synteny between wheat and barley chromosomes, the high-density expressed sequence tag barley map and the hypothetical gene order in barley can be applied to develop markers on target chromosomal regions in wheat.
Collapse
Affiliation(s)
- Julio Cesar Masaru Iehisa
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
30
|
Iehisa JCM, Takumi S. Variation in abscisic acid responsiveness of Aegilops tauschii and hexaploid wheat synthetics due to the D-genome diversity. Genes Genet Syst 2012; 87:9-18. [PMID: 22531790 DOI: 10.1266/ggs.87.9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Common wheat (Triticum aestivum L.) is an allohexaploid that originated from natural hybridization between tetraploid wheat (Triticum turgidum) and diploid Aegilops tauschii. Ae. tauschii is considered one of the potential sources of new genetic variation in abiotic stress tolerance for improving common wheat. Abscisic acid (ABA) plays an important role in plant adaptation to environmental stresses. In this study, ABA responsiveness of 67 Ae. tauschii accessions and their synthetic hexaploid wheat lines, derived from crosses between T. turgidum cv. Langdon and the Ae. tauschii accessions, was evaluated based on growth inhibition by 20 µM ABA. Wide variation was found in ABA responsiveness for both synthetic wheat lines and their parental Ae. tauschii accessions. The variations due to D-genome found at the diploid level were also expressed in a hexaploid genetic background. Two pairs of synthetic wheat lines differing in ABA responsiveness were then selected for gene expression analysis and to test abiotic stress tolerance, because their parental Ae. tauschii accessions similarly exhibited the differential response to ABA. Gene expression of ABA inducible transcription factor, WABI5, and the downstream Cor/Lea genes (Wrab17, Wdhn13 and Wrab18) were analysed. In one pair, the highly responsive line exhibited higher induction of Wrab17 by ABA treatment, but no significant difference in dehydration or salinity tolerance was observed between these lines. In contrast, in the second pair, the highly ABA-responsive line showed higher levels of Wdhn13 expression and dehydration and salinity tolerance. In synthetic wheat lines, the difference in the ABA responsiveness of the lines appeared to be determined by the different sets of D-genome genes. Our findings suggest that highly ABA-responsive Ae. tauschii accessions should be valuable genetic resources for improving the abiotic stress tolerance of common wheat.
Collapse
Affiliation(s)
- Julio C M Iehisa
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | |
Collapse
|
31
|
Hatano H, Mizuno N, Matsuda R, Shitsukawa N, Park P, Takumi S. Dysfunction of mitotic cell division at shoot apices triggered severe growth abortion in interspecific hybrids between tetraploid wheat and Aegilops tauschii. THE NEW PHYTOLOGIST 2012; 194:1143-1154. [PMID: 22436033 DOI: 10.1111/j.1469-8137.2012.04125.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Common wheat is an allohexaploid species, derived through endoreduplication of an interspecific triploid hybrid produced from a cross between cultivated tetraploid wheat and the wild diploid relative Aegilops tauschii. Hybrid incompatibilities, including hybrid necrosis, have been observed in triploid wheat hybrids. A limited number of A. tauschii accessions show hybrid lethality in triploid hybrids crossed with tetraploid wheat as a result of developmental arrest at the early seedling stage, which is termed severe growth abortion (SGA). Despite the potential severity of this condition, the genetic mechanisms underlying SGA are not well understood. Here, we conducted comparative analyses of gene expression profiles in crown tissues to characterize developmental arrest in triploid hybrids displaying SGA. A number of defense-related genes were highly up-regulated, whereas many transcription factor genes, such as the KNOTTED1-type homeobox gene, which function in shoot apical meristem (SAM) and leaf primordia, were down-regulated in the crown tissues of SGA plants. Transcript accumulation levels of cell cycle-related genes were also markedly reduced in SGA plants, and no histone H4-expressing cells were observed in the SAM of SGA hybrid plants. Our findings demonstrate that SGA shows unique features among other types of abnormal growth phenotypes, such as type II and III necrosis.
Collapse
Affiliation(s)
- Hitoshi Hatano
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan
| | - Nobuyuki Mizuno
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan
| | - Ryusuke Matsuda
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan
| | - Naoki Shitsukawa
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan
| | - Pyoyun Park
- Laboratory of Stress Cytology, Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan
| | - Shigeo Takumi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan
| |
Collapse
|
32
|
Takumi S, Koyama K, Fujiwara K, Kobayashi F. Identification of a large deletion in the first intron of the Vrn-D1 locus, associated with loss of vernalization requirement in wild wheat progenitor Aegilops tauschii Coss. Genes Genet Syst 2012; 86:183-95. [PMID: 21952208 DOI: 10.1266/ggs.86.183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vernalization promotes flowering in winter wheat cultivars, whereas spring wheat cultivars are able to transition from vegetative to reproductive phase without vernalization. The wheat vernalization requirement is mainly controlled by the major locus Vrn-1, an APETALA1/FRUITFULL MADS-box gene homolog. To study natural variation of the vernalization requirement in a wild progenitor of common wheat, we sequenced the Vrn-D(t)1 locus in four accessions of Aegilops tauschii Coss. Some structural mutations were found in the promoter and first intron regions of Vrn-D(t)1, and haplotype analysis was conducted to examine the distribution of each identified mutation within 211 accessions of Ae. tauschii germplasm. Out of the total, nine accessions, which were originally collected in Afghanistan and Pakistan, contained deletions of a 5.4-kb sequence in the critical region of the Vrn-D(t)1 first intron. The 5.4-kb deletion mutation appeared independently of the dominant allele of the common wheat Vrn-D1 locus. The large deletion was absolutely associated with a lack of vernalization requirement for flowering under long-day conditions, but had no influence on heading date under field growth conditions. The levels of Vrn-1 and WFT transcript increased in the Ae. tauschii accessions having the large deletion. Identification of natural mutant accessions with a loss of vernalization requirement indicates the agricultural significance of Ae. tauschii as a genetic resource for wheat breeding.
Collapse
Affiliation(s)
- Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | | | | | | |
Collapse
|
33
|
Okamoto Y, Kajimura T, Ikeda TM, Takumi S. Evidence from principal component analysis for improvement of grain shape- and spikelet morphology-related traits after hexaploid wheat speciation. Genes Genet Syst 2012; 87:299-310. [DOI: 10.1266/ggs.87.299] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yuki Okamoto
- Graduate School of Agricultural Science, Kobe University
| | | | - Tatsuya M. Ikeda
- Western Region Agricultural Research Center of the National Agriculture and Food Research Organization
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University
| |
Collapse
|
34
|
Matsuda R, Iehisa JCM, Takumi S. Application of real-time PCR-based SNP detection for mapping of Net2, a causal D-genome gene for hybrid necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii. Genes Genet Syst 2012; 87:137-43. [DOI: 10.1266/ggs.87.137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
| | | | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University
| |
Collapse
|
35
|
Sohail Q, Inoue T, Tanaka H, Eltayeb AE, Matsuoka Y, Tsujimoto H. Applicability of Aegilops tauschii drought tolerance traits to breeding of hexaploid wheat. BREEDING SCIENCE 2011; 61:347-57. [PMID: 23136471 PMCID: PMC3406773 DOI: 10.1270/jsbbs.61.347] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 08/05/2011] [Indexed: 05/18/2023]
Abstract
Few genes are available to develop drought-tolerant bread wheat (Triticum aestivum L.) cultivars. One way to enhance bread wheat's genetic diversity would be to take advantage of the diversity of wild species by creating synthetic hexaploid wheat (SW) with the genomic constitution of bread wheat. In this study, we compared the expression of traits encoded at different ploidy levels and evaluated the applicability of Aegilops tauschii drought-related traits using 33 Ae. tauschii accessions along with their corresponding SW lines under well-watered and drought conditions. We found wide variation in Ae. tauschii, and even wider variation in the SW lines. Some SW lines were more drought-tolerant than the standard cultivar Cham 6. Aegilops tauschii from some regions gave better performing SW lines. The traits of Ae. tauschii were not significantly correlated with their corresponding SW lines, indicating that the traits expressed in wild diploid relatives of wheat may not predict the traits that will be expressed in SW lines derived from them. We suggest that, regardless of the adaptability and performance of the Ae. tauschii under drought, production of SW could probably result in genotypes with enhanced trait expression due to gene interactions, and that the traits of the synthetic should be evaluated in hexaploid level.
Collapse
Affiliation(s)
- Quahir Sohail
- Laboratory of Molecular Breeding, Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan
| | - Tomoe Inoue
- Laboratory of Plant Ecophysiology, Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan
| | - Hiroyuki Tanaka
- Laboratory of Plant Genetics, Faculty of Agriculture, Tottori University, 4-101 Minami, Tottori 680-8553, Japan
| | - Amin Elsadig Eltayeb
- Laboratory of Molecular Breeding, Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan
| | - Yoshihiro Matsuoka
- Department of Bioscience, Fukui Prefectural University, Matsuoka, Eiheiji, Yoshida, Fukui 910-1195, Japan
| | - Hisashi Tsujimoto
- Laboratory of Molecular Breeding, Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
36
|
Mizuno N, Shitsukawa N, Hosogi N, Park P, Takumi S. Autoimmune response and repression of mitotic cell division occur in inter-specific crosses between tetraploid wheat and Aegilops tauschii Coss. that show low temperature-induced hybrid necrosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:114-128. [PMID: 21645146 DOI: 10.1111/j.1365-313x.2011.04667.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Common wheat is an allohexaploid species originating from a naturally occurring inter-specific cross between tetraploid wheat and the diploid wild wheat Aegilops tauschii Coss. Artificial allopolyploidization can produce synthetic hexaploid wheat. However, synthetic triploid hybrids show four types of hybrid growth abnormalities: type II and III hybrid necrosis, hybrid chlorosis, and severe growth abortion. Of these hybrid abnormalities, type II necrosis is induced by low temperature. Under low temperature, elongation of stems and expansion of new leaves is repressed in type II necrosis lines, which later exhibit necrotic symptoms. Here, we characterize type II necrosis in detail. Comparative transcriptome analysis showed that a number of defense-related genes were highly up-regulated in seedling leaves that showed type II necrosis. Transmission electron microscopy revealed extensive cell death in the leaves under low-temperature conditions, accompanied by abundant generation of reactive oxygen species. In addition, down-regulation of cell cycle-related genes was observed in shoot apices of type II necrosis lines under low-temperature conditions. Quantitative RT-PCR and in situ hybridization showed repression of accumulation of histone H4 transcripts in the shoot apical meristem of type II necrosis lines. These results strongly suggest that an autoimmune response-like reaction and repression of cell division in the shoot apical meristem are associated with the abnormal growth phenotype in type II necrosis lines.
Collapse
Affiliation(s)
- Nobuyuki Mizuno
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
37
|
Takumi S, Mizuno N. Low temperature-induced necrosis shows phenotypic plasticity in wheat triploid hybrids. PLANT SIGNALING & BEHAVIOR 2011; 6:1431-3. [PMID: 21897130 PMCID: PMC3256362 DOI: 10.4161/psb.6.10.17065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Hybrid necrosis sometimes appears in triploid hybrids between tetraploid wheat and Aegilops tauschii Coss. Two types of hybrid necrosis (type II and type III) were observed when cultivar Langdon was used as female parent for hybrid production. Type II necrosis symptoms occurred only under low temperature conditions, whereas bushy and dwarf phenotypes were observed under normal temperature conditions. The developmental plasticity might be related to a temperature-responsive alteration of meristematic activity at the crown tissue of triploid hybrids. Epistatic interaction between the AB and D genomes induced not only upregulation of a number of defense-related genes, but also extensive changes in plant architecture in the type II necrosis hybrids. Such phenotypic plasticity was also observed in other cross combinations between cultivated tetraploid wheat and type II necrosis-induced Ae. tauschii accessions. Wild tetraploid wheat, Triticum turgidum subspecies dicoccoides, did not induce type II necrosis in the triploid hybrids, indicating the possibility of identifying the chromosomal location of a causal gene for type II necrosis in the AB genome.
Collapse
Affiliation(s)
- Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | | |
Collapse
|
38
|
Matsuoka Y. Evolution of polyploid triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. PLANT & CELL PHYSIOLOGY 2011; 52:750-64. [PMID: 21317146 DOI: 10.1093/pcp/pcr018] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The evolution of the polyploid Triticum wheats is distinctive in that domestication, natural hybridization and allopolyploid speciation have all had significant impacts on their diversification. In this review, I outline the phylogenetic relationships of cultivated wheats and their wild relatives and provide an overview of the recent progress and remaining issues in understanding the genetic and ecological factors that favored their evolution. An attempt is made to view the evolution of the polyploid Triticum wheats as a continuous process of diversification that was initiated by domestication of tetraploid emmer wheat and driven by various natural events ranging from interploidy introgression via hybridization to allopolyploid speciation of hexaploid common wheat, instead of viewing it as a group of discrete evolutionary processes that separately proceeded at the tetraploid and hexaploid levels. This standpoint underscores the important role of natural hybridization in the reticulate diversification of the tetraploid-hexaploid Triticum wheat complex and highlights critical, but underappreciated, issues that concern the allopolyploid speciation of common wheat.
Collapse
Affiliation(s)
- Yoshihiro Matsuoka
- Fukui Prefectural University, Matsuoka, Eiheiji, Yoshida, Fukui 910-1195, Japan.
| |
Collapse
|
39
|
Zhang L, Zhang L, Luo J, Chen W, Hao M, Liu B, Yan Z, Zhang B, Zhang H, Zheng Y, Liu D, Yen Y. Synthesizing double haploid hexaploid wheat populations based on a spontaneous alloploidization process. J Genet Genomics 2011; 38:89-94. [DOI: 10.1016/j.jcg.2011.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/11/2010] [Accepted: 12/06/2010] [Indexed: 11/28/2022]
|
40
|
Mizuno N, Hosogi N, Park P, Takumi S. Hypersensitive response-like reaction is associated with hybrid necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii coss. PLoS One 2010; 5:e11326. [PMID: 20593003 PMCID: PMC2892878 DOI: 10.1371/journal.pone.0011326] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 06/04/2010] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Hybrid speciation is classified into homoploid and polyploid based on ploidy level. Common wheat is an allohexaploid species that originated from a naturally occurring interploidy cross between tetraploid wheat and diploid wild wheat Aegilops tauschii Coss. Aegilops tauschii provides wide naturally occurring genetic variation. Sometimes its triploid hybrids with tetraploid wheat show the following four types of hybrid growth abnormalities: types II and III hybrid necrosis, hybrid chlorosis, and severe growth abortion. The growth abnormalities in the triploid hybrids could act as postzygotic hybridization barriers to prevent formation of hexaploid wheat. METHODOLOGY/PRINCIPAL FINDINGS Here, we report on the geographical and phylogenetic distribution of Ae. tauschii accessions inducing the hybrid growth abnormalities and showed that they are widely distributed across growth habitats in Ae. tauschii. Molecular and cytological characterization of the type III necrosis phenotype was performed. The hybrid abnormality causing accessions were widely distributed across growth habitats in Ae. tauschii. Transcriptome analysis showed that a number of defense-related genes such as pathogenesis-related genes were highly up-regulated in the type III necrosis lines. Transmission electron microscope observation revealed that cell death occurred accompanied by generation of reactive oxygen species in leaves undergoing type III necrosis. The reduction of photosynthetic activity occurred prior to the appearance of necrotic symptoms on the leaves exhibiting hybrid necrosis. CONCLUSIONS/SIGNIFICANCE Taking these results together strongly suggests that an autoimmune response might be triggered by intergenomic incompatibility between the tetraploid wheat and Ae. tauschii genomes in type III necrosis, and that genetically programmed cell death could be regarded as a hypersensitive response-like cell death similar to that observed in Arabidopsis intraspecific and Nicotiana interspecific hybrids. Only Ae. tauschii accessions without such inhibiting factors could be candidates for the D-genome donor for the present hexaploid wheat.
Collapse
Affiliation(s)
- Nobuyuki Mizuno
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Naoki Hosogi
- Laboratory of Stress Cytology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Pyoyun Park
- Laboratory of Stress Cytology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Shigeo Takumi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
41
|
Mizuno N, Yamasaki M, Matsuoka Y, Kawahara T, Takumi S. Population structure of wild wheat D-genome progenitor Aegilops tauschii Coss.: implications for intraspecific lineage diversification and evolution of common wheat. Mol Ecol 2010; 19:999-1013. [PMID: 20149088 DOI: 10.1111/j.1365-294x.2010.04537.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aegilops tauschii Coss. is the D-genome progenitor of hexaploid wheat. Aegilops tauschii, a wild diploid species, has a wide natural species range in central Eurasia, spreading from Turkey to western China. Amplified fragment length polymorphism (AFLP) analysis using a total of 122 accessions of Ae. tauschii was conducted to clarify the population structure of this widespread wild wheat species. Phylogenetic and principal component analyses revealed two major lineages in Ae. tauschii. Bayesian population structure analyses based on the AFLP data showed that lineages one (L1) and two (L2) were respectively significantly divided into six and three sublineages. Only four out of the six L1 sublineages were diverged from those of western habitats in the Transcaucasia and northern Iran region to eastern habitats such as Pakistan and Afghanistan. Other sublineages including L2 were distributed to a limited extent in the western region. Subspecies strangulata seemed to be differentiated in one sublineage of L2. Among three major haplogroups (HG7, HG9 and HG16) previously identified in the Ae. tauschii population based on chloroplast variation, HG7 accessions were widely distributed to both L1 and L2, HG9 accessions were restricted to L2, and HG16 accessions belonged to L1, suggesting that HG9 and HG16 were formed from HG7 after divergence of the first two lineages of the nuclear genome. These results on the population structure of Ae. tauschii and the genealogical relationship among Ae. tauschii accessions should provide important agricultural and evolutionary knowledge on genetic resources and conservation of natural genetic diversity.
Collapse
Affiliation(s)
- Nobuyuki Mizuno
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
42
|
Kurahashi Y, Terashima A, Takumi S. Variation in dehydration tolerance, ABA sensitivity and related gene expression patterns in D-genome progenitor and synthetic hexaploid wheat lines. Int J Mol Sci 2009; 10:2733-2751. [PMID: 19582226 PMCID: PMC2705513 DOI: 10.3390/ijms10062733] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 06/16/2009] [Accepted: 06/16/2009] [Indexed: 12/05/2022] Open
Abstract
The wild wheat Aegilops tauschii Coss. has extensive natural variation available for breeding of common wheat. Drought stress tolerance is closely related to abscisic acid (ABA) sensitivity. In this study, 17 synthetic hexaploid wheat lines, produced by crossing the tetraploid wheat cultivar Langdon with 17 accessions of Ae. tauschii, were used for comparative analysis of natural variation in drought tolerance and ABA sensitivity. Ae. tauschii showed wide natural variation, with weak association between the traits. Drought-sensitive accessions of Ae. tauschii exhibited significantly less ABA sensitivity. D-genome variations observed at the diploid genome level were not necessarily reflected in synthetic wheats. However, synthetic wheats derived from the parental Ae. tauschii accessions with high drought tolerance were significantly more tolerant to drought stress than those from drought-sensitive accessions. Moreover, synthetic wheats with high drought tolerance showed significantly higher ABA sensitivity than drought-sensitive synthetic lines. In the hexaploid genetic background, therefore, weak association of ABA sensitivity with drought tolerance was observed. To study differences in gene expression patterns between stress-tolerant and -sensitive lines, levels of two Cor/Lea and three transcription factor gene transcripts were compared. The more tolerant accession of Ae. tauschii tended to accumulate more abundant transcripts of the examined genes than the sensitive accession under stress conditions. The expression patterns in the synthetic wheats seemed to be additive for parental lines exposed to drought and ABA treatments. However, the transcript levels of transcription factor genes in the synthetic wheats did not necessarily correspond to the postulated levels based on expression in parental lines. Allopolyploidization altered the expression levels of the stress-responsive genes in synthetic wheats.
Collapse
Affiliation(s)
| | | | - Shigeo Takumi
- Author to whom correspondence should be addressed; E-Mail:
(S.T.); Tel. +81-78-803-5860; Fax: +81-78-803-5859
| |
Collapse
|
43
|
Production of aneuhaploid and euhaploid sporocytes by meiotic restitution in fertile hybrids between durum wheat Langdon chromosome substitution lines and Aegilops tauschii. J Genet Genomics 2009; 35:617-23. [PMID: 18937918 DOI: 10.1016/s1673-8527(08)60082-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 07/17/2008] [Accepted: 07/18/2008] [Indexed: 11/22/2022]
Abstract
Fertile F(1) hybrids were obtained between durum wheat (Triticum durum Desf.) Langdon (LDN) and its 10 disomic substitution (LDN DS) lines with Aegilops tauschii accession AS60 without embryo rescue. Selfed seedset rates for hybrids of LDN with AS60 were 36.87% and 49.45% in 2005 and 2006, respectively. Similar or higher selfed seedset rates were observed in the hybrids of 1D (1A), 1D (1B), 3D (3A), 4D (4B), 7D (7A), and 2D (2B) with AS60, while lower in hybrids of 3D (3B) + 3BL, 5D (5A) + 5AL, 5D (5B) + 5B and 6D (6B) + 6BS with AS60 compared with the hybrids of LDN with AS60. Observation of male gametogenesis showed that meiotic restitution, both first-division restitution (FDR) and single-division meiosis (SDM) resulted in the formation of functional unreduced gametes, which in turn produced seeds. Both euhaploid and aneuhaploid gametes were produced in F(1) hybrids. This suggested a strategy to simultaneously transfer and locate major genes from the ancestral species T. turgidum or Ae. tauschii. Moreover, there was no significant difference in the aneuhaploid rates between the F(1) hybrids of LDN and LDN DS lines with AS60, suggesting that meiotic pairing between the two D chromosomes in the hybrids of LDN DS lines with AS60 did not promote the formation of aneuhaploid gametes.
Collapse
|
44
|
Matsuoka Y, Takumi S, Kawahara T. Flowering time diversification and dispersal in central Eurasian wild wheat Aegilops tauschii Coss.: genealogical and ecological framework. PLoS One 2008; 3:e3138. [PMID: 18769547 PMCID: PMC2519791 DOI: 10.1371/journal.pone.0003138] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/15/2008] [Indexed: 11/18/2022] Open
Abstract
Timing of flowering is a reproductive trait that has significant impact on fitness in plants. In contrast to recent advances in understanding the molecular basis of floral transition, few empirical studies have addressed questions concerning population processes of flowering time diversification within species. We analyzed chloroplast DNA genealogical structure of flowering time variation in central Eurasian wild wheat Aegilops tauschii Coss. using 200 accessions that represent the entire species range. Flowering time measured as days from germination to flowering varied from 144.0 to 190.0 days (average 161.3 days) among accessions in a common garden/greenhouse experiment. Subsequent genealogical and statistical analyses showed that (1) there exist significant longitudinal and latitudinal clines in flowering time at the species level, (2) the early-flowering phenotype evolved in two intraspecific lineages, (3) in Asia, winter temperature was an environmental factor that affected the longitudinal clinal pattern of flowering time variation, and (4) in Transcaucasus-Middle East, some latitudinal factors affected the geographic pattern of flowering time variation. On the basis of palaeoclimatic, biogeographic, and genetic evidence, the northern part of current species' range [which was within the temperate desert vegetation (TDV) zone at the Last Glacial Maximum] is hypothesized to have harbored species refugia. Postglacial southward dispersal from the TDV zone seems to have been driven by lineages that evolved short-flowering-time phenotypes through different genetic mechanisms in Transcaucasus-Middle East and Asia.
Collapse
|
45
|
Benavente E, Cifuentes M, Dusautoir JC, David J. The use of cytogenetic tools for studies in the crop-to-wild gene transfer scenario. Cytogenet Genome Res 2008; 120:384-95. [PMID: 18504367 DOI: 10.1159/000121087] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2007] [Indexed: 11/19/2022] Open
Abstract
Interspecific hybridization in plants is an important evolutionary phenomenon involved in the dynamics of speciation that receives increasing interest in the context of possible gene escapes from transgenic crop varieties. Crops are able to cross-pollinate with a number of wild related species and exchange chromosome segments through homoeologous recombination. In this paper, we review a set of cytogenetic techniques that are appropriate to document the different steps required for the stable introgression of a chromosome segment from a donor species (i.e., the crop) into a recipient species (i.e., the wild). Several examples in hybrids and derivatives are given to illustrate how these approaches may be used to evaluate the potential for gene transfer between crops and wild relatives. Different techniques, from classical chromosome staining methods to recent developments in molecular cytogenetics, can be used to differentiate genomes and identify the chromosome regions eventually involved in genetic exchanges. Some clues are also given for the study of fertility restoration in the interspecific hybrid forms.
Collapse
Affiliation(s)
- E Benavente
- Departamento de Biotecnología, ETS Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain.
| | | | | | | |
Collapse
|