1
|
Chapman EA, Thomsen HC, Tulloch S, Correia PMP, Luo G, Najafi J, DeHaan LR, Crews TE, Olsson L, Lundquist PO, Westerbergh A, Pedas PR, Knudsen S, Palmgren M. Perennials as Future Grain Crops: Opportunities and Challenges. FRONTIERS IN PLANT SCIENCE 2022; 13:898769. [PMID: 35968139 PMCID: PMC9372509 DOI: 10.3389/fpls.2022.898769] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Perennial grain crops could make a valuable addition to sustainable agriculture, potentially even as an alternative to their annual counterparts. The ability of perennials to grow year after year significantly reduces the number of agricultural inputs required, in terms of both planting and weed control, while reduced tillage improves soil health and on-farm biodiversity. Presently, perennial grain crops are not grown at large scale, mainly due to their early stages of domestication and current low yields. Narrowing the yield gap between perennial and annual grain crops will depend on characterizing differences in their life cycles, resource allocation, and reproductive strategies and understanding the trade-offs between annualism, perennialism, and yield. The genetic and biochemical pathways controlling plant growth, physiology, and senescence should be analyzed in perennial crop plants. This information could then be used to facilitate tailored genetic improvement of selected perennial grain crops to improve agronomic traits and enhance yield, while maintaining the benefits associated with perennialism.
Collapse
Affiliation(s)
| | | | - Sophia Tulloch
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Pedro M. P. Correia
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Guangbin Luo
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Javad Najafi
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Lennart Olsson
- Lund University Centre for Sustainability Studies, Lund, Sweden
| | - Per-Olof Lundquist
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna Westerbergh
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pai Rosager Pedas
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Søren Knudsen
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
2
|
Jiang C, Kan J, Ordon F, Perovic D, Yang P. Bymovirus-induced yellow mosaic diseases in barley and wheat: viruses, genetic resistances and functional aspects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1623-1640. [PMID: 32008056 DOI: 10.1007/s00122-020-03555-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/24/2020] [Indexed: 05/20/2023]
Abstract
Bymovirus-induced yellow mosaic diseases seriously threaten global production of autumn-sown barley and wheat, which are two of the presently most important crops around the world. Under natural field conditions, the diseases are caused by infection of soil-borne plasmodiophorid Polymyxa graminis-transmitted bymoviruses of the genus Bymovirus of the family Potyviridae. Focusing on barley and wheat, this article summarizes the achievements on taxonomy, geography and host specificity of these disease-conferring viruses, as well as the genetics of resistance in barley, wheat and wild relatives. Moreover, based on recent progress of barley and wheat genomics, germplasm resources and large-scale sequencing, the exploration and isolation of corresponding resistant genes from wheat and barley as well as relatives, no matter what a large and complicated genome is present, are becoming feasible and are discussed. Furthermore, the foreseen advances on cloning of the resistance or susceptibility-encoding genes, which will provide the possibility to explore the functional interaction between host plants and soil-borne viral pathogens, are discussed as well as the benefits for marker-assisted resistance breeding in barley and wheat.
Collapse
Affiliation(s)
- Congcong Jiang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, People's Republic of China
| | - Jinhong Kan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, People's Republic of China
| | - Frank Ordon
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kühn-Institute (JKI), 06484, Quedlinburg, Germany
| | - Dragan Perovic
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kühn-Institute (JKI), 06484, Quedlinburg, Germany
| | - Ping Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, People's Republic of China.
| |
Collapse
|
3
|
Hoseinzadeh P, Ruge-Wehling B, Schweizer P, Stein N, Pidon H. High Resolution Mapping of a Hordeum bulbosum-Derived Powdery Mildew Resistance Locus in Barley Using Distinct Homologous Introgression Lines. FRONTIERS IN PLANT SCIENCE 2020; 11:225. [PMID: 32194602 PMCID: PMC7063055 DOI: 10.3389/fpls.2020.00225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/13/2020] [Indexed: 05/17/2023]
Abstract
Powdery mildew caused by Blumeria graminis f. sp. hordei (Bgh) is one of the main foliar diseases in barley (Hordeum vulgare L.; Hv). Naturally occurring resistance genes used in barley breeding are a cost effective and environmentally sustainable strategy to minimize the impact of pathogens, however, the primary gene pool of H. vulgare contains limited diversity owing to recent domestication bottlenecks. To ensure durable resistance against this pathogen, more genes are required that could be unraveled by investigation of secondary barley gene-pool. A large set of Hordeum bulbosum (Hb) introgression lines (ILs) harboring a diverse set of desirable resistance traits have been developed and are being routinely used as source of novel diversity in gene mapping studies. Nevertheless, this strategy is often compromised by a lack of recombination between the introgressed fragment and the orthologous chromosome of the barley genome. In this study, we fine-mapped a Hb gene conferring resistance to barley powdery mildew. The initial genotyping of two Hb ILs mapping populations with differently sized 2HS introgressions revealed severely reduced interspecific recombination in the region of the introgressed segment, preventing precise localization of the gene. To overcome this difficulty, we developed an alternative strategy, exploiting intraspecific recombination by crossing two Hv/Hb ILs with collinear Hb introgressions, one of which carries a powdery mildew resistance gene, while the other doesn't. The intraspecific recombination rate in the Hb-introgressed fragment of 2HS was approximately 20 times higher than it was in the initial simple ILs mapping populations. Using high-throughput genotyping-by-sequencing (GBS), we allocated the resistance gene to a 1.4 Mb interval, based on an estimate using the Hv genome as reference, in populations of only 103 and 146 individuals, respectively, similar to what is expected at this locus in barley. The most likely candidate resistance gene within this interval is part of the coiled-coil nucleotide-binding-site leucine-rich-repeat (CC-NBS-LLR) gene family, which is over-represented among genes conferring strong dominant resistance to pathogens. The reported strategy can be applied as a general strategic approach for identifying genes underlying traits of interest in crop wild relatives.
Collapse
Affiliation(s)
- Parastoo Hoseinzadeh
- Genomics of Genetic Resources, Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Brigitte Ruge-Wehling
- Institute for Breeding Research on Agricultural Crops, Julius Kühn Institute (JKI), Sanitz, Germany
| | - Patrick Schweizer
- Pathogen-Stress Genomics, Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nils Stein
- Genomics of Genetic Resources, Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Department of Crop Sciences, Center for Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany
| | - Hélène Pidon
- Genomics of Genetic Resources, Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
4
|
Dreissig S, Mascher M, Heckmann S. Variation in Recombination Rate Is Shaped by Domestication and Environmental Conditions in Barley. Mol Biol Evol 2020; 36:2029-2039. [PMID: 31209472 PMCID: PMC6736446 DOI: 10.1093/molbev/msz141] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Meiotic recombination generates genetic diversity upon which selection can act. Recombination rates are highly variable between species, populations, individuals, sexes, chromosomes, and chromosomal regions. The underlying mechanisms are controlled at the genetic and epigenetic level and show plasticity toward the environment. Environmental plasticity may be divided into short- and long-term responses. We estimated recombination rates in natural populations of wild barley and domesticated landraces using a population genetics approach. We analyzed recombination landscapes in wild barley and domesticated landraces at high resolution. In wild barley, high recombination rates are found in more interstitial chromosome regions in contrast to distal chromosome regions in domesticated barley. Among subpopulations of wild barley, natural variation in effective recombination rate is correlated with temperature, isothermality, and solar radiation in a nonlinear manner. A positive linear correlation was found between effective recombination rate and annual precipitation. We discuss our findings with respect to how the environment might shape effective recombination rates in natural populations. Higher recombination rates in wild barley populations subjected to specific environmental conditions could be a means to maintain fitness in a strictly inbreeding species.
Collapse
Affiliation(s)
- Steven Dreissig
- Meiosis Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Seeland, Germany
| | - Martin Mascher
- Domestication Genomics Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Seeland, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Stefan Heckmann
- Meiosis Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Seeland, Germany
| |
Collapse
|
5
|
Yu X, Kong HY, Meiyalaghan V, Casonato S, Chng S, Jones EE, Butler RC, Pickering R, Johnston PA. Genetic mapping of a barley leaf rust resistance gene Rph26 introgressed from Hordeum bulbosum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2567-2580. [PMID: 30178277 DOI: 10.1007/s00122-018-3173-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/25/2018] [Indexed: 05/25/2023]
Abstract
The quantitative barley leaf rust resistance gene, Rph26, was fine mapped within a H. bulbosum introgression on barley chromosome 1HL. This provides the tools for pyramiding with other resistance genes. A novel quantitative resistance gene, Rph26, effective against barley leaf rust (Puccinia hordei) was introgressed from Hordeum bulbosum into the barley (Hordeum vulgare) cultivar 'Emir'. The effect of Rph26 was to reduce the observed symptoms of leaf rust infection (uredinium number and infection type). In addition, this resistance also increased the fungal latency period and reduced the fungal biomass within infected leaves. The resulting introgression line 200A12, containing Rph26, was backcrossed to its barley parental cultivar 'Emir' to create an F2 population focused on detecting interspecific recombination within the introgressed segment. A total of 1368 individuals from this F2 population were genotyped with flanking markers at either end of the 1HL introgression, resulting in the identification of 19 genotypes, which had undergone interspecific recombination within the original introgression. F3 seeds that were homozygous for the introgressions of reduced size were selected from each F2 recombinant and were used for subsequent genotyping and phenotyping. Rph26 was genetically mapped to the proximal end of the introgressed segment located at the distal end of chromosome 1HL. Molecular markers closely linked to Rph26 were identified and will enable this disease resistance gene to be combined with other sources of quantitative resistance to maximize the effectiveness and durability of leaf rust resistance in barley breeding. Heterozygous genotypes containing a single copy of Rph26 had an intermediate phenotype when compared with the homozygous resistant and susceptible genotypes, indicating an incompletely dominant inheritance.
Collapse
Affiliation(s)
- Xiaohui Yu
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7608, New Zealand
| | - Hoi Yee Kong
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, Canterbury, 7608, New Zealand
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7608, New Zealand
| | - Vijitha Meiyalaghan
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, Canterbury, 7608, New Zealand
| | - Seona Casonato
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7608, New Zealand
| | - Soonie Chng
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, Canterbury, 7608, New Zealand
| | - E Eirian Jones
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7608, New Zealand
| | - Ruth C Butler
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, Canterbury, 7608, New Zealand
| | - Richard Pickering
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, Canterbury, 7608, New Zealand
| | - Paul A Johnston
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, Canterbury, 7608, New Zealand.
| |
Collapse
|
6
|
Towards the Development of Perennial Barley for Cold Temperate Climates—Evaluation of Wild Barley Relatives as Genetic Resources. SUSTAINABILITY 2018. [DOI: 10.3390/su10061969] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
The Performance of Early-Generation Perennial Winter Cereals at 21 Sites across Four Continents. SUSTAINABILITY 2018. [DOI: 10.3390/su10041124] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
8
|
Li Z, Ren Z, Tan F, Tang Z, Fu S, Yan B, Ren T. Molecular Cytogenetic Characterization of New Wheat-Rye 1R(1B) Substitution and Translocation Lines from a Chinese Secale cereal L. Aigan with Resistance to Stripe Rust. PLoS One 2016; 11:e0163642. [PMID: 27668423 PMCID: PMC5036889 DOI: 10.1371/journal.pone.0163642] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022] Open
Abstract
Secale cereale L. has been used worldwide as a source of genes for agronomic and resistance improvement. In this study, a stable wheat-rye substitution line and 3 primary 1RS.1BL translocation lines were selected from the progeny of the crossing of the Chinese local rye Aigan variety and wheat cultivar Mianyang11. The substitution and translocation lines were identified by molecular cytogenetic analysis. PCR results, fluorescence in situ hybridization and acid polyacrylamide gel electrophoresis indicated that there were a pair of 1R chromosomes in the substitution line which have been named RS1200-3, and a pair of 1RS.1BL translocation chromosomes in the other 3 translocation lines, which have been named RT1163-4, RT1217-1, and RT1249. When inoculated with stripe rust isolates, these 4 lines expressed high resistance to several Puccinia striiformis f. sp Tritici pathotypes that are virulent on Yr9. Moreover, the different response pattern of resistance among them suggested that the diversity of resistance genes for wheat stripe rust exists in the rye. These 4 lines also showed better agronomic performances than their wheat parent. The GS indices also showed the genetic diversity of the 1RS which derived from same rye variety. The present study indicates that rye cultivars may carry untapped variations that could potentially be used for wheat improvement.
Collapse
Affiliation(s)
- Zhi Li
- Agronomy College, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Zhenglong Ren
- Agronomy College, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Feiquan Tan
- Agronomy College, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Zongxiang Tang
- Agronomy College, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Shulan Fu
- Agronomy College, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Benju Yan
- Agronomy College, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Tianheng Ren
- Agronomy College, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| |
Collapse
|
9
|
Wang GX, Lv J, Zhang J, Han S, Zong M, Guo N, Zeng XY, Zhang YY, Wang YP, Liu F. Genetic and Epigenetic Alterations of Brassica nigra Introgression Lines from Somatic Hybridization: A Resource for Cauliflower Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:1258. [PMID: 27625659 PMCID: PMC5003894 DOI: 10.3389/fpls.2016.01258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/08/2016] [Indexed: 05/30/2023]
Abstract
Broad phenotypic variations were obtained previously in derivatives from the asymmetric somatic hybridization of cauliflower "Korso" (Brassica oleracea var. botrytis, 2n = 18, CC genome) and black mustard "G1/1" (Brassica nigra, 2n = 16, BB genome). However, the mechanisms underlying these variations were unknown. In this study, 28 putative introgression lines (ILs) were pre-selected according to a series of morphological (leaf shape and color, plant height and branching, curd features, and flower traits) and physiological (black rot/club root resistance) characters. Multi-color fluorescence in situ hybridization revealed that these plants contained 18 chromosomes derived from "Korso." Molecular marker (65 simple sequence repeats and 77 amplified fragment length polymorphisms) analysis identified the presence of "G1/1" DNA segments (average 7.5%). Additionally, DNA profiling revealed many genetic and epigenetic differences among the ILs, including sequence alterations, deletions, and variation in patterns of cytosine methylation. The frequency of fragments lost (5.1%) was higher than presence of novel bands (1.4%), and the presence of fragments specific to Brassica carinata (BBCC 2n = 34) were common (average 15.5%). Methylation-sensitive amplified polymorphism analysis indicated that methylation changes were common and that hypermethylation (12.4%) was more frequent than hypomethylation (4.8%). Our results suggested that asymmetric somatic hybridization and alien DNA introgression induced genetic and epigenetic alterations. Thus, these ILs represent an important, novel germplasm resource for cauliflower improvement that can be mined for diverse traits of interest to breeders and researchers.
Collapse
Affiliation(s)
- Gui-xiang Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Jing Lv
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
- Yangzhou UniversityYangzhou, China
- Zhalute No.1 High SchoolTongliao, China
| | - Jie Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Shuo Han
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Mei Zong
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Ning Guo
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Xing-ying Zeng
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Yue-yun Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | | | - Fan Liu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| |
Collapse
|
10
|
Wendler N, Mascher M, Himmelbach A, Johnston P, Pickering R, Stein N. Bulbosum to Go: A Toolbox to Utilize Hordeum vulgare/bulbosum Introgressions for Breeding and Beyond. MOLECULAR PLANT 2015; 8:1507-19. [PMID: 25983208 DOI: 10.1016/j.molp.2015.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/23/2015] [Accepted: 05/10/2015] [Indexed: 05/18/2023]
Abstract
Hordeum bulbosum L., a wild relative of barley (Hordeum vulgare L.), has been considered as a valuable source of genetic diversity for barley improvement. Since the 1990s, a considerable number of barley/H. bulbosum introgression lines (IL)s has been generated, with segments introgressed from H. bulbosum harboring a diverse set of desirable traits. However, the efficient utilization of these ILs has been hampered, largely due to the lack of suitable molecular tools for their genetic characterization and highly reduced interspecific recombination frequencies in the region of the introgression. In the present study, we utilized genotyping-by-sequencing for the detailed molecular characterization of 145 ILs. Genotypic information allows the genetic diversity within the set of ILs to be determined and a strategy was outlined to tackle the obstacle of reduced recombination frequencies. Furthermore, we compiled exome capture re-sequencing information of barley and H. bulbosum and designed an integrated barley/H. bulbosum sequence resource with polymorphism information on interspecific and intraspecific sequence variations of both species. The integrated sequence will be valuable for marker development in barley/H. bulbosum ILs derived from any barley and H. bulbosum donors. This study provides the tools for the widespread utilization of barley/H. bulbosum ILs in applied barley breeding and academic research.
Collapse
Affiliation(s)
- Neele Wendler
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Seeland (OT) Gatersleben, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Seeland (OT) Gatersleben, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Seeland (OT) Gatersleben, Germany
| | - Paul Johnston
- New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Richard Pickering
- New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Seeland (OT) Gatersleben, Germany.
| |
Collapse
|
11
|
Johnston PA, Meiyalaghan V, Forbes ME, Habekuß A, Butler RC, Pickering R. Marker assisted separation of resistance genes Rph22 and Rym16 (Hb) from an associated yield penalty in a barley: Hordeum bulbosum introgression line. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1137-1149. [PMID: 25800008 DOI: 10.1007/s00122-015-2495-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/07/2015] [Indexed: 05/29/2023]
Abstract
The resistance genes Rph22 and Rym16 (Hb) transferred into barley from Hordeum bulbosum have been separated from a large yield penalty locus that was present in the original introgression line '182Q20'. The Hordeum bulbosum introgression line '182Q20' possesses resistance to barley leaf rust (Rph22) and Barley mild mosaic virus (Rym16 (Hb) ) located on chromosome 2HL. Unfortunately, this line also carries a considerable yield penalty compared with its barley genetic background 'Golden Promise'. Quantitative trait locus (QTL) mapping of the components of yield (total yield, thousand grain weight, hectolitre weight, percentage screenings and screened yield) was performed using 75 recombinant lines derived from the original '182Q20' introgression line. A QTL for the yield penalty was located in the proximal region of the introgressed segment. Marker assisted selection targeting intraspecific recombination events between overlapping H. bulbosum introgression segments was used to develop the lines '372E' and '372H' which feature genetically small introgressions around Rph22. Further yield trials validated the separation of both Rph22 and Rym16 (Hb) from the proximal yield penalty. These results, combined with molecular markers closely linked to Rph22 and Rym16 (Hb) , make these resistance genes more attractive for barley breeding.
Collapse
Affiliation(s)
- Paul A Johnston
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, 7608, New Zealand,
| | | | | | | | | | | |
Collapse
|
12
|
Dawson IK, Russell J, Powell W, Steffenson B, Thomas WTB, Waugh R. Barley: a translational model for adaptation to climate change. THE NEW PHYTOLOGIST 2015; 206:913-931. [PMID: 25605349 DOI: 10.1111/nph.13266] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/06/2014] [Indexed: 05/18/2023]
Abstract
Barley (Hordeum vulgare ssp. vulgare) is an excellent model for understanding agricultural responses to climate change. Its initial domestication over 10 millennia ago and subsequent wide migration provide striking evidence of adaptation to different environments, agro-ecologies and uses. A bottleneck in the selection of modern varieties has resulted in a reduction in total genetic diversity and a loss of specific alleles relevant to climate-smart agriculture. However, extensive and well-curated collections of landraces, wild barley accessions (H. vulgare ssp. spontaneum) and other Hordeum species exist and are important new allele sources. A wide range of genomic and analytical tools have entered the public domain for exploring and capturing this variation, and specialized populations, mutant stocks and transgenics facilitate the connection between genetic diversity and heritable phenotypes. These lay the biological, technological and informational foundations for developing climate-resilient crops tailored to specific environments that are supported by extensive environmental and geographical databases, new methods for climate modelling and trait/environment association analyses, and decentralized participatory improvement methods. Case studies of important climate-related traits and their constituent genes - including examples that are indicative of the complexities involved in designing appropriate responses - are presented, and key developments for the future highlighted.
Collapse
Affiliation(s)
- Ian K Dawson
- Cell and Molecular Sciences, James Hutton Institute (JHI), Invergowrie, Dundee, DD2 5DA, UK
| | - Joanne Russell
- Cell and Molecular Sciences, James Hutton Institute (JHI), Invergowrie, Dundee, DD2 5DA, UK
| | - Wayne Powell
- CGIAR Consortium Office, Montpellier Cedex 5, France
| | - Brian Steffenson
- Department of Plant Pathology, University of Minnesota, St Paul, MN, 55108, USA
| | - William T B Thomas
- Cell and Molecular Sciences, James Hutton Institute (JHI), Invergowrie, Dundee, DD2 5DA, UK
| | - Robbie Waugh
- Cell and Molecular Sciences, James Hutton Institute (JHI), Invergowrie, Dundee, DD2 5DA, UK
- Division of Plant Sciences, College of Life Sciences, University of Dundee at JHI, Invergowrie, Dundee, DD2 5DA, UK
| |
Collapse
|
13
|
|
14
|
Wendler N, Mascher M, Nöh C, Himmelbach A, Scholz U, Ruge-Wehling B, Stein N. Unlocking the secondary gene-pool of barley with next-generation sequencing. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1122-31. [PMID: 25040223 DOI: 10.1111/pbi.12219] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/23/2014] [Accepted: 05/29/2014] [Indexed: 05/18/2023]
Abstract
Crop wild relatives (CWR) provide an important source of allelic diversity for any given crop plant species for counteracting the erosion of genetic diversity caused by domestication and elite breeding bottlenecks. Hordeum bulbosum L. is representing the secondary gene pool of the genus Hordeum. It has been used as a source of genetic introgressions for improving elite barley germplasm (Hordeum vulgare L.). However, genetic introgressions from H. bulbosum have yet not been broadly applied, due to a lack of suitable molecular tools for locating, characterizing, and decreasing by recombination and marker-assisted backcrossing the size of introgressed segments. We applied next-generation sequencing (NGS) based strategies for unlocking genetic diversity of three diploid introgression lines of cultivated barley containing chromosomal segments of its close relative H. bulbosum. Firstly, exome capture-based (re)-sequencing revealed large numbers of single nucleotide polymorphisms (SNPs) enabling the precise allocation of H. bulbosum introgressions. This SNP resource was further exploited by designing a custom multiplex SNP genotyping assay. Secondly, two-enzyme-based genotyping-by-sequencing (GBS) was employed to allocate the introgressed H. bulbosum segments and to genotype a mapping population. Both methods provided fast and reliable detection and mapping of the introgressed segments and enabled the identification of recombinant plants. Thus, the utilization of H. bulbosum as a resource of natural genetic diversity in barley crop improvement will be greatly facilitated by these tools in the future.
Collapse
Affiliation(s)
- Neele Wendler
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
del Blanco IA, Hegarty J, Gallagher L, Falk BW, Brown-Guedira G, Pellerin E, Dubcovsky J. Mapping of QTL for Tolerance to Cereal Yellow Dwarf Virus in Two-rowed Spring Barley. CROP SCIENCE 2014; 54:1468-1475. [PMID: 27212713 PMCID: PMC4874343 DOI: 10.2135/cropsci2013.11.0781] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Indexed: 05/28/2023]
Abstract
Cereal yellow dwarf virus (CYDV-RPV) causes a serious viral disease affecting small grain crops around the world. In the United States, it frequently is present in California where it causes significant yield losses, and when infections start early in development, plant death. CYDV is transmitted by aphids, and it has been a major impediment to developing malting barley in California. To identify chromosome locations associated with tolerance/resistance to CYDV, a segregating population of 184 recombinant inbred lines (RIL) from a cross of the California adapted malting barley line Butta 12 with the CYDV tolerant Madre Selva was used to construct a genetic map including 180 polymorphic markers mapping to 163 unique loci. Tolerance to CYDV was evaluated in replicated experiments where plants were challenged by aphid mediated inoculation with the isolate CYDV-RPV in a controlled environment. Quantitative trait loci (QTL) analysis revealed the presence of two major QTL for CYDV tolerance from Madre Selva on chromosomes 2H (Qcyd.MaBu-1) and 7H (Qcyd.MaBu-2), and 4 minor QTL from Butta 12 on chromosomes 3H, 4H, and 2H. This paper discusses the contribution of each QTL and their potential value to improve barley tolerance to CYDV.
Collapse
Affiliation(s)
| | - Joshua Hegarty
- Dept. of Plant Sciences, University of California, Davis, CA 95616
| | - L. Gallagher
- Dept. of Plant Sciences, University of California, Davis, CA 95616
| | - B. W. Falk
- Dept of Plant Pathology, University of California, Davis, CA 95616
| | | | - E. Pellerin
- Dept of Plant Pathology, University of California, Davis, CA 95616
| | - J. Dubcovsky
- Dept. of Plant Sciences, University of California, Davis, CA 95616
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
16
|
Johnston PA, Niks RE, Meiyalaghan V, Blanchet E, Pickering R. Rph22: mapping of a novel leaf rust resistance gene introgressed from the non-host Hordeum bulbosum L. into cultivated barley (Hordeum vulgare L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1613-25. [PMID: 23467993 DOI: 10.1007/s00122-013-2078-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 02/23/2013] [Indexed: 05/18/2023]
Abstract
A resistance gene (Rph22) to barley leaf rust caused by Puccinia hordei was introgressed from the non-host species Hordeum bulbosum into cultivated barley. The H. bulbosum introgression in line '182Q20' was located to chromosome 2HL using genomic in situ hybridisation (GISH). Using molecular markers it was shown to cover approximately 20 % of the genetic length of the chromosome. The introgression confers a very high level of resistance to P. hordei at the seedling stage that is not based on a hypersensitive reaction. The presence of the resistance gene increased the latency period of the leaf rust fungus and strongly reduced the infection frequency relative to the genetic background cultivar 'Golden Promise'. An F2 population of 550 individuals was developed and used to create a genetic map of the introgressed region and to determine the map position of the underlying resistance gene(s). The resistance locus, designated Rph22, was located to the distal portion of the introgression, co-segregating with markers H35_26334 and H35_45139. Flanking markers will be used to reduce the linkage drag, including gene(s) responsible for a yield penalty, around the resistance locus and to transfer the gene into elite barley germplasm. This genetic location is also known to harbour a QTL (Rphq2) for non-hypersensitive leaf rust resistance in the barley cultivar 'Vada'. Comparison of the 'Vada' and H. bulbosum resistances at this locus may lead to a better understanding of the possible association between host and non-host resistance mechanisms.
Collapse
Affiliation(s)
- Paul A Johnston
- The New Zealand Institute for Plant and Food Research Limited, 7608 Lincoln, New Zealand.
| | | | | | | | | |
Collapse
|
17
|
Harper J, Armstead I, Thomas A, James C, Gasior D, Bisaga M, Roberts L, King I, King J. Alien introgression in the grasses Lolium perenne (perennial ryegrass) and Festuca pratensis (meadow fescue): the development of seven monosomic substitution lines and their molecular and cytological characterization. ANNALS OF BOTANY 2011; 107:1313-21. [PMID: 21486927 PMCID: PMC3101149 DOI: 10.1093/aob/mcr083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/11/2011] [Accepted: 03/02/2011] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS To address the issues associated with food security, environmental change and bioenergy in the context of crop plants, the production, identification and evaluation of novel plant phenotypes is fundamental. One of the major routes to this end will be wide hybridization and introgression breeding. The transfer of chromosomes and chromosome segments between related species (chromosome engineering or alien introgression) also provides an important resource for determining the genetic control of target traits. However, the realization of the full potential of chromosome engineering has previously been hampered by the inability to identify and characterize interspecific introgressions accurately. METHODS Seven monosomic substitution lines have been generated comprising Festuca pratensis as the donor species and Lolium perenne as the recipient. Each of the seven lines has a different L. perenne chromosome replaced by the homoeologous F. pratensis chromosome (13 L. perenne + 1 F. pratensis chromosome). Molecular markers and genomic in situ hybridization (GISH) were used to assign the F. pratensis chromosomes introgressed in each of the monosomic substitutions to a specific linkage group. Cytological observations were also carried out on metaphase I of meiosis in each of the substitution lines. RESULTS A significant level of synteny was found at the macro-level between L. perenne and F. pratensis. The observations at metaphase I revealed the presence of a low level of interspecific chromosomal translocations between these species. DISCUSSION The isolation of the seven monosomic substitution lines provides a resource for dissecting the genetic control of important traits and for gene isolation. Parallels between the L. perenne/F. pratensis system and the Pooideae cereals such as wheat, barley, rye, oats and the model grass Brachypodium distachyon present opportunities for a comparison across the species in terms of genotype and phenotype.
Collapse
Affiliation(s)
- John Harper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3HS, UK
| | - Ian Armstead
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3HS, UK
| | - Ann Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3HS, UK
| | - Caron James
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3HS, UK
| | - Dagmara Gasior
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3HS, UK
| | - Maciej Bisaga
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3HS, UK
| | - Luned Roberts
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3HS, UK
| | - Ian King
- Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Julie King
- Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington LE12 5RD, UK
| |
Collapse
|