1
|
Wang Z, Wang W, He Y, Xie X, Yang Z, Zhang X, Niu J, Peng H, Yao Y, Xie C, Xin M, Hu Z, Sun Q, Ni Z, Guo W. On the evolution and genetic diversity of the bread wheat D genome. MOLECULAR PLANT 2024; 17:1672-1686. [PMID: 39318095 DOI: 10.1016/j.molp.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/05/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Bread wheat (Triticum aestivum) became a globally dominant crop after incorporating the D genome from the donor species Aegilops tauschii, but the evolutionary history that shaped the D genome during this process remains to be clarified. Here, we propose a renewed evolutionary model linking Ae. tauschii and the hexaploid wheat D genome by constructing an ancestral haplotype map covering 762 Ae. tauschii and hexaploid wheat accessions. We dissected the evolutionary trajectories of Ae. tauschii lineages and reported a few independent intermediate accessions, demonstrating that low-frequency inter-sublineage gene flow had enriched the diversity of Ae. tauschii. We discovered that the D genome of hexaploid wheat was inherited from a unified ancestral template, but with a mosaic composition that was highly mixed and derived mainly from three Ae. tauschii L2 sublineages located in the Caspian coastal region. This result suggests that early agricultural activities facilitated innovations in D-genome composition and finalized the success of hexaploidization. We found that the majority (51.4%) of genetic diversity was attributed to novel mutations absent in Ae. tauschii, and we identified large Ae. tauschii introgressions from various lineages, which expanded the diversity of the wheat D genome and introduced beneficial alleles. This work sheds light on the process of wheat hexaploidization and highlights the evolutionary significance of the multi-layered genetic diversity of the bread wheat D genome.
Collapse
Affiliation(s)
- Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yachao He
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhengzhao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Jianxia Niu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Yu Y, Kellogg EA. Multifaceted mechanisms controlling grain disarticulation in the Poaceae. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102564. [PMID: 38830336 DOI: 10.1016/j.pbi.2024.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 06/05/2024]
Abstract
Cereal shattering and threshability, both involving disarticulation of grains from the mother plant, are important traits for cereal domestication and improvement. Recent studies highlighted diverse mechanisms influencing shattering and threshability, either through development of the disarticulation zone or floral structures enclosing or supporting the disarticulation unit. Differential lignification in the disarticulation zone is essential for rice shattering but not required for many other grasses. During shattering, the disarticulation zone undergoes either abscission leading to cell separation or cell breakage. Threshability can be affected by the morphology and toughness of the enclosing floral structures, and in some species, by the inherent weakness of the disarticulation zone. Fine-tuning shattering and threshability is essential for breeding wild and less domesticated cereals.
Collapse
Affiliation(s)
- Yunqing Yu
- Donald Danforth Plant Science Center, 975 North Warson Road, Saint Louis, MO 63132, USA.
| | - Elizabeth A Kellogg
- Donald Danforth Plant Science Center, 975 North Warson Road, Saint Louis, MO 63132, USA
| |
Collapse
|
3
|
Rogo U, Simoni S, Fambrini M, Giordani T, Pugliesi C, Mascagni F. Future-Proofing Agriculture: De Novo Domestication for Sustainable and Resilient Crops. Int J Mol Sci 2024; 25:2374. [PMID: 38397047 PMCID: PMC10888583 DOI: 10.3390/ijms25042374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The worldwide agricultural system confronts a significant challenge represented by the increasing demand for food in the face of a growing global population. This challenge is exacerbated by a reduction in cultivable land and the adverse effects of climate change on crop yield quantity and quality. Breeders actively embrace cutting-edge omics technologies to pursue resilient genotypes in response to these pressing issues. In this global context, new breeding techniques (NBTs) are emerging as the future of agriculture, offering a solution to introduce resilient crops that can ensure food security, particularly against challenging climate events. Indeed, the search for domestication genes as well as the genetic modification of these loci in wild species using genome editing tools are crucial steps in carrying out de novo domestication of wild plants without compromising their genetic background. Current knowledge allows us to take different paths from those taken by early Neolithic farmers, where crop domestication has opposed natural selection. In this process traits and alleles negatively correlated with high resource environment performance are probably eradicated through artificial selection, while others may have been lost randomly due to domestication and genetic bottlenecks. Thus, domestication led to highly productive plants with little genetic diversity, owing to the loss of valuable alleles that had evolved to tolerate biotic and abiotic stresses. Recent technological advances have increased the feasibility of de novo domestication of wild plants as a promising approach for crafting optimal crops while ensuring food security and using a more sustainable, low-input agriculture. Here, we explore what crucial domestication genes are, coupled with the advancement of technologies enabling the precise manipulation of target sequences, pointing out de novo domestication as a promising application for future crop development.
Collapse
Affiliation(s)
| | | | | | | | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy; (U.R.); (S.S.); (M.F.); (T.G.); (F.M.)
| | | |
Collapse
|
4
|
Wang Z, Miao L, Chen Y, Peng H, Ni Z, Sun Q, Guo W. Deciphering the evolution and complexity of wheat germplasm from a genomic perspective. J Genet Genomics 2023; 50:846-860. [PMID: 37611848 DOI: 10.1016/j.jgg.2023.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
Bread wheat provides an essential fraction of the daily calorific intake for humanity. Due to its huge and complex genome, progress in studying on the wheat genome is substantially trailed behind those of the other two major crops, rice and maize, for at least a decade. With rapid advances in genome assembling and reduced cost of high-throughput sequencing, emerging de novo genome assemblies of wheat and whole-genome sequencing data are leading to a paradigm shift in wheat research. Here, we review recent progress in dissecting the complex genome and germplasm evolution of wheat since the release of the first high-quality wheat genome. New insights have been gained in the evolution of wheat germplasm during domestication and modern breeding progress, genomic variations at multiple scales contributing to the diversity of wheat germplasm, and complex transcriptional and epigenetic regulations of functional genes in polyploid wheat. Genomics databases and bioinformatics tools meeting the urgent needs of wheat genomics research are also summarized. The ever-increasing omics data, along with advanced tools and well-structured databases, are expected to accelerate deciphering the germplasm and gene resources in wheat for future breeding advances.
Collapse
Affiliation(s)
- Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Emebiri L, Hildebrand S. Natural variation and genetic loci underlying resistance to grain shattering in standing crop of modern wheat. Mol Genet Genomics 2023:10.1007/s00438-023-02051-z. [PMID: 37410105 PMCID: PMC10363068 DOI: 10.1007/s00438-023-02051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023]
Abstract
Modern wheat (Triticum aestivum L.) cultivars have a free-threshing habit, which allows for easy manual or mechanical threshing. However, when harvesting is delayed or extreme weather events occur at harvest time, grain shattering can cause severe loss of harvestable yield. In the past, grain size was considered a predisposing factor as large, plump kernels can lead to buckling and breaking of the outer glume, but the correlation between glume strength and shattering is not strong in modern wheat, and it is hypothesised that there may be other genetic mechanisms. Data from two bi-parent populations and a wheat diversity panel were analyzed to explore the underlying genetic basis for grain shattering observed in multiple field experiments through quantitative trait loci (QTL) analysis. Grain shattering had a significant and negative association with grain yield, irrespective of populations and environments. The correlation with plant height was positive in all populations, but correlations with phenology were population specific, being negative in the diversity panel and the Drysdale × Waagan population, and positive in the Crusader × RT812 population. In the wheat diversity panel, allelic variations at well-known major genes (Rht-B1, Rht-D1 and Ppd-D1) showed minimal association with grain shattering. Instead, the genome-wide analysis identified a single locus on chromosome 2DS, which explained 50% of the phenotypic variation, and mapping to ~ 10 Mb from Tenacious glume (Tg) gene. In the Drysdale × Waagan cross, however, the reduced height (Rht) genes showed major effects on grain shattering. At the Rht-B1 locus, the Rht-B1b allele was associated with 10.4 cm shorter plant height, and 18% decreased grain shattering, whereas Rht-D1b reduced plant height by 11.4 cm and reduced grain shattering by 20%. Ten QTL were detected in the Crusader × RT812, including a major locus detected on the long arm of chromosome 5A. All the QTL identified in this population were non-pleiotropic, as they were still significant even after removing the influence of plant height. In conclusion, these results indicated a complex genetic system for grain shattering in modern wheat, which varied with genetic background, involved pleiotropic as well as independent gene actions, and which might be different from shattering in wild wheat species caused by major domestication genes. The influence of Rht genes was confirmed, and this provides valuable information in breeding crops of the future. Further, the SNP marker close to Tg on chromosome 2DS should be considered for utility in marker-assisted selection.
Collapse
Affiliation(s)
- Livinus Emebiri
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia.
| | - Shane Hildebrand
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| |
Collapse
|
6
|
Kumar K, Mandal SN, Pradhan B, Kaur P, Kaur K, Neelam K. From Evolution to Revolution: Accelerating Crop Domestication through Genome Editing. PLANT & CELL PHYSIOLOGY 2022; 63:1607-1623. [PMID: 36018059 DOI: 10.1093/pcp/pcac124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Crop domestication has a tremendous impact on socioeconomic conditions and human civilization. Modern cultivars were domesticated from their wild progenitors thousands of years ago by the selection of natural variation by humans. New cultivars are being developed by crossing two or more compatible individuals. But the limited genetic diversity in the cultivars severely affects the yield and renders the crop susceptible to many biotic and abiotic stresses. Crop wild relatives (CWRs) are the rich reservoir for many valuable agronomic traits. The incorporation of useful genes from CWR is one of the sustainable approaches for enriching the gene pool of cultivated crops. However, CWRs are not suited for urban and intensive cultivation because of several undesirable traits. Researchers have begun to study the domestication traits in the CWRs and modify them using genome-editing tools to make them suitable for extensive cultivation. Growing evidence has shown that modification in these genes is not sufficient to bring the desired change in the neodomesticated crop. However, the other dynamic genetic factors such as microRNAs (miRNAs), transposable elements, cis-regulatory elements and epigenetic changes have reshaped the domesticated crops. The creation of allelic series for many valuable domestication traits through genome editing holds great potential for the accelerated development of neodomesticated crops. The present review describes the current understanding of the genetics of domestication traits that are responsible for the agricultural revolution. The targeted mutagenesis in these domestication genes via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 could be used for the rapid domestication of CWRs.
Collapse
Affiliation(s)
- Kishor Kumar
- Faculty Centre for Integrated Rural Development and Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Swarupa Nanda Mandal
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Extended Campus, Burdwan, West Bengal 713101, India
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79415, USA
| | - Bhubaneswar Pradhan
- Faculty Centre for Integrated Rural Development and Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Pavneet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Karminderbir Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| |
Collapse
|
7
|
Petereit J, Bayer PE, Thomas WJW, Tay Fernandez CG, Amas J, Zhang Y, Batley J, Edwards D. Pangenomics and Crop Genome Adaptation in a Changing Climate. PLANTS (BASEL, SWITZERLAND) 2022; 11:1949. [PMID: 35956427 PMCID: PMC9370458 DOI: 10.3390/plants11151949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/15/2022]
Abstract
During crop domestication and breeding, wild plant species have been shaped into modern high-yield crops and adapted to the main agro-ecological regions. However, climate change will impact crop productivity in these regions, and agriculture needs to adapt to support future food production. On a global scale, crop wild relatives grow in more diverse environments than crop species, and so may host genes that could support the adaptation of crops to new and variable environments. Through identification of individuals with increased climate resilience we may gain a greater understanding of the genomic basis for this resilience and transfer this to crops. Pangenome analysis can help to identify the genes underlying stress responses in individuals harbouring untapped genomic diversity in crop wild relatives. The information gained from the analysis of these pangenomes can then be applied towards breeding climate resilience into existing crops or to re-domesticating crops, combining environmental adaptation traits with crop productivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David Edwards
- School of Biological Sciences, The University of Western Australia, Perth 6009, Australia; (J.P.); (P.E.B.); (W.J.W.T.); (C.G.T.F.); (J.A.); (Y.Z.); (J.B.)
| |
Collapse
|
8
|
Vavilova VY, Konopatskaia ID, Blinov AG, Kondratenko EY, Kruchinina YV, Goncharov NP. Genetic Variability of Btr1 Genes in Tetraploid Wheat Species and Aegilops speltoides Tausch. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422060138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Xie P, Tang S, Chen C, Zhang H, Yu F, Li C, Wei H, Sui Y, Wu C, Diao X, Wu Y, Xie Q. Natural variation in Glume Coverage 1 causes naked grains in sorghum. Nat Commun 2022; 13:1068. [PMID: 35217660 PMCID: PMC8881591 DOI: 10.1038/s41467-022-28680-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/07/2022] [Indexed: 12/30/2022] Open
Abstract
One of the most critical steps in cereal threshing is the ease with which seeds are detached from sticky glumes. Naked grains with low glume coverage have dramatically increased threshing efficiency and seed quality. Here, we demonstrate that GC1 (Glume Coverage 1), encoding an atypical G protein γ subunit, negatively regulates sorghum glume coverage. Naturally truncated variations of GC1 C-terminus accumulate at higher protein levels and affect the stability of a patatin-related phospholipase SbpPLAII-1. A strong positive selection signature around the GC1 genic region is found in the naked sorghum cultivars. Our findings reveal a crucial event during sorghum domestication through a subtle regulation of glume development by GC1 C-terminus variation, and establish a strategy for future breeding of naked grains. Low glume coverage is the preferred for easy threshing in grain production, but the genetic basis remains unclear. Here, the authors report the gene GC1, which encodes an atypical G protein γ subunit, negatively regulates sorghum glume coverage and the naturally truncated alleles can be useful in the naked grain breeding.
Collapse
Affiliation(s)
- Peng Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, P. R. China. .,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.
| | - Sanyuan Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, P. R. China
| | - Chengxuan Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Huili Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, P. R. China
| | - Feifei Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, P. R. China
| | - Chao Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, P. R. China
| | - Huimin Wei
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, P. R. China
| | - Chuanyin Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, P. R. China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, P. R. China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, P. R. China.
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, P. R. China. .,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.
| |
Collapse
|
10
|
Zhao X, Fu X, Yin C, Lu F. Wheat speciation and adaptation: perspectives from reticulate evolution. ABIOTECH 2021; 2:386-402. [PMID: 36311810 PMCID: PMC9590565 DOI: 10.1007/s42994-021-00047-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
Reticulate evolution through the interchanging of genetic components across organisms can impact significantly on the fitness and adaptation of species. Bread wheat (Triticum aestivum subsp. aestivum) is one of the most important crops in the world. Allopolyploid speciation, frequent hybridization, extensive introgression, and occasional horizontal gene transfer (HGT) have been shaping a typical paradigm of reticulate evolution in bread wheat and its wild relatives, which is likely to have a substantial influence on phenotypic traits and environmental adaptability of bread wheat. In this review, we outlined the evolutionary history of bread wheat and its wild relatives with a highlight on the interspecific hybridization events, demonstrating the reticulate relationship between species/subspecies in the genera Triticum and Aegilops. Furthermore, we discussed the genetic mechanisms and evolutionary significance underlying the introgression of bread wheat and its wild relatives. An in-depth understanding of the evolutionary process of Triticum species should be beneficial to future genetic study and breeding of bread wheat.
Collapse
Affiliation(s)
- Xuebo Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Altendorf KR, DeHaan LR, Larson SR, Anderson JA. QTL for seed shattering and threshability in intermediate wheatgrass align closely with well-studied orthologs from wheat, barley, and rice. THE PLANT GENOME 2021; 14:e20145. [PMID: 34626160 DOI: 10.1002/tpg2.20145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Perennial grain crops have the potential to improve agricultural sustainability but few existing species produce sufficient grain yield to be economically viable. The outcrossing, allohexaploid, and perennial forage species intermediate wheatgrass (IWG) [Thinopyrum intermedium (Host) Barkworth & D. R. Dewey] has shown promise in undergoing direct domestication as a perennial grain crop using phenotypic and genomic selection. However, decades of selection will be required to achieve yields on par with annual small-grain crops. Marker-aided selection could accelerate progress if important genomic regions associated with domestication were identified. Here we use the IWG nested association mapping (NAM) population, with 1,168 F1 progeny across 10 families to dissect the genetic control of brittle rachis, floret shattering, and threshability. We used a genome-wide association study (GWAS) with 8,003 single nucleotide polymorphism (SNP) markers and linkage mapping-both within-family and combined across families-with a robust phenotypic dataset collected from four unique year-by-location combinations. A total of 29 quantitative trait loci (QTL) using GWAS and 20 using the combined linkage analysis were detected, and most large-effect QTL were in common across the two analysis methods. We reveal that the genetic control of these traits in IWG is complex, with significant QTL across multiple chromosomes, sometimes within and across homoeologous groups and effects that vary depending on the family. In some cases, these QTL align within 216 bp to 31 Mbp of BLAST hits for known domestication genes in related species and may serve as precise targets of selection and directions for further study to advance the domestication of IWG.
Collapse
Affiliation(s)
- Kayla R Altendorf
- USDA-ARS Forage Seed and Cereal Research Unit, Prosser, WA, 99350, USA
| | | | - Steve R Larson
- USDA-ARS Forage & Range Research Lab, Logan, UT, 84322, USA
| | - James A Anderson
- Dep. of Agronomy and Plant Genetics, Univ. of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
12
|
Vavilova V, Konopatskaia I, Blinov A, Kondratenko EY, Kruchinina YV, Goncharov NP. Genetic variability of spelt factor gene in Triticum and Aegilops species. BMC PLANT BIOLOGY 2020; 20:310. [PMID: 33050874 PMCID: PMC7556929 DOI: 10.1186/s12870-020-02536-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Threshability, rachis fragility and spike shape are critical traits for the domestication and evolution of wheat, determining the crop yield and efficiency of the harvest. Spelt factor gene Q controls a wide range of domestication-related traits in polyploid wheats, including those mentioned above. The main goal of the present study was to characterise the Q gene for uninvestigated accessions of wheats, including four endemics, and Aegilops accessions, and to analyze the species evolution based on differences in Q gene sequences. RESULTS We have studied the spike morphology for 15 accessions of wheat species, including four endemics, namely Triticum macha, T. tibetanum, T. aestivum ssp. petropavlovskyi and T. spelta ssp. yunnanense, and 24 Aegilops accessions, which are donors of B and D genomes for polyploid wheat. The Q-5A, q-5D and q-5S genes were investigated, and a novel allele of the Q-5A gene was found in accessions of T. tibetanum (KU510 and KU515). This allele was similar to the Q allele of T. aestivum cv. Chinese Spring but had an insertion 161 bp in length within exon 5. This insertion led to a frameshift and premature stop codon formation. Thus, the T. tibetanum have spelt spikes, which is probably determined by the gene Tg, rather than Q. We determined the variability within the q-5D genes among hexaploid wheat and their D genome donor Aegilops tauschii. Moreover, we studied the accessions C21-5129, KU-2074, and K-1100 of Ae. tauschii ssp. strangulata, which could be involved in the origin of hexaploid wheats. CONCLUSIONS The variability and phylogenetic relationships of the Q gene sequences studied allowed us to clarify the relationships between species of the genus Triticum and to predict the donor of the D genome among the Ae. tauschii accessions. Ae. tauschii ssp. strangulata accessions C21-5129, KU-2074 and K-1100 are the most interesting among the analysed accessions, since their partial sequence of q-5D is identical to the q-5D of T. aestivum cv. Chinese Spring. This result indicates that the donor is Ae. tauschii ssp. strangulata but not Ae. tauschii ssp. tauschii. Our analysis allowed us to clarify the phylogenetic relationships in the genus Triticum.
Collapse
Affiliation(s)
- Valeriya Vavilova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russian Federation.
| | - Irina Konopatskaia
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russian Federation
| | - Alexandr Blinov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russian Federation
| | | | | | | |
Collapse
|
13
|
Genomic Patterns of Introgression in Interspecific Populations Created by Crossing Wheat with Its Wild Relative. G3-GENES GENOMES GENETICS 2020; 10:3651-3661. [PMID: 32737066 PMCID: PMC7534432 DOI: 10.1534/g3.120.401479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introgression from wild relatives is a valuable source of novel allelic diversity for breeding. We investigated the genomic patterns of introgression from Aegilops tauschii, the diploid ancestor of the wheat D genome, into winter wheat (Triticum aestivum) cultivars. The population of 351 BC1F3:5 lines was selected based on phenology from crosses between six hexaploid wheat lines and 21 wheat-Ae. tauschii octoploids. SNP markers developed for this population and a diverse panel of 116 Ae. tauschii accessions by complexity-reduced genome sequencing were used to detect introgression based on the identity-by-descent analysis. Overall, introgression frequency positively correlated with recombination rate, with a high incidence of introgression at the ends of chromosomes and low in the pericentromeric regions, and was negatively related to sequence divergence between the parental genomes. Reduced introgression in the pericentromeric low-recombining regions spans nearly 2/3 of each chromosome arm, suggestive of the polygenic nature of introgression barriers that could be associated with multilocus negative epistasis between the alleles of wild and cultivated wheat. On the contrary, negative selection against the wild allele of Tg, controlling free-threshing trait and located in the high-recombining chromosomal region, led to reduced introgression only within ∼10 Mbp region around Tg. These results are consistent with the effect of selection on linked variation described by the Hill-Robertson effect, and offer insights into the introgression population development for crop improvement to maximize retention of introgressed diversity across entire genome.
Collapse
|
14
|
Song L, Zhao H, Zhang Z, Zhang S, Liu J, Zhang W, Zhang N, Ji J, Li L, Li J. Molecular Cytogenetic Identification of Wheat- Aegilops Biuncialis 5M b Disomic Addition Line with Tenacious and Black Glumes. Int J Mol Sci 2020; 21:E4053. [PMID: 32517065 PMCID: PMC7312955 DOI: 10.3390/ijms21114053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/23/2020] [Accepted: 06/03/2020] [Indexed: 12/02/2022] Open
Abstract
Production of wheat-alien disomic addition lines is of great value to the exploitation and utilization of elite genes originated from related species to wheat. In this study, a novel wheat-Aegilops biuncialis 5Mb disomic addition line WA317 was characterized by in situ hybridization (ISH) and specific-locus amplified fragment sequencing (SLAF-seq) markers. Compared to its parent Chinese Spring (CS), the glumes of WA317 had black color and were difficult to remove after harvesting, suggesting chromosome 5Mb carried gene(s) related to glume development and Triticeae domestication process. A total of 242 Ae. biuncialis SLAF-based markers (298 amplified patterns) were developed and further divided into four categories by Ae. biuncialis Y17, Ae. umbellulata Y139 and Ae. comosa Y258, including 172 markers amplifying the same bands of U and M genome, six and 102 markers amplifying U-specific and M-specific bands, respectively and eighteen markers amplifying specific bands in Y17. Among them, 45 markers had the specific amplifications in WA317 and were 5Mb specific markers. Taken together, line WA317 with tenacious and black glumes should serve as the foundation for understanding of the Triticeae domestication process and further exploitation of primitive alleles for wheat improvement. Ae. biuncialis SLAF-based markers can be used for studying syntenic relationships between U and M genomes as well as rapid tracking of U and M chromosomal segments in wheat background.
Collapse
Affiliation(s)
- Liqiang Song
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Zhao
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, China;
| | - Zhi Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (L.L.)
| | - Shuai Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
| | - Jiajia Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
| | - Wei Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
| | - Na Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Ji
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing 100101, China
| | - Lihui Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (L.L.)
| | - Junming Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
15
|
Vavilova VY, Konopatskaia ID, Blinov AG, Goncharov NP. Evolution of Btr1-А Gene in Diploid Wheat Species of the Genus Triticum L. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420050142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Molecular mapping and candidate gene analysis of the semi-dominant gene Vestigial glume1 in maize. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Haas M, Schreiber M, Mascher M. Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:204-225. [PMID: 30414305 DOI: 10.1111/jipb.12737] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/27/2018] [Indexed: 05/02/2023]
Abstract
Wheat and barley are two of the founder crops of the agricultural revolution that took place 10,000 years ago in the Fertile Crescent and both crops remain among the world's most important crops. Domestication of these crops from their wild ancestors required the evolution of traits useful to humans, rather than survival in their natural environment. Of these traits, grain retention and threshability, yield improvement, changes to photoperiod sensitivity and nutritional value are most pronounced between wild and domesticated forms. Knowledge about the geographical origins of these crops and the genes responsible for domestication traits largely pre-dates the era of next-generation sequencing, although sequencing will lead to new insights. Molecular markers were initially used to calculate distance (relatedness), genetic diversity and to generate genetic maps which were useful in cloning major domestication genes. Both crops are characterized by large, complex genomes which were long thought to be beyond the scope of whole-genome sequencing. However, advances in sequencing technologies have improved the state of genomic resources for both wheat and barley. The availability of reference genomes for wheat and some of its progenitors, as well as for barley, sets the stage for answering unresolved questions in domestication genomics of wheat and barley.
Collapse
Affiliation(s)
- Matthew Haas
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466 Seeland, Germany
| | - Mona Schreiber
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466 Seeland, Germany
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466 Seeland, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
18
|
Niu Z, Chao S, Cai X, Whetten RB, Breiland M, Cowger C, Chen X, Friebe B, Gill BS, Rasmussen JB, Klindworth DL, Xu SS. Molecular and Cytogenetic Characterization of Six Wheat- Aegilops markgrafii Disomic Addition Lines and Their Resistance to Rusts and Powdery Mildew. FRONTIERS IN PLANT SCIENCE 2018; 9:1616. [PMID: 30467511 PMCID: PMC6236143 DOI: 10.3389/fpls.2018.01616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/18/2018] [Indexed: 05/07/2023]
Abstract
Aegilops markgrafii (Greuter) Hammer is an important source of genes for resistance to abiotic stresses and diseases in wheat (Triticum aestivum L.). A series of six wheat 'Alcedo'-Ae. markgrafii chromosome disomic addition lines, designated as AI(B), AII(C), AIII(D), AV(E), AIV(F), and AVIII(G) carrying the Ae. markgrafii chromosomes B, C, D, E, F, and G, respectively, were tested with SSR markers to establish homoeologous relationships to wheat and identify markers useful in chromosome engineering. The addition lines were evaluated for resistance to rust and powdery mildew diseases. The parents Alcedo and Ae. markgrafii accession 'S740-69' were tested with 1500 SSR primer pairs and 935 polymorphic markers were identified. After selecting for robust markers and confirming the polymorphisms on the addition lines, 132 markers were considered useful for engineering and establishing homoeologous relationships. Based on the marker analysis, we concluded that the chromosomes B, C, D, E, F, and G belong to wheat homoeologous groups 2, 5, 6, 7, 3, and 4, respectively. Also, we observed chromosomal rearrangements in several addition lines. When tested with 20 isolates of powdery mildew pathogen (Blumeria graminis f. sp. tritici) from five geographic regions of the United States, four addition lines [AIII(D), AV(E), AIV(F), and AVIII(G)] showed resistance to some isolates, with addition line AV(E) being resistant to 19 of 20 isolates. The addition lines were tested with two races (TDBJ and TNBJ) of the leaf rust pathogen (Puccinia triticina), and only addition line AI(B) exhibited resistance at a level comparable to the Ae. markgrafii parent. Addition lines AII(C) and AIII(D) had been previously identified as resistant to the Ug99 race group of the stem rust pathogen (Puccinia graminis f. sp. tritici). The addition lines were also tested for resistance to six United States races (PSTv-4, PSTv-14, PSTv-37, PSTv-40, PSTv-51, and PSTv-198) of the stripe rust pathogen (Puccinia striiformis f. sp. tritici); we found no resistance either in Alcedo or any of the addition lines. The homoeologous relationships of the chromosomes in the addition lines, molecular markers located on each chromosome, and disease resistance associated with each chromosome will allow for chromosome engineering of the resistance genes.
Collapse
Affiliation(s)
- Zhixia Niu
- Cereal Crops Research Unit, Red River Valley Agricultural Research Center, United States Department of Agriculture–Agricultural Research Service, Fargo, ND, United States
| | - Shiaoman Chao
- Cereal Crops Research Unit, Red River Valley Agricultural Research Center, United States Department of Agriculture–Agricultural Research Service, Fargo, ND, United States
| | - Xiwen Cai
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Rebecca B. Whetten
- Plant Science Research Unit, United States Department of Agriculture–Agricultural Research Service, Raleigh, NC, United States
| | - Matthew Breiland
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Christina Cowger
- Plant Science Research Unit, United States Department of Agriculture–Agricultural Research Service, Raleigh, NC, United States
| | - Xianming Chen
- Wheat Health, Genetics, and Quality Research Unit, United States Department of Agriculture–Agricultural Research Service, Pullman, WA, United States
| | - Bernd Friebe
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Bikram S. Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Jack B. Rasmussen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Daryl L. Klindworth
- Cereal Crops Research Unit, Red River Valley Agricultural Research Center, United States Department of Agriculture–Agricultural Research Service, Fargo, ND, United States
| | - Steven S. Xu
- Cereal Crops Research Unit, Red River Valley Agricultural Research Center, United States Department of Agriculture–Agricultural Research Service, Fargo, ND, United States
| |
Collapse
|
19
|
Cao D, Chen W, Wang H, Liu D, Zhang B, Liu B, Zhang H. The transfer to and functional annotation of alien alleles in advanced wheat lines derived from synthetic hexaploid wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:89-93. [PMID: 29980097 DOI: 10.1016/j.plaphy.2018.06.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
The abundant genetic diversity in synthetic hexaploid wheat (SHW) can achieve breakthroughs in wheat genetic improvement, but little is known of the genetic mechanisms involved. In this study, three populations of advanced lines (totaling 284 individuals), derived from three top-crosses of SHW-L1 with different common wheat cultivars, followed by ten generations of artificial selection, were used to evaluate the transfer of alien alleles with 24872 Diversity Arrays Technology (DArT) markers. Only 1824, 1786 and 1514 DArT markers were needed to distinguish the alleles from SHW-L1 and the other common wheat parent in the populations SCPD, SS7M and SSYZ, respectively. The data clearly showed that all the advanced lines contained alien alleles from SHW-L1. The lowest percentage of alien alleles was 6.97% in an advanced line in population SSYZ, while the biggest was 30.41% in a SCPD advanced lines. The percentages of alien alleles at each locus ranged from 0% to 100% in all three populations. Forty-four alien alleles did not exist in all advanced lines, while two alien alleles were present in all advanced lines. Two of the 100% alien alleles were associated with thousand-grain weight and leaf rust resistance. Thirteen alien alleles were associated with grain yield, grain thickness and width, thousand-grain weight, grain weight/ear, plant height, grain weight, grain number, powdery mildew resistance, spikelet number per spike or yellow rust resistance. The research provided direct evidence of the existence of alien alleles in advanced lines and detected a number of valuable alleles related to wheat yield or disease resistance. More research is needed to analyze the functional mechanisms of these alleles, and to use these materials and alleles in wheat improvement.
Collapse
Affiliation(s)
- Dong Cao
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, 810008, China; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjie Chen
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, 810008, China; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
| | - Hongxia Wang
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, 810008, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Bo Zhang
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, 810008, China; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
| | - Baolong Liu
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, 810008, China; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huaigang Zhang
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, 810008, China; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Akel W, Thorwarth P, Mirdita V, Weissman EA, Liu G, Würschum T, Longin CFH. Can spelt wheat be used as heterotic group for hybrid wheat breeding? TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:973-984. [PMID: 29340753 DOI: 10.1007/s00122-018-3052-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
Spelt wheat is a distinct genetic group to elite bread wheat, but heterosis for yield and protein quality is too low for spelt to be recommended as heterotic group for hybrid breeding in wheat. The feasibility to switch from line to hybrid breeding is currently a hot topic in the wheat community. One limitation seems to be the lack of divergent heterotic groups within wheat adapted to a certain region. Spelt wheat is a hexaploid wheat that can easily be crossed with bread wheat and that forms a divergent genetic group when compared to elite bread wheat. The aim of this study was to investigate the potential of Central European spelt as a heterotic group for Central European bread wheat. We performed two large experimental field studies comprising in total 43 spelt lines, 14 wheat lines, and 273 wheat-spelt hybrids, and determined yield, heading time, plant height, resistance against yellow rust, leaf rust, and powdery mildew, as well as protein content and sedimentation volume. Heterosis of yield was found to be lower than that of hybrids made between elite wheat lines. Moreover, heterosis of the quality trait sedimentation volume was negative. Consequently, spelt wheat does not appear suited to be used as heterotic group in hybrid wheat breeding. Nevertheless, high combining abilities of a few spelt lines with elite bread wheat lines make them interesting resources for pre-breeding in bread wheat. Thereby, the low correlation between line per se performance and combining ability of these spelt lines shows the potential to unravel the breeding value of genetic resources by crossing them to an elite tester.
Collapse
Affiliation(s)
- Wessam Akel
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Patrick Thorwarth
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Vilson Mirdita
- Bayer Aktiengesellschaft, European Wheat Breeding Center, 06466, Gatersleben, Germany
| | - Elmar A Weissman
- Bayer Aktiengesellschaft, European Wheat Breeding Center, 06466, Gatersleben, Germany
| | - Guozheng Liu
- Bayer Aktiengesellschaft, European Wheat Breeding Center, 06466, Gatersleben, Germany
| | - Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - C Friedrich H Longin
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
21
|
Vergauwen D, De Smet I. From early farmers to Norman Borlaug - the making of modern wheat. Curr Biol 2018; 27:R858-R862. [PMID: 28898651 DOI: 10.1016/j.cub.2017.06.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
If we wander through the countryside, passing fields of wheat, it is apparent that this crop is reasonably short in stature and that the stems carry large ears. However, this was not always the case. If we take a look at depictions of wheat throughout history, we observe that wheat used to be fairly tall. It was not until the second half of the 20th century that dwarf wheat varieties started to dominate the agricultural landscape. Underlying this short stature are the Reduced height (Rht) genes, which encode DELLA proteins and which formed the cornerstone of the Green Revolution.
Collapse
Affiliation(s)
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium.
| |
Collapse
|
22
|
Badaeva ED, Ruban AS, Shishkina AA, Sibikeev SN, Druzhin AE, Surzhikov SA, Dragovich AY. Genetic classification of Aegilops columnaris Zhuk. (2n=4x=28, U cU cX cX c) chromosomes based on FISH analysis and substitution patterns in common wheat × Ae. columnaris introgressive lines. Genome 2017; 61:131-143. [PMID: 29216443 DOI: 10.1139/gen-2017-0186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aegilops columnaris is a tetraploid species originated from Ae. umbellulata (2n=2x=14, UU) and a yet unknown diploid grass species. Although Ae. columnaris possesses some agronomically valuable traits, such as heat and drought tolerance and resistance to pests, it has never been used in wheat breeding because of difficulties in producing hybrids and a lack of information on the relationships between Ae. columnaris and common wheat chromosomes. In this paper, we report the development of 57 wheat - Ae. columnaris introgressive lines covering 8 of the14 chromosomes of Aegilops. Based on substitution spectra of hybrids and the results of FISH analysis of the parental Ae. columnaris line with seven DNA probes, we have developed the genetic nomenclature of the Uc and Xc chromosomes. Genetic groups and genome affinities were established for 11 of 14 chromosomes; the classification of the remaining three chromosomes remains unsolved. Each Ae. columnaris chromosome was characterized on the basis of C-banding pattern and the distribution of seven DNA sequences. Introgression processes were shown to depend on the parental wheat genotype and the level of divergence of homoeologous chromosomes. We found that lines carrying chromosome 5Xc are resistant to leaf rust; therefore, this chromosome could possess novel resistance genes that have never been utilized in wheat breeding.
Collapse
Affiliation(s)
- E D Badaeva
- a Vavilov Institute of General Generics, Russian Academy of Sciences, Gubkina Str. 3, GSP-1, Moscow 119991, Russia.,b Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, GSP-1, Moscow 119991, Russia
| | - A S Ruban
- c Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Chromosome Structure and Function Laboratory, Corrensstraße 3, 06466 Gatersleben, Germany
| | - A A Shishkina
- a Vavilov Institute of General Generics, Russian Academy of Sciences, Gubkina Str. 3, GSP-1, Moscow 119991, Russia
| | - S N Sibikeev
- d Agricultural Research Institute of South-East Regions, Russian Academy of Agricultural Sciences, Tulaikova Str. 7, Saratov 140010, Russia
| | - A E Druzhin
- d Agricultural Research Institute of South-East Regions, Russian Academy of Agricultural Sciences, Tulaikova Str. 7, Saratov 140010, Russia
| | - S A Surzhikov
- b Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, GSP-1, Moscow 119991, Russia
| | - A Yu Dragovich
- a Vavilov Institute of General Generics, Russian Academy of Sciences, Gubkina Str. 3, GSP-1, Moscow 119991, Russia
| |
Collapse
|
23
|
Lin Y, Liu S, Liu Y, Liu Y, Chen G, Xu J, Deng M, Jiang Q, Wei Y, Lu Y, Zheng Y. Genome-wide association study of pre-harvest sprouting resistance in Chinese wheat founder parents. Genet Mol Biol 2017; 40:620-629. [PMID: 28696481 PMCID: PMC5596365 DOI: 10.1590/1678-4685-gmb-2016-0207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/28/2017] [Indexed: 12/23/2022] Open
Abstract
Pre-harvest sprouting (PHS) is a major abiotic factor affecting grain weight and
quality, and is caused by an early break in seed dormancy. Association mapping (AM)
is used to detect correlations between phenotypes and genotypes based on linkage
disequilibrium (LD) in wheat breeding programs. We evaluated seed dormancy in 80
Chinese wheat founder parents in five environments and performed a genome-wide
association study using 6,057 markers, including 93 simple sequence repeat (SSR),
1,472 diversity array technology (DArT), and 4,492 single nucleotide polymorphism
(SNP) markers. The general linear model (GLM) and the mixed linear model (MLM) were
used in this study, and two significant markers (tPt-7980 and
wPt-6457) were identified. Both markers were located on
Chromosome 1B, with wPt-6457 having been identified in a previously
reported chromosomal position. The significantly associated loci contain essential
information for cloning genes related to resistance to PHS and can be used in wheat
breeding programs.
Collapse
Affiliation(s)
- Yu Lin
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Shihang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Yujiao Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Jie Xu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| |
Collapse
|
24
|
Yu K, Liu D, Wu W, Yang W, Sun J, Li X, Zhan K, Cui D, Ling H, Liu C, Zhang A. Development of an integrated linkage map of einkorn wheat and its application for QTL mapping and genome sequence anchoring. THEORETICAL AND APPLIED GENETICS 2016; 130:53-70. [PMID: 27659843 DOI: 10.1007/s00122-016-2791-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/12/2016] [Indexed: 11/26/2022]
Abstract
KEY MESSAGE An integrated genetic map was constructed for einkorn wheat A genome and provided valuable information for QTL mapping and genome sequence anchoring. Wheat is one of the most widely grown food grain crops in the world. The construction of a genetic map is a key step to organize biologically or agronomically important traits along the chromosomes. In the present study, an integrated linkage map of einkorn wheat was developed using 109 recombinant inbred lines (RILs) derived from an inter sub-specific cross, KT1-1 (T. monococcum ssp. boeoticum) × KT3-5 (T. monococcum ssp. monococcum). The map contains 926 molecular markers assigned to seven linkage groups, and covers 1,377 cM with an average marker interval of 1.5 cM. A quantitative trait locus (QTL) analysis of five agronomic traits identified 16 stable QTL on all seven chromosomes, except 6A. The total phenotypic variance explained by these stable QTL using multiple regressions varied across environments from 8.8 to 87.1 % for days to heading, 24.4-63.0 % for spike length, 48.2-79.6 % for spikelet number per spike, 13.1-48.1 % for plant architecture, and 12.2-26.5 % for plant height, revealing that much of the RIL phenotypic variation had been genetically dissected. Co-localizations of closely linked QTL for different traits were frequently observed, especially on 3A and 7A. The QTL on 3A, 5A and 7A were closely associated with Eps-A m 3, Vrn1 and Vrn3 loci, respectively. Furthermore, this genetic map facilitated the anchoring of 237 T. urartu scaffolds onto seven chromosomes with a physical length of 26.15 Mb. This map and the QTL data provide valuable genetic information to dissect important agronomic and developmental traits in diploid wheat and contribute to the genetic ordering of the genome assembly.
Collapse
Affiliation(s)
- Kang Yu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, People's Republic of China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Wenying Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Kehui Zhan
- Collaborative Innovation Center for Grain Crops in Henan, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, Henan, 450002, People's Republic of China
| | - Dangqun Cui
- Collaborative Innovation Center for Grain Crops in Henan, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, Henan, 450002, People's Republic of China
| | - Hongqing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Chunming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, People's Republic of China
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China.
- Collaborative Innovation Center for Grain Crops in Henan, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, Henan, 450002, People's Republic of China.
| |
Collapse
|
25
|
Li LF, Olsen KM. To Have and to Hold: Selection for Seed and Fruit Retention During Crop Domestication. Curr Top Dev Biol 2016; 119:63-109. [PMID: 27282024 DOI: 10.1016/bs.ctdb.2016.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Crop domestication provides a useful model system to characterize the molecular and developmental bases of morphological variation in plants. Among the most universal changes resulting from selection during crop domestication is the loss of seed and fruit dispersal mechanisms, which greatly facilitates harvesting efficiency. In this review, we consider the molecular genetic and developmental bases of the loss of seed shattering and fruit dispersal in six major crop plant families, three of which are primarily associated with seed crops (Poaceae, Brassicaceae, Fabaceae) and three of which are associated with fleshy-fruited crops (Solanaceae, Rosaceae, Rutaceae). We find that the developmental basis of the loss of seed/fruit dispersal is conserved in a number of independently domesticated crops, indicating the widespread occurrence of developmentally convergent evolution in response to human selection. With regard to the molecular genetic approaches used to characterize the basis of this trait, traditional biparental quantitative trait loci mapping remains the most commonly used strategy; however, recent advances in next-generation sequencing technologies are now providing new avenues to map and characterize loss of shattering/dispersal alleles. We anticipate that continued application of these approaches, together with candidate gene analyses informed by known shattering candidate genes from other crops, will lead to a rapid expansion of our understanding of this critical domestication trait.
Collapse
Affiliation(s)
- L-F Li
- Washington University in St. Louis, St. Louis, MO, United States; Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, PR China.
| | - K M Olsen
- Washington University in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
26
|
Zou H, Tzarfati R, Hübner S, Krugman T, Fahima T, Abbo S, Saranga Y, Korol AB. Transcriptome profiling of wheat glumes in wild emmer, hulled landraces and modern cultivars. BMC Genomics 2015; 16:777. [PMID: 26462652 PMCID: PMC4603339 DOI: 10.1186/s12864-015-1996-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/03/2015] [Indexed: 12/02/2022] Open
Abstract
Background Wheat domestication is considered as one of the most important events in the development of human civilization. Wheat spikelets have undergone significant changes during evolution under domestication, resulting in soft glumes and larger kernels that are released easily upon threshing. Our main goal was to explore changes in transcriptome expression in glumes that accompanied wheat evolution under domestication. Methods A total of six tetraploid wheat accessions were selected for transcriptome profiling based on their rachis brittleness and glumes toughness. RNA pools from glumes of the central spikelet at heading time were used to construct cDNA libraries for sequencing. The trimmed reads from each library were separately aligned to the reference sub-genomes A and B, which were extracted from wheat survey sequence. Differentially expression analysis and functional annotation were performed between wild and domesticated wheat, to identity candidate genes associated with evolution under domestication. Selected candidate genes were validated using real time PCR. Results Transcriptome profiles of wild emmer wheat, wheat landraces, and wheat cultivars were compared using next generation sequencing (RNA-seq). We have found a total of 194,893 transcripts, of which 73,150 were shared between wild, landraces, and cultivars. From 781 differentially expressed genes (DEGs), 336 were down-regulated and 445 were up-regulated in the domesticated compared to wild wheat genotypes. Gene Ontology (GO) annotation assigned 293 DEGs (37.5 %) to GO term groups, of which 134 (17.1 %) were down-regulated and 159 (20.4 %) up-regulated in the domesticated wheat. Some of the down-regulated DEGs in domesticated wheat are related to the biosynthetic pathways that eventually define the mechanical strength of the glumes, such as cell wall, lignin, pectin and wax biosynthesis. The reduction in gene expression of such genes, may explain the softness of the glumes in the domesticated forms. In addition, we have identified genes involved in nutrient remobilization that may affect grain size and other agronomic traits evolved under domestication. Conclusions The comparison of RNA-seq profiles between glumes of wheat groups differing in glumes toughness and rachis brittleness revealed a few DEGs that may be involved in glumes toughness and nutrient remobilization. These genes may be involved in processes of wheat improvement under domestication. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1996-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongda Zou
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel.
| | - Raanan Tzarfati
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel.
| | - Sariel Hübner
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Tamar Krugman
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel.
| | - Tzion Fahima
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel.
| | - Shahal Abbo
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Yehoshua Saranga
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Abraham B Korol
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel.
| |
Collapse
|
27
|
Genome-wide quantitative trait locus mapping identifies multiple major loci for brittle rachis and threshability in Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao). PLoS One 2014; 9:e114066. [PMID: 25474652 PMCID: PMC4256410 DOI: 10.1371/journal.pone.0114066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/21/2014] [Indexed: 11/19/2022] Open
Abstract
Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao) is a semi-wild hexaploid wheat resource that is only naturally distributed in the Qinghai-Tibet Plateau. Brittle rachis and hard threshing are two important characters of Tibetan semi-wild wheat. A whole-genome linkage map of T. aestivum ssp. tibetanum was constructed using a recombinant inbred line population (Q1028×ZM9023) with 186 lines, 564 diversity array technology markers, and 117 simple sequence repeat markers. Phenotypic data on brittle rachis and threshability, as two quantitative traits, were evaluated on the basis of the number of average spike rachis fragments per spike and percent threshability in 2012 and 2013, respectively. Quantitative trait locus (QTL) mapping performed using inclusive composite interval mapping analysis clearly identified four QTLs for brittle rachis and three QTLs for threshability. However, three loci on 2DS, 2DL, and 5AL showed pleiotropism for brittle rachis and threshability; they respectively explained 5.3%, 18.6%, and 18.6% of phenotypic variation for brittle rachis and 17.4%, 13.2%, and 35.2% of phenotypic variation for threshability. A locus on 3DS showed an independent effect on brittle rachis, which explained 38.7% of the phenotypic variation. The loci on 2DS and 3DS probably represented the effect of Tg and Br1, respectively. The locus on 5AL was in very close proximity to the Q gene, but was different from the predicted q in Tibetan semi-wild wheat. To our knowledge, the locus on 2DL has never been reported in common wheat but was prominent in T. aestivum ssp. tibetanum accession Q1028. It remarkably interacted with the locus on 5AL to affect brittle rachis. Several major loci for brittle rachis and threshability were identified in Tibetan semi-wild wheat, improving the understanding of these two characters and suggesting the occurrence of special evolution in Tibetan semi-wild wheat.
Collapse
|
28
|
Faris JD, Zhang Q, Chao S, Zhang Z, Xu SS. Analysis of agronomic and domestication traits in a durum × cultivated emmer wheat population using a high-density single nucleotide polymorphism-based linkage map. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2333-48. [PMID: 25186168 DOI: 10.1007/s00122-014-2380-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/15/2014] [Indexed: 05/21/2023]
Abstract
Development of a high-density SNP map and evaluation of QTL shed light on domestication events in tetraploid wheat and the potential utility of cultivated emmer wheat for durum wheat improvement. Cultivated emmer wheat (Triticum turgidum ssp. dicoccum) is tetraploid and considered as one of the eight founder crops that spawned the Agricultural Revolution about 10,000 years ago. Cultivated emmer has non-free-threshing seed and a somewhat fragile rachis, but mutations in genes governing these and other agronomic traits occurred that led to the formation of today's fully domesticated durum wheat (T. turgidum ssp. durum). Here, we evaluated a population of recombinant inbred lines (RILs) derived from a cross between a cultivated emmer accession and a durum wheat variety. A high-density single nucleotide polymorphism (SNP)-based genetic linkage map consisting of 2,593 markers was developed for the identification of quantitative trait loci. The major domestication gene Q had profound effects on spike length and compactness, rachis fragility, and threshability as expected. The cultivated emmer parent contributed increased spikelets per spike, and the durum parent contributed higher kernel weight, which led to the identification of some RILs that had significantly higher grain weight per spike than either parent. Threshability was governed not only by the Q locus, but other loci as well including Tg-B1 on chromosome 2B and a putative Tg-A1 locus on chromosome 2A indicating that mutations in the Tg loci occurred during the transition of cultivated emmer to the fully domesticated tetraploid. These results not only shed light on the events that shaped wheat domestication, but also demonstrate that cultivated emmer is a useful source of genetic variation for the enhancement of durum varieties.
Collapse
Affiliation(s)
- Justin D Faris
- USDA-Agricultural Research Service, Cereal Crops Research Unit, Red River Valley Agricultural Research Unit, Fargo, ND, 58102, USA,
| | | | | | | | | |
Collapse
|
29
|
Map-based analysis of the tenacious glume gene Tg-B1 of wild emmer and its role in wheat domestication. Gene 2014; 542:198-208. [DOI: 10.1016/j.gene.2014.03.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 12/20/2022]
|
30
|
Faris JD, Zhang Z, Garvin DF, Xu SS. Molecular and comparative mapping of genes governing spike compactness from wild emmer wheat. Mol Genet Genomics 2014; 289:641-51. [PMID: 24652470 DOI: 10.1007/s00438-014-0836-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/26/2014] [Indexed: 12/23/2022]
Abstract
The development and morphology of the wheat spike is important because the spike is where reproduction occurs and it holds the grains until harvest. Therefore, genes that influence spike morphology are of interest from both theoretical and practical stand points. When substituted for the native chromosome 2A in the tetraploid Langdon (LDN) durum wheat background, the Triticum turgidum ssp. dicoccoides chromosome 2A from accession IsraelA confers a short, compact spike with fewer spikelets per spike compared to LDN. Molecular mapping and quantitative trait loci (QTL) analysis of these traits in a homozygous recombinant population derived from LDN × the chromosome 2A substitution line (LDNIsA-2A) indicated that the number of spikelets per spike and spike length were controlled by linked, but different, loci on the long arm of 2A. A QTL explaining most of the variation for spike compactness coincided with the QTL for spike length. Comparative mapping indicated that the QTL for number of spikelets per spike overlapped with a previously mapped QTL for Fusarium head blight susceptibility. The genes governing spike length and compactness were not orthologous to either sog or C, genes known to confer compact spikes in diploid and hexaploid wheat, respectively. Mapping and sequence analysis indicated that the gene governing spike length and compactness derived from wild emmer could be an ortholog of the barley Cly1/Zeo gene, which research indicates is an AP2-like gene pleiotropically affecting cleistogamy, flowering time, and rachis internode length. This work provides researchers with knowledge of new genetic loci and associated markers that may be useful for manipulating spike morphology in durum wheat.
Collapse
Affiliation(s)
- Justin D Faris
- USDA-Agricultural Research Service NPA NCSL, Cereal Crops Research Unit, Red River Valley Agricultural Research Center, 1605 Albrecht BLVD, Fargo, ND, 58102-2765, USA,
| | | | | | | |
Collapse
|
31
|
Lenser T, Theißen G. Molecular mechanisms involved in convergent crop domestication. TRENDS IN PLANT SCIENCE 2013; 18:704-14. [PMID: 24035234 DOI: 10.1016/j.tplants.2013.08.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/12/2013] [Accepted: 08/21/2013] [Indexed: 05/21/2023]
Abstract
Domestication has helped to understand evolution. We argue that, vice versa, novel insights into evolutionary principles could provide deeper insights into domestication. Molecular analyses have demonstrated that convergent phenotypic evolution is often based on molecular changes in orthologous genes or pathways. Recent studies have revealed that during plant domestication the causal mutations for convergent changes in key traits are likely to be located in particular genes. These insights may contribute to defining candidate genes for genetic improvement during the domestication of new plant species. Such efforts may help to increase the range of arable crops available, thus increasing crop biodiversity and food security to help meet the predicted demands of the continually growing global population under rapidly changing environmental conditions.
Collapse
Affiliation(s)
- Teresa Lenser
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743 Jena, Germany
| | | |
Collapse
|
32
|
Förster S, Schumann E, Baumann M, Weber WE, Pillen K. Copy number variation of chromosome 5A and its association with Q gene expression, morphological aberrations, and agronomic performance of winter wheat cultivars. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:3049-3063. [PMID: 24078011 DOI: 10.1007/s00122-013-2192-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/06/2013] [Indexed: 06/02/2023]
Abstract
KEY MESSAGE Our investigations combine chromosome 5A copy number variation associated with relative 5A Q gene expression and morphological and agronomic data to characterize the occurrence of speltoid plants in winter wheat cultivars. The occurrence of speltoid aberrants in wheat breeding is a serious problem that may result in rejection of a candidate cultivar during licensing. The spear-shaped, hard threshing spike is caused by copy number reduction of the domestication gene Q, located on the long arm of wheat chromosome 5A. As a member of the APETALA2-like transcription factor family, the 5AQ gene is involved in flower development and pleiotropically controls other agronomic traits. In this report, a characterization of instability of chromosome 5A is given and effects due to the loss of the Q gene and other genes are discussed. Based on pyrosequencing, we correctly predicted the 5AQ copy number for 392 of 402 tested offspring plants (97.5 %) originating from single speltoid plants of eleven wheat cultivars. The findings indicate that the resulting speltoid plants were either reduced in chromosome 5A copy number or possessed a partial deletion of the distal end of chromosome arm 5AL. 5AQ specific real-time PCR analysis revealed varying transcription levels among cultivars. During early spike development, the relative transcription of the 5AQ gene was always lower in speltoids than in normal square headed wheat plants, most likely leading to the occurrence of the characteristic speltoid spike phenotype. The parallel analysis of 18 agronomic traits revealed pleiotropic effects governed by genes located on 5A. Our results demonstrate that through pyrosequencing one can identify aneuploidy or deletions within chromosome 5A to select against the occurrence of speltoid plants in wheat seedlings.
Collapse
Affiliation(s)
- Sebastian Förster
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120, Halle (Saale), Germany,
| | | | | | | | | |
Collapse
|
33
|
Seed shattering in a wild sorghum is conferred by a locus unrelated to domestication. Proc Natl Acad Sci U S A 2013; 110:15824-9. [PMID: 24019506 DOI: 10.1073/pnas.1305213110] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Suppression of seed shattering was a key step during crop domestication that we have previously suggested to be convergent among independent cereal lineages. Positional, association, expression, and mutant complementation data all implicate a WRKY transcription factor, SpWRKY, in conferring shattering to a wild sorghum relative, Sorghum propinquum. We hypothesize that SpWRKY functions in a manner analogous to Medicago and Arabidopsis homologs that regulate cell wall biosynthesis genes, with low expression toward the end of floral development derepressing downstream cell wall biosynthesis genes to allow deposition of lignin that initiates the abscission zone in the seed-pedicel junction. The recent discovery of a YABBY locus that confers shattering within Sorghum bicolor and other cereals validated our prior hypothesis that some parallel domestication may have been convergent. Ironically, however, the shattering allele of SpWRKY appears to be recently evolved in S. propinquum and illustrates a case in which the genetic control of a trait in a wild relative fails to extrapolate even to closely related crops. Remarkably, the SpWRKY and YABBY loci lie only 300 kb apart and may have appeared to be a single genetic locus in some sorghum populations.
Collapse
|
34
|
Tzarfati R, Saranga Y, Barak V, Gopher A, Korol AB, Abbo S. Threshing efficiency as an incentive for rapid domestication of emmer wheat. ANNALS OF BOTANY 2013; 112:829-37. [PMID: 23884398 PMCID: PMC3747801 DOI: 10.1093/aob/mct148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS The harvesting method of wild and cultivated cereals has long been recognized as an important factor in the emergence of domesticated non-shattering ear genotypes. This study aimed to quantify the effects of spike brittleness and threshability on threshing time and efficiency in emmer wheat, and to evaluate the implications of post-harvest processes on domestication of cereals in the Near East. METHODS A diverse collection of tetraploid wheat genotypes, consisting of Triticum turgidum ssp. dicoccoides - the wild progenitor of domesticated wheat - traditional landraces, modern cultivars (T. turgidum ssp. durum) and 150 recombinant (wild × modern) inbred lines, was used in replicated controlled threshing experiments to quantify the effects of spike brittleness and threshability on threshing time and efficiency. KEY RESULTS The transition from a brittle hulled wild phenotype to non-brittle hulled phenotype (landraces) was associated with an approx. 30 % reduction in threshing time, whereas the transition from the latter to non-brittle free-threshing cultivars was associated with an approx. 85 % reduction in threshing time. Similar trends were obtained with groups of recombinant inbred lines showing extreme phenotypes of brittleness and threshability. CONCLUSIONS In tetraploid wheat, both non-brittle spike and free-threshing are labour-saving traits that increase the efficiency of post-harvest processing, which could have been an incentive for rapid domestication of the Near Eastern cereals, thus refuting the recently proposed hypothesis regarding extra labour associated with the domesticated phenotype (non-brittle spike) and its presumed role in extending the domestication episode time frame.
Collapse
Affiliation(s)
- Raanan Tzarfati
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa 31905, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yehoshua Saranga
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Vered Barak
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Avi Gopher
- Sonia and Marco Nadler Institute of Archaeology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Abraham B. Korol
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa 31905, Israel
| | - Shahal Abbo
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
- For correspondence. E-mail
| |
Collapse
|
35
|
Laidò G, Mangini G, Taranto F, Gadaleta A, Blanco A, Cattivelli L, Marone D, Mastrangelo AM, Papa R, De Vita P. Genetic Diversity and Population Structure of Tetraploid Wheats (Triticum turgidum L.) Estimated by SSR, DArT and Pedigree Data. PLoS One 2013; 8:e67280. [PMID: 23826256 PMCID: PMC3694930 DOI: 10.1371/journal.pone.0067280] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/17/2013] [Indexed: 11/24/2022] Open
Abstract
Levels of genetic diversity and population genetic structure of a collection of 230 accessions of seven tetraploid Triticum turgidum L. subspecies were investigated using six morphological, nine seed storage protein loci, 26 SSRs and 970 DArT markers. The genetic diversity of the morphological traits and seed storage proteins was always lower in the durum wheat compared to the wild and domesticated emmer. Using Bayesian clustering (K = 2), both of the sets of molecular markers distinguished the durum wheat cultivars from the other tetraploid subspecies, and two distinct subgroups were detected within the durum wheat subspecies, which is in agreement with their origin and year of release. The genetic diversity of morphological traits and seed storage proteins was always lower in the improved durum cultivars registered after 1990, than in the intermediate and older ones. This marked effect on diversity was not observed for molecular markers, where there was only a weak reduction. At K >2, the SSR markers showed a greater degree of resolution than for DArT, with their identification of a greater number of groups within each subspecies. Analysis of DArT marker differentiation between the wheat subspecies indicated outlier loci that are potentially linked to genes controlling some important agronomic traits. Among the 211 loci identified under selection, 109 markers were recently mapped, and some of these markers were clustered into specific regions on chromosome arms 2BL, 3BS and 4AL, where several genes/quantitative trait loci (QTLs) are involved in the domestication of tetraploid wheats, such as the tenacious glumes (Tg) and brittle rachis (Br) characteristics. On the basis of these results, it can be assumed that the population structure of the tetraploid wheat collection partially reflects the evolutionary history of Triticum turgidum L. subspecies and the genetic potential of landraces and wild accessions for the detection of unexplored alleles.
Collapse
Affiliation(s)
- Giovanni Laidò
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| | - Giacomo Mangini
- Department of Soil, Plant, and Food Sciences, Section of Genetics and Plant Breeding, University of Bari, Via Amendola, Bari, Italy
| | - Francesca Taranto
- Department of Soil, Plant, and Food Sciences, Section of Genetics and Plant Breeding, University of Bari, Via Amendola, Bari, Italy
| | - Agata Gadaleta
- Department of Soil, Plant, and Food Sciences, Section of Genetics and Plant Breeding, University of Bari, Via Amendola, Bari, Italy
| | - Antonio Blanco
- Department of Soil, Plant, and Food Sciences, Section of Genetics and Plant Breeding, University of Bari, Via Amendola, Bari, Italy
| | - Luigi Cattivelli
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| | - Daniela Marone
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| | - Anna M. Mastrangelo
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| | - Roberto Papa
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| | - Pasquale De Vita
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| |
Collapse
|
36
|
Dvorak J, Deal KR, Luo MC, You FM, von Borstel K, Dehghani H. The origin of spelt and free-threshing hexaploid wheat. J Hered 2012; 103:426-41. [PMID: 22378960 DOI: 10.1093/jhered/esr152] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is widely believed that hexaploid wheat originated via hybridization of hulled tetraploid emmer with Aegilops tauschii (genomes DD) and that the nascent hexaploid was spelt, from which free-threshing wheat evolved by mutations. To reassess the role of spelt in the evolution of Triticum aestivum, 4 disomic substitution lines of Ae. tauschii chromosome 2D in Chinese Spring wheat were developed and one of them was used to map the Tg locus, which controls glume tenacity in Ae. tauschii, relative to simple sequence repeat (SSR) and expressed sequence tag loci on wheat chromosome 2D. The segregation of SSR markers was used to assess the presence of Tg alleles in 11 accessions of spelt, both from Europe and from Asia. Ten of them had an inactive tg allele in the D genome and most had an active Tg allele in the B genome. This is consistent with spelt being derived from free-threshing hexaploid wheat by hybridization of free-threshing wheat with hulled emmer. It is proposed that the tetraploid parent of hexaploid wheat was not hulled emmer but a free-threshing form of tetraploid wheat.
Collapse
Affiliation(s)
- Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Okamoto Y, Kajimura T, Ikeda TM, Takumi S. Evidence from principal component analysis for improvement of grain shape- and spikelet morphology-related traits after hexaploid wheat speciation. Genes Genet Syst 2012; 87:299-310. [DOI: 10.1266/ggs.87.299] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yuki Okamoto
- Graduate School of Agricultural Science, Kobe University
| | | | - Tatsuya M. Ikeda
- Western Region Agricultural Research Center of the National Agriculture and Food Research Organization
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University
| |
Collapse
|
38
|
Peleg Z, Fahima T, Korol AB, Abbo S, Saranga Y. Genetic analysis of wheat domestication and evolution under domestication. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5051-61. [PMID: 21778183 PMCID: PMC3193012 DOI: 10.1093/jxb/err206] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/04/2011] [Accepted: 06/02/2011] [Indexed: 05/18/2023]
Abstract
Wheat is undoubtedly one of the world's major food sources since the dawn of Near Eastern agriculture and up to the present day. Morphological, physiological, and genetic modifications involved in domestication and subsequent evolution under domestication were investigated in a tetraploid recombinant inbred line population, derived from a cross between durum wheat and its immediate progenitor wild emmer wheat. Experimental data were used to test previous assumptions regarding a protracted domestication process. The brittle rachis (Br) spike, thought to be a primary characteristic of domestication, was mapped to chromosome 2A as a single gene, suggesting, in light of previously reported Br loci (homoeologous group 3), a complex genetic model involved in spike brittleness. Twenty-seven quantitative trait loci (QTLs) conferring threshability and yield components (kernel size and number of kernels per spike) were mapped. The large number of QTLs detected in this and other studies suggests that following domestication, wheat evolutionary processes involved many genomic changes. The Br gene did not show either genetic (co-localization with QTLs) or phenotypic association with threshability or yield components, suggesting independence of the respective loci. It is argued here that changes in spike threshability and agronomic traits (e.g. yield and its components) are the outcome of plant evolution under domestication, rather than the result of a protracted domestication process. Revealing the genomic basis of wheat domestication and evolution under domestication, and clarifying their inter-relationships, will improve our understanding of wheat biology and contribute to further crop improvement.
Collapse
Affiliation(s)
- Zvi Peleg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
- Present address: Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Tzion Fahima
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa 31905, Israel
| | - Abraham B. Korol
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa 31905, Israel
| | - Shahal Abbo
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yehoshua Saranga
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
39
|
High-Resolution Genotyping of Wild Barley Introgression Lines and Fine-Mapping of the Threshability Locus thresh-1 Using the Illumina GoldenGate Assay. G3-GENES GENOMES GENETICS 2011; 1:187-96. [PMID: 22384330 PMCID: PMC3276139 DOI: 10.1534/g3.111.000182] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/25/2011] [Indexed: 11/24/2022]
Abstract
Genetically well-characterized mapping populations are a key tool for rapid and precise localization of quantitative trait loci (QTL) and subsequent identification of the underlying genes. In this study, a set of 73 introgression lines (S42ILs) originating from a cross between the spring barley cultivar Scarlett (Hordeum vulgare ssp. vulgare) and the wild barley accession ISR42-8 (H. v. ssp. spontaneum) was subjected to high-resolution genotyping with an Illumina 1536-SNP array. The array enabled a precise localization of the wild barley introgressions in the elite barley background. Based on 636 informative SNPs, the S42IL set represents 87.3% of the wild barley genome, where each line contains on average 3.3% of the donor genome. Furthermore, segregating high-resolution mapping populations (S42IL-HRs) were developed for 70 S42ILs in order to facilitate QTL fine-mapping and cloning. As a case study, we used the developed genetic resources to rapidly identify and fine-map the novel locus thresh-1 on chromosome 1H that controls grain threshability. Here, the recessive wild barley allele confers a difficult to thresh phenotype, suggesting that thresh-1 played an important role during barley domestication. Using a S42IL-HR population, thresh-1 was fine-mapped within a 4.3cM interval that was predicted to contain candidate genes involved in regulation of plant cell wall composition. The set of wild barley introgression lines and derived high-resolution populations are ideal tools to speed up the process of mapping and further dissecting QTL, which ultimately clears the way for isolating the genes behind QTL effects.
Collapse
|
40
|
Prokopyk DO, Ternovska TK. Homeotic genes and their role in development of morphological traits in wheat. CYTOL GENET+ 2011. [DOI: 10.3103/s0095452711010099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
41
|
Gross BL, Steffen FT, Olsen KM. The molecular basis of white pericarps in African domesticated rice: novel mutations at the Rc gene. J Evol Biol 2011; 23:2747-53. [PMID: 21121088 DOI: 10.1111/j.1420-9101.2010.02125.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Repeated phenotypic evolution can occur at both the inter- and intraspecific level and is especially prominent in domesticated plants, where artificial selection has favoured the same traits in many different species and varieties. The question of whether repeated evolution reflects changes at the same or different genes in each lineage can now be addressed using the domestication and improvement genes that have been identified in a variety of crops. Here, we document the genetic basis of nonpigmented ('white') pericarps in domesticated African rice (Oryza glaberrima) and compare it with the known genetic basis of the same trait in domesticated Asian rice (Oryza sativa). In some cases, white pericarps in African rice are apparently caused by unique mutations at the Rc gene, which also controls pericarp colour variation in Asian rice. In one case, white pericarps appear to reflect changes at a different gene or potentially a cis-regulatory region.
Collapse
Affiliation(s)
- B L Gross
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | | | |
Collapse
|
42
|
Abstract
Wheat was one of the first crops to be domesticated more than 10,000 years ago in the Middle East. Molecular genetics and archaeological data have allowed the reconstruction of plausible domestication scenarios leading to modern cultivars. For diploid einkorn and tetraploid durum wheat, a single domestication event has likely occurred in the Karacadag Mountains, Turkey. Following a cross between tetraploid durum and diploid T. tauschii, the resultant hexaploid bread wheat was domesticated and disseminated around the Caucasian region. These polyploidisation events facilitated wheat domestication and created genetic bottlenecks, which excluded potentially adaptive alleles. With the urgent need to accelerate genetic progress to confront the challenges of climate change and sustainable agriculture, wild ancestors and old landraces represent a reservoir of underexploited genetic diversity that may be utilized through modern breeding methods. Understanding domestication processes may thus help identifying new strategies.
Collapse
Affiliation(s)
- Gilles Charmet
- UMR1095 génétique, diversité, écophysiologie des céréales, INRA Clermont-université, 234 avenue du Brézet, Clermont-Ferrand, France.
| |
Collapse
|