1
|
Medina CA, Samac DA, Yu LX. Pan-transcriptome identifying master genes and regulation network in response to drought and salt stresses in Alfalfa (Medicago sativa L.). Sci Rep 2021; 11:17203. [PMID: 34446782 PMCID: PMC8390513 DOI: 10.1038/s41598-021-96712-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Alfalfa is an important legume forage grown worldwide and its productivity is affected by environmental stresses such as drought and high salinity. In this work, three alfalfa germplasms with contrasting tolerances to drought and high salinity were used for unraveling the transcriptomic responses to drought and salt stresses. Twenty-one different RNA samples from different germplasm, stress conditions or tissue sources (leaf, stem and root) were extracted and sequenced using the PacBio (Iso-Seq) and the Illumina platforms to obtain full-length transcriptomic profiles. A total of 1,124,275 and 91,378 unique isoforms and genes were obtained, respectively. Comparative analysis of transcriptomes identified differentially expressed genes and isoforms as well as transcriptional and post-transcriptional modifications such as alternative splicing events, fusion genes and nonsense-mediated mRNA decay events and non-coding RNA such as circRNA and lncRNA. This is the first time to identify the diversity of circRNA and lncRNA in response to drought and high salinity in alfalfa. The analysis of weighted gene co-expression network allowed to identify master genes and isoforms that may play important roles on drought and salt stress tolerance in alfalfa. This work provides insight for understanding the mechanisms by which drought and salt stresses affect alfalfa growth at the whole genome level.
Collapse
Affiliation(s)
- Cesar Augusto Medina
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA, 99350, USA
| | - Deborah A Samac
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, 1991 Upper Buford Circle, 495 Borlaug Hall St, Paul, MN, 55108, USA
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA, 99350, USA.
| |
Collapse
|
2
|
Shi H, He X, Zhao Y, Lu S, Guo Z. Constitutive expression of a group 3 LEA protein from Medicago falcata (MfLEA3) increases cold and drought tolerance in transgenic tobacco. PLANT CELL REPORTS 2020; 39:851-860. [PMID: 32240329 DOI: 10.1007/s00299-020-02534-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/18/2020] [Indexed: 05/22/2023]
Abstract
KEY MESSAGE MfLEA3 is involved in protection of catalase activity and confers multiple abiotic stress tolerance. Late embryogenesis abundant (LEA) proteins are involved in plant growth, development and abiotic stress tolerance. A member of group 3 LEA proteins from Medicago sativa subsp. falcata (L.) Arcang, MfLEA3, was investigated in the study. MfLEA3 transcript was induced in response to cold, dehydration, and abscisic acid (ABA), while the cold-induced transcript of MfLEA3 was blocked by pretreatment with inhibitor of ABA synthesis. Constitutive expression of MfLEA3 led to enhanced tolerance to cold, drought, and high-light stress in transgenic tobacco plants. Compared to accumulated reactive oxygen species (ROS) in the wild-type in response to treatments with low temperature, drought, and high light, ROS were not accumulated in transgenic plants. Superoxide dismutase, catalase (CAT), and ascorbate-peroxidase activities were increased in all plants after treatments with the above stresses, while higher CAT activity was maintained in transgenic plants compared with wild-type. However, transcript level of CAT-encoding genes including CAT1, CAT2, and CAT3 showed no significant difference between transgenic plants and wild-type, indicating that the higher CAT activity was not associated with its gene expression. ABA sensitivity and transcripts of several ABA and stress-responsive genes showed no difference between transgenic plant and wild-type, indicating that ABA signaling was not affected by constitutive expression of MfLEA3. The results suggest that MfLEA3 may be involved in the protection of CAT activity and confers multiple abiotic stress tolerance.
Collapse
Affiliation(s)
- Haifan Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xueying He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yujuan Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shaoyun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Cui H, Wang Y, Yu T, Chen S, Chen Y, Lu C. Heterologous Expression of Three Ammopiptanthus mongolicus Dehydrin Genes Confers Abiotic Stress Tolerance in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9020193. [PMID: 32033313 PMCID: PMC7076708 DOI: 10.3390/plants9020193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Ammopiptanthus mongolicus, a xerophyte plant that belongs to the family Leguminosae, adapts to extremely arid, hot, and cold environments, making it an excellent woody plant to study the molecular mechanisms underlying abiotic stress tolerance. Three dehydrin genes, AmDHN132, AmDHN154, and AmDHN200 were cloned from abiotic stress treated A. mongolicus seedlings. Cytomembrane-located AmDHN200, nucleus-located AmDHN154, and cytoplasm and nucleus-located AmDHN132 were characterized by constitutive overexpression of their genes in Arabidopsis thaliana. Overexpression of AmDHN132, AmDHN154, and AmDHN200 in transgenic Arabidopsis improved salt, osmotic, and cold tolerances, with AmDHN132 having the largest effect, whereas the growth of transformed plants is not negatively affected. These results indicate that AmDHNs contribute to the abiotic stress tolerance of A. mongolicus and that AmDHN genes function differently in response to abiotic stresses. Furthermore, they have the potential to be used in the genetic engineering of stress tolerance in higher plants.
Collapse
Affiliation(s)
- Hongwei Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Tingqiao Yu
- College of Life Science, Pecking University, Beijing 100083, China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yuzhen Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Cunfu Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
4
|
Sajjad S, Ha JS, Seo SH, Yoon TS, Oh HM, Lee HG, Kang S. Differential proteomic analyses of green microalga Ettlia sp. at various dehydration levels. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:198-210. [PMID: 31756606 DOI: 10.1016/j.plaphy.2019.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Water deprivation could be a lethal stress for aquatic and aero-terrestrial organisms. Ettlia sp. is a unicellular photosynthetic freshwater microalga. In the present study, proteomic alterations and physiological characteristics of Ettlia sp. were analyzed to comprehend the molecular changes in dehydrated conditions. Varying levels of dehydration were achieved by incubating drained Ettlia sp. in different relative humidity environments for 24 hours. Using a comparative proteomic analysis, 52 differentially expressed protein spots were identified that could be divided into eight functional groups. The PCA analysis of normalized protein expression values demonstrated a clear segregation of protein expression profiles among different dehydration levels. Identified proteins could be grouped into four clusters based on their expression profiles. Proteins relating to photosynthesis comprised the largest group with 25% of the identified proteins that were decreased in dehydrated samples and belonged to cluster I. The photosynthetic activities were measured with rehydrated Ettlia sp. These results revealed that photosynthesis remained inhibited over extended time in response to dehydration. The expressions of reactive oxygen species (ROS) scavenger proteins increased in strong dehydration and were assigned to cluster III. Carbon metabolism proteins were suppressed, which might limit energy consumption, whereas glycolysis was activated at mild dehydration. The accumulation of desiccation-associated late embryogenesis proteins might inhibit the aggregation of housekeeping proteins. DNA protective proteins were expressed higher in the dehydrated state, which might reduce DNA damage, and membrane-stabilizing proteins increased in abundance in desiccation. These findings provide an understanding of Ettlia's adaptation and survival capabilities in a dehydrated state.
Collapse
Affiliation(s)
- Saba Sajjad
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Ji-San Ha
- Cell Factory Research Center, KRIBB, Daejeon, Korea Research Institute of Bioscience and Biotechnology (KRIBB) 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Biological Sciences, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Republic of Korea
| | - Seong-Hyun Seo
- Cell Factory Research Center, KRIBB, Daejeon, Korea Research Institute of Bioscience and Biotechnology (KRIBB) 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Life Science, Hanyang University, Haengdang 1-dong, Seongdong-gu, Seoul, Republic of Korea
| | - Tae-Sung Yoon
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, KRIBB, Daejeon, Korea Research Institute of Bioscience and Biotechnology (KRIBB) 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Hyung-Gwan Lee
- Cell Factory Research Center, KRIBB, Daejeon, Korea Research Institute of Bioscience and Biotechnology (KRIBB) 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Sunghyun Kang
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
5
|
Mota APZ, Oliveira TN, Vinson CC, Williams TCR, Costa MMDC, Araujo ACG, Danchin EGJ, Grossi-de-Sá MF, Guimaraes PM, Brasileiro ACM. Contrasting Effects of Wild Arachis Dehydrin Under Abiotic and Biotic Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:497. [PMID: 31057593 PMCID: PMC6482428 DOI: 10.3389/fpls.2019.00497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/01/2019] [Indexed: 05/22/2023]
Abstract
Plant dehydrins (DNHs) belong to the LEA (Late Embryogenesis Abundant) protein family and are involved in responses to multiple abiotic stresses. DHNs are classified into five subclasses according to the organization of three conserved motifs (K-; Y-; and S-segments). In the present study, the DHN protein family was characterized by molecular phylogeny, exon/intron organization, protein structure, and tissue-specificity expression in eight Fabaceae species. We identified 20 DHN genes, encompassing three (YnSKn, SKn, and Kn) subclasses sharing similar gene organization and protein structure. Two additional low conserved DHN Φ-segments specific to the legume SKn-type of proteins were also found. The in silico expression patterns of DHN genes in four legume species (Arachis duranensis, A. ipaënsis, Glycine max, and Medicago truncatula) revealed that their tissue-specific regulation is associated with the presence or absence of the Y-segment. Indeed, DHN genes containing a Y-segment are mainly expressed in seeds, whereas those without the Y-segment are ubiquitously expressed. Further qRT-PCR analysis revealed that, amongst stress responsive dehydrins, a SKn-type DHN gene from A. duranensis (AdDHN1) showed opposite response to biotic and abiotic stress with a positive regulation under water deficit and negative regulation upon nematode infection. Furthermore, transgenic Arabidopsis lines overexpressing (OE) AdDHN1 displayed improved tolerance to multiple abiotic stresses (freezing and drought) but increased susceptibility to the biotrophic root-knot nematode (RKN) Meloidogyne incognita. This contradictory role of AdDHN1 in responses to abiotic and biotic stresses was further investigated by qRT-PCR analysis of transgenic plants using a set of stress-responsive genes involved in the abscisic acid (ABA) and jasmonic acid (JA) signaling pathways and suggested an involvement of DHN overexpression in these stress-signaling pathways.
Collapse
Affiliation(s)
- Ana Paula Zotta Mota
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Departamento de Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thais Nicolini Oliveira
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Departamento de Botânica, Universidade de Brasília, Brasília, Brazil
| | - Christina Cleo Vinson
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Departamento de Botânica, Universidade de Brasília, Brasília, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Li X, Feng H, Wen J, Dong J, Wang T. MtCAS31 Aids Symbiotic Nitrogen Fixation by Protecting the Leghemoglobin MtLb120-1 Under Drought Stress in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2018; 9:633. [PMID: 29868087 PMCID: PMC5960688 DOI: 10.3389/fpls.2018.00633] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/23/2018] [Indexed: 05/09/2023]
Abstract
Symbiotic nitrogen fixation (SNF) in legume root nodules injects millions of tons of nitrogen into agricultural lands and provides ammonia to non-legume crops under N-deficient conditions. During plant growth and development, environmental stresses, such as drought, salt, cold, and heat stress are unavoidable. This raises an interesting question as to how the legumes cope with the environmental stress along with SNF. Under drought stress, dehydrin proteins are accumulated, which function as protein protector and osmotic substances. In this study, we found that the dehydrin MtCAS31 (cold-acclimation-specific 31) functions in SNF in Medicago truncatula during drought stress. We found that MtCAS31 is expressed in nodules and interacts with leghemoglobin MtLb120-1. The interaction between the two proteins protects MtLb120-1 from denaturation under thermal stress in vivo. Compared to wild type, cas31 mutants display a lower nitrogenase activity, a lower ATP/ADP ratio, higher expression of nodule senescence genes and higher accumulation of amyloplasts under dehydration conditions. The results suggested that MtCAS31 protects MtLb120-1 from the damage of drought stress. We identified a new function for dehydrins in SNF under drought stress, which enriches the understanding of the molecular mechanism of dehydrins.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - JiangQi Wen
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK, United States
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- *Correspondence: Jiangli Dong, Tao Wang,
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- *Correspondence: Jiangli Dong, Tao Wang,
| |
Collapse
|
7
|
Bertrand A, Bipfubusa M, Claessens A, Rocher S, Castonguay Y. Effect of photoperiod prior to cold acclimation on freezing tolerance and carbohydrate metabolism in alfalfa (Medicago sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:122-128. [PMID: 28969792 DOI: 10.1016/j.plantsci.2017.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 05/11/2023]
Abstract
Cold acclimation proceeds sequentially in response to decreases in photoperiod and temperature. This study aimed at assessing the impact of photoperiod prior to cold acclimation on freezing tolerance and related biochemical and molecular responses in two alfalfa cultivars. The fall dormant cultivar Evolution and semi-dormant cultivar 6010 were grown in growth chambers under different photoperiods (8, 10, 12, 14 or 16h) prior to cold acclimation. Freezing tolerance was evaluated as well as carbohydrate concentrations, levels of transcripts encoding enzymes of carbohydrate metabolism as well as a K-3dehydrin, before and after cold acclimation. The fall dormant cultivar Evolution had a better freezing tolerance than the semi-dormant cultivar 6010. The effect of photoperiod prior to cold acclimation on the level of freezing tolerance differed between the two cultivars: an 8h-photoperiod induced the highest level of freezing tolerance in Evolution and the lowest in 6010. In Evolution, the 8h-induced superior freezing tolerance was associated with higher concentration of raffinose-family oligosaccharides (RFO). The transcript levels of sucrose synthase (SuSy) decreased whereas those of sucrose phosphatase synthase (SPS) and galactinol synthase (GaS) increased in response to cold acclimation in both cultivars. Our results indicate that RFO metabolism could be involved in short photoperiod-induced freezing tolerance in dormant alfalfa cultivars.
Collapse
Affiliation(s)
- Annick Bertrand
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Québec, QC, G1V 2J3, Canada.
| | - Marie Bipfubusa
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Québec, QC, G1V 2J3, Canada
| | - Annie Claessens
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Québec, QC, G1V 2J3, Canada
| | - Solen Rocher
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Québec, QC, G1V 2J3, Canada
| | - Yves Castonguay
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Québec, QC, G1V 2J3, Canada
| |
Collapse
|
8
|
Bertrand A, Bipfubusa M, Castonguay Y, Rocher S, Szopinska-Morawska A, Papadopoulos Y, Renaut J. A proteome analysis of freezing tolerance in red clover (Trifolium pratense L.). BMC PLANT BIOLOGY 2016; 16:65. [PMID: 26965047 PMCID: PMC4787020 DOI: 10.1186/s12870-016-0751-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/29/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND Improvement of freezing tolerance of red clover (Trifolium pratense L.) would increase its persistence under cold climate. In this study, we assessed the freezing tolerance and compared the proteome composition of non-acclimated and cold-acclimated plants of two initial cultivars of red clover: Endure (E-TF0) and Christie (C-TF0) and of populations issued from these cultivars after three (TF3) and four (TF4) cycles of phenotypic recurrent selection for superior freezing tolerance. Through this approach, we wanted to identify proteins that are associated with the improvement of freezing tolerance in red clover. RESULTS Freezing tolerance expressed as the lethal temperature for 50 % of the plants (LT50) increased markedly from approximately -2 to -16 °C following cold acclimation. Recurrent selection allowed a significant 2 to 3 °C increase of the LT50 after four cycles of recurrent selection. Two-dimensional difference gel electrophoresis (2D-DIGE) was used to study variations in protein abundance. Principal component analysis based on 2D-DIGE revealed that the largest variability in the protein data set was attributable to the cold acclimation treatment and that the two genetic backgrounds had differential protein composition in the acclimated state only. Vegetative storage proteins (VSP), which are essential nitrogen reserves for plant regrowth, and dehydrins were among the most striking changes in proteome composition of cold acclimated crowns of red clovers. A subset of proteins varied in abundance in response to selection including a dehydrin that increased in abundance in TF3 and TF4 populations as compared to TF0 in the Endure background. CONCLUSION Recurrent selection performed indoor is an effective approach to improve the freezing tolerance of red clover. Significant improvement of freezing tolerance by recurrent selection was associated with differential accumulation of a small number of cold-regulated proteins that may play an important role in the determination of the level of freezing tolerance.
Collapse
Affiliation(s)
| | | | | | - Solen Rocher
- />Agriculture and Agri-Food Canada, Québec City, Canada
| | | | | | - Jenny Renaut
- />Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| |
Collapse
|
9
|
He W, Zhuang H, Fu Y, Guo L, Guo B, Guo L, Zhang X, Wei Y. De novo Transcriptome Assembly of a Chinese Locoweed (Oxytropis ochrocephala) Species Provides Insights into Genes Associated with Drought, Salinity, and Cold Tolerance. FRONTIERS IN PLANT SCIENCE 2015; 6:1086. [PMID: 26697040 PMCID: PMC4667070 DOI: 10.3389/fpls.2015.01086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/19/2015] [Indexed: 05/29/2023]
Abstract
BACKGROUND Locoweeds (toxic Oxytropis and Astraglus species), containing the toxic agent swainsonine, pose serious threats to animal husbandry on grasslands in both China and the US. Some locoweeds have evolved adaptations in order to resist various stress conditions such as drought, salt and cold. As a result they replace other plants in their communities and become an ecological problem. Currently very limited genetic information of locoweeds is available and this hinders our understanding in the molecular basis of their environmental plasticity, and the interaction between locoweeds and their symbiotic swainsonine producing endophytes. Next-generation sequencing provides a means of obtaining transcriptomic sequences in a timely manner, which is particularly useful for non-model plants. In this study, we performed transcriptome sequencing of Oxytropis ochrocephala plants followed by a de nove assembly. Our primary aim was to provide an enriched pool of genetic sequences of an Oxytropis sp. for further locoweed research. RESULTS Transcriptomes of four different O. ochrocephala samples, from control (CK) plants, and those that had experienced either drought (20% PEG), salt (150 mM NaCl) or cold (4°C) stress were sequenced using an Illumina Hiseq 2000 platform. From 232,209,506 clean reads 23,220,950,600 (~23 G nucleotides), 182,430 transcripts and 88,942 unigenes were retrieved, with an N50 value of 1237. Differential expression analysis revealed putative genes encoding heat shock proteins (HSPs) and late embryogenesis abundant (LEA) proteins, enzymes in secondary metabolite and plant hormone biosyntheses, and transcription factors which are involved in stress tolerance in O. ochrocephala. In order to validate our sequencing results, we further analyzed the expression profiles of nine genes by quantitative real-time PCR. Finally, we discuss the possible mechanism of O. ochrocephala's adaptations to stress environment. CONCLUSION Our transcriptome sequencing data present useful genetic information of a locoweed species. This genetic information will underpin further research in elucidating the environmental acclimation mechanism in locoweeds and the endophyte-plant association.
Collapse
Affiliation(s)
- Wei He
- Department of Biology, Northwest UniversityXian, China
| | - Huihui Zhuang
- Department of Biology, Northwest UniversityXian, China
| | - Yanping Fu
- Department of Biology, Northwest UniversityXian, China
| | - Linwei Guo
- Department of Biology, Northwest UniversityXian, China
| | - Bin Guo
- Department of Biology, Northwest UniversityXian, China
| | - Lizhu Guo
- Department of Biology, Northwest UniversityXian, China
| | - Xiuhong Zhang
- Grassland Station, Agriculture and Animal Husbandry BureauZhongwei, China
| | - Yahui Wei
- Department of Biology, Northwest UniversityXian, China
| |
Collapse
|
10
|
Avelange-Macherel MH, Payet N, Lalanne D, Neveu M, Tolleter D, Burstin J, Macherel D. Variability within a pea core collection of LEAM and HSP22, two mitochondrial seed proteins involved in stress tolerance. PLANT, CELL & ENVIRONMENT 2015; 38:1299-311. [PMID: 25367071 DOI: 10.1111/pce.12480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 05/10/2023]
Abstract
LEAM, a late embryogenesis abundant protein, and HSP22, a small heat shock protein, were shown to accumulate in the mitochondria during pea (Pisum sativum L.) seed development, where they are expected to contribute to desiccation tolerance. Here, their expression was examined in seeds of 89 pea genotypes by Western blot analysis. All genotypes expressed LEAM and HSP22 in similar amounts. In contrast with HSP22, LEAM displayed different isoforms according to apparent molecular mass. Each of the 89 genotypes harboured a single LEAM isoform. Genomic and RT-PCR analysis revealed four LEAM genes differing by a small variable indel in the coding region. These variations were consistent with the apparent molecular mass of each isoform. Indels, which occurred in repeated domains, did not alter the main properties of LEAM. Structural modelling indicated that the class A α-helix structure, which allows interactions with the mitochondrial inner membrane in the dry state, was preserved in all isoforms, suggesting functionality is maintained. The overall results point out the essential character of LEAM and HSP22 in pea seeds. LEAM variability is discussed in terms of pea breeding history as well as LEA gene evolution mechanisms.
Collapse
Affiliation(s)
| | - Nicole Payet
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences, Angers, F-49045, France
| | - David Lalanne
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences, Angers, F-49045, France
| | - Martine Neveu
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences, Angers, F-49045, France
| | - Dimitri Tolleter
- ANU College of Medicine, Biology and Environment, Acton, 2601, Australia
| | - Judith Burstin
- GEAPSI, INRA, UMR 1347 Agroécologie, centre de Dijon, F-21065, France
| | - David Macherel
- Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et Semences, Angers, F-49045, France
| |
Collapse
|
11
|
Rocher S, Jean M, Castonguay Y, Belzile F. Validation of Genotyping-By-Sequencing Analysis in Populations of Tetraploid Alfalfa by 454 Sequencing. PLoS One 2015; 10:e0131918. [PMID: 26115486 PMCID: PMC4482585 DOI: 10.1371/journal.pone.0131918] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/08/2015] [Indexed: 02/04/2023] Open
Abstract
Genotyping-by-sequencing (GBS) is a relatively low-cost high throughput genotyping technology based on next generation sequencing and is applicable to orphan species with no reference genome. A combination of genome complexity reduction and multiplexing with DNA barcoding provides a simple and affordable way to resolve allelic variation between plant samples or populations. GBS was performed on ApeKI libraries using DNA from 48 genotypes each of two heterogeneous populations of tetraploid alfalfa (Medicago sativa spp. sativa): the synthetic cultivar Apica (ATF0) and a derived population (ATF5) obtained after five cycles of recurrent selection for superior tolerance to freezing (TF). Nearly 400 million reads were obtained from two lanes of an Illumina HiSeq 2000 sequencer and analyzed with the Universal Network-Enabled Analysis Kit (UNEAK) pipeline designed for species with no reference genome. Following the application of whole dataset-level filters, 11,694 single nucleotide polymorphism (SNP) loci were obtained. About 60% had a significant match on the Medicago truncatula syntenic genome. The accuracy of allelic ratios and genotype calls based on GBS data was directly assessed using 454 sequencing on a subset of SNP loci scored in eight plant samples. Sequencing depth in this study was not sufficient for accurate tetraploid allelic dosage, but reliable genotype calls based on diploid allelic dosage were obtained when using additional quality filtering. Principal Component Analysis of SNP loci in plant samples revealed that a small proportion (<5%) of the genetic variability assessed by GBS is able to differentiate ATF0 and ATF5. Our results confirm that analysis of GBS data using UNEAK is a reliable approach for genome-wide discovery of SNP loci in outcrossed polyploids.
Collapse
Affiliation(s)
- Solen Rocher
- Centre de Recherche et de Développement sur les Sols et les Grandes Cultures, Agriculture et agroalimentaire Canada, Quebec City (QC), Canada
| | - Martine Jean
- Département de Phytologie and Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City (QC), Canada
| | - Yves Castonguay
- Centre de Recherche et de Développement sur les Sols et les Grandes Cultures, Agriculture et agroalimentaire Canada, Quebec City (QC), Canada
- * E-mail:
| | - François Belzile
- Département de Phytologie and Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City (QC), Canada
| |
Collapse
|
12
|
Vaseva II, Anders I, Yuperlieva-Mateeva B, Nenkova R, Kostadinova A, Feller U. Dehydrin expression as a potential diagnostic tool for cold stress in white clover. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 78:43-8. [PMID: 24632490 DOI: 10.1016/j.plaphy.2014.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/18/2014] [Indexed: 05/10/2023]
Abstract
Cold acclimation is important for crop survival in environments undergoing seasonal low temperatures. It involves the induction of defensive mechanisms including the accumulation of different cryoprotective molecules among which are dehydrins (DHN). Recently several sequences coding for dehydrins were identified in white clover (Trifolium repens). This work aimed to select the most responsive to cold stress DHN analogues in search for cold stress diagnostic markers. The assessment of dehydrin transcript accumulation via RT-PCR and immunodetection performed with three antibodies against the conserved K-, Y-, and S-segment allowed to outline different dehydrin types presented in the tested samples. Both analyses confirmed that YnKn dehydrins were underrepresented in the controls but exposure to low temperature specifically induced their accumulation. Strong immunosignals corresponding to 37-40 kDa with antibodies against Y- and K-segment were revealed in cold-stressed leaves. Another 'cold-specific' band at position 52-55 kDa was documented on membranes probed with antibodies against K-segment. Real time RT-qPCR confirmed that low temperatures induced the accumulation of SKn and YnSKn transcripts in leaves and reduced their expression in roots. Results suggest that a YnKn dehydrin transcript with GenBank ID: KC247805 and the immunosignal at 37-40 kDa, obtained with antibodies against Y- and K-segment are reliable markers for cold stress in white clover. The assessment of SKn (GenBank ID: EU846208) and YnSKn (GenBank ID: KC247804) transcript levels in leaves could serve as additional diagnostic tools.
Collapse
Affiliation(s)
- Irina Ivanova Vaseva
- Plant Stress Molecular Biology Department, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland.
| | - Iwona Anders
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Bistra Yuperlieva-Mateeva
- Plant Stress Molecular Biology Department, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Rosa Nenkova
- Plant Stress Molecular Biology Department, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Anelia Kostadinova
- Plant Stress Molecular Biology Department, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Urs Feller
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| |
Collapse
|
13
|
Vaseva II, Anders I, Feller U. Identification and expression of different dehydrin subclasses involved in the drought response of Trifolium repens. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:213-24. [PMID: 24054754 DOI: 10.1016/j.jplph.2013.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 05/08/2023]
Abstract
Reverse transcribed RNAs coding for YnKn, YnSKn, SKn, and KS dehydrin types in drought-stressed white clover (Trifolium repens) were identified and characterized. The nucleotide analyses revealed the complex nature of dehydrin-coding sequences, often featured with alternative start and stop codons within the open reading frames, which could be a prerequisite for high variability among the transcripts originating from a single gene. For some dehydrin sequences, the existence of natural antisense transcripts was predicted. The differential distribution of dehydrin homologues in roots and leaves from a single white clover stolon under normal and drought conditions was evaluated by semi-quantitative RT-PCR and immunoblots with antibodies against the conserved K-, Y- and S-segments. The data suggest that different dehydrin classes have distinct roles in the drought stress response and vegetative development, demonstrating some specific characteristic features. Substantial levels of YSK-type proteins with different molecular weights were immunodetected in the non-stressed developing leaves. The acidic SK2 and KS dehydrin transcripts exhibited some developmental gradient in leaves. A strong increase of YK transcripts was documented in the fully expanded leaves and roots of drought-stressed individuals. The immunodetected drought-induced signals imply that Y- and K-segment containing dehydrins could be the major inducible Late Embryogenesis Abundant class 2 proteins (LEA 2) that accumulate predominantly under drought.
Collapse
Affiliation(s)
- Irina Ivanova Vaseva
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland; Plant Stress Molecular Biology Department, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria.
| | - Iwona Anders
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Urs Feller
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| |
Collapse
|
14
|
Dubé MP, Castonguay Y, Cloutier J, Michaud J, Bertrand A. Characterization of two novel cold-inducible K3 dehydrin genes from alfalfa (Medicago sativa spp. sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013. [PMID: 23188214 DOI: 10.1007/s00122-012-2020-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Dehydrin defines a complex family of intrinsically disordered proteins with potential adaptive value with regard to freeze-induced cell dehydration. Search within an expressed sequence tags library from cDNAs of cold-acclimated crowns of alfalfa (Medicago sativa spp. sativa L.) identified transcripts putatively encoding K(3)-type dehydrins. Analysis of full-length coding sequences unveiled two highly homologous sequence variants, K(3)-A and K(3)-B. An increase in the frequency of genotypes yielding positive genomic amplification of the K(3)-dehydrin variants in response to selection for superior tolerance to freezing and the induction of their expression at low temperature strongly support a link with cold adaptation. The presence of multiple allelic forms within single genotypes and independent segregation indicate that the two K(3) dehydrin variants are encoded by distinct genes located at unlinked loci. The co-inheritance of the K(3)-A dehydrin with a Y(2)K(4) dehydrin restriction fragment length polymorphism with a demonstrated impact on freezing tolerance suggests the presence of a genome domain where these functionally related genes are located. These results provide additional evidence that dehydrin play important roles with regard to tolerance to subfreezing temperatures. They also underscore the value of recurrent selection to help identify variants within a large multigene family in allopolyploid species like alfalfa.
Collapse
Affiliation(s)
- Marie-Pier Dubé
- Crops and Soils Research and Development Center, Agriculture and Agri-Food Canada, 2560 Hochelaga Blvd., Quebec, QC, G1V 2J3, Canada
| | | | | | | | | |
Collapse
|
15
|
Castonguay Y, Dubé MP, Cloutier J, Bertrand A, Michaud R, Laberge S. Molecular physiology and breeding at the crossroads of cold hardiness improvement. PHYSIOLOGIA PLANTARUM 2013; 147:64-74. [PMID: 22452626 DOI: 10.1111/j.1399-3054.2012.01624.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Alfalfa (Medicago sativa L.) is a major forage legume grown extensively worldwide with important agronomic and environmental attributes. Insufficient cold hardiness is a major impediment to its reliable production in northern climates. Improvement of freezing tolerance using conventional breeding approaches is slowed by the quantitative nature of inheritance and strong interactions with the environment. The development of gene-based markers would facilitate the identification of genotypes with superior stress tolerance. Successive cycles of recurrent selection were applied using an indoor screening method to develop populations with significantly higher tolerance to freezing (TF). Bulk segregant analysis of heterogeneous TF populations identified DNA variations that are progressively enriched in frequency in response to selection. Polymorphisms resulting from intragenic variations within a dehydrin gene were identified and could potentially lead to the development of robust selection tools. Our results illustrate the benefits of feedback interactions between germplasm development programs and molecular physiology for a deeper understanding of the molecular and genetic bases of cold hardiness.
Collapse
Affiliation(s)
- Yves Castonguay
- Soils and Crops Research Development Center, Agriculture and Agri-Food Canada, 2560 Hochelaga Boulevard, Sainte-Foy, Québec G1V 2J3, Canada.
| | | | | | | | | | | |
Collapse
|
16
|
Castonguay Y, Dubé MP, Cloutier J, Michaud R, Bertrand A, Laberge S. Intron-length polymorphism identifies a Y2K4 dehydrin variant linked to superior freezing tolerance in alfalfa. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:809-819. [PMID: 22083355 DOI: 10.1007/s00122-011-1735-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 10/14/2011] [Indexed: 05/31/2023]
Abstract
Breeding alfalfa (Medicago sativa L.) with superior freezing tolerance could be accelerated by the identification of molecular markers associated to that trait. Dehydrins are a group of highly hydrophilic proteins that have been related to low temperature tolerance. We previously identified a dehydrin restriction fragment length polymorphism (RFLP) among populations recurrently selected for superior tolerance to freezing (TF). Analysis of crosses between genotypes with (D+) or without (D-) that RFLP revealed a significant impact on freezing tolerance. In this study, we sought to develop a PCR marker for freezing tolerance based on prior evidence of a relationship between size variation in Y(2)K(4) dehydrins and the RFLP. Results confirm the enrichment of Y(2)K(4) sequences of intermediate size (G2 group) in response to recurrent selection and in the D+ progeny. Analysis of genomic sequences revealed significant intron-length polymorphism (ILP) within the G2 group. G2 sequences with a characteristic short intron were more frequently found in D+ genotypes. Amplification using sequence-characterized amplified region (SCAR) primers bordering the intron confirmed an increase in the number of fragments with small introns in the D+ progeny and in the ATF5 population obtained after five cycles of recurrent selection for superior TF within the cultivar Apica (ATF0). Conversely, there was a reduction in the number of fragments with long introns in the D+ progeny and in ATF5 as compared to ATF0. Recurrent selection for superior tolerance to freezing in combination with ILP identified a sequence variant of Y(2)K(4) dehydrins associated to the phenotypic response to selection.
Collapse
Affiliation(s)
- Yves Castonguay
- Crops and Soils Research and Development Center, Agriculture and Agri-Food Canada, 2560 Hochelaga Blvd., Quebec, QC, Canada.
| | | | | | | | | | | |
Collapse
|
17
|
The Y-segment of novel cold dehydrin genes is conserved and codons in the PR-10 genes are under positive selection in Oxytropis (Fabaceae) from contrasting climates. Mol Genet Genomics 2011; 287:123-42. [DOI: 10.1007/s00438-011-0664-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
|