1
|
Tang Y, Li S, Zerpa-Catanho D, Zhang Z, Yang S, Zheng X, Xue S, Kuang X, Liu M, He X, Yi Z, Xiao L. Salt tolerance evaluation and mini-core collection development in Miscanthus sacchariflorus and M. lutarioriparius. FRONTIERS IN PLANT SCIENCE 2024; 15:1364826. [PMID: 38504893 PMCID: PMC10948507 DOI: 10.3389/fpls.2024.1364826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
Marginal lands, such as those with saline soils, have potential as alternative resources for cultivating dedicated biomass crops used in the production of renewable energy and chemicals. Optimum utilization of marginal lands can not only alleviate the competition for arable land use with primary food crops, but also contribute to bioenergy products and soil improvement. Miscanthus sacchariflorus and M. lutarioriparius are prominent perennial plants suitable for sustainable bioenergy production in saline soils. However, their responses to salt stress remain largely unexplored. In this study, we utilized 318 genotypes of M. sacchariflorus and M. lutarioriparius to assess their salt tolerance levels under 150 mM NaCl using 14 traits, and subsequently established a mini-core elite collection for salt tolerance. Our results revealed substantial variation in salt tolerance among the evaluated genotypes. Salt-tolerant genotypes exhibited significantly lower Na+ content, and K+ content was positively correlated with Na+ content. Interestingly, a few genotypes with higher Na+ levels in shoots showed improved shoot growth characteristics. This observation suggests that M. sacchariflorus and M. lutarioriparius adapt to salt stress by regulating ion homeostasis, primarily through enhanced K+ uptake, shoot Na+ exclusion, and Na+ sequestration in shoot vacuoles. To evaluate salt tolerance comprehensively, we developed an assessment value (D value) based on the membership function values of the 14 traits. We identified three highly salt-tolerant, 50 salt-tolerant, 127 moderately salt-tolerant, 117 salt-sensitive, and 21 highly salt-sensitive genotypes at the seedling stage by employing the D value. A mathematical evaluation model for salt tolerance was established for M. sacchariflorus and M. lutarioriparius at the seedling stage. Notably, the mini-core collection containing 64 genotypes developed using the Core Hunter algorithm effectively represented the overall variability of the entire collection. This mini-core collection serves as a valuable gene pool for future in-depth investigations of salt tolerance mechanisms in Miscanthus.
Collapse
Affiliation(s)
- Yanmei Tang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Shicheng Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Dessireé Zerpa-Catanho
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Zhihai Zhang
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Sai Yang
- Orient Science & Technology College of Hunan Agricultural University, Changsha, Hunan, China
| | - Xuying Zheng
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Shuai Xue
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xianyan Kuang
- Department of Biological and Environmental Sciences, Alabama A&M University, Huntsville, AL, United States
| | - Mingxi Liu
- Department of Grassland Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiong He
- Hunan Heyi Crop Science Co., Ltd., Changsha, Hunan, China
| | - Zili Yi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Liang Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
2
|
Phosuwan S, Nounjan N, Theerakulpisut P, Siangliw M, Charoensawan V. Comparative quantitative trait loci analysis framework reveals relationships between salt stress responsive phenotypes and pathways. FRONTIERS IN PLANT SCIENCE 2024; 15:1264909. [PMID: 38463565 PMCID: PMC10920293 DOI: 10.3389/fpls.2024.1264909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Soil salinity is a complex abiotic stress that involves several biological pathways. Hence, focusing on a specific or a few salt-tolerant phenotypes is unlikely to provide comprehensive insights into the intricate and interwinding mechanisms that regulate salt responsiveness. In this study, we develop a heuristic framework for systematically integrating and comprehensively evaluating quantitative trait loci (QTL) analyses from multiple stress-related traits obtained by different studies. Making use of a combined set of 46 salinity-related traits from three independent studies that were based on the same chromosome segment substitution line (CSSL) population of rice (Oryza sativa), we demonstrate how our approach can address technical biases and limitations from different QTL studies and calling methods. This allows us to compile a comprehensive list of trait-specific and multi-trait QTLs, as well as salinity-related candidate genes. In doing so, we discover several novel relationships between traits that demonstrate similar trends of phenotype scores across the CSSLs, as well as the similarities between genomic locations that the traits were mapped to. Finally, we experimentally validate our findings by expression analyses and functional validations of several selected candidate genes from multiple pathways in rice and Arabidopsis orthologous genes, including OsKS7 (ENT-KAURENE SYNTHASE 7), OsNUC1 (NUCLEOLIN 1) and OsFRO1 (FERRIC REDUCTASE OXIDASE 1) to name a few. This work not only introduces a novel approach for conducting comparative analyses of multiple QTLs, but also provides a list of candidate genes and testable hypotheses for salinity-related mechanisms across several biological pathways.
Collapse
Affiliation(s)
- Sunadda Phosuwan
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Noppawan Nounjan
- Biodiversity and Environmental Management Division, International College, Khon Kaen University, Khon Kaen, Thailand
| | - Piyada Theerakulpisut
- Salt-tolerant Rice Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Meechai Siangliw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Thailand
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
3
|
Hussein MAA, Alqahtani MM, Alwutayd KM, Aloufi AS, Osama O, Azab ES, Abdelsattar M, Hassanin AA, Okasha SA. Exploring Salinity Tolerance Mechanisms in Diverse Wheat Genotypes Using Physiological, Anatomical, Agronomic and Gene Expression Analyses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3330. [PMID: 37765494 PMCID: PMC10535590 DOI: 10.3390/plants12183330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Salinity is a widespread abiotic stress that devastatingly impacts wheat growth and restricts its productivity worldwide. The present study is aimed at elucidating biochemical, physiological, anatomical, gene expression analysis, and agronomic responses of three diverse wheat genotypes to different salinity levels. A salinity treatment of 5000 and 7000 ppm gradually reduced photosynthetic pigments, anatomical root and leaf measurements and agronomic traits of all evaluated wheat genotypes (Ismailia line, Misr 1, and Misr 3). In addition, increasing salinity levels substantially decreased all anatomical root and leaf measurements except sclerenchyma tissue upper and lower vascular bundle thickness compared with unstressed plants. However, proline content in stressed plants was stimulated by increasing salinity levels in all evaluated wheat genotypes. Moreover, Na+ ions content and antioxidant enzyme activities in stressed leaves increased the high level of salinity in all genotypes. The evaluated wheat genotypes demonstrated substantial variations in all studied characters. The Ismailia line exhibited the uppermost performance in photosynthetic pigments under both salinity levels. Additionally, the Ismailia line was superior in the activity of superoxide dismutase (SOD), catalase activity (CAT), peroxidase (POX), and polyphenol oxidase (PPO) enzymes followed by Misr 1. Moreover, the Ismailia line recorded the maximum anatomical root and leaf measurements under salinity stress, which enhanced its tolerance to salinity stress. The Ismailia line and Misr 3 presented high up-regulation of H+ATPase, NHX2 HAK, and HKT genes in the root and leaf under both salinity levels. The positive physiological, anatomical, and molecular responses of the Ismailia line under salinity stress were reflected on agronomic performance and exhibited superior values of all evaluated agronomic traits.
Collapse
Affiliation(s)
- Mohammed A. A. Hussein
- Department of Botany (Genetics), Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt;
| | - Mesfer M. Alqahtani
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi 11911, Saudi Arabia;
| | - Khairiah M. Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Abeer S. Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Omnia Osama
- Environmental Stress Lab (ESL), Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza 12619, Egypt;
| | - Enas S. Azab
- Agricultural Botany Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed Abdelsattar
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza 12619, Egypt;
| | - Abdallah A. Hassanin
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Salah A. Okasha
- Department of Agronomy, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
4
|
Shehzad M, Ditta A, Cai X, Ur Rahman S, Xu Y, Wang K, Zhou Z, Fang L. Identification of salt stress-tolerant candidate genes in the BC 2F 2 population at the seedling stages of G. hirsutum and G. darwinii using NGS-based bulked segregant analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1125805. [PMID: 37465381 PMCID: PMC10350501 DOI: 10.3389/fpls.2023.1125805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/02/2023] [Indexed: 07/20/2023]
Abstract
Salinity is a major threat to the yield and productivity of cotton seedlings. In the present study, we developed a BC2F2 population of cotton plants from Gossypium darwinii (5-7) and Gossypium hirsutum (CCRI 12-4) salt-susceptible parents to identify salt-resistant candidate genes. The Illumina HiSeq™ strategy was used with bulked segregant analysis. Salt-resistant and salt-susceptible DNA bulks were pooled by using 30 plants from a BC2F2 population. Next-generation sequencing (NGS) technology was used for the sequencing of parents and both bulks. Four significant genomic regions were identified: the first genomic region was located on chromosome 18 (1.86 Mb), the second and third genomic regions were on chromosome 25 (1.06 Mb and 1.94 Mb, respectively), and the fourth was on chromosome 8 (1.41 Mb). The reads of bulk1 and bulk2 were aligned to the G. darwinii and G. hirsutum genomes, respectively, leading to the identification of 20,664,007 single-nucleotide polymorphisms (SNPs) and insertions/deletions (indels). After the screening, 6,573 polymorphic markers were obtained after filtration of the candidate regions. The SNP indices in resistant and susceptible bulks and Δ(SNP-index) values of resistant and susceptible bulks were measured. Based on the higher Δ(SNP-index) value, six effective polymorphic SNPs were selected in a different chromosome. Six effective SNPs were linked to five candidate genes in four genomic regions. Further validation of these five candidate genes was carried out using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), resulting in an expression profile that showed two highly upregulated genes in the salt-tolerant species G. darwinii, i.e., Gohir.D05G367800 and Gohir.D12G239100; however, the opposite was shown in G. hirsutum, for which all genes, except one, showed partial expression. The results indicated that Gohir.D05G367800 and Gohir.D12G239100 may be salt-tolerant genes. We are confident that this study could be helpful for the cloning, transformation, and development of salt-resistant cotton varieties.
Collapse
Affiliation(s)
- Muhammad Shehzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Allah Ditta
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Plant Breeding and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Punjab, Pakistan
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
| | - Shafeeq Ur Rahman
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Liu Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Du L, Ma Z, Mao H. Duplicate Genes Contribute to Variability in Abiotic Stress Resistance in Allopolyploid Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:2465. [PMID: 37447026 DOI: 10.3390/plants12132465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 07/15/2023]
Abstract
Gene duplication is a universal biological phenomenon that drives genomic variation and diversity, plays a crucial role in plant evolution, and contributes to innovations in genetic engineering and crop development. Duplicated genes participate in the emergence of novel functionality, such as adaptability to new or more severe abiotic stress resistance. Future crop research will benefit from advanced, mechanistic understanding of the effects of gene duplication, especially in the development and deployment of high-performance, stress-resistant, elite wheat lines. In this review, we summarize the current knowledge of gene duplication in wheat, including the principle of gene duplication and its effects on gene function, the diversity of duplicated genes, and how they have functionally diverged. Then, we discuss how duplicated genes contribute to abiotic stress response and the mechanisms of duplication. Finally, we have a future prospects section that discusses the direction of future efforts in the short term regarding the elucidation of replication and retention mechanisms of repetitive genes related to abiotic stress response in wheat, excellent gene function research, and practical applications.
Collapse
Affiliation(s)
- Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Zhenbing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
6
|
Pasam RK, Kant S, Thoday-Kennedy E, Dimech A, Joshi S, Keeble-Gagnere G, Forrest K, Tibbits J, Hayden M. Haplotype-Based Genome-Wide Association Analysis Using Exome Capture Assay and Digital Phenotyping Identifies Genetic Loci Underlying Salt Tolerance Mechanisms in Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:2367. [PMID: 37375992 DOI: 10.3390/plants12122367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Soil salinity can impose substantial stress on plant growth and cause significant yield losses. Crop varieties tolerant to salinity stress are needed to sustain yields in saline soils. This requires effective genotyping and phenotyping of germplasm pools to identify novel genes and QTL conferring salt tolerance that can be utilised in crop breeding schemes. We investigated a globally diverse collection of 580 wheat accessions for their growth response to salinity using automated digital phenotyping performed under controlled environmental conditions. The results show that digitally collected plant traits, including digital shoot growth rate and digital senescence rate, can be used as proxy traits for selecting salinity-tolerant accessions. A haplotype-based genome-wide association study was conducted using 58,502 linkage disequilibrium-based haplotype blocks derived from 883,300 genome-wide SNPs and identified 95 QTL for salinity tolerance component traits, of which 54 were novel and 41 overlapped with previously reported QTL. Gene ontology analysis identified a suite of candidate genes for salinity tolerance, some of which are already known to play a role in stress tolerance in other plant species. This study identified wheat accessions that utilise different tolerance mechanisms and which can be used in future studies to investigate the genetic and genic basis of salinity tolerance. Our results suggest salinity tolerance has not arisen from or been bred into accessions from specific regions or groups. Rather, they suggest salinity tolerance is widespread, with small-effect genetic variants contributing to different levels of tolerance in diverse, locally adapted germplasm.
Collapse
Affiliation(s)
- Raj K Pasam
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Surya Kant
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC 3400, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | | | - Adam Dimech
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Sameer Joshi
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC 3400, Australia
| | | | - Kerrie Forrest
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Josquin Tibbits
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Matthew Hayden
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| |
Collapse
|
7
|
Guo X, Wu C, Wang D, Wang G, Jin K, Zhao Y, Tian J, Deng Z. Conditional QTL mapping for seed germination and seedling traits under salt stress and candidate gene prediction in wheat. Sci Rep 2022; 12:21010. [PMID: 36471100 PMCID: PMC9722660 DOI: 10.1038/s41598-022-25703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Breeding new wheat varieties with salt resistance is one of the best ways to solve a constraint on the sustainability and expansion of wheat cultivation. Therefore, understanding the molecular components or genes related to salt tolerance must contribute to the cultivation of salt-tolerant varieties. The present study used a recombinant inbred line (RIL) population to genetically dissect the effects of different salt stress concentrations on wheat seed germination and seedling traits using two quantitative trait locus (QTL) mapping methods. A total of 31 unconditional and 11 conditional QTLs for salt tolerance were identified on 11 chromosomes explaining phenotypic variation (PVE) ranging from 2.01 to 65.76%. Of these, 15 major QTLs were found accounting for more than 10% PVE. QTL clusters were detected on chromosomes 2A and 3B in the marker intervals 'wPt-8328 and wPt-2087' and 'wPt-666008 and wPt-3620', respectively, involving more than one salt tolerance trait. QRdw3B and QSfw3B.2 were most consistent in two or more salt stress treatments. 16 candidate genes associated with salt tolerance were predicted in wheat. These results could be useful to improve salt tolerance by marker-assisted selection (MAS) and shed new light on understanding the genetic basis of salt tolerance in wheat.
Collapse
Affiliation(s)
- Xin Guo
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Group of Wheat Quality Breeding, Agronomy College, Shandong Agricultural University, Tai’an, Shandong People’s Republic of China ,Taiyuan Agro-Tech Extension and Service Center, 030000 Taiyuan, Shanxi People’s Republic of China
| | - Chongning Wu
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Group of Wheat Quality Breeding, Agronomy College, Shandong Agricultural University, Tai’an, Shandong People’s Republic of China
| | - Dehua Wang
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Group of Wheat Quality Breeding, Agronomy College, Shandong Agricultural University, Tai’an, Shandong People’s Republic of China
| | - Guanying Wang
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Group of Wheat Quality Breeding, Agronomy College, Shandong Agricultural University, Tai’an, Shandong People’s Republic of China
| | - Kaituo Jin
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Group of Wheat Quality Breeding, Agronomy College, Shandong Agricultural University, Tai’an, Shandong People’s Republic of China
| | - Yingjie Zhao
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Group of Wheat Quality Breeding, Agronomy College, Shandong Agricultural University, Tai’an, Shandong People’s Republic of China
| | - Jichun Tian
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Group of Wheat Quality Breeding, Agronomy College, Shandong Agricultural University, Tai’an, Shandong People’s Republic of China
| | - Zhiying Deng
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Group of Wheat Quality Breeding, Agronomy College, Shandong Agricultural University, Tai’an, Shandong People’s Republic of China
| |
Collapse
|
8
|
Said AA, Moursi YS, Sallam A. Association mapping and candidate genes for physiological non-destructive traits: Chlorophyll content, canopy temperature, and specific leaf area under normal and saline conditions in wheat. Front Genet 2022; 13:980319. [PMID: 36246654 PMCID: PMC9561097 DOI: 10.3389/fgene.2022.980319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Wheat plants experience substantial physiological adaptation when exposed to salt stress. Identifying such physiological mechanisms and their genetic control is especially important to improve its salt tolerance. In this study, leaf chlorophyll content (CC), leaf canopy temperature (CT), and specific leaf area (SLA) were scored in a set of 153 (103 having the best genotypic data were used for GWAS analysis) highly diverse wheat genotypes under control and salt stress. On average, CC and SLA decreased under salt stress, while the CT average was higher under salt stress compared to the control. CT was negatively and significantly correlated with CC under both conditions, while no correlation was found between SLA and CC and CT together. High genetic variation and broad-sense-heritability estimates were found among genotypes for all traits. The genome wide association study revealed important QTLs for CC under both conditions (10) and SLA under salt stress (four). These QTLs were located on chromosomes 1B, 2B, 2D, 3A, 3B, 5A, 5B, and 7B. All QTLs detected in this study had major effects with R2 extending from 20.20% to 30.90%. The analysis of gene annotation revealed three important candidate genes (TraesCS5A02G355900, TraesCS1B02G479100, and TraesCS2D02G509500). These genes are found to be involved in the response to salt stress in wheat with high expression levels under salt stress compared to control based on mining in data bases.
Collapse
Affiliation(s)
- Alaa A. Said
- Department of Agronomy, Faculty of Agriculture, Sohag University, Egypt
| | - Yasser S. Moursi
- Department of Botany, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Ahmed Sallam
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Germany
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, Egypt
- *Correspondence: Ahmed Sallam, ,
| |
Collapse
|
9
|
Khan RWA, Khan RSA, Awan FS, Akrem A, Iftikhar A, Anwar FN, Alzahrani HAS, Alsamadany H, Iqbal RK. Genome-wide association studies of seedling quantitative trait loci against salt tolerance in wheat. Front Genet 2022; 13:946869. [PMID: 36159962 PMCID: PMC9492296 DOI: 10.3389/fgene.2022.946869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Salinity is one of the significant factors in decreasing wheat yield and quality. To counter this, it is necessary to develop salt-tolerant wheat varieties through conventional and advanced molecular techniques. The current study identified quantitative trait loci in response to salt stress among worldwide landraces and improved varieties of wheat at the seedling stage. A total of 125 landraces and wheat varieties were subjected to salt treatment (50, 100, and 150 mM) with control. Morphological seedling traits, i.e., shoot length, root length, and fresh and dry shoot and root weights for salinity tolerance were observed to assess salt tolerance and genetic analysis using SNP data through DArT-seq. The results showed that, at the seedling stage, 150 mM NaCl treatment decreased shoot length, root length, and fresh and dry weights of the shoot and root. The root length and dry root weight were the most affected traits at the seedling stage. Effective 4417 SNPs encompassing all the chromosomes of the wheat genome with marker density, i.e., 37%, fall in genome B, genome D (32%), and genome A (31%). Five loci were found on four chromosomes 6B, 6D, 7A, and 7D, showing strong associations with the root length, fresh shoot weight, fresh root weight, and dry root weight at the p < 0.03 significance level. The positive correlation was found among all morphological traits under study.
Collapse
Affiliation(s)
- Rao Waqar Ahmad Khan
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Rao Sohail Ahmad Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Faisal Saeed Awan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
- *Correspondence: Faisal Saeed Awan, , ; Rana Khalid Iqbal,
| | - Ahmed Akrem
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Arslan Iftikhar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | | | - Hind A. S. Alzahrani
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hameed Alsamadany
- Department of Biological Sciences, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Rana Khalid Iqbal
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
- *Correspondence: Faisal Saeed Awan, , ; Rana Khalid Iqbal,
| |
Collapse
|
10
|
Shan D, Ali M, Shahid M, Arif A, Waheed MQ, Xia X, Trethowan R, Tester M, Poland J, Ogbonnaya FC, Rasheed A, He Z, Li H. Genetic networks underlying salinity tolerance in wheat uncovered with genome-wide analyses and selective sweeps. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2925-2941. [PMID: 35915266 DOI: 10.1007/s00122-022-04153-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
A genetic framework underpinning salinity tolerance at reproductive stage was revealed by genome-wide SNP markers and major adaptability genes in synthetic-derived wheats, and trait-associated loci were used to predict phenotypes. Using wild relatives of crops to identify genes related to improved productivity and resilience to climate extremes is a prioritized area of crop genetic improvement. High salinity is a widespread crop production constraint, and development of salt-tolerant cultivars is a sustainable solution. We evaluated a panel of 294 wheat accessions comprising synthetic-derived wheat lines (SYN-DERs) and modern bread wheat advanced lines under control and high salinity conditions at two locations. The GWAS analysis revealed a quantitative genetic framework of more than 200 loci with minor effect underlying salinity tolerance at reproductive stage. The significant trait-associated SNPs were used to predict phenotypes using a GBLUP model, and the prediction accuracy (r2) ranged between 0.57 and 0.74. The r2 values for flag leaf weight, days to flowering, biomass, and number of spikes per plant were all above 0.70, validating the phenotypic effects of the loci discovered in this study. Furthermore, the germplasm sets were compared to identify selection sweeps associated with salt tolerance loci in SYN-DERs. Six loci associated with salinity tolerance were found to be differentially selected in the SYN-DERs (12.4 Mb on chromosome (chr)1B, 7.1 Mb on chr2A, 11.2 Mb on chr2D, 200 Mb on chr3D, 600 Mb on chr6B, and 700.9 Mb on chr7B). A total of 228 reported markers and genes, including 17 well-characterized genes, were uncovered using GWAS and EigenGWAS. A linkage disequilibrium (LD) block on chr5A, including the Vrn-A1 gene at 575 Mb and its homeologs on chr5D, were strongly associated with multiple yield-related traits and flowering time under salinity stress conditions. The diversity panel was screened with more than 68 kompetitive allele-specific PCR (KASP) markers of functional genes in wheat, and the pleiotropic effects of superior alleles of Rht-1, TaGASR-A1, and TaCwi-A1 were revealed under salinity stress. To effectively utilize the extensive genetic information obtained from the GWAS analysis, a genetic interaction network was constructed to reveal correlations among the investigated traits. The genetic network data combined with GWAS, selective sweeps, and the functional gene survey provided a quantitative genetic framework for identifying differentially retained loci associated with salinity tolerance in wheat.
Collapse
Affiliation(s)
- Danting Shan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), CIMMYT-China Office, 12 Zhongguancun South Street, Beijing, 100081, China
- Nanfan Research Institute, CAAS, Sanya, 572024, Hainan, China
| | - Mohsin Ali
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), CIMMYT-China Office, 12 Zhongguancun South Street, Beijing, 100081, China
- Nanfan Research Institute, CAAS, Sanya, 572024, Hainan, China
| | - Mohammed Shahid
- International Center for Biosaline Agriculture (ICBA), Al Ruwayyah 2, Academic City, Dubai, UAE
| | - Anjuman Arif
- National Institute of Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | | | - Xianchun Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), CIMMYT-China Office, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Richard Trethowan
- Plant Breeding Institute, School of Life and Environmental Sciences, The University of Sydney, Sydney, 2006, Australia
| | - Mark Tester
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KASUT), Thuwal, 23955-6900, Saudi Arabia
| | - Jesse Poland
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KASUT), Thuwal, 23955-6900, Saudi Arabia
- Kansas State University, Manhattan, KS, USA
| | | | - Awais Rasheed
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), CIMMYT-China Office, 12 Zhongguancun South Street, Beijing, 100081, China.
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), CIMMYT-China Office, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), CIMMYT-China Office, 12 Zhongguancun South Street, Beijing, 100081, China.
- Nanfan Research Institute, CAAS, Sanya, 572024, Hainan, China.
| |
Collapse
|
11
|
Hussain B, Akpınar BA, Alaux M, Algharib AM, Sehgal D, Ali Z, Aradottir GI, Batley J, Bellec A, Bentley AR, Cagirici HB, Cattivelli L, Choulet F, Cockram J, Desiderio F, Devaux P, Dogramaci M, Dorado G, Dreisigacker S, Edwards D, El-Hassouni K, Eversole K, Fahima T, Figueroa M, Gálvez S, Gill KS, Govta L, Gul A, Hensel G, Hernandez P, Crespo-Herrera LA, Ibrahim A, Kilian B, Korzun V, Krugman T, Li Y, Liu S, Mahmoud AF, Morgounov A, Muslu T, Naseer F, Ordon F, Paux E, Perovic D, Reddy GVP, Reif JC, Reynolds M, Roychowdhury R, Rudd J, Sen TZ, Sukumaran S, Ozdemir BS, Tiwari VK, Ullah N, Unver T, Yazar S, Appels R, Budak H. Capturing Wheat Phenotypes at the Genome Level. FRONTIERS IN PLANT SCIENCE 2022; 13:851079. [PMID: 35860541 PMCID: PMC9289626 DOI: 10.3389/fpls.2022.851079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Recent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world's most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public-private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence.
Collapse
Affiliation(s)
- Babar Hussain
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | | | - Michael Alaux
- Université Paris-Saclay, INRAE, URGI, Versailles, France
| | - Ahmed M. Algharib
- Department of Environment and Bio-Agriculture, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Gudbjorg I. Aradottir
- Department of Pathology, The National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Arnaud Bellec
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Alison R. Bentley
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Halise B. Cagirici
- Crop Improvement and Genetics Research, USDA, Agricultural Research Service, Albany, CA, United States
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Fred Choulet
- French National Research Institute for Agriculture, Food and the Environment, INRAE, GDEC, Clermont-Ferrand, France
| | - James Cockram
- The John Bingham Laboratory, The National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Francesca Desiderio
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Pierre Devaux
- Research & Innovation, Florimond Desprez Group, Cappelle-en-Pévèle, France
| | - Munevver Dogramaci
- USDA, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Gabriel Dorado
- Department of Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Córdoba, Spain
| | | | - David Edwards
- University of Western Australia, Perth, WA, Australia
| | - Khaoula El-Hassouni
- State Plant Breeding Institute, The University of Hohenheim, Stuttgart, Germany
| | - Kellye Eversole
- International Wheat Genome Sequencing Consortium (IWGSC), Bethesda, MD, United States
| | - Tzion Fahima
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT, Australia
| | - Sergio Gálvez
- Department of Languages and Computer Science, ETSI Informática, Campus de Teatinos, Universidad de Málaga, Andalucía Tech, Málaga, Spain
| | - Kulvinder S. Gill
- Department of Crop Science, Washington State University, Pullman, WA, United States
| | - Liubov Govta
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Goetz Hensel
- Center of Plant Genome Engineering, Heinrich-Heine-Universität, Düsseldorf, Germany
- Division of Molecular Biology, Centre of Region Haná for Biotechnological and Agriculture Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
| | - Pilar Hernandez
- Institute for Sustainable Agriculture (IAS-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | | | - Amir Ibrahim
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | | | | | - Tamar Krugman
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Yinghui Li
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Shuyu Liu
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | - Amer F. Mahmoud
- Department of Plant Pathology, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Alexey Morgounov
- Food and Agriculture Organization of the United Nations, Riyadh, Saudi Arabia
| | - Tugdem Muslu
- Molecular Biology, Genetics and Bioengineering, Sabanci University, Istanbul, Turkey
| | - Faiza Naseer
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, Quedlinburg, Germany
| | - Etienne Paux
- French National Research Institute for Agriculture, Food and the Environment, INRAE, GDEC, Clermont-Ferrand, France
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, Quedlinburg, Germany
| | - Gadi V. P. Reddy
- USDA-Agricultural Research Service, Southern Insect Management Research Unit, Stoneville, MS, United States
| | - Jochen Christoph Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Rajib Roychowdhury
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Jackie Rudd
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | - Taner Z. Sen
- Crop Improvement and Genetics Research, USDA, Agricultural Research Service, Albany, CA, United States
| | | | | | | | - Naimat Ullah
- Institute of Biological Sciences (IBS), Gomal University, D. I. Khan, Pakistan
| | - Turgay Unver
- Ficus Biotechnology, Ostim Teknopark, Ankara, Turkey
| | - Selami Yazar
- General Directorate of Research, Ministry of Agriculture, Ankara, Turkey
| | | | - Hikmet Budak
- Montana BioAgriculture, Inc., Missoula, MT, United States
| |
Collapse
|
12
|
Valenzuela FJ, Reineke D, Leventini D, Chen CCL, Barrett-Lennard EG, Colmer TD, Dodd IC, Shabala S, Brown P, Bazihizina N. Plant responses to heterogeneous salinity: agronomic relevance and research priorities. ANNALS OF BOTANY 2022; 129:499-518. [PMID: 35171228 PMCID: PMC9007098 DOI: 10.1093/aob/mcac022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/14/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND Soil salinity, in both natural and managed environments, is highly heterogeneous, and understanding how plants respond to this spatiotemporal heterogeneity is increasingly important for sustainable agriculture in the era of global climate change. While the vast majority of research on crop response to salinity utilizes homogeneous saline conditions, a much smaller, but important, effort has been made in the past decade to understand plant molecular and physiological responses to heterogeneous salinity mainly by using split-root studies. These studies have begun to unravel how plants compensate for water/nutrient deprivation and limit salt stress by optimizing root-foraging in the most favourable parts of the soil. SCOPE This paper provides an overview of the patterns of salinity heterogeneity in rain-fed and irrigated systems. We then discuss results from split-root studies and the recent progress in understanding the physiological and molecular mechanisms regulating plant responses to heterogeneous root-zone salinity and nutrient conditions. We focus on mechanisms by which plants (salt/nutrient sensing, root-shoot signalling and water uptake) could optimize the use of less-saline patches within the root-zone, thereby enhancing growth under heterogeneous soil salinity conditions. Finally, we place these findings in the context of defining future research priorities, possible irrigation management and crop breeding opportunities to improve productivity from salt-affected lands.
Collapse
Affiliation(s)
| | - Daniela Reineke
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Dante Leventini
- Department of Plant Sciences, University of California, Davis, CA, USA
| | | | - Edward G Barrett-Lennard
- Land Management Group, Agriculture Discipline, College of Science, Health, Engineering and Education, Murdoch University, WA, Australia
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Timothy D Colmer
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
- Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Patrick Brown
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Nadia Bazihizina
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| |
Collapse
|
13
|
Hasseb NM, Sallam A, Karam MA, Gao L, Wang RRC, Moursi YS. High-LD SNP markers exhibiting pleiotropic effects on salt tolerance at germination and seedlings stages in spring wheat. PLANT MOLECULAR BIOLOGY 2022; 108:585-603. [PMID: 35217965 PMCID: PMC8967789 DOI: 10.1007/s11103-022-01248-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/25/2022] [Indexed: 06/01/2023]
Abstract
Salt tolerance at germination and seedling growth stages was investigated. GWAS revealed nine genomic regions with pleiotropic effects on salt tolerance. Salt tolerant genotypes were identified for future breeding program. With 20% of the irrigated land worldwide affected by it, salinity is a serious threat to plant development and crop production. While wheat is the most stable food source worldwide, it has been classified as moderately tolerant to salinity. In several crop plants; such as barley, maize and rice, it has been shown that salinity tolerance at seed germination and seedling establishment is under polygenic control. As yield was the ultimate goal of breeders and geneticists, less attention has been paid to understanding the genetic architecture of salt tolerance at early stages. Thus, the genetic control of salt tolerance at these stages is poorly understood relative to the late stages. In the current study, 176 genotypes of spring wheat were tested for salinity tolerance at seed germination and seedling establishment. Genome-Wide Association Study (GWAS) has been used to identify the genomic regions/genes conferring salt tolerance at seed germination and seedling establishment. Salinity stress negatively impacted all germination and seedling development parameters. A set of 137 SNPs showed significant association with the traits of interest. Across the whole genome, 33 regions showed high linkage disequilibrium (LD). These high LD regions harbored 15 SNPs with pleiotropic effect (i.e. SNPs that control more than one trait). Nine genes belonging to different functional groups were found to be associated with the pleiotropic SNPs. Noteworthy, chromosome 2B harbored the gene TraesCS2B02G135900 that acts as a potassium transporter. Remarkably, one SNP marker, reported in an early study, associated with salt tolerance was validated in this study. Our findings represent potential targets of genetic manipulation to understand and improve salinity tolerance in wheat.
Collapse
Affiliation(s)
- Nouran M Hasseb
- Department of Botany, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt.
| | - Mohamed A Karam
- Department of Botany, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Liangliang Gao
- Department of Plant Pathology and Wheat Genetics Resource Center, Kansas State Univ, Manhattan, KS, 66502, USA
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Buxin Road 97, Dapeng-District, Shenzhen, 518120, Guangdong, China
| | - Richard R C Wang
- USDA-ARS Forage and Range Research Lab, Utah State University, Logan, UT, 84322-6300, USA
| | - Yasser S Moursi
- Department of Botany, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
14
|
Quamruzzaman M, Manik SMN, Shabala S, Cao F, Zhou M. Genome-wide association study reveals a genomic region on 5AL for salinity tolerance in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:709-721. [PMID: 34797396 DOI: 10.1007/s00122-021-03996-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Soil salinity is a major threat to crop productivity and quality worldwide. In order to reduce the negative effects of salinity stress, it is important to understand the genetic basis of salinity tolerance. Identifying new salinity tolerance QTL or genes is crucial for breeders to pyramid different tolerance mechanisms to improve crop adaptability to salinity. Being one of the major cereal crops, wheat is known as a salt-sensitive glycophyte and subject to substantial yield losses when grown in the presence of salt. In this study, both pot and tank experiments were conducted to investigate the genotypic variation present in 328 wheat varieties in their salinity tolerance at the vegetative stage. A Genome-Wide Association Studies (GWAS) were carried out to identify QTL conferring salinity tolerance through a mixed linear model. Six, five and eight significant marker-trait associations (MTAs) were identified from pot experiments, tank experiments and average damage scores, respectively. These markers are located on the wheat chromosomes 1B, 2B, 2D, 3A, 4B, and 5A. These tolerance alleles were additive in their effects and, when combined, increased tolerance to salinity. Candidate genes identified in these QTL regions encoded a diverse class of proteins involved in salinity tolerance in plants. A Na+/H+ exchanger and a potassium transporter on chromosome 5A (IWB30519) will be of a potential value for improvement of salt tolerance of wheat cultivars using marker assisted selection programs. Some useful genotypes, which showed consistent tolerance in different trials, can also be effectively used in breeding programs.
Collapse
Affiliation(s)
- Md Quamruzzaman
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | | | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Chancheng, China
| | - Fangbin Cao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia.
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
15
|
Rawat N, Wungrampha S, Singla-Pareek SL, Yu M, Shabala S, Pareek A. Rewilding staple crops for the lost halophytism: Toward sustainability and profitability of agricultural production systems. MOLECULAR PLANT 2022; 15:45-64. [PMID: 34915209 DOI: 10.1016/j.molp.2021.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Abiotic stress tolerance has been weakened during the domestication of all major staple crops. Soil salinity is a major environmental constraint that impacts over half of the world population; however, given the increasing reliance on irrigation and the lack of available freshwater, agriculture in the 21st century will increasingly become saline. Therefore, global food security is critically dependent on the ability of plant breeders to create high-yielding staple crop varieties that will incorporate salinity tolerance traits and account for future climate scenarios. Previously, we have argued that the current agricultural practices and reliance on crops that exclude salt from uptake is counterproductive and environmentally unsustainable, and thus called for a need for a major shift in a breeding paradigm to incorporate some halophytic traits that were present in wild relatives but were lost in modern crops during domestication. In this review, we provide a comprehensive physiological and molecular analysis of the key traits conferring crop halophytism, such as vacuolar Na+ sequestration, ROS desensitization, succulence, metabolic photosynthetic switch, and salt deposition in trichomes, and discuss the strategies for incorporating them into elite germplasm, to address a pressing issue of boosting plant salinity tolerance.
Collapse
Affiliation(s)
- Nishtha Rawat
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Silas Wungrampha
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; Tasmanian Institute for Agriculture, University of Tasmania, Hobart Tas 7001, Australia.
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; National Agri-Food Biotechnology Institute, Mohali 140306, India.
| |
Collapse
|
16
|
Borjigin C, Schilling RK, Jewell N, Brien C, Sanchez-Ferrero JC, Eckermann PJ, Watson-Haigh NS, Berger B, Pearson AS, Roy SJ. Identifying the genetic control of salinity tolerance in the bread wheat landrace Mocho de Espiga Branca. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1148-1160. [PMID: 34600599 DOI: 10.1071/fp21140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Salinity tolerance in bread wheat is frequently reported to be associated with low leaf sodium (Na+) concentrations. However, the Portuguese landrace, Mocho de Espiga Branca, accumulates significantly higher leaf Na+ but has comparable salinity tolerance to commercial bread wheat cultivars. To determine the genetic loci associated with the salinity tolerance of this landrace, an F2 mapping population was developed by crossing Mocho de Espiga Branca with the Australian cultivar Gladius. The population was phenotyped for 19 salinity tolerance subtraits using both non-destructive and destructive techniques. Genotyping was performed using genotyping-by-sequencing (GBS). Genomic regions associated with salinity tolerance were detected on chromosomes 1A, 1D, 4B and 5A for the subtraits of relative and absolute growth rate (RGR, AGR respectively), and on chromosome 2A, 2B, 4D and 5D for Na+, potassium (K+) and chloride (Cl-) accumulation. Candidate genes that encode proteins associated with salinity tolerance were identified within the loci including Na+/H+ antiporters, K+ channels, H+-ATPase, calcineurin B-like proteins (CBLs), CBL-interacting protein kinases (CIPKs), calcium dependent protein kinases (CDPKs) and calcium-transporting ATPase. This study provides a new insight into the genetic control of salinity tolerance in a Na+ accumulating bread wheat to assist with the future development of salt tolerant cultivars.
Collapse
Affiliation(s)
- Chana Borjigin
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Rhiannon K Schilling
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and Department of Primary Industries and Regions, South Australian Research and Development Institute, Urrbrae, SA 5064, Australia
| | - Nathaniel Jewell
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and Australian Plant Phenomics Facility, The Plant Accelerator, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Chris Brien
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and Australian Plant Phenomics Facility, The Plant Accelerator, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Juan Carlos Sanchez-Ferrero
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Paul J Eckermann
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Nathan S Watson-Haigh
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and South Australian Genomics Centre, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Bettina Berger
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and Australian Plant Phenomics Facility, The Plant Accelerator, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Allison S Pearson
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and ARC Centre of Excellence in Plant Energy Biology, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Stuart J Roy
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
17
|
Wąsek I, Dyda M, Gołębiowska G, Tyrka M, Rapacz M, Szechyńska-Hebda M, Wędzony M. Quantitative trait loci and candidate genes associated with freezing tolerance of winter triticale (× Triticosecale Wittmack). J Appl Genet 2021; 63:15-33. [PMID: 34491554 PMCID: PMC8755666 DOI: 10.1007/s13353-021-00660-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/08/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
Freezing tolerance of triticale is a major trait contributing to its winter hardiness. The identification of genomic regions — quantitative trait loci (QTL) and molecular markers associated with freezing tolerance in winter hexaploid triticale — was the aim of this study. For that purpose, a new genetic linkage map was developed for the population of 92 doubled haploid lines derived from ‘Hewo’ × ‘Magnat’ F1 hybrid. Those lines, together with parents were subjected to freezing tolerance test three times during two winter seasons. Plants were grown and cold-hardened under natural fall/winter conditions and then subjected to freezing in controlled conditions. Freezing tolerance was assessed as the plants recovery (REC), the electrolyte leakage (EL) from leaves and chlorophyll fluorescence parameters (JIP) after freezing. Three consistent QTL for several fluorescence parameters, electrolyte leakage, and the percentage of the survived plants were identified with composite interval mapping (CIM) and single marker analysis (SMA). The first locus Qfr.hm-7A.1 explained 9% of variation of both electrolyte leakage and plants recovery after freezing. Two QTL explaining up to 12% of variation in plants recovery and shared by selected chlorophyll fluorescence parameters were found on 4R and 5R chromosomes. Finally, main locus Qchl.hm-5A.1 was detected for chlorophyll fluorescence parameters that explained up to 19.6% of phenotypic variation. The co-located QTL on chromosomes 7A.1, 4R and 5R, clearly indicated physiological and genetic relationship of the plant survival after freezing with the ability to maintain optimal photochemical activity of the photosystem II and preservation of the cell membranes integrity. The genes located in silico within the identified QTL include those encoding BTR1-like protein, transmembrane helix proteins like potassium channel, and phosphoric ester hydrolase involved in response to osmotic stress as well as proteins involved in the regulation of the gene expression, chloroplast RNA processing, and pyrimidine salvage pathway. Additionally, our results confirm that the JIP test is a valuable tool to evaluate freezing tolerance of triticale under unstable winter environments.
Collapse
Affiliation(s)
- I Wąsek
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland
| | - M Dyda
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland
| | - G Gołębiowska
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland.
| | - M Tyrka
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959, Rzeszow, Poland
| | - M Rapacz
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Kraków, Podłużna 3, 30-239, Krakow, Poland
| | - M Szechyńska-Hebda
- Plant Breeding and Acclimatization Institute, National Research Institute, 05-870, Radzików, Błonie, Poland.,The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - M Wędzony
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland
| |
Collapse
|
18
|
Luo Q, Hu P, Yang G, Li H, Liu L, Wang Z, Li B, Li Z, Zheng Q. Mapping QTL for seedling morphological and physiological traits under normal and salt treatments in a RIL wheat population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2991-3011. [PMID: 34095960 DOI: 10.1007/s00122-021-03872-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
The genetic basis of 27 seedling traits under normal and salt treatments was fully analyzed in a RIL wheat population, and seven QTL intervals were validated in two other genetic populations. Soil salinity seriously constrains wheat (Triticum aestivum L.) production globally by influencing its growth and development. To explore the genetic basis of salt tolerance in wheat, a recombinant inbred line (RIL) population derived from a cross between high-yield wheat cultivar Zhongmai 175 (ZM175) and salt-tolerant cultivar Xiaoyan 60 (XY60) was used to map QTL for seedling traits under normal and salt treatments based on a high-density genetic linkage map. A total of 158 stable additive QTL for 27 morphological and physiological traits were identified and distributed on all wheat chromosomes except 3A and 4D. They explained 2.35-46.43% of the phenotypic variation with a LOD score range of 2.61-40.38. The alleles from XY60 increased corresponding traits for 100 QTL, while the alleles from ZM175 had positive effects for the other 58 QTL. Nearly half of the QTL (78/158) were mapped in nine QTL clusters on chromosomes 2A, 2B, 2D, 4B, 5A, 5B, 5D, and 7D (2), respectively. To prove the reliability and potentiality in molecular marker-assisted selection (MAS), seven QTL intervals were validated in two other genetic populations. Besides additive QTL, 94 pairs of loci were detected with significant epistatic effect and 20 QTL were found to interact with treatment. This study provides a full elucidation of the genetic basis of seedling traits (especially root system-related traits) associated with salt tolerance in wheat, and the developed kompetitive allele-specific PCR markers closely linked to stable QTL would supply strong supports to MAS in salt-tolerant wheat breeding.
Collapse
Affiliation(s)
- Qiaoling Luo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pan Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guotang Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongwei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liqin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zishan Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhensheng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
19
|
Genome-wide association mapping reveals key genomic regions for physiological and yield-related traits under salinity stress in wheat (Triticum aestivum L.). Genomics 2021; 113:3198-3215. [PMID: 34293475 DOI: 10.1016/j.ygeno.2021.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022]
Abstract
A genome-wide association study (GWAS) was conducted using six different multi-locus GWAS models and 35K SNP array to demarcate genomic regions underlying reproductive stage salinity tolerance. Marker-trait association analysis was performed for salt tolerance indices (STI) of 11 morpho-physiological traits, and the actual concentrations of Na+ and K+, and the Na+/K+ ratio in flag leaf. A total of 293 significantly associated quantitative trait nucleotides (QTNs) for 14 morpho-physiological traits were identified. Of these 293 QTNs, 12 major QTNs with R2 ≥ 10.0% were detected in three or more GWAS models. Novel major QTNs were identified for plant height, number of effective tillers, biomass, grain yield, thousand grain weight, Na+ and K+ content, and the Na+/K+ ratio in flag leaf. Moreover, 48 candidate genes were identified from the associated genomic regions. The QTNs identified in this study could potentially be targeted for improving salinity tolerance in wheat.
Collapse
|
20
|
Quan X, Liu J, Zhang N, Xie C, Li H, Xia X, He W, Qin Y. Genome-Wide Association Study Uncover the Genetic Architecture of Salt Tolerance-Related Traits in Common Wheat ( Triticum aestivum L.). Front Genet 2021; 12:663941. [PMID: 34093656 PMCID: PMC8172982 DOI: 10.3389/fgene.2021.663941] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 01/13/2023] Open
Abstract
Soil salinity is a serious threat to wheat yield affecting sustainable agriculture. Although salt tolerance is important for plant establishment at seedling stage, its genetic architecture remains unclear. In the present study, we have evaluated eight salt tolerance-related traits at seedling stage and identified the loci for salt tolerance by genome-wide association study (GWAS). This GWAS panel comprised 317 accessions and was genotyped with the wheat 90 K single-nucleotide polymorphism (SNP) chip. In total, 37 SNPs located at 16 unique loci were identified, and each explained 6.3 to 18.6% of the phenotypic variations. Among these, six loci were overlapped with previously reported genes or quantitative trait loci, whereas the other 10 were novel. Besides, nine loci were detected for two or more traits, indicating that the salt-tolerance genetic architecture is complex. Furthermore, five candidate genes were identified for salt tolerance-related traits, including kinase family protein, E3 ubiquitin-protein ligase-like protein, and transmembrane protein. SNPs identified in this study and the accessions with more favorable alleles could further enhance salt tolerance in wheat breeding. Our results are useful for uncovering the genetic mechanism of salt tolerance in wheat at seeding stage.
Collapse
Affiliation(s)
- Xiaoyan Quan
- Department of Biological Science, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Jindong Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Zhang
- Department of Biological Science, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Chunjuan Xie
- Department of Biological Science, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Hongmei Li
- Department of Biological Science, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenxing He
- Department of Biological Science, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yuxiang Qin
- Department of Biological Science, School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
21
|
Wang Y, Zhao Y, Wang S, Liu J, Wang X, Han Y, Liu F. Up-regulated 2-alkenal reductase expression improves low-nitrogen tolerance in maize by alleviating oxidative stress. PLANT, CELL & ENVIRONMENT 2021; 43:2957-2968. [PMID: 33215716 DOI: 10.1111/pce.13907] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 05/13/2023]
Abstract
In plants, cellular lipid peroxidation is enhanced under low nitrogen (LN) stress; this increases the lipid-derived reactive carbonyl species (RCS) levels. The cellular toxicity of RCS can be reduced by various RCS-scavenging enzymes. However, the roles of these enzymes in alleviating oxidative stress and improving nutrient use efficiency (NUE) under nutrient stress remain unknown. Here, we overexpressed maize endogenous NADPH-dependent 2-alkenal reductase (ZmAER) in maize; it significantly increased the tolerance of transgenic plants (OX-AER) to LN stress. Under LN condition, the biomass, nitrogen accumulation, NUE, and leaf photosynthesis of the OX-AER plants were significantly higher than those of the wild-type (WT) plants. The leaf and root malondialdehyde and H2 O2 levels in the transgenic plants were significantly lower than those in WT. The expression of antioxidant enzyme-related genes ZmCAT3, ZmPOD5 and ZmPOD13 was significantly higher in the transgenic lines than in WT. Under LN stress, the nitrate reductase activity in the OX-AER leaves was significantly increased compared with that in the WT leaves. Furthermore, under LN stress, ZmNRT1.1 and ZmNRT2.5 expression was upregulated in the OX-AER plants compared with that in WT. Overall, up-regulated ZmAER expression could enhance maize's tolerance to LN stress by alleviating oxidative stress and improve NUE.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yanxiang Zhao
- College of Plant Protection, China Agricultural University, Beijing, China
- Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shanshan Wang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Junfeng Liu
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiqing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Yanlai Han
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Fang Liu
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Hu P, Zheng Q, Luo Q, Teng W, Li H, Li B, Li Z. Genome-wide association study of yield and related traits in common wheat under salt-stress conditions. BMC PLANT BIOLOGY 2021; 21:27. [PMID: 33413113 PMCID: PMC7792188 DOI: 10.1186/s12870-020-02799-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/16/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Soil salinization is a major threat to wheat production. It is essential to understand the genetic basis of salt tolerance for breeding and selecting new salt-tolerant cultivars that have the potential to increase wheat yield. RESULT In this study, a panel of 191 wheat accessions was subjected to genome wide association study (GWAS) to identify SNP markers linked with adult-stage characters. The population was genotyped by Wheat660K SNP array and eight phenotype traits were investigated under low and high salinity environments for three consecutive years. A total of 389 SNPs representing 11 QTLs were significantly associated with plant height, spike number, spike length, grain number, thousand kernels weight, yield and biological mass under different salt treatments, with the phenotypic explanation rate (R2) ranging from 9.14 to 50.45%. Of these, repetitive and pleiotropic loci on chromosomes 4A, 5A, 5B and 7A were significantly linked to yield and yield related traits such as thousand kernels weight, spike number, spike length, grain number and so on under low salinity conditions. Spike length-related loci were mainly located on chromosomes 1B, 3B, 5B and 7A under different salt treatments. Two loci on chromosome 4D and 5A were related with plant height in low and high salinity environment, respectively. Three salt-tolerant related loci were confirmed to be important in two bi-parental populations. Distribution of favorable haplotypes indicated that superior haplotypes of pleiotropic loci on group-5 chromosomes were strongly selected and had potential for increasing wheat salt tolerance. A total of 14 KASP markers were developed for nine loci associating with yield and related traits to improve the selection efficiency of wheat salt-tolerance breeding. CONCLUSION Utilizing a Wheat660K SNPs chip, QTLs for yield and its related traits were detected under salt treatment in a natural wheat population. Important salt-tolerant related loci were validated in RIL and DH populations. This study provided reliable molecular markers that could be crucial for marker-assisted selection in wheat salt tolerance breeding programs.
Collapse
Affiliation(s)
- Pan Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Qiaoling Luo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan Teng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongwei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhensheng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
23
|
Luo Q, Zheng Q, Hu P, Liu L, Yang G, Li H, Li B, Li Z. Mapping QTL for agronomic traits under two levels of salt stress in a new constructed RIL wheat population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:171-189. [PMID: 32995899 DOI: 10.1007/s00122-020-03689-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
QTL for 15 agronomic traits under two levels of salt stress in dry salinity field were mapped in a new constructed RIL population utilizing a Wheat55K SNP array. Furthermore, eight QTL were validated in a collected natural population. Soil salinity is one of the major abiotic stresses causing serious impact on crop growth, development and yield. As one of the three most important crops in the world, bread wheat (Triticum aestivum L.) is severely affected by salinity, too. In this study, an F7 recombinant inbred line (RIL) population derived from a cross between high-yield wheat cultivar Zhongmai 175 and salt-tolerant cultivar Xiaoyan 60 was constructed. The adult stage performances of the RIL population and their parent lines under low and high levels of salt stress were evaluated for three consecutive growing seasons. Utilizing a Wheat55K SNP array, a high-density genetic linkage map spinning 3250.71 cM was constructed. QTL mapping showed that 90 stable QTL for 15 traits were detected, and they were distributed on all wheat chromosomes except 4D, 6B and 7D. These QTL individually explained 2.34-32.43% of the phenotypic variation with LOD values ranging from 2.68 to 47.15. It was found that four QTL clusters were located on chromosomes 2D, 3D, 4B and 6A, respectively. Notably, eight QTL from the QTL clusters were validated in a collected natural population. Among them, QPh-4B was deduced to be an allele of Rht-B1. In addition, three kompetitive allele-specific PCR (KASP) markers derived from SNPs were successfully designed for three QTL clusters. This study provides an important base for salt-tolerant QTL (gene) cloning in wheat, and the markers, especially the KASP markers, will be useful for marker-assisted selection in salt-tolerant wheat breeding.
Collapse
Affiliation(s)
- Qiaoling Luo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Pan Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liqin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guotang Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongwei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhensheng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
24
|
Asif MA, Garcia M, Tilbrook J, Brien C, Dowling K, Berger B, Schilling RK, Short L, Trittermann C, Gilliham M, Fleury D, Roy SJ, Pearson AS. Identification of salt tolerance QTL in a wheat RIL mapping population using destructive and non-destructive phenotyping. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:131-140. [PMID: 32835651 DOI: 10.1071/fp20167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Bread wheat (Triticum aestivum L.) is one of the most important food crops, however it is only moderately tolerant to salinity stress. To improve wheat yield under saline conditions, breeding for improved salinity tolerance of wheat is needed. We have identified nine quantitative trail loci (QTL) for different salt tolerance sub-traits in a recombinant inbred line (RIL) population, derived from the bi-parental cross of Excalibur × Kukri. This population was screened for salinity tolerance subtraits using a combination of both destructive and non-destructive phenotyping. Genotyping by sequencing (GBS) was used to construct a high-density genetic linkage map, consisting of 3236 markers, and utilised for mapping QTL. Of the nine mapped QTL, six were detected under salt stress, including QTL for maintenance of shoot growth under salinity (QG(1-5).asl-5A, QG(1-5).asl-7B) sodium accumulation (QNa.asl-2A), chloride accumulation (QCl.asl-2A, QCl.asl-3A) and potassium:sodium ratio (QK:Na.asl-2DS2). Potential candidate genes within these QTL intervals were shortlisted using bioinformatics tools. These findings are expected to facilitate the breeding of new salt tolerant wheat cultivars.
Collapse
Affiliation(s)
- Muhammad A Asif
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Melissa Garcia
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Joanne Tilbrook
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Chris Brien
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and Australian Plant Phenomics Facility, The Plant Accelerator, The University of Adelaide, SA 5064, Australia; and School of Information Technology and Mathematical Sciences, The University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Kate Dowling
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and Australian Plant Phenomics Facility, The Plant Accelerator, The University of Adelaide, SA 5064, Australia
| | - Bettina Berger
- School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and Australian Plant Phenomics Facility, The Plant Accelerator, The University of Adelaide, SA 5064, Australia
| | - Rhiannon K Schilling
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Laura Short
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Christine Trittermann
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Matthew Gilliham
- School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Delphine Fleury
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia; and Innolea, 6 chemin de Panedautes, 31700, Mondonville, France
| | - Stuart J Roy
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia; and Corresponding author.
| | - Allison S Pearson
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
25
|
Bilgrami SS, Ramandi HD, Shariati V, Razavi K, Tavakol E, Fakheri BA, Mahdi Nezhad N, Ghaderian M. Detection of genomic regions associated with tiller number in Iranian bread wheat under different water regimes using genome-wide association study. Sci Rep 2020; 10:14034. [PMID: 32820220 PMCID: PMC7441066 DOI: 10.1038/s41598-020-69442-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 07/09/2020] [Indexed: 11/09/2022] Open
Abstract
Two of the important traits for wheat yield are tiller and fertile tiller number, both of which have been thought to increase cereal yield in favorable and unfavorable environments. A total of 6,349 single nucleotide polymorphism (SNP) markers from the 15 K wheat Infinium array were employed for genome-wide association study (GWAS) of tillering number traits, generating a physical distance of 14,041.6 Mb based on the IWGSC wheat genome sequence. GWAS analysis using Fixed and random model Circulating Probability Unification (FarmCPU) identified a total of 47 significant marker-trait associations (MTAs) for total tiller number (TTN) and fertile tiller number (FTN) in Iranian bread wheat under different water regimes. After applying a 5% false discovery rate (FDR) threshold, a total of 13 and 11 MTAs distributed on 10 chromosomes were found to be significantly associated with TTN and FTN, respectively. Linked single nucleotide polymorphisms for IWB39005 (2A) and IWB44377 (7A) were highly significantly associated (FDR < 0.01) with TTN and FTN traits. Moreover, to validate GWAS results, meta-analysis was performed and 30 meta-QTL regions were identified on 11 chromosomes. The integration of GWAS and meta-QTLs revealed that tillering trait in wheat is a complex trait which is conditioned by the combined effects of minor changes in multiple genes. The information provided by this study can enrich the currently available candidate genes and genetic resources pools, offering evidence for subsequent analysis of genetic adaptation of wheat to different climatic conditions of Iran and other countries.
Collapse
Affiliation(s)
- Sayedeh Saba Bilgrami
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.,College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Hadi Darzi Ramandi
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Vahid Shariati
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Khadijeh Razavi
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Elahe Tavakol
- Department of Plant Production and Genetics, Shiraz University, Shiraz, Iran
| | - Barat Ali Fakheri
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Nafiseh Mahdi Nezhad
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Mostafa Ghaderian
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
26
|
Chaurasia S, Singh AK, Songachan LS, Sharma AD, Bhardwaj R, Singh K. Multi-locus genome-wide association studies reveal novel genomic regions associated with vegetative stage salt tolerance in bread wheat (Triticum aestivum L.). Genomics 2020; 112:4608-4621. [PMID: 32771624 DOI: 10.1016/j.ygeno.2020.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
Soil salinity is one of the typical abiotic stresses affecting sustainability of wheat production worldwide. In the present study, we performed a 35 K SNP genotyping assay on association panel of 135 diverse wheat genotypes evaluated for vegetative stage tolerance in hydroponics. Association analyses using five multi-locus GWAS models revealed 42 reliable QTNs for 10 salt tolerance associated traits. Among these 42 reliable QTNs, 9, 17 and 16 QTNs were associated with physiological, biomass and shoot ionic traits respectively. Novel major QTNs were identified for chlorophyll content, shoot fresh weight, seedling total biomass, Na+ and K+ concentration and Na+/K+ ratio in shoots. Further, 10 major QTNs showed significant effect on the corresponding salt tolerance traits. Gene ontology analysis of the associated genomic regions identified 58 candidate genes. The information generated in this study will be of potential value for improvement of salt tolerance of wheat cultivars using marker assisted selection.
Collapse
Affiliation(s)
- Shiksha Chaurasia
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India; Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Amit Kumar Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India.
| | - L S Songachan
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Axma Dutt Sharma
- Division of Germplasm Conservation, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| | - Rakesh Bhardwaj
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| |
Collapse
|
27
|
Yang Y, Wan H, Yang F, Xiao C, Li J, Ye M, Chen C, Deng G, Wang Q, Li A, Mao L, Yang W, Zhou Y. Mapping QTLs for enhancing early biomass derived from Aegilops tauschii in synthetic hexaploid wheat. PLoS One 2020; 15:e0234882. [PMID: 32584908 PMCID: PMC7316292 DOI: 10.1371/journal.pone.0234882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022] Open
Abstract
Strong early vigour plays a crucial role in wheat yield improvement by enhancing resource utilization efficiency. Synthetic hexaploid wheat (SHW) combines the elite genes of tetraploid wheat with Aegilops tauschii and has been widely used in wheat genetic improvement for its abundant genetic variation. The two SHWs Syn79 and Syn80 were derived from the crossing of the same tetraploid wheat DOY1 with two different Ae. tauschii accessions, AT333 and AT428, respectively. The Syn80 possessed better early vigour traits than Syn79, theretically caused by their D genome from Ae. tauschii. To dissect their genetic basis in a hexaploid background, 203 recombinant inbred lines (RILs) derived from the cross of Syn79 x Syn80 were developed to detect quantitative trait loci (QTL) for four early biomass related traits: plant height (PH), tiller number (TN), shoot fresh weight (SFW) and shoot dry weight (SDW) per plant, under five different environmental conditions. Determined from the data of SNP markers, two genome regions on 1DS and 7D were stably associated with the four early biomass related traits showing pleiotropic effects. Four stable QTLs QPh.saas-1DS, QTn.saas-1DS, QSfw.saas-1DS and QSdw.saas-1DS explaining 7.92, 15.34, 9.64 and 10.15% of the phenotypic variation, respectively, were clustered in the region of 1DS from AX-94812958 to AX-110910133. Meanwhile, QPh.saas-7D, QTn.saas-7D, QSfw.saas-7D and QSdw.saas-7D were flanked by AX-109917900 and AX-110605376 on 7D, explaining 16.12, 24.35, 15.25 and 13.37% of the phenotypic variation on average, respectively. Moreover, these genomic QTLs on 1DS and 7D enhancing biomass in the parent Syn80 were from Ae. tauschii AT428. These findings suggest that these two QTLs from Ae. tauschii can be expressed stably in a hexaploid background at the jointing stage and be used for wheat improvement.
Collapse
Affiliation(s)
- Yumin Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Areas), Chengdu, China
| | - Hongshen Wan
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Areas), Chengdu, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Fan Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chun Xiao
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jun Li
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Areas), Chengdu, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Meijin Ye
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chunxiu Chen
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Guangmin Deng
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qin Wang
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Areas), Chengdu, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Aili Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Mao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wuyun Yang
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Areas), Chengdu, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- * E-mail: (WY); (YZ)
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- * E-mail: (WY); (YZ)
| |
Collapse
|
28
|
Zhang L, Liu P, Wu J, Qiao L, Zhao G, Jia J, Gao L, Wang J. Identification of a novel ERF gene, TaERF8, associated with plant height and yield in wheat. BMC PLANT BIOLOGY 2020; 20:263. [PMID: 32513101 PMCID: PMC7282131 DOI: 10.1186/s12870-020-02473-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/27/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Ethylene Responsive Factor (ERF) is involved in various processes of plant development and stress responses. In wheat, several ERFs have been identified and their roles in mediating biotic or abiotic stresses have been elucidated. However, their effects on wheat plant architecture and yield-related traits remain poorly studied. RESULTS In this study, TaERF8, a new member of the ERF family, was isolated in wheat (Triticum aestivum L.). Three homoeologous TaERF8 genes, TaERF8-2A, TaERF8-2B and TaERF8-2D (named according to sub-genomic origin), were cloned from the common wheat cultivar Chinese Spring. The three homoeologs showed highly similar protein sequences, with identical AP2 domain. Whereas homoeologs sequence polymorphism analysis allowed the establishment of ten, two and three haplotypes, respectively. Expression analysis revealed that TaERF8s were constitutively expressed through entire wheat developmental stages. Analysis of related agronomic traits of TaERF8-2B overexpressing transgenic lines showed that TaERF8-2B plays a role in regulating plant architecture and yield-related traits. Association analysis between TaERF8-2B haplotypes (Hap-2B-1 and Hap-2B-2) and agronomic traits showed that TaERF8-2B was associated with plant height, heading date and 1000 kernel weight (TKW). The TaERF8-2B haplotypes distribution analysis revealed that Hap-2B-2 frequency increased in domesticated emmer wheat and modern varieties, being predominant in five major China wheat producing zones. CONCLUSION These results indicated that TaERF8s are differentially involved in the regulation of wheat growth and development. Haplotype Hap-2B-2 was favored during domestication and in Chinese wheat breeding. Unveiling that the here described molecular marker TaERF8-2B-InDel could be used for marker-assisted selection, plant architecture and TKW improvement in wheat breeding.
Collapse
Affiliation(s)
- Lei Zhang
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Pan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linyi Qiao
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Guangyao Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lifeng Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Jianming Wang
- College of Agronomy, Shanxi Agricultural University, Taigu, China.
| |
Collapse
|
29
|
Ilyas N, Amjid MW, Saleem MA, Khan W, Wattoo FM, Rana RM, Maqsood RH, Zahid A, Shah GA, Anwar A, Ahmad MQ, Shaheen M, Riaz H, Ansari MJ. Quantitative trait loci (QTL) mapping for physiological and biochemical attributes in a Pasban90/Frontana recombinant inbred lines (RILs) population of wheat ( Triticum aestivum) under salt stress condition. Saudi J Biol Sci 2020; 27:341-351. [PMID: 31889856 PMCID: PMC6933172 DOI: 10.1016/j.sjbs.2019.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 11/18/2022] Open
Abstract
Salt stress causes nutritional imbalance and ion toxicity which affects wheat growth and production. A population of recombinant inbred lines (RILs) were developed by crossing Pasban90 (salt tolerant) and Frontana (salt suceptible) for identification of quantitative trait loci (QTLs) for physiological traits including relative water content, membrane stability index, water potential, osmotic potential, total chlorophyll content, chlorophyll a, chlorophyll b and biochemical traits including proline contents, superoxide dismutase, sodium content, potassium content, chloride content and sodium/potassium ratio by tagging 202 polymorphic simple sequence repeats (SSR) markers. Linkage map of RILs comprised of 21 linkage group covering A, B and D genome for tagging and maped a total of 60 QTLs with major and minor effect. B genome contributed to the highest number of QTLs under salt stress condition. Xgwm70 and Xbarc361 mapped on chromosome 6B was linked with Total chlorophyll, water potential and sodium content. The increasing allele for all these QTLs were advanced from parent Pasban90. Current study showed that Genome B and D had more potentially active genes conferring plant tolerance against salinity stress which may be exploited for marker assisted selection to breed salinity tolerant high yielding wheat varieties.
Collapse
Affiliation(s)
- Noshin Ilyas
- Department of Botany, Pir Mehr Ali Shah (PMAS) Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Waqas Amjid
- Department of Agriculture, Bacha Khan University, Charsada. P.O. Box 20, Khyber Pakhtun Khwa, Pakistan
| | - Muhammad Asif Saleem
- Department of Plant Breeding and Genetics, Bahaudin Zakaria University, Multan 60800, Pakistan
| | - Wajiha Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus (22060), Khyber Pakhtunkhwa, Pakistan
| | - Fahad Masoud Wattoo
- Department of Plant Breeding & Genetics, Pir Mehr Ali Shah (PMAS) Arid Agriculture University, Rawalpindi, Pakistan
| | - Rashid Mehmood Rana
- Department of Plant Breeding & Genetics, Pir Mehr Ali Shah (PMAS) Arid Agriculture University, Rawalpindi, Pakistan
| | - Rana Haroon Maqsood
- Department of Plant Breeding and Genetics, University of Agriculture, Sub-Campus Burewala-Vehari, Pakistan
| | - Anam Zahid
- School of Landscape Architecture and Ornamental Horticulture, Beijing Forestry University, PR China
| | - Ghulam Abbas Shah
- Department of Agronomy, Pir Mehr Ali Shah (PMAS) Arid Agriculture University, Rawalpindi, Pakistan
| | - Adeel Anwar
- Department of Agronomy, Pir Mehr Ali Shah (PMAS) Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Qadir Ahmad
- Department of Plant Breeding and Genetics, Bahaudin Zakaria University, Multan 60800, Pakistan
| | - Musarrat Shaheen
- Cotton Research Station, Rahim Yar Khan, Government of Punjab, Pakistan
| | - Hasan Riaz
- Institute of Plant Protection, Muhammad Nawaz Shareef (MNS) University of Agriculture, Multan 60000, Pakistan
| | - Mohammad Javed Ansari
- Bee Research Chair, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
30
|
Miransari M, Smith D. Sustainable wheat ( Triticum aestivum L.) production in saline fields: a review. Crit Rev Biotechnol 2019; 39:999-1014. [PMID: 31448647 DOI: 10.1080/07388551.2019.1654973] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/03/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022]
Abstract
A large part of global agricultural fields, including the wheat (Triticum aestivum L.) ones, are subjected to various stresses including salinity. Given the increasing world population, finding methods and strategies that can alleviate salinity stress on crop yield production is of outmost importance. The presented review has consulted more than 400 articles related to the clean and sustainable production of wheat in saline fields affected by biological, environmental, economical, and social parameters including the important issue of climate change (global warming). The negative effects of salt stress on plant growth and the techniques, which have been so far detected to alleviate salinity stress on wheat growth have been analyzed and presented. The naturally tolerant species of wheat can use a range of mechanisms to alleviate salinity stress including sodium exclusion, potassium retention, and osmoregulation. However, the following can be considered as the most important techniques to enhance wheat tolerance under stress: (1) the biotechnological (crop breeding), biological (soil microbes), and biochemical (seed priming) methods, (2) the use of naturally tolerant genotypes, and (3) their combined use. The proper handling of irrigation water is also an important subject, which must be considered when planting wheat in saline fields. In conclusion, the sustainable and cleaner production of wheat under salt stress is determined by a combination of different parameters including the biotechnological techniques, which if handled properly, can enhance wheat production in saline fields.
Collapse
Affiliation(s)
- Mohammad Miransari
- Department of Book and Article, AbtinBerkeh Scientific Ltd. Company , Isfahan , Iran
| | - Donald Smith
- Department of Plant Science, Macdonald College of McGill University , Quebec , Canada
| |
Collapse
|
31
|
Genc Y, Taylor J, Lyons G, Li Y, Cheong J, Appelbee M, Oldach K, Sutton T. Bread Wheat With High Salinity and Sodicity Tolerance. FRONTIERS IN PLANT SCIENCE 2019; 10:1280. [PMID: 31695711 PMCID: PMC6817574 DOI: 10.3389/fpls.2019.01280] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/13/2019] [Indexed: 05/20/2023]
Abstract
Soil salinity and sodicity are major constraints to global cereal production, but breeding for tolerance has been slow. Narrow gene pools, over-emphasis on the sodium (Na+) exclusion mechanism, little attention to osmotic stress/tissue tolerance mechanism(s) in which accumulation of inorganic ions such as Na+ is implicated, and lack of a suitable screening method have impaired progress. The aims of this study were to discover novel genes for Na+ accumulation using genome-wide association studies, compare growth responses to salinity and sodicity in low-Na+ bread Westonia with Nax1 and Nax2 genes and high-Na+ bread wheat Baart-46, and evaluate growth responses to salinity and sodicity in bread wheats with varying leaf Na+ concentrations. The novel high-Na+ bread wheat germplasm, MW#293, had higher grain yield under salinity and sodicity, in absolute and relative terms, than the other bread wheat entries tested. Genes associated with high Na+ accumulation in bread wheat were identified, which may be involved in tissue tolerance/osmotic adjustment. As most modern bread wheats are efficient at excluding Na+, further reduction in plant Na+ is unlikely to provide agronomic benefit. The salinity and sodicity tolerant germplasm MW#293 provides an opportunity for the development of future salinity/sodicity tolerant bread wheat.
Collapse
Affiliation(s)
- Yusuf Genc
- South Australian Research and Development Institute, Adelaide, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Julian Taylor
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Graham Lyons
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Yongle Li
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Judy Cheong
- South Australian Research and Development Institute, Adelaide, SA, Australia
| | | | - Klaus Oldach
- South Australian Research and Development Institute, Adelaide, SA, Australia
| | - Tim Sutton
- South Australian Research and Development Institute, Adelaide, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
32
|
Oyiga BC, Ogbonnaya FC, Sharma RC, Baum M, Léon J, Ballvora A. Genetic and transcriptional variations in NRAMP-2 and OPAQUE1 genes are associated with salt stress response in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:323-346. [PMID: 30392081 PMCID: PMC6349800 DOI: 10.1007/s00122-018-3220-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/24/2018] [Indexed: 05/02/2023]
Abstract
SNP alleles on chromosomes 4BL and 6AL are associated with sensitivity to salt tolerance in wheat and upon validation can be exploited in the development of salt-tolerant wheat varieties. The dissection of the genetic and molecular components of salt stress response offers strong opportunities toward understanding and improving salt tolerance in crops. In this study, GWAS was employed to identify a total of 106 SNP loci (R2 = 0.12-63.44%) linked to salt stress response in wheat using leaf chlorophyll fluorescence, grain quality and shoot ionic (Na+ and K+ ions) attributes. Among them, 14 SNP loci individually conferred pleiotropic effects on multiple independent salinity tolerance traits including loci at 99.04 cM (R2 ≥ 14.7%) and 68.45 cM (R2 ≥ 4.10%) on chromosomes 6AL and 4BL, respectively, that influenced shoot Na+-uptake, shoot K+/Na+ ratio, and specific energy fluxes for absorption (ABS/RC) and dissipation (DIo/RC). Analysis of the open reading frame (ORF) containing the SNP markers revealed that they are orthologous to genes involved in photosynthesis and plant stress (salt) response. Further transcript abundance and qRT-PCR analyses indicated that the genes are mostly up-regulated in salt-tolerant and down-regulated in salt-sensitive wheat genotypes including NRAMP-2 and OPAQUE1 genes on 4BL and 6AL, respectively. Both genes showed highest differential expression between contrasting genotypes when expressions of all the genes within their genetic intervals were analyzed. Possible cis-acting regulatory elements and coding sequence variation that may be involved in salt stress response were also identified in both genes. This study identified genetic and molecular components of salt stress response that are associated with Na+-uptake, shoot Na+/K+ ratio, ABS/RC, DIo/RC, and grain quality traits and upon functional validation would facilitate the development of gene-specific markers that could be deployed to improve salinity tolerance in wheat.
Collapse
Affiliation(s)
- Benedict C Oyiga
- INRES-Pflanzenzuchtung, Rheinische Friedrich-Wilhelms-Universitat, Bonn, Germany
- Center for Development Research (ZEF), Rheinische Friedrich-Wilhelms-Universitat, Bonn, Germany
| | | | - Ram C Sharma
- International Center for Agricultural Research in the Dry Areas (ICARDA), Tashkent, Uzbekistan
| | - Michael Baum
- International Centre for Agricultural Research in the Dry Areas (ICARDA), Al Irfane, 10112, Rabat, Morocco
| | - Jens Léon
- INRES-Pflanzenzuchtung, Rheinische Friedrich-Wilhelms-Universitat, Bonn, Germany
| | - Agim Ballvora
- INRES-Pflanzenzuchtung, Rheinische Friedrich-Wilhelms-Universitat, Bonn, Germany.
| |
Collapse
|
33
|
Asif MA, Schilling RK, Tilbrook J, Brien C, Dowling K, Rabie H, Short L, Trittermann C, Garcia A, Barrett-Lennard EG, Berger B, Mather DE, Gilliham M, Fleury D, Tester M, Roy SJ, Pearson AS. Mapping of novel salt tolerance QTL in an Excalibur × Kukri doubled haploid wheat population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2179-2196. [PMID: 30062653 PMCID: PMC6154029 DOI: 10.1007/s00122-018-3146-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/14/2018] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE Novel QTL for salinity tolerance traits have been detected using non-destructive and destructive phenotyping in bread wheat and were shown to be linked to improvements in yield in saline fields. Soil salinity is a major limitation to cereal production. Breeding new salt-tolerant cultivars has the potential to improve cereal crop yields. In this study, a doubled haploid bread wheat mapping population, derived from the bi-parental cross of Excalibur × Kukri, was grown in a glasshouse under control and salinity treatments and evaluated using high-throughput non-destructive imaging technology. Quantitative trait locus (QTL) analysis of this population detected multiple QTL under salt and control treatments. Of these, six QTL were detected in the salt treatment including one for maintenance of shoot growth under salinity (QG(1-5).asl-7A), one for leaf Na+ exclusion (QNa.asl-7A) and four for leaf K+ accumulation (QK.asl-2B.1, QK.asl-2B.2, QK.asl-5A and QK:Na.asl-6A). The beneficial allele for QG(1-5).asl-7A (the maintenance of shoot growth under salinity) was present in six out of 44 mainly Australian bread and durum wheat cultivars. The effect of each QTL allele on grain yield was tested in a range of salinity concentrations at three field sites across 2 years. In six out of nine field trials with different levels of salinity stress, lines with alleles for Na+ exclusion and/or K+ maintenance at three QTL (QNa.asl-7A, QK.asl-2B.2 and QK:Na.asl-6A) excluded more Na+ or accumulated more K+ compared to lines without these alleles. Importantly, the QK.asl-2B.2 allele for higher K+ accumulation was found to be associated with higher grain yield at all field sites. Several alleles at other QTL were associated with higher grain yields at selected field sites.
Collapse
Affiliation(s)
- Muhammad A Asif
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Rhiannon K Schilling
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Joanne Tilbrook
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
- Plant Industries Development, Department of Primary Industry and Resources, PO Box 3000, Darwin, NT, 0801, Australia
| | - Chris Brien
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- The Plant Accelerator, Australian Plant Phenomics Facility, The University of Adelaide, Urrbrae, SA, 5064, Australia
- Phenomics and Bioinformatics Research Center, The University of South Australia, GPO Box 2471, Mawson Lakes, 5001, SA, Australia
| | - Kate Dowling
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- The Plant Accelerator, Australian Plant Phenomics Facility, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Huwaida Rabie
- Phenomics and Bioinformatics Research Center, The University of South Australia, GPO Box 2471, Mawson Lakes, 5001, SA, Australia
- Bethlehem University, Rue de Freres #9, Bethlehem, West Bank, Palestine
| | - Laura Short
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Christine Trittermann
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Alexandre Garcia
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
- The Plant Accelerator, Australian Plant Phenomics Facility, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Edward G Barrett-Lennard
- School of Agriculture and Environment (M084), The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, 6151, WA, Australia
| | - Bettina Berger
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
- The Plant Accelerator, Australian Plant Phenomics Facility, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Diane E Mather
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Matthew Gilliham
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Delphine Fleury
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Mark Tester
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Stuart J Roy
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia.
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia.
| | - Allison S Pearson
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
34
|
Shah T, Xu J, Zou X, Cheng Y, Nasir M, Zhang X. Omics Approaches for Engineering Wheat Production under Abiotic Stresses. Int J Mol Sci 2018; 19:E2390. [PMID: 30110906 PMCID: PMC6121627 DOI: 10.3390/ijms19082390] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/14/2018] [Accepted: 07/24/2018] [Indexed: 02/05/2023] Open
Abstract
Abiotic stresses greatly influenced wheat productivity executed by environmental factors such as drought, salt, water submergence and heavy metals. The effective management at the molecular level is mandatory for a thorough understanding of plant response to abiotic stress. Understanding the molecular mechanism of stress tolerance is complex and requires information at the omic level. In the areas of genomics, transcriptomics and proteomics enormous progress has been made in the omics field. The rising field of ionomics is also being utilized for examining abiotic stress resilience in wheat. Omic approaches produce a huge amount of data and sufficient developments in computational tools have been accomplished for efficient analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. Though, the incorporation of omic-scale data to address complex genetic qualities and physiological inquiries is as yet a challenge. In this review, we have reported advances in omic tools in the perspective of conventional and present day approaches being utilized to dismember abiotic stress tolerance in wheat. Attention was given to methodologies, for example, quantitative trait loci (QTL), genome-wide association studies (GWAS) and genomic selection (GS). Comparative genomics and candidate genes methodologies are additionally talked about considering the identification of potential genomic loci, genes and biochemical pathways engaged with stress resilience in wheat. This review additionally gives an extensive list of accessible online omic assets for wheat and its effective use. We have additionally addressed the significance of genomics in the integrated approach and perceived high-throughput multi-dimensional phenotyping as a significant restricting component for the enhancement of abiotic stress resistance in wheat.
Collapse
Affiliation(s)
- Tariq Shah
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Jinsong Xu
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Xiling Zou
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Yong Cheng
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Mubasher Nasir
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, China.
| | - Xuekun Zhang
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| |
Collapse
|
35
|
Wani SH, Tripathi P, Zaid A, Challa GS, Kumar A, Kumar V, Upadhyay J, Joshi R, Bhatt M. Transcriptional regulation of osmotic stress tolerance in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2018; 97:469-487. [PMID: 30109563 DOI: 10.1007/s11103-018-0761-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/31/2018] [Indexed: 05/24/2023]
Abstract
The current review provides an updated, new insights into the regulation of transcription mediated underlying mechanisms of wheat plants to osmotic stress perturbations. Osmotic stress tolerance mechanisms being complex are governed by multiple factors at physiological, biochemical and at the molecular level, hence approaches like "OMICS" that can underpin mechanisms behind osmotic tolerance in wheat is of paramount importance. The transcription factors (TFs) are a class of molecular proteins, which are involved in regulation, modulation and orchestrating the responses of plants to a variety of environmental stresses. Recent reports have provided novel insights on the role of TFs in osmotic stress tolerance via direct molecular links. However, our knowledge on the regulatory role TFs during osmotic stress tolerance in wheat remains limited. The present review in its first part sheds light on the importance of studying the role of osmotic stress tolerance in wheat plants and second aims to decipher molecular mechanisms of TFs belonging to several classes, including DREB, NAC, MYB, WRKY and bHLH, which have been reported to engage in osmotic stress mediated gene expression in wheat and third part covers the systems biology approaches to understand the transcriptional regulation of osmotic stress and the role of long non-coding RNAs in response to osmotic stress with special emphasis on wheat. The current concept may lead to an understanding in molecular regulation and signalling interaction of TFs under osmotic stress to clarify challenges and problems for devising potential strategies to improve complex regulatory events involved in plant tolerance to osmotic stress adaptive pathways in wheat.
Collapse
Affiliation(s)
- Shabir H Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K, 192101, India.
| | - Prateek Tripathi
- Department of Cell & Molecular Biology, The Scripps Research Institute, Jolla, CA, 92037, USA
| | - Abbu Zaid
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Ghana S Challa
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Anuj Kumar
- Advance Centre for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun, Uttarakhand, 248007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule, Pune University, Pune, India
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, Kumaun University, Campus Bhimtal, Bhimtal, Uttarakhand, 293136, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manoj Bhatt
- Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
36
|
Oyiga BC, Sharma RC, Baum M, Ogbonnaya FC, Léon J, Ballvora A. Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat. PLANT, CELL & ENVIRONMENT 2018; 41:919-935. [PMID: 28044314 DOI: 10.1111/pce.12898] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 05/08/2023]
Abstract
The increasing salinization of agricultural lands is a threat to global wheat production. Understanding of the mechanistic basis of salt tolerance (ST) is essential for developing breeding and selection strategies that would allow for increased wheat production under saline conditions to meet the increasing global demand. We used a set that consists of 150 internationally derived winter and facultative wheat cultivars genotyped with a 90K SNP chip and phenotyped for ST across three growth stages and for ionic (leaf K+ and Na+ contents) traits to dissect the genetic architecture regulating ST in wheat. Genome-wide association mapping revealed 187 Single Nucleotide Polymorphism (SNPs) (R2 = 3.00-30.67%), representing 37 quantitative trait loci (QTL), significantly associated with the ST traits. Of these, four QTL on 1BS, 2AL, 2BS and 3AL were associated with ST across the three growth stages and with the ionic traits. Novel QTL were also detected on 1BS and 1DL. Candidate genes linked to these polymorphisms were uncovered, and expression analyses were performed and validated on them under saline and non-saline conditions using transcriptomics and qRT-PCR data. Expressed sequence comparisons in contrasting ST wheat genotypes identified several non-synonymous/missense mutation sites that are contributory to the ST trait variations, indicating the biological relevance of these polymorphisms that can be exploited in breeding for ST in wheat.
Collapse
Affiliation(s)
- Benedict C Oyiga
- INRES Pflanzenzuchtung, Rheinische Friedrich-Wilhelms-Universitat, D-53115 Bonn, Germany
- Center for Development Research (ZEF), Rheinische Friedrich-Wilhelms-Universitat, D-53115 Bonn, Germany
| | - Ram C Sharma
- International Center for Agricultural Research in the Dry Areas (ICARDA), 6 Osiyo Street, Tashkent, 100000, Uzbekistan
| | - Michael Baum
- International Centre for Agricultural Research in the Dry Areas (ICARDA), PO Box 6299, Al Irfane, 10112, Rabat, Morocco
| | - Francis C Ogbonnaya
- International Centre for Agricultural Research in the Dry Areas (ICARDA), PO Box 6299, Al Irfane, 10112, Rabat, Morocco
- Grains Research and Development Corporation, PO Box 5367, Kingston, Australian Capital Territory, 2604, Australia
| | - Jens Léon
- INRES Pflanzenzuchtung, Rheinische Friedrich-Wilhelms-Universitat, D-53115 Bonn, Germany
| | - Agim Ballvora
- INRES Pflanzenzuchtung, Rheinische Friedrich-Wilhelms-Universitat, D-53115 Bonn, Germany
| |
Collapse
|
37
|
Do TD, Vuong TD, Dunn D, Smothers S, Patil G, Yungbluth DC, Chen P, Scaboo A, Xu D, Carter TE, Nguyen HT, Grover Shannon J. Mapping and confirmation of loci for salt tolerance in a novel soybean germplasm, Fiskeby III. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:513-524. [PMID: 29151146 DOI: 10.1007/s00122-017-3015-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/04/2017] [Indexed: 05/02/2023]
Abstract
KEY MESSAGE The confirmation of a major locus associated with salt tolerance and mapping of a new locus, which could be beneficial for improving salt tolerance in soybean. Breeding soybean for tolerance to high salt conditions is important in some regions of the USA and world. Soybean cultivar Fiskeby III (PI 438471) in maturity group 000 has been reported to be highly tolerant to multiple abiotic stress conditions, including salinity. In this study, a mapping population of 132 F2 families derived from a cross of cultivar Williams 82 (PI 518671, moderately salt sensitive) and Fiskeby III (salt tolerant) was analyzed to map salt tolerance genes. The evaluation for salt tolerance was performed by analyzing leaf scorch score (LSS), chlorophyll content ratio (CCR), leaf sodium content (LSC), and leaf chloride content (LCC) after treatment with 120 mM NaCl under greenhouse conditions. Genotypic data for the F2 population were obtained using the SoySNP6K Illumina Infinium BeadChip assay. A major allele from Fiskeby III was significantly associated with LSS, CCR, LSC, and LCC on chromosome (Chr.) 03 with LOD scores of 19.1, 11.0, 7.7 and 25.6, respectively. In addition, a second locus associated with salt tolerance for LSC was detected and mapped on Chr. 13 with an LOD score of 4.6 and an R 2 of 0.115. Three gene-based polymorphic molecular markers (Salt-20, Salt14056 and Salt11655) on Chr.03 showed a strong predictive association with phenotypic salt tolerance in the present mapping population. These molecular markers will be useful for marker-assisted selection to improve salt tolerance in soybean.
Collapse
Affiliation(s)
- Tuyen D Do
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Tri D Vuong
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - David Dunn
- Division of Plant Sciences, University of Missouri, Delta Research Center, Portageville, MO, 63873, USA
| | - Scotty Smothers
- Division of Plant Sciences, University of Missouri, Delta Research Center, Portageville, MO, 63873, USA
| | - Gunvant Patil
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Dennis C Yungbluth
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Pengyin Chen
- Division of Plant Sciences, University of Missouri, Delta Research Center, Portageville, MO, 63873, USA
| | - Andrew Scaboo
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Dong Xu
- Department of Electric Engineering and Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Thomas E Carter
- Soybean and Nitrogen Fixation Unit, USDA-ARS, Raleigh, NC, 27607, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - J Grover Shannon
- Division of Plant Sciences, University of Missouri, Delta Research Center, Portageville, MO, 63873, USA.
| |
Collapse
|
38
|
Hussain B, Lucas SJ, Ozturk L, Budak H. Mapping QTLs conferring salt tolerance and micronutrient concentrations at seedling stagein wheat. Sci Rep 2017. [PMID: 29142238 DOI: 10.1038/s41598‐017‐15726‐6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Soil salinization and degradation is one of the consequences of climate change. Identification of major salt tolerance genes and marker assisted selection (MAS) can accelerate wheat breeding for this trait. We genotyped 154 wheat F2 lines derived from a cross between salt tolerant and susceptible cultivars using the Axiom Wheat Breeder's Genotyping Array. A high-density linkage map of 988 single nucleotide polymorphisms (SNPs) was constructed and utilized for quantitative trait loci (QTL) mapping for salt tolerance traits and mineral concentrations under salinity. Of 49 mapped QTLs, six were for Na+ exclusion (NAX) and two QTLs (qSNAX.2 A.1, qSNAX.2 A.2) on chromosome 2 A coincided with a reported major NAX QTL (Nax1 or HKT1;4). Two other major NAX QTLs were mapped on 7 A, which contributed 11.23 and 18.79% of the salt tolerance respectively. In addition to Ca+2 and Mg+2 QTLs, twenty-seven QTLs for tissue Phosphorus, Zinc, Iron, Manganese, Copper, Sulphur and Boron concentrations under salinity were also mapped. The 1293 segregating SNPs were annotated/located within genes for various ion channels, signalling pathways, transcription factors (TFs), metabolic pathways and 258 of them showed differential expression in silico under salinity. These findings will create new opportunities for salt tolerance breeding programs.
Collapse
Affiliation(s)
- Babar Hussain
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Stuart James Lucas
- SU Nanotechnology Research and Application Centre, Sabanci University, Istanbul, Turkey
| | - Levent Ozturk
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Hikmet Budak
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey. .,Cereal genomics Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
39
|
Mapping QTLs conferring salt tolerance and micronutrient concentrations at seedling stagein wheat. Sci Rep 2017; 7:15662. [PMID: 29142238 PMCID: PMC5688110 DOI: 10.1038/s41598-017-15726-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 11/01/2017] [Indexed: 11/16/2022] Open
Abstract
Soil salinization and degradation is one of the consequences of climate change. Identification of major salt tolerance genes and marker assisted selection (MAS) can accelerate wheat breeding for this trait. We genotyped 154 wheat F2 lines derived from a cross between salt tolerant and susceptible cultivars using the Axiom Wheat Breeder’s Genotyping Array. A high-density linkage map of 988 single nucleotide polymorphisms (SNPs) was constructed and utilized for quantitative trait loci (QTL) mapping for salt tolerance traits and mineral concentrations under salinity. Of 49 mapped QTLs, six were for Na+ exclusion (NAX) and two QTLs (qSNAX.2 A.1, qSNAX.2 A.2) on chromosome 2 A coincided with a reported major NAX QTL (Nax1 or HKT1;4). Two other major NAX QTLs were mapped on 7 A, which contributed 11.23 and 18.79% of the salt tolerance respectively. In addition to Ca+2 and Mg+2 QTLs, twenty-seven QTLs for tissue Phosphorus, Zinc, Iron, Manganese, Copper, Sulphur and Boron concentrations under salinity were also mapped. The 1293 segregating SNPs were annotated/located within genes for various ion channels, signalling pathways, transcription factors (TFs), metabolic pathways and 258 of them showed differential expression in silico under salinity. These findings will create new opportunities for salt tolerance breeding programs.
Collapse
|
40
|
Xue W, Yan J, Zhao G, Jiang Y, Cheng J, Cattivelli L, Tondelli A. A major QTL on chromosome 7HS controls the response of barley seedling to salt stress in the Nure × Tremois population. BMC Genet 2017; 18:79. [PMID: 28830338 PMCID: PMC5568257 DOI: 10.1186/s12863-017-0545-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
Background Seedling establishment is a crucial and vulnerable stage in the crop life cycle which determines further plant growth. While many studies are available on salt tolerance at the vegetative stage, the mechanisms and genetic bases of salt tolerance during seedling establishment have been poorly investigated. Here, a novel and accurate phenotyping protocol was applied to characterize the response of seedlings to salt stress in two barley cultivars (Nure and Tremois) and their double-haploid population. Results The combined phenotypic data and existing genetic map led to the identification of a new major QTL for root elongation under salt stress on chromosome 7HS, with the parent Nure carrying the favourable allele. Gene-based markers were developed from the rice syntenic genomic region to restrict the QTL interval to Bin2.1 of barley chromosome 7HS. Furthermore, doubled haploid lines with contrasting responses to salt stress revealed different root morphological responses to stress, with the susceptible genotypes exhibiting an overall reduction in root length and volume but an increase in root diameter and root hair density. Conclusions Salt tolerance at the seedling stage was studied in barley through a comprehensive phenotyping protocol that allowed the detection of a new major QTL on chromosome 7HS. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0545-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wentao Xue
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Jun Yan
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Gang Zhao
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Yan Jiang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Luigi Cattivelli
- CREA, Research Centre for Genomics and Bioinformatics, 29017, Fiorenzuola d'Arda, Italy
| | - Alessandro Tondelli
- CREA, Research Centre for Genomics and Bioinformatics, 29017, Fiorenzuola d'Arda, Italy.
| |
Collapse
|
41
|
Chen CL, van der Schoot H, Dehghan S, Alvim Kamei CL, Schwarz KU, Meyer H, Visser RGF, van der Linden CG. Genetic Diversity of Salt Tolerance in Miscanthus. FRONTIERS IN PLANT SCIENCE 2017; 8:187. [PMID: 28261243 PMCID: PMC5306379 DOI: 10.3389/fpls.2017.00187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/30/2017] [Indexed: 05/08/2023]
Abstract
Miscanthus is a woody rhizomatous C4 grass that can be used as a CO2 neutral biofuel resource. It has potential to grow in marginal areas such as saline soils, avoiding competition for arable lands with food crops. This study explored genetic diversity for salt tolerance in Miscanthus and discovered mechanisms and traits that can be used to improve the yield under salt stress. Seventy genotypes of Miscanthus (including 57 M. sinensis, 5 M. sacchariflorus, and 8 hybrids) were evaluated for salt tolerance under saline (150 mM NaCl) and normal growing conditions using a hydroponic system. Analyses of shoot growth traits and ion concentrations revealed the existence of large variation for salt tolerance in the genotypes. We identified genotypes with potential for high biomass production both under control and saline conditions that may be utilized for growth under marginal, saline conditions. Several relatively salt tolerant genotypes had clearly lower Na+ concentrations and showed relatively high K+/Na+ ratios in the shoots under salt stress, indicating that a Na+ exclusion mechanism was utilized to prevent Na+ accumulation in the leaves. Other genotypes showed limited reduction in leaf expansion and growth rate under saline conditions, which may be indicative of osmotic stress tolerance. The genotypes demonstrating potentially different salt tolerance mechanisms can serve as starting material for breeding programs aimed at improving salinity tolerance of Miscanthus.
Collapse
Affiliation(s)
- Chang-Lin Chen
- Plant Breeding, Wageningen University and ResearchWageningen, Netherlands
- Graduate School Experimental Plant Science, Wageningen University and ResearchWageningen, Netherlands
| | | | - Shiva Dehghan
- Plant Breeding, Wageningen University and ResearchWageningen, Netherlands
| | - Claire L. Alvim Kamei
- Plant Breeding, Wageningen University and ResearchWageningen, Netherlands
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Kai-Uwe Schwarz
- Julius Kühn-Institute, Institute for Crop and Soil ScienceBraunschweig, Germany
| | - Heike Meyer
- Julius Kühn-Institute, Institute for Crop and Soil ScienceBraunschweig, Germany
| | | | | |
Collapse
|
42
|
Rahman MA, Thomson MJ, Shah-E-Alam M, de Ocampo M, Egdane J, Ismail AM. Exploring novel genetic sources of salinity tolerance in rice through molecular and physiological characterization. ANNALS OF BOTANY 2016; 117:1083-97. [PMID: 27063367 PMCID: PMC4866315 DOI: 10.1093/aob/mcw030] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/27/2015] [Accepted: 01/12/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Agricultural productivity is increasingly being affected by the build-up of salinity in soils and water worldwide. The genetic base of salt-tolerant rice donors being used in breeding is relatively narrow and needs broadening to breed varieties with wider adaptation to salt-affected areas. This study evaluated a large set of rice accessions of diverse origins to identify and characterize novel sources of salt tolerance. METHODS Diversity analysis was performed on 107 germplasm accessions using a genome-wide set of 376 single-nucleotide polymorphism (SNP) markers, along with characterization of allelic diversity at the major quantitative trait locus Saltol Sixty-nine accessions were further evaluated for physiological traits likely associated with responses to salt stress during the seedling stage. KEY RESULTS Three major clusters corresponding to the indica, aus and aromatic subgroups were identified. The largest group was indica, with the salt-tolerant Pokkali accessions in one sub-cluster, while a set of Bangladeshi landraces, including Akundi, Ashfal, Capsule, Chikirampatnai and Kutipatnai, were in a different sub-cluster. A distinct aus group close to indica contained the salt-tolerant landrace Kalarata, while a separate aromatic group closer to japonica rice contained a number of traditional, but salt-sensitive Bangladeshi landraces. These accessions have different alleles at the Saltol locus. Seven landraces - Akundi, Ashfal, Capsule, Chikirampatnai, Jatai Balam, Kalarata and Kutipatnai - accumulated less Na and relatively more K, maintaining a lower Na/K ratio in leaves. They effectively limit sodium transport to the shoot. CONCLUSIONS New salt-tolerant landraces were identified that are genetically and physiologically distinct from known donors. These landraces can be used to develop better salt-tolerant varieties and could provide new sources of quantitative trait loci/alleles for salt tolerance for use in molecular breeding. The diversity observed within this set and in other donors suggests multiple mechanisms that can be combined for higher salt tolerance.
Collapse
Affiliation(s)
- M Akhlasur Rahman
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Michael J Thomson
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - M Shah-E-Alam
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Marjorie de Ocampo
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - James Egdane
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Abdelbagi M Ismail
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines,
| |
Collapse
|
43
|
Genc Y, Oldach K, Taylor J, Lyons GH. Uncoupling of sodium and chloride to assist breeding for salinity tolerance in crops. THE NEW PHYTOLOGIST 2016; 210:145-56. [PMID: 26607560 DOI: 10.1111/nph.13757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/14/2015] [Indexed: 05/08/2023]
Abstract
The separation of toxic effects of sodium (Na(+)) and chloride (Cl(-)) by the current methods of mixed salts and subsequent determination of their relevance to breeding has been problematic. We report a novel method (Na(+) humate) to study the ionic effects of Na(+) toxicity without interference from Cl(-), and ionic and osmotic effects when combined with salinity (NaCl). Three cereal species (Hordeum vulgare, Triticum aestivum and Triticum turgidum ssp. durum with and without the Na(+) exclusion gene Nax2) differing in Na(+) exclusion were grown in a potting mix under sodicity (Na(+) humate) and salinity (NaCl), and water use, leaf nutrient profiles and yield were determined. Under sodicity, Na(+)-excluding bread wheat and durum wheat with the Nax2 gene had higher yield than Na(+)-accumulating barley and durum wheat without the Nax2 gene. However, under salinity, despite a 100-fold difference in leaf Na(+), all species yielded similarly, indicating that osmotic stress negated the benefits of Na(+) exclusion. In conclusion, Na(+) exclusion can be an effective mechanism for sodicity tolerance, while osmoregulation and tissue tolerance to Na(+) and/or Cl(-) should be the main foci for further improvement of salinity tolerance in cereals. This represents a paradigm shift for breeding cereals with salinity tolerance.
Collapse
Affiliation(s)
- Yusuf Genc
- South Australian Research and Development Institute, Plant Genomics Centre, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Klaus Oldach
- South Australian Research and Development Institute, Plant Genomics Centre, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Julian Taylor
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Graham H Lyons
- South Australian Research and Development Institute, Plant Genomics Centre, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
44
|
Ariyarathna HACK, Oldach KH, Francki MG. A comparative gene analysis with rice identified orthologous group II HKT genes and their association with Na(+) concentration in bread wheat. BMC PLANT BIOLOGY 2016; 16:21. [PMID: 26786911 PMCID: PMC4719669 DOI: 10.1186/s12870-016-0714-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/14/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Although the HKT transporter genes ascertain some of the key determinants of crop salt tolerance mechanisms, the diversity and functional role of group II HKT genes are not clearly understood in bread wheat. The advanced knowledge on rice HKT and whole genome sequence was, therefore, used in comparative gene analysis to identify orthologous wheat group II HKT genes and their role in trait variation under different saline environments. RESULTS The four group II HKTs in rice identified two orthologous gene families from bread wheat, including the known TaHKT2;1 gene family and a new distinctly different gene family designated as TaHKT2;2. A single copy of TaHKT2;2 was found on each homeologous chromosome arm 7AL, 7BL and 7DL and each gene was expressed in leaf blade, sheath and root tissues under non-stressed and at 200 mM salt stressed conditions. The proteins encoded by genes of the TaHKT2;2 family revealed more than 93% amino acid sequence identity but ≤52% amino acid identity compared to the proteins encoded by TaHKT2;1 family. Specifically, variations in known critical domains predicted functional differences between the two protein families. Similar to orthologous rice genes on chromosome 6L, TaHKT2;1 and TaHKT2;2 genes were located approximately 3 kb apart on wheat chromosomes 7AL, 7BL and 7DL, forming a static syntenic block in the two species. The chromosomal region on 7AL containing TaHKT2;1 7AL-1 co-located with QTL for shoot Na(+) concentration and yield in some saline environments. CONCLUSION The differences in copy number, genes sequences and encoded proteins between TaHKT2;2 homeologous genes and other group II HKT gene families within and across species likely reflect functional diversity for ion selectivity and transport in plants. Evidence indicated that neither TaHKT2;2 nor TaHKT2;1 were associated with primary root Na(+) uptake but TaHKT2;1 may be associated with trait variation for Na(+) exclusion and yield in some but not all saline environments.
Collapse
Affiliation(s)
- H A Chandima K Ariyarathna
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, Crawley, 6009, Western Australia.
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, 6150, Western Australia.
| | - Klaus H Oldach
- South Australia Research Development Institute, Plant Genomics Centre, Waite Research Precinct, Urrbrae, 5064, South Australia.
| | - Michael G Francki
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, 6150, Western Australia.
- Department of Agriculture and Food Western Australia, South Perth, 6151, Western Australia.
| |
Collapse
|
45
|
Liu S, Lacape JM, Constable GA, Llewellyn DJ. Inheritance and QTL Mapping of Leaf Nutrient Concentration in a Cotton Inter-Specific Derived RIL Population. PLoS One 2015; 10:e0128100. [PMID: 26020945 PMCID: PMC4447399 DOI: 10.1371/journal.pone.0128100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/23/2015] [Indexed: 11/19/2022] Open
Abstract
Developing and deploying cotton cultivars with high nutrient uptake, use efficiency and tolerance to nutrient related soil stresses is desirable to assist sustainable soil management. Genetic variation, heritability, selection response and quantitative trait loci (QTLs) were investigated for five macronutrients (P, K, Ca, Mg, S) and five micronutrients (Fe, Mn, B, Zn, and Cu) in a recombinant inbred line (RIL) population from an inter-specific cross between Gossypium hirsutum cv. Guazuncho 2, and G. barbadense accession VH8-4602. Na and K/Na ratio were also studied as the imbalance between Na and other nutrients is detrimental to cotton growth and development. The concentrations of nutrients were measured for different plant parts of the two parents and for leaf samples of the whole population collected at early to peak flowering in field experiments over two years in a sodic Vertosol soil. Parental contrast was large for most nutrient concentrations in leaves when compared with other plant parts. Segregation for leaf nutrient concentration was observed within the population with transgression for P, K, K/Na ratio and all micronutrients. Genotypic difference was the major factor behind within-population variation for most nutrients, while narrow sense heritability was moderate (0.27 for Mn and Cu, and 0.43 for B). At least one significant QTL was identified for each nutrient except K and more than half of those QTLs were clustered on chromosomes 14, 18 and 22. Selection response was predicted to be low for P and all micronutrients except B, high for K, Na and B, and very high for K/Na ratio. Correlations were more common between macronutrients, Na and K/Na ratio where the nature and strength of the relations varied (r=-0.69 to 0.76). We conclude that there is sufficient genetic diversity between these two tetraploid cotton species that could be exploited to improve cotton nutrient status by introgressing species-unique favourable alleles.
Collapse
Affiliation(s)
- Shiming Liu
- CSIRO Agriculture Flagship, Narrabri, NSW 2390, Australia
- * E-mail:
| | | | | | - Danny J. Llewellyn
- CSIRO Agriculture Flagship, P.O. Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
46
|
Genomic Regions for Embryo Size and Early Vigour in Multiple Wheat (Triticum aestivum L.) Populations. AGRONOMY-BASEL 2015. [DOI: 10.3390/agronomy5020152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Wu H, Zhu M, Shabala L, Zhou M, Shabala S. K+ retention in leaf mesophyll, an overlooked component of salinity tolerance mechanism: a case study for barley. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:171-85. [PMID: 25040138 DOI: 10.1111/jipb.12238] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/02/2014] [Indexed: 05/03/2023]
Abstract
Plant salinity tolerance is a physiologically complex trait, with numerous mechanisms contributing to it. In this work, we show that the ability of leaf mesophyll to retain K(+) represents an important and essentially overlooked component of a salinity tolerance mechanism. The strong positive correlation between mesophyll K(+) retention ability under saline conditions (quantified by the magnitude of NaCl-induced K(+) efflux from mesophyll) and the overall salinity tolerance (relative fresh weight and/or survival or damage under salinity stress) was found while screening 46 barley (Hordeum vulgare L.) genotypes contrasting in their salinity tolerance. Genotypes with intrinsically higher leaf K(+) content under control conditions were found to possess better K(+) retention ability under salinity and, hence, overall higher tolerance. Contrary to previous reports for barley roots, K(+) retention in mesophyll was not associated with an increased H(+) -pumping in tolerant varieties but instead correlated negatively with this trait. These findings are explained by the fact that increased H(+) extrusion may be needed to charge balance the activity and provide the driving force for the high affinity HAK/KUP K(+) transporters required to restore cytosolic K(+) homeostasis in salt-sensitive genotypes.
Collapse
Affiliation(s)
- Honghong Wu
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas, 7001, Australia
| | | | | | | | | |
Collapse
|
48
|
Almeida P, Feron R, de Boer GJ, de Boer AH. Role of Na+, K+, Cl-, proline and sucrose concentrations in determining salinity tolerance and their correlation with the expression of multiple genes in tomato. AOB PLANTS 2014; 6:plu039. [PMID: 24996430 PMCID: PMC4122256 DOI: 10.1093/aobpla/plu039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/20/2014] [Indexed: 05/25/2023]
Abstract
One of the major abiotic stresses affecting agriculture is soil salinity, which reduces crop yield and, consequently, revenue for farmers. Although tomato is an important agricultural species, elite varieties are poor at withstanding salinity stress. Thus, a feasible way of improving yield under conditions of salinity stress is to breed for improved salt tolerance. In this study, we analysed the physiological and genetic parameters of 23 tomato accessions in order to identify possible traits to be used by plant breeders to develop more tolerant tomato varieties. Although we observed a wide range of Na(+) concentrations within the leaves, stems and roots, the maintenance of growth in the presence of 100 mM NaCl did not correlate with the exclusion or accumulation of Na(+). Nor could we correlate the growth with accumulation of sugars and proline or with the expression of any gene involved in the homoeostasis of Na(+) in the plant. However, several significant correlations between gene expression and Na(+) accumulation were observed. For instance, Na(+) concentrations both in the leaves and stems were positively correlated with HKT1;2 expression in the roots, and Na(+) concentration measured in the roots was positively correlated with HKT1;1 expression also in the roots. Higher and lower Na(+) accumulation in the roots and leaves were significantly correlated with higher NHX3 and NHX1 expression in the roots, respectively. These results suggest that, in tomato, for a particular level of tolerance to salinity, a complex relationship between Na(+) concentration in the cells and tissue tolerance defines the salinity tolerance of individual tomato accessions. In tomato it is likely that tissue and salinity tolerance work independently, making tolerance to salinity depend on their relative effects rather than on one of these mechanisms alone.
Collapse
Affiliation(s)
- Pedro Almeida
- Faculty of Earth and Life Sciences, Department of Structural Biology, Vrije Universiteit Amsterdam, NL-1081 HV Amsterdam, The Netherlands
| | - Richard Feron
- Enza Zaden, Research and Development, Haling 1/E, 1602 DB Enkhuizen, The Netherlands
| | - Gert-Jan de Boer
- Enza Zaden, Research and Development, Haling 1/E, 1602 DB Enkhuizen, The Netherlands
| | - Albertus H de Boer
- Faculty of Earth and Life Sciences, Department of Structural Biology, Vrije Universiteit Amsterdam, NL-1081 HV Amsterdam, The Netherlands
| |
Collapse
|
49
|
Genc Y, Taylor J, Rongala J, Oldach K. A major locus for chloride accumulation on chromosome 5A in bread wheat. PLoS One 2014; 9:e98845. [PMID: 24893005 PMCID: PMC4043771 DOI: 10.1371/journal.pone.0098845] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 05/07/2014] [Indexed: 02/01/2023] Open
Abstract
Chloride (Cl−) is an essential micronutrient for plant growth, but can be toxic at high concentrations resulting in reduced growth and yield. Although saline soils are generally dominated by both sodium (Na+) and Cl− ions, compared to Na+ toxicity, very little is known about physiological and genetic control mechanisms of tolerance to Cl− toxicity. In hydroponics and field studies, a bread wheat mapping population was tested to examine the relationships between physiological traits [Na+, potassium (K+) and Cl− concentration] involved in salinity tolerance (ST) and seedling growth or grain yield, and to elucidate the genetic control mechanism of plant Cl− accumulation using a quantitative trait loci (QTL) analysis approach. Plant Na+ or Cl− concentration were moderately correlated (genetically) with seedling biomass in hydroponics, but showed no correlations with grain yield in the field, indicating little value in selecting for ion concentration to improve ST. In accordance with phenotypic responses, QTL controlling Cl− accumulation differed entirely between hydroponics and field locations, and few were detected in two or more environments, demonstrating substantial QTL-by-environment interactions. The presence of several QTL for Cl− concentration indicated that uptake and accumulation was a polygenic trait. A major Cl− concentration QTL (5A; barc56/gwm186) was identified in three field environments, and accounted for 27–32% of the total genetic variance. Alignment between the 5A QTL interval and its corresponding physical genome regions in wheat and other grasses has enabled the search for candidate genes involved in Cl− transport, which is discussed.
Collapse
Affiliation(s)
- Yusuf Genc
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
- South Australian Research and Development Institute, Plant Genomics Centre, Waite Campus, Glen Osmond, South Australia, Australia
| | - Julian Taylor
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Jay Rongala
- South Australian Research and Development Institute, Plant Genomics Centre, Waite Campus, Glen Osmond, South Australia, Australia
| | - Klaus Oldach
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
- South Australian Research and Development Institute, Plant Genomics Centre, Waite Campus, Glen Osmond, South Australia, Australia
- * E-mail:
| |
Collapse
|
50
|
Zhang WJ, Niu Y, Bu SH, Li M, Feng JY, Zhang J, Yang SX, Odinga MM, Wei SP, Liu XF, Zhang YM. Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage. PLoS One 2014; 9:e84750. [PMID: 24416275 PMCID: PMC3885605 DOI: 10.1371/journal.pone.0084750] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 11/26/2013] [Indexed: 01/29/2023] Open
Abstract
Soil salinity and alkalinity are important abiotic components that frequently have critical effects on crop growth, productivity and quality. Developing soybean cultivars with high salt tolerance is recognized as an efficient way to maintain sustainable soybean production in a salt stress environment. However, the genetic mechanism of the tolerance must first be elucidated. In this study, 257 soybean cultivars with 135 SSR markers were used to perform epistatic association mapping for salt tolerance. Tolerance was evaluated by assessing the main root length (RL), the fresh and dry weights of roots (FWR and DWR), the biomass of seedlings (BS) and the length of hypocotyls (LH) of healthy seedlings after treatments with control, 100 mM NaCl or 10 mM Na2CO3 solutions for approximately one week under greenhouse conditions. A total of 83 QTL-by-environment (QE) interactions for salt tolerance index were detected: 24 for LR, 12 for FWR, 11 for DWR, 15 for LH and 21 for BS, as well as one epistatic QTL for FWR. Furthermore, 86 QE interactions for alkaline tolerance index were found: 17 for LR, 16 for FWR, 17 for DWR, 18 for LH and 18 for BS. A total of 77 QE interactions for the original trait indicator were detected: 17 for LR, 14 for FWR, 4 for DWR, 21 for LH and 21 for BS, as well as 3 epistatic QTL for BS. Small-effect QTL were frequently observed. Several soybean genes with homology to Arabidopsis thaliana and soybean salt tolerance genes were found in close proximity to the above QTL. Using the novel alleles of the QTL detected above, some elite parental combinations were designed, although these QTL need to be further confirmed. The above results provide a valuable foundation for fine mapping, cloning and molecular breeding by design for soybean alkaline and salt tolerance.
Collapse
Affiliation(s)
- Wen-Jie Zhang
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Crop Research, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, China
| | - Yuan Niu
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Su-Hong Bu
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Meng Li
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jian-Ying Feng
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jin Zhang
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Sheng-Xian Yang
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Medrine Mmayi Odinga
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shi-Ping Wei
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiao-Feng Liu
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuan-Ming Zhang
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|