1
|
Ndiaye M, Mollier A, Diouf A, Diop TA. Mycorrhizal inoculation and fertilizer microdosing interactions in pearl millet ( Pennisetum glaucum) under greenhouse conditions. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1448156. [PMID: 39323612 PMCID: PMC11423209 DOI: 10.3389/ffunb.2024.1448156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/01/2024] [Indexed: 09/27/2024]
Abstract
Introduction Soil fertility is a major constraint to agricultural development in the Sahel region of Africa. One alternative to reducing the use of mineral fertilizers is to partially replace them with microbes that promote nutrition and growth, such as arbuscular mycorrhizal fungi (AMF). Mineral fertilizer microdosing is a technique developed to enhance fertilizer efficiency and encourage smallholder farmers to adopt higher mineral fertilizer applications. Methods A pot experiment was set up to study the effects of AMF inoculation on the mineral nutrition of pearl millet under mineral fertilizer microdosing conditions. The experimental setup followed a randomized complete block design with five replicates. The treatments tested on millet were an absolute control and eight microdoses derived from the combination of three doses of 15- 10-10 [nitrogen, phosphorus, and potassium (NPK)] mineral fertilizer (2 g, 3 g, and 5 g per pot), three doses of urea (1 g, 2 g, and 3 g per pot), and three doses of organic manure (OM) (200 g, 400 g, and 600 g), combined with and without AMF (Rhizophagus irregularis and Rhizophagus aggregatum). The parameters studied were growth, root colonization by AMF, and mineral nutrition. Plant height, stem diameter, root dry biomass, and percentage of root mycorrhization were measured. Results and discussion The results revealed a significant effect of the fertilizers on the growth of pearl millet compared to the control. AMF and OM treatments resulted in the highest biomass production. AMF combined with microdoses of NPK improved N and calcium (Ca) concentrations, while their combination with organic matter mainly improved the K concentration. Combining AMF with microdosed NPK and compost enhanced zinc (Zn) and nickel (Ni) concentrations. Root colonization varied from 0.55 to 56.4%. This investigation highlights the positive effects of AMF inoculation on nutrient uptake efficiency when combined with microdosing fertilization.
Collapse
Affiliation(s)
- Malick Ndiaye
- Laboratoire de Biotechnologies des Champignons, Département de Biologie Végétale, Université Cheikh Anta Diop, Dakar, Senegal
| | - Alain Mollier
- UMR 1391 Interactions Sol Plant Atmosphère (ISPA), Institut National de Recherches pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Bordeaux Sciences Agro, Bordeaux, France
| | - Adama Diouf
- Laboratoire de Biotechnologies des Champignons, Département de Biologie Végétale, Université Cheikh Anta Diop, Dakar, Senegal
- Laboratoire Commun de Microbiologie, Institut de Recherche pour Développement (IRD)/Institut Sénégalais de Recherches Agricoles (ISRA)/ Université Cheikh Anta Diop de Dakar (UCAD), Centre de recherche de Bel Air, Dakar, Senegal
| | - Tahir Abdoulaye Diop
- Laboratoire de Biotechnologies des Champignons, Département de Biologie Végétale, Université Cheikh Anta Diop, Dakar, Senegal
- Polytech Diamniadio, Département Sciences et Techniques Agricoles, Alimentaires et Nutritionnelles, Université Amadou Mahtar Mbow, Dakar, Senegal
| |
Collapse
|
2
|
Daduwal HS, Bhardwaj R, Srivastava RK. Pearl millet a promising fodder crop for changing climate: a review. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:169. [PMID: 38913173 DOI: 10.1007/s00122-024-04671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/05/2024] [Indexed: 06/25/2024]
Abstract
The agricultural sector faces colossal challenges amid environmental changes and a burgeoning human population. In this context, crops must adapt to evolving climatic conditions while meeting increasing production demands. The dairy industry is anticipated to hold the highest value in the agriculture sector in future. The rise in the livestock population is expected to result in an increased demand for fodder feed. Consequently, it is crucial to seek alternative options, as crops demand fewer resources and are resilient to climate change. Pearl millet offers an apposite key to these bottlenecks, as it is a promising climate resilience crop with significantly low energy, water and carbon footprints compared to other crops. Numerous studies have explored its potential as a fodder crop, revealing promising performance. Despite its capabilities, pearl millet has often been overlooked. To date, few efforts have been made to document molecular aspects of fodder-related traits. However, several QTLs and candidate genes related to forage quality have been identified in other fodder crops, which can be harnessed to enhance the forage quality of pearl millet. Lately, excellent genomic resources have been developed in pearl millet allowing deployment of cutting-edge genomics-assisted breeding for achieving a higher rate of genetic gains. This review would facilitate a deeper understanding of various aspects of fodder pearl millet in retrospect along with the future challenges and their solution. This knowledge may pave the way for designing efficient breeding strategies in pearl millet thereby supporting sustainable agriculture and livestock production in a changing world.
Collapse
Affiliation(s)
- Harmanpreet Singh Daduwal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | - Ruchika Bhardwaj
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Rakesh K Srivastava
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India.
| |
Collapse
|
3
|
Srivastava RK, Yadav OP, Kaliamoorthy S, Gupta SK, Serba DD, Choudhary S, Govindaraj M, Kholová J, Murugesan T, Satyavathi CT, Gumma MK, Singh RB, Bollam S, Gupta R, Varshney RK. Breeding Drought-Tolerant Pearl Millet Using Conventional and Genomic Approaches: Achievements and Prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:781524. [PMID: 35463391 PMCID: PMC9021881 DOI: 10.3389/fpls.2022.781524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/11/2022] [Indexed: 06/03/2023]
Abstract
Pearl millet [Pennisetum glaucum (L.) R. Br.] is a C4 crop cultivated for its grain and stover in crop-livestock-based rain-fed farming systems of tropics and subtropics in the Indian subcontinent and sub-Saharan Africa. The intensity of drought is predicted to further exacerbate because of looming climate change, necessitating greater focus on pearl millet breeding for drought tolerance. The nature of drought in different target populations of pearl millet-growing environments (TPEs) is highly variable in its timing, intensity, and duration. Pearl millet response to drought in various growth stages has been studied comprehensively. Dissection of drought tolerance physiology and phenology has helped in understanding the yield formation process under drought conditions. The overall understanding of TPEs and differential sensitivity of various growth stages to water stress helped to identify target traits for manipulation through breeding for drought tolerance. Recent advancement in high-throughput phenotyping platforms has made it more realistic to screen large populations/germplasm for drought-adaptive traits. The role of adapted germplasm has been emphasized for drought breeding, as the measured performance under drought stress is largely an outcome of adaptation to stress environments. Hybridization of adapted landraces with selected elite genetic material has been stated to amalgamate adaptation and productivity. Substantial progress has been made in the development of genomic resources that have been used to explore genetic diversity, linkage mapping (QTLs), marker-trait association (MTA), and genomic selection (GS) in pearl millet. High-throughput genotyping (HTPG) platforms are now available at a low cost, offering enormous opportunities to apply markers assisted selection (MAS) in conventional breeding programs targeting drought tolerance. Next-generation sequencing (NGS) technology, micro-environmental modeling, and pearl millet whole genome re-sequence information covering circa 1,000 wild and cultivated accessions have helped to greater understand germplasm, genomes, candidate genes, and markers. Their application in molecular breeding would lead to the development of high-yielding and drought-tolerant pearl millet cultivars. This review examines how the strategic use of genetic resources, modern genomics, molecular biology, and shuttle breeding can further enhance the development and delivery of drought-tolerant cultivars.
Collapse
Affiliation(s)
- Rakesh K. Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - O. P. Yadav
- Indian Council of Agricultural Research-Central Arid Zone Research Institute, Jodhpur, India
| | - Sivasakthi Kaliamoorthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - S. K. Gupta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Desalegn D. Serba
- United States Department of Agriculture-Agriculture Research Service (ARS), U.S. Arid Land Agricultural Research Center, Maricopa, AZ, United States
| | - Sunita Choudhary
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Mahalingam Govindaraj
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Jana Kholová
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Tharanya Murugesan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - C. Tara Satyavathi
- Indian Council of Agricultural Research – All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - Murali Krishna Gumma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Ram B. Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Srikanth Bollam
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Rajeev Gupta
- United States Department of Agriculture-Agriculture Research Service (ARS), Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- State Agricultural Biotechnology Centre, Centre for Crop & Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
4
|
Srivastava RK, Satyavathi CT, Mahendrakar MD, Singh RB, Kumar S, Govindaraj M, Ghazi IA. Addressing Iron and Zinc Micronutrient Malnutrition Through Nutrigenomics in Pearl Millet: Advances and Prospects. Front Genet 2021; 12:723472. [PMID: 34868202 PMCID: PMC8637740 DOI: 10.3389/fgene.2021.723472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
Iron (Fe) and zinc (Zn) micronutrient deficiencies are significant health concerns, particularly among the underprivileged and resource-poor people in the semi-arid tropics globally. Pearl millet is regarded as a climate-smart crop with low water and energy footprints. It thrives well under adverse agro-ecologies such as high temperatures and limited rainfall. Pearl millet is regarded as a nutri-cereal owing to health-promoting traits such as high grain Fe and Zn content, metabolizable energy, high antioxidant and polyphenols, high proportion of slowly digestible starches, dietary fibers, and favorable essential amino acid profile compared to many cereals. Higher genetic variability for grain Fe and Zn content has facilitated considerable progress in mapping and mining QTLs, alleles and genes underlying micronutrient metabolism. This has been made possible by developing efficient genetic and genomic resources in pearl millet over the last decade. These include genetic stocks such as bi-parental RIL mapping populations, association mapping panels, chromosome segment substitution lines (CSSLs) and TILLING populations. On the genomics side, considerable progress has been made in generating genomic markers, such as SSR marker repository development. This was followed by the development of a next-generation sequencing-based genome-wide SNP repository. The circa 1,000 genomes re-sequencing project played a significant role. A high-quality reference genome was made available by re-sequencing of world diversity panel, mapping population parents and hybrid parental lines. This mini-review attempts to provide information on the current developments on mapping Fe and Zn content in pearl millet and future outlook.
Collapse
Affiliation(s)
- Rakesh K Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - C Tara Satyavathi
- All India Coordinated Research Project on Pearl Millet (Indian Council of Agricultural Research), Jodhpur, India
| | - Mahesh D Mahendrakar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Ram B Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Sushil Kumar
- Department of Agricultural Biotechnology, Anand Agricultural University (AAU), Anand, India
| | - Mahalingam Govindaraj
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Irfan A Ghazi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
5
|
Jangra S, Rani A, Yadav D, Yadav RC, Yadav NR. Promising versions of a commercial pearl millet hybrid for terminal drought tolerance identified through MAS. J Genet 2021. [DOI: 10.1007/s12041-021-01337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Satyavathi CT, Ambawat S, Khandelwal V, Srivastava RK. Pearl Millet: A Climate-Resilient Nutricereal for Mitigating Hidden Hunger and Provide Nutritional Security. FRONTIERS IN PLANT SCIENCE 2021; 12:659938. [PMID: 34589092 PMCID: PMC8475763 DOI: 10.3389/fpls.2021.659938] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/03/2021] [Indexed: 06/03/2023]
Abstract
Pearl millet [Pennisetum glaucum (L.) R. Br.] is the sixth most important cereal crop after rice, wheat, maize, barley and sorghum. It is widely grown on 30 million ha in the arid and semi-arid tropical regions of Asia and Africa, accounting for almost half of the global millet production. Climate change affects crop production by directly influencing biophysical factors such as plant and animal growth along with the various areas associated with food processing and distribution. Assessment of the effects of global climate changes on agriculture can be helpful to anticipate and adapt farming to maximize the agricultural production more effectively. Pearl millet being a climate-resilient crop is important to minimize the adverse effects of climate change and has the potential to increase income and food security of farming communities in arid regions. Pearl millet has a deep root system and can survive in a wide range of ecological conditions under water scarcity. It has high photosynthetic efficiency with an excellent productivity and growth in low nutrient soil conditions and is less reliant on chemical fertilizers. These attributes have made it a crop of choice for cultivation in arid and semi-arid regions of the world; however, fewer efforts have been made to study the climate-resilient features of pearl millet in comparison to the other major cereals. Several hybrids and varieties of pearl millet were developed during the past 50 years in India by both the public and private sectors. Pearl millet is also nutritionally superior and rich in micronutrients such as iron and zinc and can mitigate malnutrition and hidden hunger. Inclusion of minimum standards for micronutrients-grain iron and zinc content in the cultivar release policy-is the first of its kind step taken in pearl millet anywhere in the world, which can lead toward enhanced food and nutritional security. The availability of high-quality whole-genome sequencing and re-sequencing information of several lines may aid genomic dissection of stress tolerance and provide a good opportunity to further exploit the nutritional and climate-resilient attributes of pearl millet. Hence, more efforts should be put into its genetic enhancement and improvement in inheritance to exploit it in a better way. Thus, pearl millet is the next-generation crop holding the potential of nutritional richness and the climate resilience and efforts must be targeted to develop nutritionally dense hybrids/varieties tolerant to drought using different omics approaches.
Collapse
Affiliation(s)
- C. Tara Satyavathi
- Indian Council of Agricultural Research - All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - Supriya Ambawat
- Indian Council of Agricultural Research - All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - Vikas Khandelwal
- Indian Council of Agricultural Research - All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - Rakesh K. Srivastava
- Department of Molecular Breeding (Genomics Trait Discovery), International Crops Research Institute for Semi-arid Tropics, Patancheru, India
| |
Collapse
|
7
|
Singhal T, Satyavathi CT, Singh SP, Kumar A, Sankar SM, Bhardwaj C, Mallik M, Bhat J, Anuradha N, Singh N. Multi-Environment Quantitative Trait Loci Mapping for Grain Iron and Zinc Content Using Bi-parental Recombinant Inbred Line Mapping Population in Pearl Millet. FRONTIERS IN PLANT SCIENCE 2021; 12:659789. [PMID: 34093617 PMCID: PMC8169987 DOI: 10.3389/fpls.2021.659789] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/06/2021] [Indexed: 05/24/2023]
Abstract
Pearl millet is a climate-resilient, nutritious crop with low input requirements that could provide economic returns in marginal agro-ecologies. In this study, we report quantitative trait loci (QTLs) for iron (Fe) and zinc (Zn) content from three distinct production environments. We generated a genetic linkage map using 210 F6 recombinant inbred line (RIL) population derived from the (PPMI 683 × PPMI 627) cross using genome-wide simple sequence repeats (SSRs). The molecular linkage map (seven linkage groups) of 151 loci was 3,273.1 cM length (Kosambi). The content of grain Fe in the RIL population ranged between 36 and 114 mg/Kg, and that of Zn from 20 to 106 mg/Kg across the 3 years (2014-2016) at over the three locations (Delhi, Dharwad, and Jodhpur). QTL analysis revealed a total of 22 QTLs for grain Fe and Zn, of which 14 were for Fe and eight were for Zn on three consecutive years at all locations. The observed phenotypic variance (R 2) explained by different QTLs for grain Fe and Zn content ranged from 2.85 (QGFe.E3.2014-2016_Q3) to 19.66% (QGFe.E1.2014-2016_Q3) and from 2.93 (QGZn.E3.2014-2016_Q3) to 25. 95% (QGZn.E1.2014-2016_Q1), respectively. Two constitutive expressing QTLs for both Fe and Zn co-mapped in this population, one on LG 2 and second one on LG 3. Inside the QTLs candidate genes such as Ferritin gene, Al3+ Transporter, K+ Transporters, Zn2+ transporters and Mg2+ transporters were identified using bioinformatics approaches. The identified QTLs and candidate genes could be useful in pearl millet population improvement programs, seed, restorer parents, and marker-assisted selection programs.
Collapse
Affiliation(s)
- Tripti Singhal
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - C. Tara Satyavathi
- ICAR-All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - S. P. Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aruna Kumar
- Amity Institute of Biotechnology, Amity University, Noida, India
| | | | - C. Bhardwaj
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - M. Mallik
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jayant Bhat
- Regional Research Centre, ICAR-Indian Agricultural Research Institute, Dharwad, India
| | - N. Anuradha
- Acharya N. G. Ranga Agricultural University, Vizianagaram, India
| | - Nirupma Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
8
|
K. Srivastava R, Bollam S, Pujarula V, Pusuluri M, Singh RB, Potupureddi G, Gupta R. Exploitation of Heterosis in Pearl Millet: A Review. PLANTS (BASEL, SWITZERLAND) 2020; 9:E807. [PMID: 32605134 PMCID: PMC7412370 DOI: 10.3390/plants9070807] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023]
Abstract
The phenomenon of heterosis has fascinated plant breeders ever since it was first described by Charles Darwin in 1876 in the vegetable kingdom and later elaborated by George H Shull and Edward M East in maize during 1908. Heterosis is the phenotypic and functional superiority manifested in the F1 crosses over the parents. Various classical complementation mechanisms gave way to the study of the underlying potential cellular and molecular mechanisms responsible for heterosis. In cereals, such as maize, heterosis has been exploited very well, with the development of many single-cross hybrids that revolutionized the yield and productivity enhancements. Pearl millet (Pennisetum glaucum (L.) R. Br.) is one of the important cereal crops with nutritious grains and lower water and energy footprints in addition to the capability of growing in some of the harshest and most marginal environments of the world. In this highly cross-pollinating crop, heterosis was exploited by the development of a commercially viable cytoplasmic male-sterility (CMS) system involving a three-lines breeding system (A-, B- and R-lines). The first set of male-sterile lines, i.e., Tift 23A and Tift18A, were developed in the early 1960s in Tifton, Georgia, USA. These provided a breakthrough in the development of hybrids worldwide, e.g., Tift 23A was extensively used by Punjab Agricultural University (PAU), Ludhiana, India, for the development of the first single-cross pearl millet hybrid, named Hybrid Bajra 1 (HB 1), in 1965. Over the past five decades, the pearl millet community has shown tremendous improvement in terms of cytoplasmic and nuclear diversification of the hybrid parental lines, which led to a progressive increase in the yield and adaptability of the hybrids that were developed, resulting in significant genetic gains. Lately, the whole genome sequencing of Tift 23D2B1 and re-sequencing of circa 1000 genomes by a consortium led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) has been a significant milestone in the development of cutting-edge genetic and genomic resources in pearl millet. Recently, the application of genomics and molecular technologies has provided better insights into genetic architecture and patterns of heterotic gene pools. Development of whole-genome prediction models incorporating heterotic gene pool models, mapped traits and markers have the potential to take heterosis breeding to a new level in pearl millet. This review discusses advances and prospects in various fronts of heterosis for pearl millet.
Collapse
Affiliation(s)
- Rakesh K. Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad TS 502324, India; (S.B.); (V.P.); (M.P.); (R.B.S.); (G.P.)
| | | | | | | | | | | | - Rajeev Gupta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad TS 502324, India; (S.B.); (V.P.); (M.P.); (R.B.S.); (G.P.)
| |
Collapse
|
9
|
Dheer P, Rautela I, Sharma V, Dhiman M, Sharma A, Sharma N, Sharma MD. Evolution in crop improvement approaches and future prospects of molecular markers to CRISPR/Cas9 system. Gene 2020; 753:144795. [PMID: 32450202 DOI: 10.1016/j.gene.2020.144795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023]
Abstract
The advent of genetic selection and genome modification method assure about a real novel reformation in biotechnology and genetic engineering. With the extensive capabilities of molecular markers of them being stable, cost-effective and easy to use, they ultimately become a potent tool for variety of applications such a gene targeting, selection, editing, functional genomics; mainly for the improvisation of commercially important crops. Three main benefits of molecular marker in the field of agriculture and crop improvement programmes first, reduction of the duration of breeding programmes, second, they allow creation of new genetic variation and genetic diversity of plants and third most promising benefit is help in production of engineered plant for disease resistance, or resistance from pathogen and herbicides. This review is anticipated to present an outline how the techniques have been evolved from the simple conventional applications of DNA based molecular markers to highly throughput CRISPR technology and geared the crop yield. Techniques like using Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) systems have revolutionised in the field of genome editing. These have been promptly accepted in both the research and commercial industry. On the whole, the widespread use of molecular markers with their types, their appliance in plant breeding along with the advances in genetic selection and genome editing together being a novel strategy to boost crop yield has been reviewed.
Collapse
Affiliation(s)
- Pallavi Dheer
- Department of Life Sciences, Shri Guru Ram Rai Institute of Technology & Science, Patel Nagar, Dehradun, Uttarakhand, India
| | - Indra Rautela
- Department of Biotechnology, SALS, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Vandana Sharma
- Department of Botany, K.L.DAV (PG) College, Roorkee,Uttarakhand, India
| | - Manjul Dhiman
- Department of Botany, K.L.DAV (PG) College, Roorkee,Uttarakhand, India
| | - Aditi Sharma
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand, India
| | - Nishesh Sharma
- Department of Biotechnology, SALS, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Manish Dev Sharma
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand, India.
| |
Collapse
|
10
|
Srivastava RK, Singh RB, Pujarula VL, Bollam S, Pusuluri M, Chellapilla TS, Yadav RS, Gupta R. Genome-Wide Association Studies and Genomic Selection in Pearl Millet: Advances and Prospects. Front Genet 2020; 10:1389. [PMID: 32180790 PMCID: PMC7059752 DOI: 10.3389/fgene.2019.01389] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/19/2019] [Indexed: 11/13/2022] Open
Abstract
Pearl millet is a climate-resilient, drought-tolerant crop capable of growing in marginal environments of arid and semi-arid regions globally. Pearl millet is a staple food for more than 90 million people living in poverty and can address the triple burden of malnutrition substantially. It remained a neglected crop until the turn of the 21st century, and much emphasis has been placed since then on the development of various genetic and genomic resources for whole-genome scan studies, such as the genome-wide association studies (GWAS) and genomic selection (GS). This was facilitated by the advent of sequencing-based genotyping, such as genotyping-by-sequencing (GBS), RAD-sequencing, and whole-genome re-sequencing (WGRS) in pearl millet. To carry out GWAS and GS, a world association mapping panel called the Pearl Millet inbred Germplasm Association Panel (PMiGAP) was developed at ICRISAT in partnership with Aberystwyth University. This panel consisted of germplasm lines, landraces, and breeding lines from 27 countries and was re-sequenced using the WGRS approach. It has a repository of circa 29 million genome-wide SNPs. PMiGAP has been used to map traits related to drought tolerance, grain Fe and Zn content, nitrogen use efficiency, components of endosperm starch, grain yield, etc. Genomic selection in pearl millet was jump-started recently by WGRS, RAD, and tGBS (tunable genotyping-by-sequencing) approaches for the PMiGAP and hybrid parental lines. Using multi-environment phenotyping of various training populations, initial attempts have been made to develop genomic selection models. This mini review discusses advances and prospects in GWAS and GS for pearl millet.
Collapse
Affiliation(s)
- Rakesh K Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Ram B Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Vijaya Lakshmi Pujarula
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Srikanth Bollam
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Madhu Pusuluri
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Tara Satyavathi Chellapilla
- All India Coordinated Research Project on Pearl Millet (AICRP-PM), Indian Council of Agricultural Research (ICAR), Jodhpur, India
| | - Rattan S Yadav
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, United Kingdom
| | - Rajeev Gupta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
11
|
Structural Characterization of ABCB1, the Gene Underlying the d2 Dwarf Phenotype in Pearl Millet, Cenchrus Americanus (L.) Morrone. G3-GENES GENOMES GENETICS 2019; 9:2497-2509. [PMID: 31208958 PMCID: PMC6686935 DOI: 10.1534/g3.118.200846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pearl millet is an important food crop in arid and semi-arid regions of South Asia and sub-Saharan Africa and is grown in Australia and the United States as a summer fodder crop. The d2 dwarf germplasm has been widely used in the last half-century to develop high-performing pearl millet hybrids. We previously mapped the d2 phenotype to a 1.6 cM region in linkage group (LG) 4 and identified the ABCB1 gene as a candidate underlying the trait. Here, we report the sequence, structure and expression of ABCB1 in tall (D2D2) and d2 dwarf (d2d2) germplasm. The ABCB1 allele in d2 dwarfs differs from that in tall inbreds by the presence of two different high copy transposable elements, one in the coding region and the second located 664 bp upstream of the ATG start codon. These transposons were present in all d2 dwarfs tested that were reported to be of independent origin and absent in the analyzed wild-type tall germplasm. We also compared the expression profile of this gene in different organs of multiple tall and d2 dwarf inbreds, including the near-isogenic inbreds at the d2 locus, Tift 23B (D2D2) and Tift 23DB (d2d2). Heterologous transformation of the tall (Ca_ABCB1) and the d2 dwarf (Ca_abcb1) pearl millet alleles in the Arabidopsis double mutant abcb1abcb19 showed that the pearl millet D2 but not the d2 allele complements the Arabidopsis abcb1 mutation. Our studies also show the importance of the COOH-terminal 22 amino acids of the ABCB1 protein in either protein function or stability.
Collapse
|
12
|
Saini P, Kamboj D, Yadav RC, Yadav NR. SRAPs and EST-SSRs provide useful molecular diversity for targeting drought and salinity tolerance in Indian mustard. Mol Biol Rep 2019; 46:1213-1225. [PMID: 30656491 DOI: 10.1007/s11033-019-04590-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/03/2019] [Indexed: 11/27/2022]
Abstract
Abiotic stress tolerance is one of the target trait in crop breeding under climate change scenario. Selection of suitable gene pools among available germplasm is first requisite for any crop improvement programme. Drought and salinity traits, being polygenic, are most difficult to target. The present investigation aimed at exploring and assessment of the genetic variability in Indian mustard at molecular level. A total of twenty-five genotypes and five related species were used. Sixty-three molecular markers including sequence related amplified polymorphism (SRAP) markers along with twenty-three expressed sequence tag-simple sequence repeats (EST-SSRs) were used for diversity analysis. Thirty-seven SRAPs and 18 EST-SSRs showed amplification producing a total of 423 alleles of which 422 were polymorphic. These markers gave an overall polymorphism of 99.78%, with 99.67% polymorphism in SRAPs and 100% polymorphism in EST-SSRs. The study revealed the genetic relationships among different genotypes of B. juncea and related species which could be used for Indian mustard improvement for targeting drought and salinity tolerance in future. Four SRAP and two EST-SSRs identified unique bands which may be related to abiotic stress tolerance. EST sequence BRMS-040 (IM7) was similar to Brassica and radish sequences related to PR-5 (pathogenesis-related) protein.
Collapse
Affiliation(s)
- Prince Saini
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
- Indian Institutes of Science Education and Research (IISER), Mohali, India
| | - Disha Kamboj
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - R C Yadav
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
- Centre for Plant Biotechnology, CCS HAU Campus, Hisar, India
| | - Neelam R Yadav
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India.
| |
Collapse
|
13
|
|
14
|
Kumar S, Hash CT, Nepolean T, Mahendrakar MD, Satyavathi CT, Singh G, Rathore A, Yadav RS, Gupta R, Srivastava RK. Mapping Grain Iron and Zinc Content Quantitative Trait Loci in an Iniadi-Derived Immortal Population of Pearl Millet. Genes (Basel) 2018; 9:E248. [PMID: 29751669 PMCID: PMC5977188 DOI: 10.3390/genes9050248] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/23/2018] [Accepted: 05/01/2018] [Indexed: 11/27/2022] Open
Abstract
Pearl millet is a climate-resilient nutritious crop requiring low inputs and is capable of giving economic returns in marginal agro-ecologies. In this study, we report large-effect iron (Fe) and zinc (Zn) content quantitative trait loci (QTLs) using diversity array technology (DArT) and simple sequence repeats (SSRs) markers to generate a genetic linkage map using 317 recombinant inbred line (RIL) population derived from the (ICMS 8511-S1-17-2-1-1-B-P03 × AIMP 92901-S1-183-2-2-B-08) cross. The base map [seven linkage groups (LGs)] of 196 loci was 964.2 cM in length (Haldane). AIMP 92901-S1-183-2-2-B-08 is an Iniadi line with high grain Fe and Zn, tracing its origin to the Togolese Republic, West Africa. The content of grain Fe in the RIL population ranged between 20 and 131 ppm (parts per million), and that of Zn from 18 to 110 ppm. QTL analysis revealed a large number of QTLs for high grain iron (Fe) and zinc (Zn) content. A total of 19 QTLs for Fe and Zn were detected, of which 11 were for Fe and eight were for Zn. The portion of the observed phenotypic variance explained by different QTLs for grain Fe and Zn content varied from 9.0 to 31.9% (cumulative 74%) and from 9.4 to 30.4% (cumulative 65%), respectively. Three large-effect QTLs for both minerals were co-mapped in this population, one on LG1 and two on LG7. The favorable QTL alleles of both mineral micronutrients were contributed by the male parent (AIMP 92901-deriv-08). Three putative epistasis interactions were observed for Fe content, while a single digenic interaction was found for Zn content. The reported QTLs may be useful in marker-assisted selection (MAS) programs, in genomic selection (GS) breeding pipelines for seed and restorer parents, and in population improvement programs for pearl millet.
Collapse
Affiliation(s)
- Sushil Kumar
- Plant Biotechnology Centre, SK Rajasthan Agricultural University, Bikaner 334006, India.
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502324, India.
- Centre of Excellence in Biotechnology, Anand Agricultural University, Anand, Gujarat 388110, India.
| | - Charles Tom Hash
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Niamey 8001, Niger.
| | | | - Mahesh D Mahendrakar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502324, India.
| | | | - Govind Singh
- Plant Biotechnology Centre, SK Rajasthan Agricultural University, Bikaner 334006, India.
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502324, India.
| | - Rattan S Yadav
- Crop Genetics, Genomics and Breeding Division, Aberystwyth University, Aberystwyth SY23, UK.
| | - Rajeev Gupta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502324, India.
| | - Rakesh K Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502324, India.
| |
Collapse
|
15
|
Pucher A, Hash CT, Wallace JG, Han S, Leiser WL, Haussmann BIG. Mapping a male-fertility restoration locus for the A 4 cytoplasmic-genic male-sterility system in pearl millet using a genotyping-by-sequencing-based linkage map. BMC PLANT BIOLOGY 2018; 18:65. [PMID: 29665794 PMCID: PMC5905146 DOI: 10.1186/s12870-018-1267-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/12/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Pearl millet (Pennisetum glaucum (L.) R. Br., syn. Cenchrus americanus (L.) R. Br) is an important cereal and fodder crop in hot and arid environments. There is great potential to improve pearl millet production through hybrid breeding. Cytoplasmic male sterility (CMS) and the corresponding nuclear fertility restoration / sterility maintenance genes (Rfs) are essential tools for economic hybrid seed production in pearl millet. Mapping the Rf genes of the A4 CMS system in pearl millet would enable more efficient introgression of both dominant male-fertility restoration alleles (Rf) and their recessive male-sterility maintenance counterparts (rf). RESULTS A high density linkage map based on single nucleotide polymorphism (SNP) markers was generated using an F2 mapping population and genotyping-by-sequencing (GBS). The parents of this cross were 'ICMA 02777' and 'ICMR 08888', which segregate for the A4 Rf locus. The linkage map consists of 460 SNP markers distributed mostly evenly and has a total length of 462 cM. The segregation ratio of male-fertile and male-sterile plants (3:1) based on pollen production (presence/absence) indicated monogenic dominant inheritance of male-fertility restoration. Correspondingly, a major quantitative trait locus (QTL) for pollen production was found on linkage group 2, with cross-validation showing a very high QTL occurrence (97%). The major QTL was confirmed using selfed seed set as phenotypic trait, though with a lower precision. However, these QTL explained only 14.5% and 9.9% of the phenotypic variance of pollen production and selfed seed set, respectively, which was below expectation. Two functional KASP markers were developed for the identified locus. CONCLUSION This study identified a major QTL for male-fertility restoration using a GBS-based linkage map and developed KASP markers which support high-throughput screening of the haploblock. This is a first step toward marker-assisted selection of A4 male-fertility restoration and male-sterility maintenance in pearl millet.
Collapse
Affiliation(s)
- Anna Pucher
- Institute of Plant Breeding, Seed Science and Population Genetics, Fruwirthstr University of Hohenheim, 21, D-70599 Stuttgart, Germany
| | - C. Tom Hash
- ICRISAT Sahelian Center, 12404 Niamey, BP Niger
| | - Jason G. Wallace
- Department of Crop and Soil Sciences, the University of Georgia, 30602 Athens, GA USA
| | - Sen Han
- Institute of Plant Breeding, Seed Science and Population Genetics, Fruwirthstr University of Hohenheim, 21, D-70599 Stuttgart, Germany
| | - Willmar L. Leiser
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr, 21, D-70599 Stuttgart, Germany
| | - Bettina I. G. Haussmann
- Institute of Plant Breeding, Seed Science and Population Genetics, Fruwirthstr University of Hohenheim, 21, D-70599 Stuttgart, Germany
| |
Collapse
|
16
|
Jaiswal S, Antala TJ, Mandavia MK, Chopra M, Jasrotia RS, Tomar RS, Kheni J, Angadi UB, Iquebal MA, Golakia BA, Rai A, Kumar D. Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum (L.) and development of web-genomic resources. Sci Rep 2018; 8:3382. [PMID: 29467369 PMCID: PMC5821703 DOI: 10.1038/s41598-018-21560-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/04/2018] [Indexed: 01/12/2023] Open
Abstract
Pearl millet, (Pennisetum glaucum L.), an efficient (C4) crop of arid/semi-arid regions is known for hardiness. Crop is valuable for bio-fortification combating malnutrition and diabetes, higher caloric value and wider climatic resilience. Limited studies are done in pot-based experiments for drought response at gene-expression level, but field-based experiment mimicking drought by withdrawal of irrigation is still warranted. We report de novo assembly-based transcriptomic signature of drought response induced by irrigation withdrawal in pearl millet. We found 19983 differentially expressed genes, 7595 transcription factors, gene regulatory network having 45 hub genes controlling drought response. We report 34652 putative markers (4192 simple sequence repeats, 12111 SNPs and 6249 InDels). Study reveals role of purine and tryptophan metabolism in ABA accumulation mediating abiotic response in which MAPK acts as major intracellular signal sensing drought. Results were validated by qPCR of 13 randomly selected genes. We report the first web-based genomic resource ( http://webtom.cabgrid.res.in/pmdtdb/ ) which can be used for candidate genes-based SNP discovery programs and trait-based association studies. Looking at climatic change, nutritional and pharmaceutical importance of this crop, present investigation has immense value in understanding drought response in field condition. This is important in germplasm management and improvement in endeavour of pearl millet productivity.
Collapse
Affiliation(s)
- Sarika Jaiswal
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Tushar J Antala
- Department of Biochemistry and Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - M K Mandavia
- Department of Biochemistry and Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Meenu Chopra
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Rahul Singh Jasrotia
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Rukam S Tomar
- Department of Biochemistry and Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Jashminkumar Kheni
- Department of Biochemistry and Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - U B Angadi
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - M A Iquebal
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - B A Golakia
- Department of Biochemistry and Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India.
| |
Collapse
|
17
|
Kumar S, Hash CT, Nepolean T, Satyavathi CT, Singh G, Mahendrakar MD, Yadav RS, Srivastava RK. Mapping QTLs Controlling Flowering Time and Important Agronomic Traits in Pearl Millet. FRONTIERS IN PLANT SCIENCE 2017; 8:1731. [PMID: 29326729 PMCID: PMC5742331 DOI: 10.3389/fpls.2017.01731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/21/2017] [Indexed: 05/29/2023]
Abstract
Pearl millet [Pennisetum glaucum (L.) R. Br.] is a staple crop for the people of arid and semi-arid regions of the world. It is fast gaining importance as a climate resilient nutricereal. Exploiting the bold seeded, semi-dwarf, and early flowering genotypes in pearl millet is a key breeding strategy to enhance yield, adaptability, and for adequate food in resource-poor zones. Genetic variation for agronomic traits of pearl millet inbreds can be used to dissect complex traits through quantitative trait locus (QTL) mapping. This study was undertaken to map a set of agronomically important traits like flowering time (FT), plant height (PH), panicle length (PL), and grain weight (self and open-pollinated seeds) in the recombinant inbred line (RIL) population of ICMB 841-P3 × 863B-P2 cross. Excluding grain weight (open pollinated), heritabilities for FT, PH, PL, grain weight (selfed) were in high to medium range. A total of six QTLs for FT were detected on five chromosomes, 13 QTLs for PH on six chromosomes, 11 QTLs for PL on five chromosomes, and 14 QTLs for 1,000-grain weight (TGW) spanning five chromosomes. One major QTL on LG3 was common for FT and PH. Three major QTLs for PL, one each on LG1, LG2, and LG6B were detected. The large effect QTL for TGW (self) on LG6B had a phenotypic variance (R2) of 62.1%. The R2 for FT, TGW (self), and PL ranged from 22.3 to 59.4%. A total of 21 digenic interactions were discovered for FT (R2 = 18-40%) and PL (R2 = 13-19%). The epistatic effects did not reveal any significant QTL × QTL × environment (QQE) interactions. The mapped QTLs for flowering time and other agronomic traits in present experiment can be used for marker-assisted selection (MAS) and genomic selection (GS) breeding programs.
Collapse
Affiliation(s)
- Sushil Kumar
- Plant Biotechnology Centre, Swami Keshwanand Rajasthan Agricultural University, Bikaner, India
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
- Centre of Excellence in Biotechnology, Anand Agricultural University, Anand, India
| | - C. Tom Hash
- International Crops Research Institute for the Semi-Arid Tropics, Niamey, Niger
| | - T. Nepolean
- Indian Agricultural Research Institute, New Delhi, India
| | | | - Govind Singh
- Plant Biotechnology Centre, Swami Keshwanand Rajasthan Agricultural University, Bikaner, India
| | | | - Rattan S. Yadav
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Rakesh K. Srivastava
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| |
Collapse
|
18
|
Shivhare R, Lata C. Exploration of Genetic and Genomic Resources for Abiotic and Biotic Stress Tolerance in Pearl Millet. FRONTIERS IN PLANT SCIENCE 2017; 7:2069. [PMID: 28167949 PMCID: PMC5253385 DOI: 10.3389/fpls.2016.02069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/27/2016] [Indexed: 05/05/2023]
Abstract
Pearl millet is one of the most important small-grained C4 Panicoid crops with a large genome size (∼2352 Mb), short life cycle and outbreeding nature. It is highly resilient to areas with scanty rain and high temperature. Pearl millet is a nutritionally superior staple crop for people inhabiting hot, drought-prone arid and semi-arid regions of South Asia and Africa where it is widely grown and used for food, hay, silage, bird feed, building material, and fuel. Having excellent nutrient composition and exceptional buffering capacity against variable climatic conditions and pathogen attack makes pearl millet a wonderful model crop for stress tolerance studies. Pearl millet germplasm show a large range of genotypic and phenotypic variations including tolerance to abiotic and biotic stresses. Conventional breeding for enhancing abiotic and biotic stress resistance in pearl millet have met with considerable success, however, in last few years various novel approaches including functional genomics and molecular breeding have been attempted in this crop for augmenting yield under adverse environmental conditions, and there is still a lot of scope for further improvement using genomic tools. Discovery and use of various DNA-based markers such as EST-SSRs, DArT, CISP, and SSCP-SNP in pearl millet not only help in determining population structure and genetic diversity but also prove to be important for developing strategies for crop improvement at a faster rate and greater precision. Molecular marker-based genetic linkage maps and identification of genomic regions determining yield under abiotic stresses particularly terminal drought have paved way for marker-assisted selection and breeding of pearl millet cultivars. Reference collections and marker-assisted backcrossing have also been used to improve biotic stress resistance in pearl millet specifically to downy mildew. Whole genome sequencing of pearl millet genome will give new insights for processing of functional genes and assist in crop improvement programs through molecular breeding approaches. This review thus summarizes the exploration of pearl millet genetic and genomic resources for improving abiotic and biotic stress resistance and development of cultivars superior in stress tolerance.
Collapse
Affiliation(s)
- Radha Shivhare
- National Botanical Research Institute (CSIR)Lucknow, India
- Academy of Scientific and Innovative ResearchNew Delhi, India
| | - Charu Lata
- National Botanical Research Institute (CSIR)Lucknow, India
- Academy of Scientific and Innovative ResearchNew Delhi, India
| |
Collapse
|
19
|
Ghatak A, Chaturvedi P, Weckwerth W. Cereal Crop Proteomics: Systemic Analysis of Crop Drought Stress Responses Towards Marker-Assisted Selection Breeding. FRONTIERS IN PLANT SCIENCE 2017; 8:757. [PMID: 28626463 PMCID: PMC5454074 DOI: 10.3389/fpls.2017.00757] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Sustainable crop production is the major challenge in the current global climate change scenario. Drought stress is one of the most critical abiotic factors which negatively impact crop productivity. In recent years, knowledge about molecular regulation has been generated to understand drought stress responses. For example, information obtained by transcriptome analysis has enhanced our knowledge and facilitated the identification of candidate genes which can be utilized for plant breeding. On the other hand, it becomes more and more evident that the translational and post-translational machinery plays a major role in stress adaptation, especially for immediate molecular processes during stress adaptation. Therefore, it is essential to measure protein levels and post-translational protein modifications to reveal information about stress inducible signal perception and transduction, translational activity and induced protein levels. This information cannot be revealed by genomic or transcriptomic analysis. Eventually, these processes will provide more direct insight into stress perception then genetic markers and might build a complementary basis for future marker-assisted selection of drought resistance. In this review, we survey the role of proteomic studies to illustrate their applications in crop stress adaptation analysis with respect to productivity. Cereal crops such as wheat, rice, maize, barley, sorghum and pearl millet are discussed in detail. We provide a comprehensive and comparative overview of all detected protein changes involved in drought stress in these crops and have summarized existing knowledge into a proposed scheme of drought response. Based on a recent proteome study of pearl millet under drought stress we compare our findings with wheat proteomes and another recent study which defined genetic marker in pearl millet.
Collapse
Affiliation(s)
- Arindam Ghatak
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
| | - Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
- Vienna Metabolomics Center, University of ViennaVienna, Austria
- *Correspondence: Wolfram Weckwerth
| |
Collapse
|
20
|
Kumar S, Hash CT, Thirunavukkarasu N, Singh G, Rajaram V, Rathore A, Senapathy S, Mahendrakar MD, Yadav RS, Srivastava RK. Mapping Quantitative Trait Loci Controlling High Iron and Zinc Content in Self and Open Pollinated Grains of Pearl Millet [ Pennisetum glaucum (L.) R. Br.]. FRONTIERS IN PLANT SCIENCE 2016; 7:1636. [PMID: 27933068 PMCID: PMC5120122 DOI: 10.3389/fpls.2016.01636] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/17/2016] [Indexed: 05/05/2023]
Abstract
Pearl millet is a multipurpose grain/fodder crop of the semi-arid tropics, feeding many of the world's poorest and most undernourished people. Genetic variation among adapted pearl millet inbreds and hybrids suggests it will be possible to improve grain micronutrient concentrations by selective breeding. Using 305 loci, a linkage map was constructed to map QTLs for grain iron [Fe] and zinc [Zn] using replicated samples of 106 pearl millet RILs (F6) derived from ICMB 841-P3 × 863B-P2. The grains of the RIL population were evaluated for Fe and Zn content using atomic absorption spectrophotometer. Grain mineral concentrations ranged from 28.4 to 124.0 ppm for Fe and 28.7 to 119.8 ppm for Zn. Similarly, grain Fe and Zn in open pollinated seeds ranged between 22.4-77.4 and 21.9-73.7 ppm, respectively. Mapping with 305 (96 SSRs; 208 DArT) markers detected seven linkage groups covering 1749 cM (Haldane) with an average intermarker distance of 5.73 cM. On the basis of two environment phenotypic data, two co-localized QTLs for Fe and Zn content on linkage group (LG) 3 were identified by composite interval mapping (CIM). Fe QTL explained 19% phenotypic variation, whereas the Zn QTL explained 36% phenotypic variation. Likewise for open pollinated seeds, the QTL analysis led to the identification of two QTLs for grain Fe content on LG3 and 5, and two QTLs for grain Zn content on LG3 and 7. The total phenotypic variance for Fe and Zn QTLs in open pollinated seeds was 16 and 42%, respectively. Analysis of QTL × QTL and QTL × QTL × environment interactions indicated no major epistasis.
Collapse
Affiliation(s)
- Sushil Kumar
- Plant Biotechnology Centre, Swami Keshwanand Rajasthan Agricultural UniversityBikaner, India; International Crops Research Institute for the Semi-Arid TropicsPatancheru, India; Centre of Excellence in Agricultural Biotechnology, Anand Agricultural UniversityAnand, India
| | - Charles T Hash
- International Crops Research Institute for the Semi-Arid Tropics Niamey, Niger
| | | | - Govind Singh
- Plant Biotechnology Centre, Swami Keshwanand Rajasthan Agricultural University Bikaner, India
| | - Vengaldas Rajaram
- International Crops Research Institute for the Semi-Arid Tropics Patancheru, India
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Tropics Patancheru, India
| | | | - Mahesh D Mahendrakar
- International Crops Research Institute for the Semi-Arid Tropics Patancheru, India
| | - Rattan S Yadav
- Crop Genetics, Genomics and Breeding Division, Aberystwyth University Aberystwyth, UK
| | - Rakesh K Srivastava
- International Crops Research Institute for the Semi-Arid Tropics Patancheru, India
| |
Collapse
|
21
|
Singh AK, Singh R, Subramani R, Kumar R, Wankhede DP. Molecular Approaches to Understand Nutritional Potential of Coarse Cereals. Curr Genomics 2016; 17:177-92. [PMID: 27252585 PMCID: PMC4869005 DOI: 10.2174/1389202917666160202215308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 01/01/2023] Open
Abstract
Coarse grains are important group of crops that constitutes staple food for large population residing primarily in the arid and semi-arid regions of the world. Coarse grains are designated as nutri-cereals as they are rich in essential amino acids, minerals and vitamins. In spite of having several nutritional virtues in coarse grain as mentioned above, there is still scope for improvement in quality parameters such as cooking qualities, modulation of nutritional constituents and reduction or elimination of anti-nutritional factors. Besides its use in traditional cooking, coarse grains have been used mainly in the weaning food preparation and other malted food production. Improvement in quality parameters will certainly increase consumer's preference for coarse grains and increase their demand. The overall genetic gain in quality traits of economic importance in the cultivated varieties will enhance their industrial value and simultaneously increase income of farmers growing these varieties. The urgent step for improvement of quality traits in coarse grains requires a detailed understanding of molecular mechanisms responsible for varied level of different nutritional contents in different genotypes of these crops. In this review we have discussed the progresses made in understanding of coarse grain biology with various omics tool coupled with modern breeding approaches and the current status with regard to our effort towards dissecting traits related to improvement of quality and nutritional constituents of grains.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rajkumar Subramani
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rajesh Kumar
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | | |
Collapse
|
22
|
Wang Z, Liu Y, Shi H, Mo H, Wu F, Lin Y, Gao S, Wang J, Wei Y, Liu C, Zheng Y. Identification and validation of novel low-tiller number QTL in common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:603-12. [PMID: 26804619 DOI: 10.1007/s00122-015-2652-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/08/2015] [Indexed: 05/20/2023]
Abstract
SNP-based QTL mapping provided useful information for novel loci that can be used in breeding programs to control tillering and improve yield in wheat via marker-assisted selection. Tillering is one of the most important agronomic traits affecting biomass and grain yield potential in wheat. Wheat lines with very limited tillering capacity are more productive than free-tillering lines under severe drought conditions. In this study, three recombinant inbred line (RIL) populations were generated and used, having H461, a low-tillering genotype, as a common parent. A linkage map containing 7808 single nucleotide polymorphism loci was constructed on the basis of H461/CN16 RIL population. Three QTL controlling low tillering were identified on Chromosome (Chr.) 2D (Qltn.sicau-2D), Chr. 2B (Qltn.sicau-2B), and Chr. 5A (Qltn.sicau-5A). Qltn.sicau-2D, Qltn.sicau-2B, and Qltn.sicau-5A explained up to 19.1, 14.6, and 9.6 % of the phenotypic variance, respectively. Comparing with previous findings, Qltn.sicau-2D and Qltn.sicau-2B should thus be novel tillering QTL. The effects of these QTL were further validated in two additional RIL populations. Significant effects of Qltn.sicau-2D were detected across all growth stages in different genetic backgrounds, making it an ideal target for breeding programs as well as for further characterization of the gene(s) underlying this locus.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China.
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China.
| | - Haoran Shi
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China.
| | - Hongjun Mo
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China.
| | - Fangkun Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China.
| | - Yu Lin
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China.
| | - Shang Gao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China.
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China.
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China.
| | - Chunji Liu
- CSIRO Agriculture Flagship, 306 Carmody Road, St Lucia, QLD, 4067, Australia.
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China.
| |
Collapse
|
23
|
Hu Z, Mbacké B, Perumal R, Guèye MC, Sy O, Bouchet S, Prasad PVV, Morris GP. Population genomics of pearl millet (Pennisetum glaucum (L.) R. Br.): Comparative analysis of global accessions and Senegalese landraces. BMC Genomics 2015; 16:1048. [PMID: 26654432 PMCID: PMC4674952 DOI: 10.1186/s12864-015-2255-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/30/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Pearl millet is a staple food for people in arid and semi-arid regions of Africa and South Asia due to its high drought tolerance and nutritional qualities. A better understanding of the genomic diversity and population structure of pearl millet germplasm is needed to support germplasm conservation and genetic improvement of this crop. Here we characterized two pearl millet diversity panels, (i) a set of global accessions from Africa, Asia, and the America, and (ii) a collection of landraces from multiple agro-ecological zones in Senegal. RESULTS We identified 83,875 single nucleotide polymorphisms (SNPs) in 500 pearl millet accessions, comprised of 252 global accessions and 248 Senegalese landraces, using genotyping by sequencing (GBS) of PstI-MspI reduced representation libraries. We used these SNPs to characterize genomic diversity and population structure among the accessions. The Senegalese landraces had the highest levels of genetic diversity (π), while accessions from southern Africa and Asia showed lower diversity levels. Principal component analyses and ancestry estimation indicated clear population structure between the Senegalese landraces and the global accessions, and among countries in the global accessions. In contrast, little population structure was observed across in the Senegalese landraces collections. We ordered SNPs on the pearl millet genetic map and observed much faster linkage disequilibrium (LD) decay in Senegalese landraces compared to global accessions. A comparison of pearl millet GBS linkage map with the foxtail millet (Setaria italica) and sorghum (Sorghum bicolor) genomes indicated extensive regions of synteny, as well as some large-scale rearrangements in the pearl millet lineage. CONCLUSIONS We identified 83,875 SNPs as a genomic resource for pearl millet improvement. The high genetic diversity in Senegal relative to other regions of Africa and Asia supports a West African origin of this crop, followed by wide diffusion. The rapid LD decay and lack of confounding population structure along agro-ecological zones in Senegalese pearl millet will facilitate future association mapping studies. Comparative population genomics will provide insights into panicoid crop evolution and support improvement of these climate-resilient crops.
Collapse
Affiliation(s)
- Zhenbin Hu
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
| | - Bassirou Mbacké
- Ecole Nationale Supérieure d'Agriculture, Université de Thiès, Thiès, BP 296, Senegal.
| | - Ramasamy Perumal
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
- Agricultural Research Center-Hays, Kansas State University, Hays, KS, 67601, USA.
| | - Mame Codou Guèye
- Institut Sénégalais de Recherches Agricoles, Thiès, BP 3320, Senegal.
| | - Ousmane Sy
- Institut Sénégalais de Recherches Agricoles, Thiès, BP 3320, Senegal.
| | - Sophie Bouchet
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
| | - P V Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
| | - Geoffrey P Morris
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
24
|
Verma P, Goyal R, Chahota RK, Sharma TR, Abdin MZ, Bhatia S. Construction of a Genetic Linkage Map and Identification of QTLs for Seed Weight and Seed Size Traits in Lentil (Lens culinaris Medik.). PLoS One 2015; 10:e0139666. [PMID: 26436554 PMCID: PMC4593543 DOI: 10.1371/journal.pone.0139666] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 09/16/2015] [Indexed: 01/05/2023] Open
Abstract
Seed weight and seed size both are quantitative traits and have been considered as important components of grain yield, thus identification of quantitative trait loci (QTL) for seed traits in lentil (Lens culinaris) would be beneficial for the improvement of grain yield. Hence the main objective of this study was to identify QTLs for seed traits using an intraspecific mapping population derived from a cross between L. culinaris cv. Precoz (seed weight-5.1g, seed size-5.7mm) and L. culinaris cv. L830 (seed weight-2.2g, seed size-4mm) comprising 126 F8-RILs. For this, two microsatellite genomic libraries enriched for (GA/CT) and (GAA/CTT) motif were constructed which resulted in the development of 501 new genomic SSR markers. Six hundred forty seven SSR markers (including 146 previously published) were screened for parental polymorphism and 219 (33.8%) were found to be polymorphic among the parents. Of these 216 were mapped on seven linkage groups at LOD4.0 spanning 1183.7cM with an average marker density of 5.48cM. Phenotypic data from the RILs was used to identify QTLs for the seed weight and seed size traits by single marker analysis (SMA) followed by composite interval mapping (CIM) which resulted in one QTL each for the 2 traits (qSW and qSS) that were co-localized on LG4 and explained 48.4% and 27.5% of phenotypic variance respectively. The current study would serve as a strong foundation for further validation and fine mapping for utilization in lentil breeding programs.
Collapse
Affiliation(s)
- Priyanka Verma
- National Institute of Plant Genome Research, Post Box No. 10531, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Biotechnology, Faculty of Science, Jamia Hamdard, New Delhi, 110062, India
| | - Richa Goyal
- National Institute of Plant Genome Research, Post Box No. 10531, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - R. K. Chahota
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University, Palampur, 176 062, India
| | - Tilak R. Sharma
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University, Palampur, 176 062, India
| | - M. Z. Abdin
- Department of Biotechnology, Faculty of Science, Jamia Hamdard, New Delhi, 110062, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Post Box No. 10531, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
25
|
Abstract
Molecular markers, due to their stability, cost-effectiveness and ease of use provide an immensely popular tool for a variety of applications including genome mapping, gene tagging, genetic diversity diversity, phylogenetic analysis and forensic investigations. In the last three decades, a number of molecular marker techniques have been developed and exploited worldwide in different systems. However, only a handful of these techniques, namely RFLPs, RAPDs, AFLPs, ISSRs, SSRs and SNPs have received global acceptance. A recent revolution in DNA sequencing techniques has taken the discovery and application of molecular markers to high-throughput and ultrahigh-throughput levels. Although, the choice of marker will obviously depend on the targeted use, microsatellites, SNPs and genotyping by sequencing (GBS) largely fulfill most of the user requirements. Further, modern transcriptomic and functional markers will lead the ventures onto high-density genetic map construction, identification of QTLs, breeding and conservation strategies in times to come in combination with other high throughput techniques. This review presents an overview of different marker technologies and their variants with a comparative account of their characteristic features and applications.
Collapse
Affiliation(s)
- Atul Grover
- a Biotechnology Division , Defence Institute of Bio Energy Research , Goraparao, P.O. Arjunpur , Haldwani , Uttarakhand , India and
| | - P C Sharma
- b University School of Biotechnology, Guru Gobind Singh Indraprastha University , Dwarka Sec. 16C , New Delhi , India
| |
Collapse
|
26
|
Association analysis of SSR markers with phenology, grain, and Stover-yield related traits in pearl millet (Pennisetum glaucum (L.) R. Br.). ScientificWorldJournal 2014; 2014:562327. [PMID: 24526909 PMCID: PMC3910278 DOI: 10.1155/2014/562327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/23/2013] [Indexed: 11/18/2022] Open
Abstract
Pearl millet is a staple food crop for millions of people living in the arid and semi-arid tropics. Molecular markers have been used to identify genomic regions linked to traits of interest by conventional QTL mapping and association analysis. Phenotypic recurrent selection is known to increase frequencies of favorable alleles and decrease those unfavorable for the traits under selection. This study was undertaken (i) to quantify the response to recurrent selection for phenotypic traits during breeding of the pearl millet open-pollinated cultivar “CO (Cu) 9” and its four immediate progenitor populations and (ii) to assess the ability of simple sequence repeat (SSR) marker alleles to identify genomic regions linked to grain and stover yield-related traits in these populations by association analysis. A total of 159 SSR alleles were detected across 34 selected single-copy SSR loci. SSR marker data revealed presence of subpopulations. Association analysis identified genomic regions associated with flowering time located on linkage group (LG) 6 and plant height on LG4, LG6, and LG7. Marker alleles on LG6 were associated with stover yield, and those on LG7 were associated with grain yield. Findings of this study would give an opportunity to develop marker-assisted recurrent selection (MARS) or marker-assisted population improvement (MAPI) strategies to increase the rate of gain for pearl millet populations undergoing recurrent selection.
Collapse
|
27
|
Pearl millet [Pennisetum glaucum (L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs. BMC Genomics 2013; 14:159. [PMID: 23497368 PMCID: PMC3606598 DOI: 10.1186/1471-2164-14-159] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 02/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pearl millet [Pennisetum glaucum (L.) R. Br.] is a widely cultivated drought- and high-temperature tolerant C4 cereal grown under dryland, rainfed and irrigated conditions in drought-prone regions of the tropics and sub-tropics of Africa, South Asia and the Americas. It is considered an orphan crop with relatively few genomic and genetic resources. This study was undertaken to increase the EST-based microsatellite marker and genetic resources for this crop to facilitate marker-assisted breeding. RESULTS Newly developed EST-SSR markers (99), along with previously mapped EST-SSR (17), genomic SSR (53) and STS (2) markers, were used to construct linkage maps of four F7 recombinant inbred populations (RIP) based on crosses ICMB 841-P3 × 863B-P2 (RIP A), H 77/833-2 × PRLT 2/89-33 (RIP B), 81B-P6 × ICMP 451-P8 (RIP C) and PT 732B-P2 × P1449-2-P1 (RIP D). Mapped loci numbers were greatest for RIP A (104), followed by RIP B (78), RIP C (64) and RIP D (59). Total map lengths (Haldane) were 615 cM, 690 cM, 428 cM and 276 cM, respectively. A total of 176 loci detected by 171 primer pairs were mapped among the four crosses. A consensus map of 174 loci (899 cM) detected by 169 primer pairs was constructed using MergeMap to integrate the individual linkage maps. Locus order in the consensus map was well conserved for nearly all linkage groups. Eighty-nine EST-SSR marker loci from this consensus map had significant BLAST hits (top hits with e-value ≤ 1E-10) on the genome sequences of rice, foxtail millet, sorghum, maize and Brachypodium with 35, 88, 58, 48 and 38 loci, respectively. CONCLUSION The consensus map developed in the present study contains the largest set of mapped SSRs reported to date for pearl millet, and represents a major consolidation of existing pearl millet genetic mapping information. This study increased numbers of mapped pearl millet SSR markers by >50%, filling important gaps in previously published SSR-based linkage maps for this species and will greatly facilitate SSR-based QTL mapping and applied marker-assisted selection programs.
Collapse
|
28
|
Genomic characterization of DArT markers based on high-density linkage analysis and physical mapping to the Eucalyptus genome. PLoS One 2012; 7:e44684. [PMID: 22984541 PMCID: PMC3439404 DOI: 10.1371/journal.pone.0044684] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/06/2012] [Indexed: 01/07/2023] Open
Abstract
Diversity Arrays Technology (DArT) provides a robust, high throughput, cost-effective method to query thousands of sequence polymorphisms in a single assay. Despite the extensive use of this genotyping platform for numerous plant species, little is known regarding the sequence attributes and genome-wide distribution of DArT markers. We investigated the genomic properties of the 7,680 DArT marker probes of a Eucalyptus array, by sequencing them, constructing a high density linkage map and carrying out detailed physical mapping analyses to the Eucalyptus grandis reference genome. A consensus linkage map with 2,274 DArT markers anchored to 210 microsatellites and a framework map, with improved support for ordering, displayed extensive collinearity with the genome sequence. Only 1.4 Mbp of the 75 Mbp of still unplaced scaffold sequence was captured by 45 linkage mapped but physically unaligned markers to the 11 main Eucalyptus pseudochromosomes, providing compelling evidence for the quality and completeness of the current Eucalyptus genome assembly. A highly significant correspondence was found between the locations of DArT markers and predicted gene models, while most of the 89 DArT probes unaligned to the genome correspond to sequences likely absent in E. grandis, consistent with the pan-genomic feature of this multi-Eucalyptus species DArT array. These comprehensive linkage-to-physical mapping analyses provide novel data regarding the genomic attributes of DArT markers in plant genomes in general and for Eucalyptus in particular. DArT markers preferentially target the gene space and display a largely homogeneous distribution across the genome, thereby providing superb coverage for mapping and genome-wide applications in breeding and diversity studies. Data reported on these ubiquitous properties of DArT markers will be particularly valuable to researchers working on less-studied crop species who already count on DArT genotyping arrays but for which no reference genome is yet available to allow such detailed characterization.
Collapse
|
29
|
|
30
|
Rodríguez-Suárez C, Giménez MJ, Gutiérrez N, Avila CM, Machado A, Huttner E, Ramírez MC, Martín AC, Castillo A, Kilian A, Martín A, Atienza SG. Development of wild barley (Hordeum chilense)-derived DArT markers and their use into genetic and physical mapping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:713-22. [PMID: 22048641 DOI: 10.1007/s00122-011-1741-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/18/2011] [Indexed: 05/24/2023]
Abstract
Diversity arrays technology (DArT) genomic libraries were developed from H. chilense accessions to support robust genotyping of this species and a novel crop comprising H. chilense genome (e.g., tritordeums). Over 11,000 DArT clones were obtained using two complexity reduction methods. A subset of 2,209 DArT markers was identified on the arrays containing these clones as polymorphic between parents and segregating in a population of 92 recombinant inbred lines (RIL) developed from the cross between H. chilense accessions H1 and H7. Using the segregation data a high-density map of 1,503 cM was constructed with average inter-bin density of 2.33 cM. A subset of DArT markers was also mapped physically using a set of wheat-H. chilense chromosome addition lines. It allowed the unambiguous assignment of linkage groups to chromosomes. Four segregation distortion regions (SDRs) were found on the chromosomes 2H(ch), 3H(ch) and 5H(ch) in agreement with previous findings in barley. The new map improves the genome coverage of previous H. chilense maps. H. chilense-derived DArT markers will enable further genetic studies in ongoing projects on hybrid wheat, seed carotenoid content improvement or tritordeum breeding program. Besides, the genetic map reported here will be very useful as the basis to develop comparative genomics studies with barley and model species.
Collapse
Affiliation(s)
- C Rodríguez-Suárez
- Instituto de Agricultura Sostenible, IAS-CSIC, Apdo. 4084, 14080, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sliwka J, Jakuczun H, Chmielarz M, Hara-Skrzypiec A, Tomczyńska I, Kilian A, Zimnoch-Guzowska E. Late blight resistance gene from Solanum ruiz-ceballosii is located on potato chromosome X and linked to violet flower colour. BMC Genet 2012; 13:11. [PMID: 22369123 PMCID: PMC3347998 DOI: 10.1186/1471-2156-13-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 02/27/2012] [Indexed: 11/10/2022] Open
Abstract
Background Phytophthora infestans (Mont.) de Bary, the causal organism of late blight, is economically the most important pathogen of potato and resistance against it has been one of the primary goals of potato breeding. Some potentially durable, broad-spectrum resistance genes against this disease have been described recently. However, to obtain durable resistance in potato cultivars more genes are needed to be identified to realize strategies such as gene pyramiding or use of genotype mixtures based on diverse genes. Results A major resistance gene, Rpi-rzc1, against P. infestans originating from Solanum ruiz-ceballosii was mapped to potato chromosome X using Diversity Array Technology (DArT) and sequence-specific PCR markers. The gene provided high level of resistance in both detached leaflet and tuber slice tests. It was linked, at a distance of 3.4 cM, to violet flower colour most likely controlled by the previously described F locus. The marker-trait association with the closest marker, violet flower colour, explained 87.1% and 85.7% of variance, respectively, for mean detached leaflet and tuber slice resistance. A genetic linkage map that consisted of 1,603 DArT markers and 48 reference sequence-specific PCR markers of known chromosomal localization with a total map length of 1204.8 cM was constructed. Conclusions The Rpi-rzc1 gene described here can be used for breeding potatoes resistant to P. infestans and the breeding process can be expedited using the molecular markers and the phenotypic marker, violet flower colour, identified in this study. Knowledge of the chromosomal localization of Rpi-rzc1 can be useful for design of gene pyramids. The genetic linkage map constructed in this study contained 1,149 newly mapped DArT markers and will be a valuable resource for future mapping projects using this technology in the Solanum genus.
Collapse
Affiliation(s)
- Jadwiga Sliwka
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów Research Centre, Młochów, Poland.
| | | | | | | | | | | | | |
Collapse
|
32
|
Thudi M, Bohra A, Nayak SN, Varghese N, Shah TM, Penmetsa RV, Thirunavukkarasu N, Gudipati S, Gaur PM, Kulwal PL, Upadhyaya HD, KaviKishor PB, Winter P, Kahl G, Town CD, Kilian A, Cook DR, Varshney RK. Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1,291 marker loci for chickpea (Cicer arietinum L.). PLoS One 2011; 6:e27275. [PMID: 22102885 PMCID: PMC3216927 DOI: 10.1371/journal.pone.0027275] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/12/2011] [Indexed: 12/17/2022] Open
Abstract
Chickpea (Cicer arietinum L.) is the third most important cool season food legume, cultivated in arid and semi-arid regions of the world. The goal of this study was to develop novel molecular markers such as microsatellite or simple sequence repeat (SSR) markers from bacterial artificial chromosome (BAC)-end sequences (BESs) and diversity arrays technology (DArT) markers, and to construct a high-density genetic map based on recombinant inbred line (RIL) population ICC 4958 (C. arietinum)×PI 489777 (C. reticulatum). A BAC-library comprising 55,680 clones was constructed and 46,270 BESs were generated. Mining of these BESs provided 6,845 SSRs, and primer pairs were designed for 1,344 SSRs. In parallel, DArT arrays with ca. 15,000 clones were developed, and 5,397 clones were found polymorphic among 94 genotypes tested. Screening of newly developed BES-SSR markers and DArT arrays on the parental genotypes of the RIL mapping population showed polymorphism with 253 BES-SSR markers and 675 DArT markers. Segregation data obtained for these polymorphic markers and 494 markers data compiled from published reports or collaborators were used for constructing the genetic map. As a result, a comprehensive genetic map comprising 1,291 markers on eight linkage groups (LGs) spanning a total of 845.56 cM distance was developed (http://cmap.icrisat.ac.in/cmap/sm/cp/thudi/). The number of markers per linkage group ranged from 68 (LG 8) to 218 (LG 3) with an average inter-marker distance of 0.65 cM. While the developed resource of molecular markers will be useful for genetic diversity, genetic mapping and molecular breeding applications, the comprehensive genetic map with integrated BES-SSR markers will facilitate its anchoring to the physical map (under construction) to accelerate map-based cloning of genes in chickpea and comparative genome evolution studies in legumes.
Collapse
Affiliation(s)
- Mahendar Thudi
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Abhishek Bohra
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Spurthi N. Nayak
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Nicy Varghese
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Trushar M. Shah
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - R. Varma Penmetsa
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | | | - Srivani Gudipati
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Pooran M. Gaur
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Pawan L. Kulwal
- State Level Biotechnology Centre, Mahatma Phule Agricultural University, Ahmednagar, India
| | - Hari D. Upadhyaya
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | | | - Günter Kahl
- Molecular BioSciences, University of Frankfurt, Frankfurt am Main, Germany
| | - Christopher D. Town
- J. Craig Venter Institute (JCVI), Rockville, Maryland, United States of America
| | | | - Douglas R. Cook
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Rajeev K. Varshney
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- CGIAR Generation Challenge Programme (GCP), CIMMYT, Mexico DF, Mexico
- * E-mail:
| |
Collapse
|