1
|
Ahmed MIY, Gorafi YSA, Kamal NM, Balla MY, Tahir ISA, Zheng L, Kawakami N, Tsujimoto H. Mining Aegilops tauschii genetic diversity in the background of bread wheat revealed a novel QTL for seed dormancy. FRONTIERS IN PLANT SCIENCE 2023; 14:1270925. [PMID: 38107013 PMCID: PMC10723804 DOI: 10.3389/fpls.2023.1270925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Due to the low genetic diversity in the current wheat germplasm, gene mining from wild relatives is essential to develop new wheat cultivars that are more resilient to the changing climate. Aegilops tauschii, the D-genome donor of bread wheat, is a great gene source for wheat breeding; however, identifying suitable genes from Ae. tauschii is challenging due to the different morphology and the wide intra-specific variation within the species. In this study, we developed a platform for the systematic evaluation of Ae. tauschii traits in the background of the hexaploid wheat cultivar 'Norin 61' and thus for the identification of QTLs and genes. To validate our platform, we analyzed the seed dormancy trait that confers resistance to preharvest sprouting. We used a multiple synthetic derivative (MSD) population containing a genetic diversity of 43 Ae. tauschii accessions representing the full range of the species. Our results showed that only nine accessions in the population provided seed dormancy, and KU-2039 from Afghanistan had the highest level of seed dormancy. Therefore, 166 backcross inbred lines (BILs) were developed by crossing the synthetic wheat derived from KU-2039 with 'Norin 61' as the recurrent parent. The QTL mapping revealed one novel QTL, Qsd.alrc.5D, associated with dormancy explaining 41.7% of the phenotypic variation and other five unstable QTLs, two of which have already been reported. The Qsd.alrc.5D, identified for the first time within the natural variation of wheat, would be a valuable contribution to breeding after appropriate validation. The proposed platform that used the MSD population derived from the diverse Ae. tauschii gene pool and recombinant inbred lines proved to be a valuable platform for mining new and important QTLs or alleles, such as the novel seed dormancy QTL identified here. Likewise, such a platform harboring genetic diversity from wheat wild relatives could be a useful source for mining agronomically important traits, especially in the era of climate change and the narrow genetic diversity within the current wheat germplasm.
Collapse
Affiliation(s)
| | - Yasir Serag Alnor Gorafi
- International Platform for Dryland Research and Education, Tottori University, Tottori, Japan
- Gezira Research Station, Agricultural Research Corporation (ARC), Wad-Medani, Sudan
| | - Nasrein Mohamed Kamal
- Gezira Research Station, Agricultural Research Corporation (ARC), Wad-Medani, Sudan
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Mohammed Yousif Balla
- Gezira Research Station, Agricultural Research Corporation (ARC), Wad-Medani, Sudan
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Izzat Sidahmed Ali Tahir
- Gezira Research Station, Agricultural Research Corporation (ARC), Wad-Medani, Sudan
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Lipeng Zheng
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Naoto Kawakami
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | | |
Collapse
|
2
|
Kaur G, Toora PK, Tuan PA, McCartney CA, Izydorczyk MS, Badea A, Ayele BT. Genome-wide association and targeted transcriptomic analyses reveal loci and candidate genes regulating preharvest sprouting in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:202. [PMID: 37642745 DOI: 10.1007/s00122-023-04449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
KEY MESSAGE Genome-wide association study of diverse barley genotypes identified loci, single nucleotide polymorphisms and candidate genes that control seed dormancy and therefore enhance resistance to preharvest sprouting. Preharvest sprouting (PHS) causes significant yield and quality loss in barley and it is strongly associated with the level of seed dormancy. This study performed genome-wide association study using a collection of 255 diverse barley genotypes grown over four environments to identify loci controlling dormancy/PHS. Our phenotypic analysis revealed substantial variation in germination index/dormancy levels among the barley genotypes. Marker-trait association and linkage disequilibrium (LD) decay analyses identified 16 single nucleotide polymorphisms (SNPs) and two QTLs associated with dormancy/PHS, respectively, on chromosome 3H and 5H explaining 6.9% to 11.1% of the phenotypic variation. QTL.5H consist of 14 SNPs of which 12 SNPs satisfy the FDR threshold of α = 0.05, and it may represent the SD2 locus. The QTL on 3H consists of one SNP that doesn't satisfy FDR (α = 0.05). Genes harbouring the significant SNPs were analyzed for their expression pattern in the seeds of selected dormant and non-dormant genotypes. Of these genes, HvRCD1, HvPSRP1 and HvF3H exhibited differential expression between the dormant and non-dormant seed samples, suggesting their role in controlling seed dormancy/PHS. Three SNPs located within the differentially expressed genes residing in QTL.5H explained considerable phenotypic variation (≥ 8.6%), suggesting their importance in regulating PHS resistance. Analysis of the SNP marker data in QTL.5H identified a haplotype for PHS resistance. Overall, the study identified loci, SNPs and candidate genes that control dormancy and therefore play important roles in enhancing PHS resistance in barley through marker-assisted breeding.
Collapse
Affiliation(s)
- Gurkamal Kaur
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Parneet K Toora
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Pham Anh Tuan
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Curt A McCartney
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Marta S Izydorczyk
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, MB, R3C 3G8, Canada
| | - Ana Badea
- Brandon Research and Development Center, Agriculture and Agri-Food Canada, Brandon, MB, R7A 5Y3, Canada
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
3
|
Patwa N, Penning BW. Genetics of a diverse soft winter wheat population for pre-harvest sprouting, agronomic, and flour quality traits. FRONTIERS IN PLANT SCIENCE 2023; 14:1137808. [PMID: 37346135 PMCID: PMC10280069 DOI: 10.3389/fpls.2023.1137808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023]
Abstract
Soft winter wheat has been adapted to the north-central, north-western, and south-central United States over hundreds of years for optimal yield, height, heading date, and pathogen and pest resistance. Environmental factors like weather affect abiotic traits such as pre-harvest sprouting resistance. However, pre-harvest sprouting has rarely been a target for breeding. Owing to changing weather patterns from climate change, pre-harvest sprouting resistance is needed to prevent significant crop losses not only in the United States, but worldwide. Twenty-two traits including age of breeding line as well as agronomic, flour quality, and pre-harvest sprouting traits were studied in a population of 188 lines representing genetic diversity over 200 years of soft winter wheat breeding. Some traits were correlated with one another by principal components analysis and Pearson's correlations. A genome-wide association study using 1,978 markers uncovered a total of 102 regions encompassing 226 quantitative trait nucleotides. Twenty-six regions overlapped multiple traits with common significant markers. Many of these traits were also found to be correlated by Pearson's correlation and principal components analyses. Most pre-harvest sprouting regions were not co-located with agronomic traits and thus useful for crop improvement against climate change without affecting crop performance. Six different genome-wide association statistical models (GLM, MLM, MLMM, FarmCPU, BLINK, and SUPER) were utilized to search for reasonable models to analyze soft winter wheat populations with increased markers and/or breeding lines going forward. Some flour quality and agronomic traits seem to have been selected over time, but not pre-harvest sprouting. It appears possible to select for pre-harvest sprouting resistance without impacting flour quality or the agronomic value of soft winter wheat.
Collapse
|
4
|
Chang C, Zhang H, Lu J, Si H, Ma C. Genetic Improvement of Wheat with Pre-Harvest Sprouting Resistance in China. Genes (Basel) 2023; 14:genes14040837. [PMID: 37107595 PMCID: PMC10137347 DOI: 10.3390/genes14040837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Wheat pre-harvest sprouting (PHS) refers to the germination of seeds directly on the spike due to rainy weather before harvest, which often results in yield reduction, quality deterioration, and seed value loss. In this study, we reviewed the research progress in the quantitative trait loci (QTL) detection and gene excavation related to PHS resistance in wheat. Simultaneously, the identification and creation of germplasm resources and the breeding of wheat with PHS resistance were expounded in this study. Furthermore, we also discussed the prospect of molecular breeding during genetic improvement of PHS-resistant wheat.
Collapse
|
5
|
Mir ZA, Chandra T, Saharan A, Budhlakoti N, Mishra DC, Saharan MS, Mir RR, Singh AK, Sharma S, Vikas VK, Kumar S. Recent advances on genome-wide association studies (GWAS) and genomic selection (GS); prospects for Fusarium head blight research in Durum wheat. Mol Biol Rep 2023; 50:3885-3901. [PMID: 36826681 DOI: 10.1007/s11033-023-08309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/26/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE Wheat is an important cereal crop that is cultivated in different parts of the world. The biotic stresses are the major concerns in wheat-growing nations and are responsible for production loss globally. The change in climate dynamics makes the pathogen more virulent in foothills and tropical regions. There is growing concern about FHB in major wheat-growing nations, and until now, there has been no known potential source of resistance identified in wheat germplasm. The plant pathogen interaction activates the cascade of pathways, genes, TFs, and resistance genes. Pathogenesis-related genes' role in disease resistance is functionally validated in different plant systems. Similarly, Genomewide association Studies (GWAS) and Genomic selection (GS) are promising tools and have led to the discovery of resistance genes, genomic regions, and novel markers. Fusarium graminearum produces deoxynivalenol (DON) mycotoxins in wheat kernels, affecting wheat productivity globally. Modern technology now allows for detecting and managing DON toxin to reduce the risk to humans and animals. This review offers a comprehensive overview of the roles played by GWAS and Genomic selection (GS) in the identification of new genes, genetic variants, molecular markers and DON toxin management strategies. METHODS The review offers a comprehensive and in-depth analysis of the function of Fusarium graminearum virulence factors in Durum wheat. The role of GWAS and GS for Fusarium Head Blight (FHB) resistance has been well described. This paper provides a comprehensive description of the various statistical models that are used in GWAS and GS. In this review, we look at how different detection methods have been used to analyze and manage DON toxin exposure. RESULTS This review highlights the role of virulent genes in Fusarium disease establishment. The role of genome-based selection offers the identification of novel QTLs in resistant wheat germplasm. The role of GWAS and GS selection has minimized the use of population development through breeding technology. Here, we also emphasized the function of recent technological developments in minimizing the impact of DON toxins and their implications for food safety.
Collapse
Affiliation(s)
- Zahoor Ahmad Mir
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Tilak Chandra
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Anurag Saharan
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Neeraj Budhlakoti
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - D C Mishra
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - M S Saharan
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-Kashmir), Srinagar, Jammu Kashmir, 190025, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Soumya Sharma
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - V K Vikas
- ICAR- Indian Agricultural Research Institute, Regional Station, Wellington, The Nilgiris, Tamilnadu, 643231, India.
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India.
| |
Collapse
|
6
|
Liu G, Mullan D, Zhang A, Liu H, Liu D, Yan G. Identification of KASP markers and putative genes for pre-harvest sprouting resistance in common wheat (Triticum aestivum L.). THE CROP JOURNAL 2022. [DOI: 10.1016/j.cj.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
7
|
Rabieyan E, Bihamta MR, Moghaddam ME, Mohammadi V, Alipour H. Genome-wide association mapping and genomic prediction for pre‑harvest sprouting resistance, low α-amylase and seed color in Iranian bread wheat. BMC PLANT BIOLOGY 2022; 22:300. [PMID: 35715737 PMCID: PMC9204952 DOI: 10.1186/s12870-022-03628-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pre-harvest sprouting (PHS) refers to a phenomenon, in which the physiologically mature seeds are germinated on the spike before or during the harvesting practice owing to high humidity or prolonged period of rainfall. Pre-harvest sprouting (PHS) remarkably decreases seed quality and yield in wheat; hence it is imperative to uncover genomic regions responsible for PHS tolerance to be used in wheat breeding. A genome-wide association study (GWAS) was carried out using 298 bread wheat landraces and varieties from Iran to dissect the genomic regions of PHS tolerance in a well-irrigated environment. Three different approaches (RRBLUP, GBLUP and BRR) were followed to estimate prediction accuracies in wheat genomic selection. RESULTS Genomes B, A, and D harbored the largest number of significant marker pairs (MPs) in both landraces (427,017, 328,006, 92,702 MPs) and varieties (370,359, 266,708, 63,924 MPs), respectively. However, the LD levels were found the opposite, i.e., genomes D, A, and B have the highest LD, respectively. Association mapping by using GLM and MLM models resulted in 572 and 598 marker-trait associations (MTAs) for imputed SNPs (- log10 P > 3), respectively. Gene ontology exhibited that the pleitropic MPs located on 1A control seed color, α-Amy activity, and PHS. RRBLUP model indicated genetic effects better than GBLUP and BRR, offering a favorable tool for wheat genomic selection. CONCLUSIONS Gene ontology exhibited that the pleitropic MPs located on 1A can control seed color, α-Amy activity, and PHS. The verified markers in the current work can provide an opportunity to clone the underlying QTLs/genes, fine mapping, and genome-assisted selection.Our observations uncovered key MTAs related to seed color, α-Amy activity, and PHS that can be exploited in the genome-mediated development of novel varieties in wheat.
Collapse
Affiliation(s)
- Ehsan Rabieyan
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | - Mohammad Reza Bihamta
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | | | - Valiollah Mohammadi
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | - Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
8
|
White J, Sharma R, Balding D, Cockram J, Mackay IJ. Genome-wide association mapping of Hagberg falling number, protein content, test weight, and grain yield in U.K. wheat. CROP SCIENCE 2022; 62:965-981. [PMID: 35915786 PMCID: PMC9314726 DOI: 10.1002/csc2.20692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 12/14/2021] [Indexed: 05/12/2023]
Abstract
Association mapping using crop cultivars allows identification of genetic loci of direct relevance to breeding. Here, 150 U.K. wheat (Triticum aestivum L.) cultivars genotyped with 23,288 single nucleotide polymorphisms (SNPs) were used for genome-wide association studies (GWAS) using historical phenotypic data for grain protein content, Hagberg falling number (HFN), test weight, and grain yield. Power calculations indicated experimental design would enable detection of quantitative trait loci (QTL) explaining ≥20% of the variation (PVE) at a relatively high power of >80%, falling to 40% for detection of a SNP with an R2 ≥ .5 with the same QTL. Genome-wide association studies identified marker-trait associations for all four traits. For HFN (h 2 = .89), six QTL were identified, including a major locus on chromosome 7B explaining 49% PVE and reducing HFN by 44 s. For protein content (h 2 = 0.86), 10 QTL were found on chromosomes 1A, 2A, 2B, 3A, 3B, and 6B, together explaining 48.9% PVE. For test weight, five QTL were identified (one on 1B and four on 3B; 26.3% PVE). Finally, 14 loci were identified for grain yield (h 2 = 0.95) on eight chromosomes (1A, 2A, 2B, 2D, 3A, 5B, 6A, 6B; 68.1% PVE), of which five were located within 16 Mbp of genetic regions previously identified as under breeder selection in European wheat. Our study demonstrates the utility of exploiting historical crop datasets, identifying genomic targets for independent validation, and ultimately for wheat genetic improvement.
Collapse
Affiliation(s)
- Jon White
- Genetics and Breeding Dep.NIAB93 Lawrence Weaver RoadCambridge, CB3 0LEUK
- Institute of GeneticsUniv. College LondonLondon, WC1E 6BTUK
| | - Rajiv Sharma
- Scotland's Rural College (SRUC)Kings Buildings, West Mains RoadEdinburgh, EH9 3JGUK
| | - David Balding
- Institute of GeneticsUniv. College LondonLondon, WC1E 6BTUK
- Current address: Melbourne Integrative GenomicsUniv. of MelbourneMelbourneAustralia
| | - James Cockram
- Genetics and Breeding Dep.NIAB93 Lawrence Weaver RoadCambridge, CB3 0LEUK
| | - Ian J. Mackay
- Scotland's Rural College (SRUC)Kings Buildings, West Mains RoadEdinburgh, EH9 3JGUK
| |
Collapse
|
9
|
Srivastava RK, Yadav OP, Kaliamoorthy S, Gupta SK, Serba DD, Choudhary S, Govindaraj M, Kholová J, Murugesan T, Satyavathi CT, Gumma MK, Singh RB, Bollam S, Gupta R, Varshney RK. Breeding Drought-Tolerant Pearl Millet Using Conventional and Genomic Approaches: Achievements and Prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:781524. [PMID: 35463391 PMCID: PMC9021881 DOI: 10.3389/fpls.2022.781524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/11/2022] [Indexed: 06/03/2023]
Abstract
Pearl millet [Pennisetum glaucum (L.) R. Br.] is a C4 crop cultivated for its grain and stover in crop-livestock-based rain-fed farming systems of tropics and subtropics in the Indian subcontinent and sub-Saharan Africa. The intensity of drought is predicted to further exacerbate because of looming climate change, necessitating greater focus on pearl millet breeding for drought tolerance. The nature of drought in different target populations of pearl millet-growing environments (TPEs) is highly variable in its timing, intensity, and duration. Pearl millet response to drought in various growth stages has been studied comprehensively. Dissection of drought tolerance physiology and phenology has helped in understanding the yield formation process under drought conditions. The overall understanding of TPEs and differential sensitivity of various growth stages to water stress helped to identify target traits for manipulation through breeding for drought tolerance. Recent advancement in high-throughput phenotyping platforms has made it more realistic to screen large populations/germplasm for drought-adaptive traits. The role of adapted germplasm has been emphasized for drought breeding, as the measured performance under drought stress is largely an outcome of adaptation to stress environments. Hybridization of adapted landraces with selected elite genetic material has been stated to amalgamate adaptation and productivity. Substantial progress has been made in the development of genomic resources that have been used to explore genetic diversity, linkage mapping (QTLs), marker-trait association (MTA), and genomic selection (GS) in pearl millet. High-throughput genotyping (HTPG) platforms are now available at a low cost, offering enormous opportunities to apply markers assisted selection (MAS) in conventional breeding programs targeting drought tolerance. Next-generation sequencing (NGS) technology, micro-environmental modeling, and pearl millet whole genome re-sequence information covering circa 1,000 wild and cultivated accessions have helped to greater understand germplasm, genomes, candidate genes, and markers. Their application in molecular breeding would lead to the development of high-yielding and drought-tolerant pearl millet cultivars. This review examines how the strategic use of genetic resources, modern genomics, molecular biology, and shuttle breeding can further enhance the development and delivery of drought-tolerant cultivars.
Collapse
Affiliation(s)
- Rakesh K. Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - O. P. Yadav
- Indian Council of Agricultural Research-Central Arid Zone Research Institute, Jodhpur, India
| | - Sivasakthi Kaliamoorthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - S. K. Gupta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Desalegn D. Serba
- United States Department of Agriculture-Agriculture Research Service (ARS), U.S. Arid Land Agricultural Research Center, Maricopa, AZ, United States
| | - Sunita Choudhary
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Mahalingam Govindaraj
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Jana Kholová
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Tharanya Murugesan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - C. Tara Satyavathi
- Indian Council of Agricultural Research – All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - Murali Krishna Gumma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Ram B. Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Srikanth Bollam
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Rajeev Gupta
- United States Department of Agriculture-Agriculture Research Service (ARS), Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- State Agricultural Biotechnology Centre, Centre for Crop & Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
10
|
Ma Y, Chhapekar SS, Lu L, Yu X, Kim S, Lee SM, Gan TH, Choi GJ, Lim YP, Choi SR. QTL mapping for Fusarium wilt resistance based on the whole-genome resequencing and their association with functional genes in Raphanus sativus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3925-3940. [PMID: 34387712 DOI: 10.1007/s00122-021-03937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Two major QTL associated with resistance to Fusarium wilt (FW) were identified using whole-genome resequencing. Sequence variations and gene expression level differences suggest that TIR-NBS and LRR-RLK are candidate genes associated with FW-resistance. Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. raphani is an important disease in radish, leading to severe decrease in yield and quality. YR4 as a novel genetic source to resistant to FW was confirmed through screening with five pathogen isolates. We have generated F2 and F2:3 populations segregated with FW resistance using YR4 and YR18 inbred lines. The disease symptom was evaluated in F2:3 population (n = 180) in three independent studies over two years. We identified 4 QTL including the two major QTL (FoRsR7.159A and FoRsR9.359A). FoRsR7.159A and FoRsR9.359A were detected in three replicated experiments. FoRsR7.159A was delimited to the 2.18-Mb physical interval on chromosome R07, with a high LOD value (5.17-12.84) and explained phenotypic variation (9.34%-27.97%). The FoRsR9.359A represented relatively low LOD value (3.38-4.52) and explained phenotypic variation (6.24%-8.82%). On the basis of the re-sequencing data for the parental lines, we identified five putative resistance-related genes and 13 unknown genes with sequence variations at the gene and protein levels. A semi-quantitative RT-PCR analysis revealed that Rs382940 (TIR-NBS) and Rs382200 (RLK) were expressed only in 'YR4' from 0 to 6 days after the inoculation. Moreover, Rs382950 (TIR-NBS-LRR) was more highly expressed in 'YR4' from 3 to 6 days after the inoculation. These three genes might be important for FW-resistance in radish. We identified several markers based on these potential candidate genes. The marker set should be useful for breeding system to introduce the FW resistance loci from 'YR4' to improve tolerance to FW.
Collapse
Affiliation(s)
- Yinbo Ma
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Sushil Satish Chhapekar
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Lu Lu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Xiaona Yu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Shandong Peanut Industry Collaborative Innovation Center, College of Agronomy, Qingdao Agricultural University, Qingdao, 266000, China
| | - Seungho Kim
- Neo Seed Co., 256-45 Jingeonjung-gil, Gongdo-eup, Anseong, Gyeonggi Province, 17565, Republic of Korea
| | - Soo Min Lee
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Tae Hyoung Gan
- JIREH Seed Co., 104 Dongtansunhwan-daero 20-gil, Hwaseong, Gyeonggi Province, 18484, Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| | - Su Ryun Choi
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
11
|
Li L, Zhang Y, Zhang Y, Li M, Xu D, Tian X, Song J, Luo X, Xie L, Wang D, He Z, Xia X, Zhang Y, Cao S. Genome-Wide Linkage Mapping for Preharvest Sprouting Resistance in Wheat Using 15K Single-Nucleotide Polymorphism Arrays. FRONTIERS IN PLANT SCIENCE 2021; 12:749206. [PMID: 34721477 PMCID: PMC8551680 DOI: 10.3389/fpls.2021.749206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/13/2021] [Indexed: 05/13/2023]
Abstract
Preharvest sprouting (PHS) significantly reduces grain yield and quality. Identification of genetic loci for PHS resistance will facilitate breeding sprouting-resistant wheat cultivars. In this study, we constructed a genetic map comprising 1,702 non-redundant markers in a recombinant inbred line (RIL) population derived from cross Yangxiaomai/Zhongyou9507 using the wheat 15K single-nucleotide polymorphism (SNP) assay. Four quantitative trait loci (QTL) for germination index (GI), a major indicator of PHS, were identified, explaining 4.6-18.5% of the phenotypic variances. Resistance alleles of Qphs.caas-3AL, Qphs.caas-3DL, and Qphs.caas-7BL were from Yangxiaomai, and Zhongyou9507 contributed a resistance allele in Qphs.caas-4AL. No epistatic effects were detected among the QTL, and combined resistance alleles significantly increased PHS resistance. Sequencing and linkage mapping showed that Qphs.caas-3AL and Qphs.caas-3DL corresponded to grain color genes Tamyb10-A and Tamyb10-D, respectively, whereas Qphs.caas-4AL and Qphs.caas-7BL were probably new QTL for PHS. We further developed cost-effective, high-throughput kompetitive allele-specific PCR (KASP) markers tightly linked to Qphs.caas-4AL and Qphs.caas-7BL and validated their association with GI in a test panel of cultivars. The resistance alleles at the Qphs.caas-4AL and Qphs.caas-7BL loci were present in 72.2 and 16.5% cultivars, respectively, suggesting that the former might be subjected to positive selection in wheat breeding. The findings provide not only genetic resources for PHS resistance but also breeding tools for marker-assisted selection.
Collapse
Affiliation(s)
- Lingli Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingjun Zhang
- Hebei Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yong Zhang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengan Xu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiuling Tian
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Song
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xumei Luo
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lina Xie
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Desen Wang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Beijing, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Zhang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Identification of QTLs and a Candidate Gene for Reducing Pre-Harvest Sprouting in Aegilops tauschii- Triticum aestivum Chromosome Segment Substitution Lines. Int J Mol Sci 2021; 22:ijms22073729. [PMID: 33918469 PMCID: PMC8038248 DOI: 10.3390/ijms22073729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/03/2022] Open
Abstract
Wheat pre-harvest sprouting (PHS) causes serious losses in wheat yield. In this study, precise mapping was carried out in the chromosome segment substitution lines (CSSL) F2 population generated by a direct cross of Zhoumai 18 (PHS-sensitive) and Aegilops tauschii accession T093 (highly PHS-resistant). Three Ae. tauschii-derived quantitative trait loci (QTLs), QDor.3D.1, QDor.3D.2, and QDor.3D.3, were detected on chromosome 3DL using four simple sequence repeats (SSR) markers and 10 developed Kompetitive allele-specific PCR (KASP) markers. Alongside these QTL results, the RNA-Seq and qRT-PCR analysis revealed expression levels of TraesCS3D01G466100 in the QDor.3D.2 region that were significantly higher in CSSLs 495 than in Zhoumai 18 during the seed imbibition treatment. The cDNA sequencing results of TraesCS3D01G466100 showed two single nucleotide polymorphisms (SNPs), resulting in two changed amino acid substitutions between Zhoumai 18 and line 495, and the 148 nt amino acid substitution of TraesCS3D01G466100, derived from Ae. tauschii T093, which may play an important role in the functioning of ubiquitin ligase enzymes 3 (E3) according to the homology protein analysis, which could lead to differential PHS-resistance phenotypes. Taken together, our results may foster a better understanding of the mechanism of PHS resistance and are potentially valuable for marker-assisted selection in practical wheat breeding efforts.
Collapse
|
13
|
Abstract
Quantitative trait loci mapping has become a common practice in crop plants and can be accomplished using either biparental populations following interval mapping or natural populations following the approach of association mapping. Because of its ability to use the natural diversity and to search for functional variants in a broader germplasm, association mapping is becoming popular among researchers. An overview of the different steps involved in association mapping in plants is provided in this chapter.
Collapse
Affiliation(s)
- Pawan L Kulwal
- State Level Biotechnology Centre, Mahatma Phule Agricultural University, Rahuri, Maharashtra, India.
| | - Ravinder Singh
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| |
Collapse
|
14
|
Liu S, Wang D, Lin M, Sehgal SK, Dong L, Wu Y, Bai G. Artificial selection in breeding extensively enriched a functional allelic variation in TaPHS1 for pre-harvest sprouting resistance in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:339-350. [PMID: 33068119 DOI: 10.1007/s00122-020-03700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Pre-harvest sprouting (PHS) causes significant losses in wheat yield and quality worldwide. Previously, we cloned a PHS resistance gene, TaPHS1, and identified two causal mutations for reduced seed dormancy (SD) and increased PHS susceptibility. Here we identified a novel allelic variation of C to T transition in 3'-UTR of TaPHS1, which associated with reduced SD and PHS resistance. The T allele occurred in wild wheat progenitors and was likely the earliest functional mutation in TaPHS1 for PHS susceptibility. Allele frequency analysis revealed low frequency of the T allele in wild diploid and tetraploid wheat progenitors, but very high frequency in modern wheat cultivars and breeding lines, indicating that artificial selection quickly enriched the T allele during modern breeding. The T allele was significantly associated with short SD in both T. aestivum and T. durum, the two most cultivated species of wheat. This variation together with previously reported functional sequence variations co-regulated TaPHS1 expression levels and PHS resistance in different germplasms. Haplotype analysis of the four functional variations identified the best PHS resistance haplotype of TaPHS1. The resistance haplotype can be used in marker-assisted selection to transfer TaPHS1 to new wheat cultivars.
Collapse
Affiliation(s)
- Shubing Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Danfeng Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Meng Lin
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Lei Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yuye Wu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
- USDA-ARS, Hard Winter Wheat Genetic Research Unit, Manhattan, KS, 66506, USA.
| |
Collapse
|
15
|
Pujar M, Gangaprasad S, Govindaraj M, Gangurde SS, Kanatti A, Kudapa H. Genome-wide association study uncovers genomic regions associated with grain iron, zinc and protein content in pearl millet. Sci Rep 2020; 10:19473. [PMID: 33173120 PMCID: PMC7655845 DOI: 10.1038/s41598-020-76230-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Pearl millet hybrids biofortified with iron (Fe) and zinc (Zn) promise to be part of a long-term strategy to combat micronutrient malnutrition in the arid and semi-arid tropical (SAT) regions of the world. Biofortification through molecular breeding is the way forward to achieving a rapid trait-based breeding strategy. This genome-wide association study (GWAS) was conducted to identify significant marker-trait associations (MTAs) for Fe, Zn, and protein content (PC) for enhanced biofortification breeding. A diverse panel of 281 advanced inbred lines was evaluated for Fe, Zn, and PC over two seasons. Phenotypic evaluation revealed high variability (Fe: 32–120 mg kg−1, Zn: 19–87 mg kg−1, PC: 8–16%), heritability (hbs2 ≥ 90%) and significantly positive correlation among Fe, Zn and PC (P = 0.01), implying concurrent improvement. Based on the Diversity Arrays Technology (DArT) seq assay, 58,719 highly informative SNPs were filtered for association mapping. Population structure analysis showed six major genetic groups (K = 6). A total of 78 MTAs were identified, of which 18 were associated with Fe, 43 with Zn, and 17 with PC. Four SNPs viz., Pgl04_64673688, Pgl05_135500493, Pgl05_144482656, and Pgl07_101483782 located on chromosomes Pgl04 (1), Pgl05 (2) and Pgl07 (1), respectively were co-segregated for Fe and Zn. Promising genes, ‘Late embryogenesis abundant protein’, ‘Myb domain’, ‘pentatricopeptide repeat’, and ‘iron ion binding’ coded by 8 SNPs were identified. The SNPs/genes identified in the present study presents prospects for genomics assisted biofortification breeding in pearl millet.
Collapse
Affiliation(s)
- Mahesh Pujar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502 324, India.,University of Agricultural Sciences, Shivamogga, Karnataka, 577 225, India
| | - S Gangaprasad
- University of Agricultural Sciences, Shivamogga, Karnataka, 577 225, India
| | - Mahalingam Govindaraj
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502 324, India.
| | - Sunil S Gangurde
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502 324, India
| | - A Kanatti
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502 324, India
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502 324, India
| |
Collapse
|
16
|
Martinez SA, Shorinola O, Conselman S, See D, Skinner DZ, Uauy C, Steber CM. Exome sequencing of bulked segregants identified a novel TaMKK3-A allele linked to the wheat ERA8 ABA-hypersensitive germination phenotype. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:719-736. [PMID: 31993676 PMCID: PMC7021667 DOI: 10.1007/s00122-019-03503-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/06/2019] [Indexed: 05/09/2023]
Abstract
Using bulked segregant analysis of exome sequence, we fine-mapped the ABA-hypersensitive mutant ERA8 in a wheat backcross population to the TaMKK3-A locus of chromosome 4A. Preharvest sprouting (PHS) is the germination of mature grain on the mother plant when it rains before harvest. The ENHANCED RESPONSE TO ABA8 (ERA8) mutant increases seed dormancy and, consequently, PHS tolerance in soft white wheat 'Zak.' ERA8 was mapped to chromosome 4A in a Zak/'ZakERA8' backcross population using bulked segregant analysis of exome sequenced DNA (BSA-exome-seq). ERA8 was fine-mapped relative to mutagen-induced SNPs to a 4.6 Mb region containing 70 genes. In the backcross population, the ERA8 ABA-hypersensitive phenotype was strongly linked to a missense mutation in TaMKK3-A-G1093A (LOD 16.5), a gene associated with natural PHS tolerance in barley and wheat. The map position of ERA8 was confirmed in an 'Otis'/ZakERA8 but not in a 'Louise'/ZakERA8 mapping population. This is likely because Otis carries the same natural PHS susceptible MKK3-A-A660S allele as Zak, whereas Louise carries the PHS-tolerant MKK3-A-C660R allele. Thus, the variation for grain dormancy and PHS tolerance in the Louise/ZakERA8 population likely resulted from segregation of other loci rather than segregation for PHS tolerance at the MKK3 locus. This inadvertent complementation test suggests that the MKK3-A-G1093A mutation causes the ERA8 phenotype. Moreover, MKK3 was a known ABA signaling gene in the 70-gene 4.6 Mb ERA8 interval. None of these 70 genes showed the differential regulation in wild-type Zak versus ERA8 expected of a promoter mutation. Thus, the working model is that the ERA8 phenotype results from the MKK3-A-G1093A mutation.
Collapse
Affiliation(s)
- Shantel A Martinez
- Molecular Plant Sciences, Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | | | - Samantha Conselman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Deven See
- Molecular Plant Sciences, Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
- USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research Unit, Washington State University, Pullman, WA, 99164-6420, USA
| | - Daniel Z Skinner
- Molecular Plant Sciences, Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
- USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research Unit, Washington State University, Pullman, WA, 99164-6420, USA
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Camille M Steber
- Molecular Plant Sciences, Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA.
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA.
- USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research Unit, Washington State University, Pullman, WA, 99164-6420, USA.
| |
Collapse
|
17
|
Li Q, Pan Z, Gao Y, Li T, Liang J, Zhang Z, Zhang H, Deng G, Long H, Yu M. Quantitative Trait Locus (QTLs) Mapping for Quality Traits of Wheat Based on High Density Genetic Map Combined With Bulked Segregant Analysis RNA-seq (BSR-Seq) Indicates That the Basic 7S Globulin Gene Is Related to Falling Number. FRONTIERS IN PLANT SCIENCE 2020; 11:600788. [PMID: 33424899 PMCID: PMC7793810 DOI: 10.3389/fpls.2020.600788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/11/2020] [Indexed: 05/14/2023]
Abstract
Numerous quantitative trait loci (QTLs) have been identified for wheat quality; however, most are confined to low-density genetic maps. In this study, based on specific-locus amplified fragment sequencing (SLAF-seq), a high-density genetic map was constructed with 193 recombinant inbred lines derived from Chuanmai 42 and Chuanmai 39. In total, 30 QTLs with phenotypic variance explained (PVE) up to 47.99% were identified for falling number (FN), grain protein content (GPC), grain hardness (GH), and starch pasting properties across three environments. Five NAM genes closely adjacent to QGPC.cib-4A probably have effects on GPC. QGH.cib-5D was the only one detected for GH with high PVE of 33.31-47.99% across the three environments and was assumed to be related to the nearest pina-D1 and pinb-D1genes. Three QTLs were identified for FN in at least two environments, of which QFN.cib-3D had relatively higher PVE of 16.58-25.74%. The positive effect of QFN.cib-3D for high FN was verified in a double-haploid population derived from Chuanmai 42 × Kechengmai 4. The combination of these QTLs has a considerable effect on increasing FN. The transcript levels of Basic 7S globulin and Basic 7S globulin 2 in QFN.cib-3D were significantly different between low FN and high FN bulks, as observed through bulk segregant RNA-seq (BSR). These QTLs and candidate genes based on the high-density genetic map would be beneficial for further understanding of the genetic mechanism of quality traits and molecular breeding of wheat.
Collapse
Affiliation(s)
- Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- *Correspondence: Zhifen Pan, ; orcid.org/0000-0002-1692-5425
| | - Yuan Gao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zijin Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Maoqun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
18
|
Song Y, Linderholm HW, Wang C, Tian J, Huo Z, Gao P, Song Y, Guo A. The influence of excess precipitation on winter wheat under climate change in China from 1961 to 2017. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:189-196. [PMID: 31288110 DOI: 10.1016/j.scitotenv.2019.06.367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 06/09/2023]
Abstract
Winter wheat is one of China's most important staple food crops, and its growth and productivity are influenced by climate. Given its importance, we investigated the influence of excess precipitation under recent climate change on winter wheat in east-central China during 1961-2017. Although annual precipitation in the studied region decreased slightly, it increased during the winter wheat flowering and maturity period (May to June). Concurrently, the number of late growing season sunshine hours decreased. Our results showed that about 44% of the years with excess precipitation and less than normal radiation (16 years) were associated with decreasing winter wheat yields. Furthermore, during most years, precipitation of 50% above normal resulted in large decreases in winter wheat production in Jiangsu and Anhui provinces, some of the wetter parts of the studied region. These results indicated that the grain yield variability of winter wheat was mainly influenced by excess precipitation in May, where precipitation could explain 70%-78% of yield variability in the wet parts. Moreover, excess precipitation can induce Fusarium head blight as well as wheat sprouting of pre-harvest, both affecting the grain quality of winter wheat. Projected increases in precipitation throughout the 21st century in the studied region, warrants further studies of how to maintain the winter wheat production in a changing climate.
Collapse
Affiliation(s)
- Yanling Song
- Chinese Academy of Meteorological Sciences, China Meteorological Administration, 100081 Beijing, China.
| | - Hans W Linderholm
- Department of Earth Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; Department of Geography, University of Cambridge, Cambridge CB2 3EN, United Kingdom
| | - Chunyi Wang
- Chinese Academy of Meteorological Sciences, China Meteorological Administration, 100081 Beijing, China
| | | | - Zhiguo Huo
- Chinese Academy of Meteorological Sciences, China Meteorological Administration, 100081 Beijing, China
| | - Ping Gao
- Meteorological Bureau of Jiangsu Province, China Meteorological Administration, 210008 Nanjing, China
| | - Yingbo Song
- National Meteorological Center, China Meteorological Administration, 100081 Beijing, China
| | - Anhong Guo
- National Meteorological Center, China Meteorological Administration, 100081 Beijing, China
| |
Collapse
|
19
|
Zhu Y, Wang S, Wei W, Xie H, Liu K, Zhang C, Wu Z, Jiang H, Cao J, Zhao L, Lu J, Zhang H, Chang C, Xia X, Xiao S, Ma C. Genome-wide association study of pre-harvest sprouting tolerance using a 90K SNP array in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2947-2963. [PMID: 31324930 DOI: 10.1007/s00122-019-03398-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 06/29/2019] [Accepted: 07/11/2019] [Indexed: 05/06/2023]
Abstract
Three major loci for pre-harvest sprouting tolerance (PHST) were mapped on chromosomes 1AL, 3BS, and 6BL, and two CAPS and one dCAPS markers were validated. Sixteen lines with favorable alleles and increased PHST were identified. Pre-harvest sprouting (PHS) significantly affects wheat grain yield and quality. In the present study, the PHS tolerance (PHST) of 192 wheat varieties (lines) was evaluated by assessment of field sprouting, seed germination index, and period of dormancy in different environments. A high-density Illumina iSelect 90K SNP array was used to genotype the panel. A genome-wide association study (GWAS) based on single- and multi-locus mixed linear models was used to detect loci for PHST. The single-locus model identified 23 loci for PHST (P < 0.0001) and explained 6.0-18.9% of the phenotypic variance. Twenty loci were consistent with known quantitative trait loci (QTLs). Three single-nucleotide polymorphism markers closely linked with three major loci (Qphs.ahau-1A, Qphs.ahau-3B, and Qphs.ahau-6B) on chromosomes 1AL, 3BS, and 6BL, respectively, were converted to two cleaved amplified polymorphic sequences (CAPS) and one derived-CAPS markers, and validated in 374 wheat varieties (lines). The CAPS marker EX06323 for Qphs.ahau-6B co-segregated with a novel major QTL underlying PHST in a recombinant inbred line population raised from the cross Jing 411 × Wanxianbaimaizi. Linear regression showed a clear dependence of PHST on the number of favorable alleles. Sixteen varieties showing an elevated degree of PHST were identified and harbored more than 16 favorable alleles. The multi-locus model detected 39 marker-trait associations for PHST (P < 0.0001), of which five may be novel. Six loci common to the two models were identified. The combination of the two GWAS methods contributes to efficient dissection of the complex genetic mechanism of PHST.
Collapse
Affiliation(s)
- Yulei Zhu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Shengxing Wang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Wenxin Wei
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Hongyong Xie
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Kai Liu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Can Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Zengyun Wu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Hao Jiang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Jiajia Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Liangxia Zhao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Haiping Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China.
| | - Cheng Chang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China.
| | - Xianchun Xia
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Shihe Xiao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| |
Collapse
|
20
|
Zuo J, Lin CT, Cao H, Chen F, Liu Y, Liu J. Genome-wide association study and quantitative trait loci mapping of seed dormancy in common wheat (Triticum aestivum L.). PLANTA 2019; 250:187-198. [PMID: 30972483 DOI: 10.1007/s00425-019-03164-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/06/2019] [Indexed: 05/06/2023]
Abstract
Totally, 23 and 26 loci for the first count germination ratio and the final germination ratio were detected by quantitative trait loci (QTL) mapping and association mapping, respectively, which could be used to facilitate wheat pre-harvest sprouting breeding. Weak dormancy can cause pre-harvest sprouting in seeds of common wheat which significantly reduces grain yield. In this study, both quantitative trait loci (QTL) mapping and genome-wide association study (GWAS) were used to identify loci controlling seed dormancy. The analyses were based on a recombinant inbred line population derived from Zhou 8425B/Chinese Spring cross and 166 common wheat accessions. Inclusive composite interval mapping detected 8 QTL, while 45 loci were identified in the 166 wheat accessions by GWAS. Among these, four loci (Qbifcgr.cas-3AS/Qfcgr.cas-3AS, Qbifcgr.cas-6AL.1/Qfcgr.cas-6AL.1, Qbifcgr.cas-7BL.2/Qfcgr.cas-7BL.2, and Qbigr.cas-3DL/Qgr.cas-3DL) were detected in both QTL mapping and GWAS. In addition, 41 loci co-located with QTL reported previously, whereas 8 loci (Qfcgr.cas-5AL, Qfcgr.cas-6DS, Qfcgr.cas-7AS, Qgr.cas-3DS.1, Qgr.cas-3DS.2, Qbigr.cas-3DL/Qgr.cas-3DL, Qgr.cas-4B, and Qgr.cas-5A) were likely to be new. Linear regression showed the first count germination ratio or the final germination ratio reduced while multiple favorable alleles increased. It is suggested that QTL pyramiding was effective to reduce pre-harvest sprouting risk. This study could enrich the research on pre-harvest sprouting and provide valuable information of marker exploration for wheat breeding programs.
Collapse
Affiliation(s)
- Jinghong Zuo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Science, Beijing, China
| | - Chih-Ta Lin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yongxiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- College of Life Science, University of Chinese Academy of Science, Beijing, China.
| | - Jindong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Wu L, Zhang Y, He Y, Jiang P, Zhang X, Ma H. Genome-Wide Association Mapping of Resistance to Fusarium Head Blight Spread and Deoxynivalenol Accumulation in Chinese Elite Wheat Germplasm. PHYTOPATHOLOGY 2019; 109:1208-1216. [PMID: 30844326 DOI: 10.1094/phyto-12-18-0484-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Improving resistance to Fusarium head blight (FHB) in wheat is crucial in the integrated management of the disease and prevention of deoxynivalenol (DON) contamination in grains. To identify novel sources of resistance, a genome-wide association study (GWAS) was performed using a panel of 213 accessions of elite wheat germplasm of China. The panel was evaluated for FHB severity in four environments and DON content in grains in two environments. High correlations across environments and high heritability were observed for FHB severity and DON content in grains. The panel was also genotyped with the 90K Illumina iSelect single nucleotide polymorphism (SNP) array and 11,461 SNP markers were obtained. The GWAS revealed a total of six and three loci significantly associated with resistance to fungal spread and DON accumulation in at least two environments, respectively. QFHB-2BL.1 tagged by IWB52433 and QFHB-3A tagged by IWB50548 were responsible for resistance to both fungal spread and DON accumulation. In summary, this study provided an overview of FHB resistance resources in elite Chinese wheat germplasm and identified novel resistance loci that could be used for wheat improvement.
Collapse
Affiliation(s)
- Lei Wu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210014, China
| | - Yu Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210014, China
| | - Yi He
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210014, China
| | - Peng Jiang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210014, China
| | - Xu Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210014, China
| | - Hongxiang Ma
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210014, China
| |
Collapse
|
22
|
Jaiswal V, Gupta S, Gahlaut V, Muthamilarasan M, Bandyopadhyay T, Ramchiary N, Prasad M. Genome-Wide Association Study of Major Agronomic Traits in Foxtail Millet (Setaria italica L.) Using ddRAD Sequencing. Sci Rep 2019; 9:5020. [PMID: 30903013 PMCID: PMC6430830 DOI: 10.1038/s41598-019-41602-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/05/2019] [Indexed: 12/17/2022] Open
Abstract
Foxtail millet (Setaria italica), the second largest cultivated millet crop after pearl millet, is utilized for food and forage globally. Further, it is also considered as a model crop for studying agronomic, nutritional and biofuel traits. In the present study, a genome-wide association study (GWAS) was performed for ten important agronomic traits in 142 foxtail millet core eco-geographically diverse genotypes using 10 K SNPs developed through GBS-ddRAD approach. Number of SNPs on individual chromosome ranged from 844 (chromosome 5) to 2153 (chromosome 8) with an average SNP frequency of 25.9 per Mb. The pairwise linkage disequilibrium (LD) estimated using the squared-allele frequency correlations was found to decay rapidly with the genetic distance of 177 Kb. However, for individual chromosome, LD decay distance ranged from 76 Kb (chromosome 6) to 357 Kb (chromosome 4). GWAS identified 81 MTAs (marker-trait associations) for ten traits across the genome. High confidence MTAs for three important agronomic traits including FLW (flag leaf width), GY (grain yield) and TGW (thousand-grain weight) were identified. Significant pyramiding effect of identified MTAs further supplemented its importance in breeding programs. Desirable alleles and superior genotypes identified in the present study may prove valuable for foxtail millet improvement through marker-assisted selection.
Collapse
Affiliation(s)
- Vandana Jaiswal
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sarika Gupta
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vijay Gahlaut
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Mehanathan Muthamilarasan
- National Institute of Plant Genome Research, New Delhi, 110067, India
- ICAR-National Research Centre on Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi, 110012, India
| | | | - Nirala Ramchiary
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| |
Collapse
|
23
|
Unraveling Molecular and Genetic Studies of Wheat (Triticum aestivum L.) Resistance against Factors Causing Pre-Harvest Sprouting. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9030117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pre-harvest sprouting (PHS) is one of the most important factors having adverse effects on yield and grain quality all over the world, particularly in wet harvest conditions. PHS is controlled by both genetic and environmental factors and the interaction of these factors. Breeding varieties with high PHS resistance have important implications for reducing yield loss and improving grain quality. The rapid advancements in the wheat genomic database along with transcriptomic and proteomic technologies have broadened our knowledge for understanding the regulatory mechanism of PHS resistance at transcriptomic and post-transcriptomic levels. In this review, we have described in detail the recent advancements on factors influencing PHS resistance, including grain color, seed dormancy, α-amylase activity, plant hormones (especially abscisic acid and gibberellin), and QTL/genes, which are useful for mining new PHS-resistant genes and developing new molecular markers for multi-gene pyramiding breeding of wheat PHS resistance, and understanding the complicated regulatory mechanism of PHS resistance.
Collapse
|
24
|
Shao M, Bai G, Rife TW, Poland J, Lin M, Liu S, Chen H, Kumssa T, Fritz A, Trick H, Li Y, Zhang G. QTL mapping of pre-harvest sprouting resistance in a white wheat cultivar Danby. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1683-1697. [PMID: 29860625 DOI: 10.1007/s00122-018-3107-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/02/2018] [Indexed: 05/06/2023]
Abstract
One major and three minor QTLs for resistance to pre-harvest sprouting (PHS) were identified from a white wheat variety "Danby." The major QTL on chromosome 3A is TaPHS1, and the sequence variation in its promoter region was responsible for the PHS resistance. Additive × additive effects were detected between two minor QTLs on chromosomes 3B and 5A, which can greatly enhance the PHS resistance. Pre-harvest sprouting (PHS) causes significant losses in yield and quality in wheat. White wheat is usually more susceptible to PHS than red wheat. Therefore, the use of none grain color-related PHS resistance quantitative trait loci (QTLs) is essential for the improvement in PHS resistance in white wheat. To identify PHS resistance QTLs in the white wheat cultivar "Danby" and determine their effects, a doubled haploid population derived from a cross of Danby × "Tiger" was genotyped using genotyping-by-sequencing markers and phenotyped for PHS resistance in two greenhouse and one field experiments. One major QTL corresponding to a previously cloned gene, TaPHS1, was consistently detected on the chromosome arm 3AS in all three experiments and explained 21.6-41.0% of the phenotypic variations. A SNP (SNP-222) in the promoter of TaPHS1 co-segregated with PHS in this mapping population and was also significantly associated with PHS in an association panel. Gene sequence comparison and gene expression analysis further confirmed that SNP-222 is most likely the causal mutation in TaPHS1 for PHS resistance in Danby in this study. In addition, two stable minor QTLs on chromosome arms 3BS and 5AL were detected in two experiments with allele effects consistently contributed by Danby, while one minor QTL on 2AS was detected in two environments with contradicted allelic effects. The two stable minor QTLs showed significant additive × additive effects. The results demonstrated that pyramiding those three QTLs using breeder-friendly KASP markers developed in this study could greatly improve PHS resistance in white wheat.
Collapse
Affiliation(s)
- Mingqin Shao
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Guihua Bai
- USDA-ARS, Plant Science and Entomology Research Unit, Manhattan, KS, 66506, USA
| | - Trevor W Rife
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Meng Lin
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Shubing Liu
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Hui Chen
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Tadele Kumssa
- Agricultural Research Center-Hays, Kansas State University, Hays, KS, 67601, USA
| | - Allan Fritz
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Harold Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yan Li
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Guorong Zhang
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
- Agricultural Research Center-Hays, Kansas State University, Hays, KS, 67601, USA.
| |
Collapse
|
25
|
Martinez SA, Godoy J, Huang M, Zhang Z, Carter AH, Garland Campbell KA, Steber CM. Genome-Wide Association Mapping for Tolerance to Preharvest Sprouting and Low Falling Numbers in Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:141. [PMID: 29491876 PMCID: PMC5817628 DOI: 10.3389/fpls.2018.00141] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/25/2018] [Indexed: 05/19/2023]
Abstract
Preharvest sprouting (PHS), the germination of grain on the mother plant under cool and wet conditions, is a recurring problem for wheat farmers worldwide. α-amylase enzyme produced during PHS degrades starch resulting in baked good with poor end-use quality. The Hagberg-Perten Falling Number (FN) test is used to measure this problem in the wheat industry, and determines how much a farmer's wheat is discounted for PHS damage. PHS tolerance is associated with higher grain dormancy. Thus, breeding programs use germination-based assays such as the spike-wetting test to measure PHS susceptibility. Association mapping identified loci associated with PHS tolerance in U.S. Pacific Northwest germplasm based both on FN and on spike-wetting test data. The study was performed using a panel of 469 white winter wheat cultivars and elite breeding lines grown in six Washington state environments, and genotyped for 15,229 polymorphic markers using the 90k SNP Illumina iSelect array. Marker-trait associations were identified using the FarmCPU R package. Principal component analysis was directly and a kinship matrix was indirectly used to account for population structure. Nine loci were associated with FN and 34 loci associated with PHS based on sprouting scores. None of the QFN.wsu loci were detected in multiple environments, whereas six of the 34 QPHS.wsu loci were detected in two of the five environments. There was no overlap between the QTN detected based on FN and PHS, and there was little correlation between the two traits. However, both traits appear to be PHS-related since 19 of the 34 QPHS.wsu loci and four of the nine QFN.wsu loci co-localized with previously published dormancy and PHS QTL. Identification of these loci will lead to a better understanding of the genetic architecture of PHS and will help with the future development of genomic selection models.
Collapse
Affiliation(s)
- Shantel A. Martinez
- Molecular Plant Sciences, Washington State University, Pullman, WA, United States
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Jayfred Godoy
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Meng Huang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Zhiwu Zhang
- Molecular Plant Sciences, Washington State University, Pullman, WA, United States
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Arron H. Carter
- Molecular Plant Sciences, Washington State University, Pullman, WA, United States
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Kimberly A. Garland Campbell
- Molecular Plant Sciences, Washington State University, Pullman, WA, United States
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- USDA-ARS Wheat Health, Genetics, and Quality Research Unit, Washington State University, Pullman, WA, United States
| | - Camille M. Steber
- Molecular Plant Sciences, Washington State University, Pullman, WA, United States
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- USDA-ARS Wheat Health, Genetics, and Quality Research Unit, Washington State University, Pullman, WA, United States
| |
Collapse
|
26
|
Kulwal PL. Trait Mapping Approaches Through Linkage Mapping in Plants. PLANT GENETICS AND MOLECULAR BIOLOGY 2018; 164:53-82. [DOI: 10.1007/10_2017_49] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
27
|
Sydenham SL, Barnard A. Targeted Haplotype Comparisons between South African Wheat Cultivars Appear Predictive of Pre-harvest Sprouting Tolerance. FRONTIERS IN PLANT SCIENCE 2018; 9:63. [PMID: 29449853 PMCID: PMC5799232 DOI: 10.3389/fpls.2018.00063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/12/2018] [Indexed: 05/06/2023]
Abstract
Pre-harvest sprouting (PHS) has been a serious production constraint for over two decades, especially in the summer rainfall wheat production regions of South Africa. It is a complex genetic trait controlled by multiple genes, which are significantly influenced by environmental conditions. This complicates the accurate prediction of a cultivar's stability in terms of PHS tolerance. A number of reports have documented the presence of major QTL on chromosomes 3A and 4A of modern bread wheat cultivars, which confer PHS tolerance. In this study, the SSR marker haplotype combination of chromosomes 3A and 4A of former and current South African cultivars were compared with the aim to select for improved PHS tolerance levels in future cultivars. A total of 101 wheat cultivars, including a susceptible cultivar and five international tolerant sources, were used in this study. These cultivars and donors were evaluated for their PHS tolerance by making use of a rain simulator. In addition, five seeds of each entry were planted out into seedling trays and leaf material harvested for DNA isolation. A modified CTAB extraction method was used before progressing to downstream PCR applications. Eight SSR markers targeted from the well-characterized 3A and 4A QTL regions associated with PHS tolerance, were used to conduct targeted haplotype analysis. Additionally, recently published KASP SNP markers, which identify the casual SNP mutations within the TaPHS1 gene, were used to genotype the germplasm. The haplotype marker data and phenotypic PHS data were compared across all cultivars and different production regions. A relative change in observed phenotypic variation percentage was obtained per marker allele and across marker haplotype combinations when compared to the PHS susceptible cultivar, Tugela-DN. Clear favorable haplotypes, contributing 40-60% of the variation for PHS tolerance, were identified for QTL 3A and 4A. Initial analyses show haplotype data appear to be predictive of PHS tolerance status and germplasm can now be selected to improve PHS tolerance. These haplotype data are the first of its kind for PHS genotyping in South Africa. In future, this can be used as a tool to predict the possible PHS tolerance range of a new cultivar.
Collapse
|
28
|
QTL analysis of falling number and seed longevity in wheat (Triticum aestivum L.). J Appl Genet 2017; 59:35-42. [DOI: 10.1007/s13353-017-0422-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/28/2017] [Accepted: 12/06/2017] [Indexed: 01/24/2023]
|
29
|
Dale Z, Jie H, Luyu H, Cancan Z, Yun Z, Yarui S, Suoping L. An Advanced Backcross Population through Synthetic Octaploid Wheat as a "Bridge": Development and QTL Detection for Seed Dormancy. FRONTIERS IN PLANT SCIENCE 2017; 8:2123. [PMID: 29321790 PMCID: PMC5733556 DOI: 10.3389/fpls.2017.02123] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/29/2017] [Indexed: 05/21/2023]
Abstract
The seed dormancy characteristic is regarded as one of the most critical factors for pre-harvest sprouting (PHS) resistance. As a wild wheat relative species, Aegilops tauschii is a potential genetic resource for improving common wheat. In this study, an advanced backcross population (201 strains) containing only Ae. tauschii segments was developed by means of synthetic octaploid wheat (hexaploid wheat Zhoumai 18 × Ae. tauschii T093). Subsequently, seed dormancy rate (Dor) in the advanced backcross population was evaluated on the day 3, 5 and 7, in which 2 major QTLs (QDor-2D and QDor-3D) were observed on chromosomes 2D and 3D with phenotypic variance explained values (PVEs) of 10.25 and 20.40%, respectively. Further investigation revealed significant correlation between QDor-3D and Tamyb10 gene, while no association was found between the former and TaVp1 gene, implying that QDor-3D site could be of closer position to Tamyb10. The obtained quantitative trait locus sites (QTLs) in this work could be applied to develop wheat cultivars with PHS resistance.
Collapse
Affiliation(s)
- Zhang Dale
- School of Life Science, Henan University, Kaifeng, China
- Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - He Jie
- School of Life Science, Henan University, Kaifeng, China
| | - Huang Luyu
- School of Life Science, Henan University, Kaifeng, China
| | - Zhang Cancan
- School of Life Science, Henan University, Kaifeng, China
| | - Zhou Yun
- School of Life Science, Henan University, Kaifeng, China
- Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Su Yarui
- School of Life Science, Henan University, Kaifeng, China
| | - Li Suoping
- School of Life Science, Henan University, Kaifeng, China
- Institute of Plant Stress Biology, Henan University, Kaifeng, China
| |
Collapse
|
30
|
Shorinola O, Balcárková B, Hyles J, Tibbits JFG, Hayden MJ, Holušova K, Valárik M, Distelfeld A, Torada A, Barrero JM, Uauy C. Haplotype Analysis of the Pre-harvest Sprouting Resistance Locus Phs-A1 Reveals a Causal Role of TaMKK3-A in Global Germplasm. FRONTIERS IN PLANT SCIENCE 2017; 8:1555. [PMID: 28955352 PMCID: PMC5602128 DOI: 10.3389/fpls.2017.01555] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/25/2017] [Indexed: 05/03/2023]
Abstract
Pre-harvest sprouting (PHS) is an important cause of quality loss in many cereal crops and is particularly prevalent and damaging in wheat. Resistance to PHS is therefore a valuable target trait in many breeding programs. The Phs-A1 locus on wheat chromosome arm 4AL has been consistently shown to account for a significant proportion of natural variation to PHS in diverse mapping populations. However, the deployment of sprouting resistance is confounded by the fact that different candidate genes, including the tandem duplicated Plasma Membrane 19 (PM19) genes and the mitogen-activated protein kinase kinase 3 (TaMKK3-A) gene, have been proposed to underlie Phs-A1. To further define the Phs-A1 locus, we constructed a physical map across this interval in hexaploid and tetraploid wheat. We established close proximity of the proposed candidate genes which are located within a 1.2 Mb interval. Genetic characterization of diverse germplasm used in previous genetic mapping studies suggests that TaMKK3-A, and not PM19, is the major gene underlying the Phs-A1 effect in European, North American, Australian and Asian germplasm. We identified the non-dormant TaMKK3-A allele at low frequencies within the A-genome diploid progenitor Triticum urartu genepool, and show an increase in the allele frequency in modern varieties. In United Kingdom varieties, the frequency of the dormant TaMKK3-A allele was significantly higher in bread-making quality varieties compared to feed and biscuit-making cultivars. Analysis of exome capture data from 58 diverse hexaploid wheat accessions identified fourteen haplotypes across the extended Phs-A1 locus and four haplotypes for TaMKK3-A. Analysis of these haplotypes in a collection of United Kingdom and Australian cultivars revealed distinct major dormant and non-dormant Phs-A1 haplotypes in each country, which were either rare or absent in the opposing germplasm set. The diagnostic markers and haplotype information reported in the study will help inform the choice of germplasm and breeding strategies for the deployment of Phs-A1 resistance into breeding germplasm.
Collapse
Affiliation(s)
| | - Barbara Balcárková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Jessica Hyles
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, CanberraACT, Australia
| | - Josquin F. G. Tibbits
- Department of Economic Development, Jobs, Transport and Resources, Centre for AgriBioscience, BundooraVIC, Australia
| | - Matthew J. Hayden
- Department of Economic Development, Jobs, Transport and Resources, Centre for AgriBioscience, BundooraVIC, Australia
| | - Katarina Holušova
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Miroslav Valárik
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Assaf Distelfeld
- The Institute for Cereal Crop Improvement, Tel Aviv UniversityTel Aviv, Israel
| | | | - Jose M. Barrero
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, CanberraACT, Australia
| | | |
Collapse
|
31
|
Lin Y, Liu S, Liu Y, Liu Y, Chen G, Xu J, Deng M, Jiang Q, Wei Y, Lu Y, Zheng Y. Genome-wide association study of pre-harvest sprouting resistance in Chinese wheat founder parents. Genet Mol Biol 2017; 40:620-629. [PMID: 28696481 PMCID: PMC5596365 DOI: 10.1590/1678-4685-gmb-2016-0207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/28/2017] [Indexed: 12/23/2022] Open
Abstract
Pre-harvest sprouting (PHS) is a major abiotic factor affecting grain weight and
quality, and is caused by an early break in seed dormancy. Association mapping (AM)
is used to detect correlations between phenotypes and genotypes based on linkage
disequilibrium (LD) in wheat breeding programs. We evaluated seed dormancy in 80
Chinese wheat founder parents in five environments and performed a genome-wide
association study using 6,057 markers, including 93 simple sequence repeat (SSR),
1,472 diversity array technology (DArT), and 4,492 single nucleotide polymorphism
(SNP) markers. The general linear model (GLM) and the mixed linear model (MLM) were
used in this study, and two significant markers (tPt-7980 and
wPt-6457) were identified. Both markers were located on
Chromosome 1B, with wPt-6457 having been identified in a previously
reported chromosomal position. The significantly associated loci contain essential
information for cloning genes related to resistance to PHS and can be used in wheat
breeding programs.
Collapse
Affiliation(s)
- Yu Lin
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Shihang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Yujiao Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Jie Xu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| |
Collapse
|
32
|
Lehnert H, Serfling A, Enders M, Friedt W, Ordon F. Genetics of mycorrhizal symbiosis in winter wheat (Triticum aestivum). THE NEW PHYTOLOGIST 2017; 215:779-791. [PMID: 28517039 DOI: 10.1111/nph.14595] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/30/2017] [Indexed: 05/23/2023]
Abstract
Bread wheat (Triticum aestivum) is a major staple food and therefore of prime importance for feeding the Earth's growing population. Mycorrhiza is known to improve plant growth, but although extensive knowledge concerning the interaction between mycorrhizal fungi and plants is available, genotypic differences concerning the ability of wheat to form mycorrhizal symbiosis and quantitative trait loci (QTLs) involved in mycorrhization are largely unknown. Therefore, a diverse set of 94 bread wheat genotypes was evaluated with regard to root colonization by arbuscular mycorrhizal fungi. In order to identify genomic regions involved in mycorrhization, these genotypes were analyzed using the wheat 90k iSelect chip, resulting in 17 823 polymorphic mapped markers, which were used in a genome-wide association study. Significant genotypic differences (P < 0.0001) were detected in the ability to form symbiosis and 30 significant markers associated with root colonization, representing six QTL regions, were detected on chromosomes 3A, 4A and 7A, and candidate genes located in these QTL regions were proposed. The results reported here provide key insights into the genetics of root colonization by mycorrhizal fungi in wheat.
Collapse
Affiliation(s)
- Heike Lehnert
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Albrecht Serfling
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Matthias Enders
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Wolfgang Friedt
- Plant Breeding Department, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Gießen, Germany
| | - Frank Ordon
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| |
Collapse
|
33
|
Zhang Y, Xia X, He Z. The seed dormancy allele TaSdr-A1a associated with pre-harvest sprouting tolerance is mainly present in Chinese wheat landraces. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:81-89. [PMID: 27650191 DOI: 10.1007/s00122-016-2793-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/24/2016] [Indexed: 05/06/2023]
Abstract
We cloned TaSdr - A1 gene, and developed a gene-specific marker for TaSdr - A1 . A QTL for germination index at the TaSdr - A1 locus was identified in the Yangxiaomai/Zhongyou 9507 RIL population. Pre-harvest sprouting (PHS) affects yield and end-use quality in bread wheat (Triticum aestivum L.). In the present study we found an association between the TaSdr-A1 gene and PHS tolerance in bread wheat. TaSdr-A1 on chromosome 2A was cloned using a homologous cloning approach. Sequence analysis of TaSdr-A1 revealed an SNP at position 643, with the G allele being present in genotypes with lower germination index (GI) values and A in those with higher GI. These alleles were designated as TaSdr-A1a and TaSdr-A1b, respectively. A cleaved amplified polymorphism sequence (CAPS) marker Sdr2A based on the SNP was developed, and linkage mapping and QTL analysis were conducted to confirm the association between TaSdr-A1 and seed dormancy. Sdr2A was located in a 2.9 cM interval between SSR markers Xgwm95 and Xgwm372. A QTL for GI at the TaSdr-A1 locus explained 6.6, 7.3, and 8.2 % of the phenotypic variances in a Yangxiaomai/Zhongyou 9507 RIL population grown at Beijing, Shijiazhuang, and the averaged data from the two environments, respectively. Two sets of Chinese wheat cultivars used for validating the TaSdr-A1 polymorphism and the corresponding gene-specific marker Sdr2A showed that TaSdr-A1 was significantly associated with GI. Among 29 accessions with TaSdr-A1a, 24 (82.8 %) were landraces, indicating the importance of Chinese wheat landraces as sources of PHS tolerance. This study identified a novel PHS resistance allele TaSdr-A1a mainly presented in Chinese landraces and it is likely to be the causal gene for QPhs.ccsu-2A.3, providing new information for an understanding of seed dormancy.
Collapse
Affiliation(s)
- Yingjun Zhang
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, 162 Hengshan Street, Shijiazhuang, 050035, China
| | - Xianchun Xia
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
34
|
Zhou Y, Tang H, Cheng MP, Dankwa KO, Chen ZX, Li ZY, Gao S, Liu YX, Jiang QT, Lan XJ, Pu ZE, Wei YM, Zheng YL, Hickey LT, Wang JR. Genome-Wide Association Study for Pre-harvest Sprouting Resistance in a Large Germplasm Collection of Chinese Wheat Landraces. FRONTIERS IN PLANT SCIENCE 2017; 8:401. [PMID: 28428791 PMCID: PMC5382224 DOI: 10.3389/fpls.2017.00401] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/09/2017] [Indexed: 05/06/2023]
Abstract
Pre-harvest sprouting (PHS) is mainly caused by the breaking of seed dormancy in high rainfall regions, which leads to huge economic losses in wheat. In this study, we evaluated 717 Chinese wheat landraces for PHS resistance and carried out genome-wide association studies (GWAS) using to 9,740 DArT-seq and 178,803 SNP markers. Landraces were grown across six environments in China and germination testing of harvest-ripe grain was used to calculate the germination rate (GR) for each accession at each site. GR was highly correlated across all environments. A large number of landraces (194) displayed high levels of PHS resistance (i.e., mean GR < 0.20), which included nine white-grained accessions. Overall, white-grained accessions displayed a significantly higher mean GR (42.7-79.6%) compared to red-grained accessions (19.1-56.0%) across the six environments. Landraces from mesic growing zones in southern China showed higher levels of PHS resistance than those sourced from xeric areas in northern and north-western China. Three main quantitative trait loci (QTL) were detected by GWAS: one on 5D that appeared to be novel and two co-located with the grain color transcription factor Tamyb10 on 3A and 3D. An additional 32 grain color related QTL (GCR-QTL) were detected when the set of red-grained landraces were analyzed separately. GCR-QTL occurred at high frequencies in the red-grained accessions and a strong correlation was observed between the number of GCR-QTL and GR (R2 = 0.62). These additional factors could be critical for maintaining high levels of PHS resistance and represent targets for introgression into white-grained wheat cultivars. Further, investigation of the origin of haplotypes associated with the three main QTL revealed that favorable haplotypes for PHS resistance were more common in accessions from higher rainfall zones in China. Thus, a combination of natural and artificial selection likely resulted in landraces incorporating PHS resistance in China.
Collapse
Affiliation(s)
- Yong Zhou
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Hao Tang
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Meng-Ping Cheng
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Kwame O. Dankwa
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Zhong-Xu Chen
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Zhan-Yi Li
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Shang Gao
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Ya-Xi Liu
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Qian-Tao Jiang
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Xiu-Jin Lan
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Zhi-En Pu
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Yu-Ming Wei
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - You-Liang Zheng
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural UniversityYa’an, China
| | - Lee T. Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, BrisbaneQLD, Australia
| | - Ji-Rui Wang
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
- *Correspondence: Ji-Rui Wang,
| |
Collapse
|
35
|
Lin M, Zhang D, Liu S, Zhang G, Yu J, Fritz AK, Bai G. Genome-wide association analysis on pre-harvest sprouting resistance and grain color in U.S. winter wheat. BMC Genomics 2016; 17:794. [PMID: 27729004 PMCID: PMC5059910 DOI: 10.1186/s12864-016-3148-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pre-harvest sprouting (PHS) in wheat can cause substantial reduction in grain yield and end-use quality. Grain color (GC) together with other components affect PHS resistance. Several quantitative trait loci (QTL) have been reported for PHS resistance, and two of them on chromosome 3AS (TaPHS1) and 4A have been cloned. METHODS To determine genetic architecture of PHS and GC and genetic relationships of the two traits, a genome-wide association study (GWAS) was conducted by evaluating a panel of 185 U.S. elite breeding lines and cultivars for sprouting rates of wheat spikes and GC in both greenhouse and field experiments. The panel was genotyped using the wheat 9K and 90K single nucleotide polymorphism (SNP) arrays. RESULTS Four QTL for GC on four chromosomes and 12 QTL for PHS resistance on 10 chromosomes were identified in at least two experiments. QTL for PHS resistance showed varied effects under different environments, and those on chromosomes 3AS, 3AL, 3B, 4AL and 7A were the more frequently identified QTL. The common QTL for GC and PHS resistance were identified on the long arms of the chromosome 3A and 3D. CONCLUSIONS Wheat grain color is regulated by the three known genes on group 3 chromosomes and additional genes from other chromosomes. These grain color genes showed significant effects on PHS resistance in some environments. However, several other QTL that did not affect grain color also played a significant role on PHS resistance. Therefore, it is possible to breed PHS-resistant white wheat by pyramiding these non-color related QTL.
Collapse
Affiliation(s)
- Meng Lin
- Agronomy Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Dadong Zhang
- Agronomy Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Shubing Liu
- Agronomy Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Guorong Zhang
- Agronomy Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Jianming Yu
- Agronomy Department, Iowa State University Ames, Iowa, 50011, USA
| | - Allan K Fritz
- Agronomy Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Guihua Bai
- Agronomy Department, Kansas State University, Manhattan, KS, 66506, USA. .,Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, 66506, USA.
| |
Collapse
|
36
|
Jaiswal V, Gahlaut V, Meher PK, Mir RR, Jaiswal JP, Rao AR, Balyan HS, Gupta PK. Genome Wide Single Locus Single Trait, Multi-Locus and Multi-Trait Association Mapping for Some Important Agronomic Traits in Common Wheat (T. aestivum L.). PLoS One 2016; 11:e0159343. [PMID: 27441835 PMCID: PMC4956103 DOI: 10.1371/journal.pone.0159343] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/30/2016] [Indexed: 01/18/2023] Open
Abstract
Genome wide association study (GWAS) was conducted for 14 agronomic traits in wheat following widely used single locus single trait (SLST) approach, and two recent approaches viz. multi locus mixed model (MLMM), and multi-trait mixed model (MTMM). Association panel consisted of 230 diverse Indian bread wheat cultivars (released during 1910–2006 for commercial cultivation in different agro-climatic regions in India). Three years phenotypic data for 14 traits and genotyping data for 250 SSR markers (distributed across all the 21 wheat chromosomes) was utilized for GWAS. Using SLST, as many as 213 MTAs (p ≤ 0.05, 129 SSRs) were identified for 14 traits, however, only 10 MTAs (~9%; 10 out of 123 MTAs) qualified FDR criteria; these MTAs did not show any linkage drag. Interestingly, these genomic regions were coincident with the genomic regions that were already known to harbor QTLs for same or related agronomic traits. Using MLMM and MTMM, many more QTLs and markers were identified; 22 MTAs (19 QTLs, 21 markers) using MLMM, and 58 MTAs (29 QTLs, 40 markers) using MTMM were identified. In addition, 63 epistatic QTLs were also identified for 13 of the 14 traits, flag leaf length (FLL) being the only exception. Clearly, the power of association mapping improved due to MLMM and MTMM analyses. The epistatic interactions detected during the present study also provided better insight into genetic architecture of the 14 traits that were examined during the present study. Following eight wheat genotypes carried desirable alleles of QTLs for one or more traits, WH542, NI345, NI170, Sharbati Sonora, A90, HW1085, HYB11, and DWR39 (Pragati). These genotypes and the markers associated with important QTLs for major traits can be used in wheat improvement programs either using marker-assisted recurrent selection (MARS) or pseudo-backcrossing method.
Collapse
Affiliation(s)
- Vandana Jaiswal
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Vijay Gahlaut
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Prabina Kumar Meher
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Reyazul Rouf Mir
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Jai Prakash Jaiswal
- Dept of Genetics & Plant Breeding, G.B. Pant University of Agriculture & Technology, Pantnagar, India
| | - Atmakuri Ramakrishna Rao
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
- * E-mail:
| |
Collapse
|
37
|
Cao L, Hayashi K, Tokui M, Mori M, Miura H, Onishi K. Detection of QTLs for traits associated with pre-harvest sprouting resistance in bread wheat (Triticum aestivum L.). BREEDING SCIENCE 2016; 66:260-70. [PMID: 27162497 PMCID: PMC4785003 DOI: 10.1270/jsbbs.66.260] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/26/2015] [Indexed: 05/20/2023]
Abstract
Pre-harvest sprouting (PHS) is one of the serious problems for wheat production, especially in rainy regions. Although seed dormancy is the most critical trait for PHS resistance, the control of heading time should also be considered to prevent seed maturation during unfavorable conditions. In addition, awning is known to enhance water absorption by the spike, causing PHS. In this study, we conducted QTL analysis for three PHS resistant related traits, seed dormancy, heading time and awn length, by using recombinant inbred lines from 'Zenkouji-komugi' (high PHS resistance) × 'Chinese Spring' (weak PHS resistance). QTLs for seed dormancy were detected on chromosomes 1B (QDor-1B) and 4A (QDor-4A), in addition to a QTL on chromosome 3A, which was recently cloned as TaMFT-3A. In addition, the accumulation of the QTLs and their epistatic interactions contributed significantly to a higher level of dormancy. QDor-4A is co-located with the Hooded locus for awn development. Furthermore, an effective QTL, which confers early heading by the Zenkouji-komugi allele, was detected on the short arm of chromosome 7B, where the Vrn-B3 locus is located. Understanding the genetic architecture of traits associated with PHS resistance will facilitate the marker assisted selection to breed new varieties with higher PHS resistance.
Collapse
|
38
|
Kulwal PL. Association Mapping and Genomic Selection—Where Does Sorghum Stand? COMPENDIUM OF PLANT GENOMES 2016. [DOI: 10.1007/978-3-319-47789-3_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Shu K, Meng YJ, Shuai HW, Liu WG, Du JB, Liu J, Yang WY. Dormancy and germination: How does the crop seed decide? PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:1104-12. [PMID: 26095078 DOI: 10.1111/plb.12356] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/07/2015] [Indexed: 05/18/2023]
Abstract
Whether seeds germinate or maintain dormancy is decided upon through very intricate physiological processes. Correct timing of these processes is most important for the plants life cycle. If moist conditions are encountered, a low dormancy level causes pre-harvest sprouting in various crop species, such as wheat, corn and rice, this decreases crop yield and negatively impacts downstream industrial processing. In contrast, a deep level of seed dormancy prevents normal germination even under favourable conditions, resulting in a low emergence rate during agricultural production. Therefore, an optimal seed dormancy level is valuable for modern mechanised agricultural systems. Over the past several years, numerous studies have demonstrated that diverse endogenous and environmental factors regulate the balance between dormancy and germination, such as light, temperature, water status and bacteria in soil, and phytohormones such as ABA (abscisic acid) and GA (gibberellic acid). In this updated review, we highlight recent advances regarding the molecular mechanisms underlying regulation of seed dormancy and germination processes, including the external environmental and internal hormonal cues, and primarily focusing on the staple crop species. Furthermore, future challenges and research directions for developing a full understanding of crop seed dormancy and germination are also discussed.
Collapse
Affiliation(s)
- K Shu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, and Department of Biotechnology, Sichuan Agricultural University, Chengdu, China
| | - Y J Meng
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, and Department of Biotechnology, Sichuan Agricultural University, Chengdu, China
| | - H W Shuai
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, and Department of Biotechnology, Sichuan Agricultural University, Chengdu, China
| | - W G Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, and Department of Biotechnology, Sichuan Agricultural University, Chengdu, China
| | - J B Du
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, and Department of Biotechnology, Sichuan Agricultural University, Chengdu, China
| | - J Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, and Department of Biotechnology, Sichuan Agricultural University, Chengdu, China
| | - W Y Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, and Department of Biotechnology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
40
|
Genome-wide association study of 29 morphological traits in Aegilops tauschii. Sci Rep 2015; 5:15562. [PMID: 26503608 PMCID: PMC4622089 DOI: 10.1038/srep15562] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/29/2015] [Indexed: 11/08/2022] Open
Abstract
Aegilops tauschii is the D-genome progenitor of hexaploid wheat (Triticum aestivum). It is considered to be an important source of genetic variation for wheat breeding, and its genome is an invaluable reference for wheat genomics. We conducted a genome-wide association study using 7,185 single nucleotide polymorphism (SNP) markers across 322 diverse accessions of Ae. tauschii that were systematically phenotyped for 29 morphological traits in order to identify marker-trait associations and candidate genes, assess genetic diversity, and classify the accessions based on phenotypic data and genotypic comparison. Using the general linear model and mixed linear model, we identified a total of 18 SNPs significantly associated with 10 morphological traits. Systematic search of the flanking sequences of trait-associated SNPs in public databases identified several genes that may be linked to variations in phenotypes. Cluster analysis using phenotypic data grouped accessions into four clusters, while accessions in the same cluster were not from the same Ae. tauschii subspecies or from the same area of origin. This work establishes a fundamental research platform for association studies in Ae. tauschii and also provides useful information for understanding the genetic mechanism of agronomic traits in wheat.
Collapse
|
41
|
Albrecht T, Oberforster M, Kempf H, Ramgraber L, Schacht J, Kazman E, Zechner E, Neumayer A, Hartl L, Mohler V. Genome-wide association mapping of preharvest sprouting resistance in a diversity panel of European winter wheats. J Appl Genet 2015; 56:277-85. [PMID: 25924791 DOI: 10.1007/s13353-015-0286-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 12/01/2022]
Abstract
Global wheat production will benefit from cultivars showing genetic resistance to preharvest sprouting (PHS). Working on PHS resistance is still challenging due to the lack of simple protocols for the provocation of symptoms for appropriate trait differentiation under highly variable environmental conditions. Therefore, the availability of molecular markers for enhancing PHS resistance in breeding lines is of utmost importance. Genome-wide association mapping was performed to unravel the genetics of PHS resistance in a diversity panel of 124 winter wheat genotypes using both random and targeted marker locus approaches. Data for grain germination tests, spike wetting treatments, and field sprouting damage measurements of grains were collected in 11, 12, and four environments, respectively. Twenty-two quantitative trait loci (QTL) linked with 40 markers were detected for the three traits commonly used for assessing the PHS resistance of cultivars. All but five QTL on chromosomes 1B, 1D (two QTL), 3D, and 5D showed locations similar to previous studies, including prominent QTL on chromosomes 2BS, 3AS, and 4AL. The highest retrieval rate across environments was found for QTL on chromosomes 1D, 2BS, 3D, 4AL, and 7B. The study identified genomic signatures useful for marker-assisted improvement of PHS resistance not only in European breeding programs, but of global significance.
Collapse
Affiliation(s)
- Theresa Albrecht
- Institute for Crop Science and Plant Breeding, Bavarian State Research Center for Agriculture (LfL), Am Gereuth 8, 85354, Freising, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chono M, Matsunaka H, Seki M, Fujita M, Kiribuchi-Otobe C, Oda S, Kojima H, Nakamura S. Molecular and genealogical analysis of grain dormancy in Japanese wheat varieties, with specific focus on MOTHER OF FT AND TFL1 on chromosome 3A. BREEDING SCIENCE 2015; 65:103-9. [PMID: 25931984 PMCID: PMC4374559 DOI: 10.1270/jsbbs.65.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/20/2014] [Indexed: 05/05/2023]
Abstract
In the wheat (Triticum aestivum L.) cultivar 'Zenkoujikomugi', a single nucleotide polymorphism (SNP) in the promoter of MOTHER OF FT AND TFL1 on chromosome 3A (MFT-3A) causes an increase in the level of gene expression, resulting in strong grain dormancy. We used a DNA marker to detect the 'Zenkoujikomugi'-type (Zen-type) SNP and examined the genotype of MFT-3A in Japanese wheat varieties, and we found that 169 of 324 varieties carry the Zen-type SNP. In Japanese commercial varieties, the frequency of the Zen-type SNP was remarkably high in the southern part of Japan, but low in the northern part. To examine the relationship between MFT-3A genotype and grain dormancy, we performed a germination assay in three wheat-growing seasons. On average, the varieties carrying the Zen-type SNP showed stronger grain dormancy than the varieties carrying the non-Zen-type SNP. Among commercial cultivars, 'Iwainodaichi' (Kyushu), 'Junreikomugi' (Kinki-Chugoku-Shikoku), 'Kinuhime' (Kanto-Tokai), 'Nebarigoshi' (Tohoku-Hokuriku), and 'Kitamoe' (Hokkaido) showed the strongest grain dormancy in each geographical group, and all these varieties, except for 'Kitamoe', were found to carry the Zen-type SNP. In recent years, the number of varieties carrying the Zen-type SNP has increased in the Tohoku-Hokuriku region, but not in the Hokkaido region.
Collapse
Affiliation(s)
- Makiko Chono
- NARO Institute of Crop Science,
2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
- Corresponding author (e-mail: )
| | - Hitoshi Matsunaka
- NARO Kyushu Okinawa Agricultural Research Center,
496 Izumi, Chikugo, Fukuoka 833-0041,
Japan
| | - Masako Seki
- NARO Agricultural Research Center,
1-2-1 Inada, Jouetsu, Niigata 943-0193,
Japan
| | - Masaya Fujita
- NARO Institute of Crop Science,
2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
| | | | - Shunsuke Oda
- NARO Institute of Crop Science,
2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
| | - Hisayo Kojima
- NARO Institute of Crop Science,
2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
| | - Shingo Nakamura
- NARO Institute of Crop Science,
2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
| |
Collapse
|
43
|
Maccaferri M, Zhang J, Bulli P, Abate Z, Chao S, Cantu D, Bossolini E, Chen X, Pumphrey M, Dubcovsky J. A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3 (BETHESDA, MD.) 2015; 5:449-65. [PMID: 25609748 PMCID: PMC4349098 DOI: 10.1534/g3.114.014563] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/17/2015] [Indexed: 02/01/2023]
Abstract
New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are responsible for large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using a worldwide collection of 1000 spring wheat accessions. Adult plants were evaluated under field conditions in six environments in the western United States, and seedlings were tested with four Pst races. A single-nucleotide polymorphism (SNP) Infinium 9K-assay provided 4585 SNPs suitable for GWAS. High correlations among environments and high heritabilities were observed for stripe rust infection type and severity. Greater levels of Pst resistance were observed in a subpopulation from Southern Asia than in other groups. GWAS identified 97 loci that were significant for at least three environments, including 10 with an experiment-wise adjusted Bonferroni probability < 0.10. These 10 quantitative trait loci (QTL) explained 15% of the phenotypic variation in infection type, a percentage that increased to 45% when all QTL were considered. Three of these 10 QTL were mapped far from previously identified Pst resistance genes and QTL, and likely represent new resistance loci. The other seven QTL mapped close to known resistance genes and allelism tests will be required to test their relationships. In summary, this study provides an integrated view of stripe rust resistance resources in spring wheat and identifies new resistance loci that will be useful to diversify the current set of resistance genes deployed to control this devastating disease.
Collapse
Affiliation(s)
- Marco Maccaferri
- Department of Plant Sciences, University of California, Davis, California 95616 Department of Agricultural Sciences (DipSA), University of Bologna, Bologna 40127, Italy
| | - Junli Zhang
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Peter Bulli
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164-6420
| | - Zewdie Abate
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Shiaoman Chao
- USDA-ARS, 1605 Albrecht Blvd, Fargo, North Dakota 58105
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, California 95616
| | - Eligio Bossolini
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Xianming Chen
- USDA-ARS, Wheat Genetics, Quality Physiology, and Disease Research Unit, and Department of Plant Pathology, Washington State University, Pullman, Washington 99164
| | - Michael Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164-6420
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California 95616 Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| |
Collapse
|
44
|
Pandey MK, Upadhyaya HD, Rathore A, Vadez V, Sheshshayee MS, Sriswathi M, Govil M, Kumar A, Gowda MVC, Sharma S, Hamidou F, Kumar VA, Khera P, Bhat RS, Khan AW, Singh S, Li H, Monyo E, Nadaf HL, Mukri G, Jackson SA, Guo B, Liang X, Varshney RK. Genomewide association studies for 50 agronomic traits in peanut using the 'reference set' comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PLoS One 2014; 9:e105228. [PMID: 25140620 PMCID: PMC4139351 DOI: 10.1371/journal.pone.0105228] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/17/2014] [Indexed: 11/23/2022] Open
Abstract
Peanut is an important and nutritious agricultural commodity and a livelihood of many small-holder farmers in the semi-arid tropics (SAT) of world which are facing serious production threats. Integration of genomics tools with on-going genetic improvement approaches is expected to facilitate accelerated development of improved cultivars. Therefore, high-resolution genotyping and multiple season phenotyping data for 50 important agronomic, disease and quality traits were generated on the ‘reference set’ of peanut. This study reports comprehensive analyses of allelic diversity, population structure, linkage disequilibrium (LD) decay and marker-trait association (MTA) in peanut. Distinctness of all the genotypes can be established by using either an unique allele detected by a single SSR or a combination of unique alleles by two or more than two SSR markers. As expected, DArT features (2.0 alleles/locus, 0.125 PIC) showed lower allele frequency and polymorphic information content (PIC) than SSRs (22.21 alleles /locus, 0.715 PIC). Both marker types clearly differentiated the genotypes of diploids from tetraploids. Multi-allelic SSRs identified three sub-groups (K = 3) while the LD simulation trend line based on squared-allele frequency correlations (r2) predicted LD decay of 15–20 cM in peanut genome. Detailed analysis identified a total of 524 highly significant MTAs (pvalue >2.1×10–6) with wide phenotypic variance (PV) range (5.81–90.09%) for 36 traits. These MTAs after validation may be deployed in improving biotic resistance, oil/ seed/ nutritional quality, drought tolerance related traits, and yield/ yield components.
Collapse
Affiliation(s)
- Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Vincent Vadez
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - M. S. Sheshshayee
- Department of Crop Physiology, University of Agricultural Sciences (UAS), Bangalore, Karnataka, India
| | - Manda Sriswathi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Mansee Govil
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Ashish Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
- Plant Pathology, Jawahar Lal Nehru Krishi Vishwa Vidyalaya (JNKVV), Jabalpur, Madhya Pradesh, India
| | - M. V. C. Gowda
- Department of Genetics and Plant Breeding, University of Agricultural Sciences (UAS), Dharwad, Karnataka, India
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Falalou Hamidou
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Sahelian Center, Niamey, Niger
| | - V. Anil Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Pawan Khera
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Ramesh S. Bhat
- Department of Biotechnology, University of Agricultural Sciences (UAS), Dharwad, Karnataka, India
| | - Aamir W. Khan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Sube Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Hongjie Li
- ShanDong Shofine Seed Technology Co Ltd, Jining, Shandong, China
| | - Emmanuel Monyo
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya
| | - H. L. Nadaf
- Department of Genetics and Plant Breeding, University of Agricultural Sciences (UAS), Dharwad, Karnataka, India
| | - Ganapati Mukri
- Department of Genetics and Plant Breeding, University of Agricultural Sciences (UAS), Dharwad, Karnataka, India
| | - Scott A. Jackson
- Center for Applied Genetic Technologies, The University of Georgia (UGA), Athens, Georgia, United States of America
| | - Baozhu Guo
- Crop Protection and Management Research Unit, US Department of Agriculture-Agricultural Research Service (USDA-ARS), Tifton, Georgia, United States of America
| | - Xuanqiang Liang
- Crop Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, Guangdong, China
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
- * E-mail:
| |
Collapse
|
45
|
Liu S, Yang X, Zhang D, Bai G, Chao S, Bockus W. Genome-wide association analysis identified SNPs closely linked to a gene resistant to Soil-borne wheat mosaic virus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1039-47. [PMID: 24522724 DOI: 10.1007/s00122-014-2277-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/26/2014] [Indexed: 05/13/2023]
Abstract
Using association and linkage mapping, two SNP markers closely linked to the SBWMV resistance gene on chromosome 5D were identified and can be used to select the gene in breeding. Soil-borne wheat mosaic virus (SBWMV) disease is a serious viral disease of winter wheat growing areas worldwide. SBWMV infection can significantly reduce grain yield up to 80 %. Developing resistant wheat cultivars is the only feasible strategy to reduce the losses. In this study, wheat Infinium iSelect Beadchips with 9 K wheat SNPs were used to genotype an association mapping population of 205 wheat accessions. Six new SNPs from two genes were identified to be significantly associated with the gene for SBWMV resistance on chromosome 5D. The SNPs and Xgwm469, an SSR marker that has been reported to be associated with the gene, were mapped close to the gene using F6-derived recombinant inbred lines from the cross between a resistant parent 'Heyne' and a susceptible parent 'Trego'. Two representative SNPs, wsnp_CAP11_c209_198467 and wsnp_JD_c4438_5568170, from the two linked genes in wheat were converted into KBioscience Competitive Allele-Specific Polymerase assays and can be easily used in marker-assisted selection to improve wheat resistance to SBWMV in breeding.
Collapse
Affiliation(s)
- Shubing Liu
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | | | | | | | | | | |
Collapse
|
46
|
Zhang Y, Miao X, Xia X, He Z. Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:855-66. [PMID: 24452439 DOI: 10.1007/s00122-014-2262-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 01/03/2014] [Indexed: 05/05/2023]
Abstract
After cloning and mapping of wheat TaSdr genes, both the functional markers for TaSdr - B1 and TaVp - 1B were validated, and the distribution of allelic variations at TaSdr - B1 locus in the wheat cultivars from 19 countries was characterized. Seed dormancy is a major factor associated with pre-harvest sprouting (PHS) in common wheat (Triticum aestivum L.). Wheat TaSdr genes, orthologs of OsSdr4 conferring seed dormancy in rice, were cloned by a comparative genomics approach. They were located on homoeologous group 2 chromosomes, and designated as TaSdr-A1, TaSdr-B1 and TaSdr-D1, respectively. Sequence analysis of TaSdr-B1 revealed a SNP at the position -11 upstream of the initiation codon, with bases A and G in cultivars with low and high germination indices (GI), respectively. A cleaved amplified polymorphism sequence marker Sdr2B was developed based on the SNP, and subsequently functional analysis of TaSdr-B1 was conducted by association and linkage mapping. A QTL for GI co-segregating with Sdr2B explained 6.4, 7.8 and 8.7 % of the phenotypic variances in a RIL population derived from Yangxiaomai/Zhongyou 9507 grown in Shijiazhuang, Beijing and the averaged data from those environments, respectively. Two sets of Chinese wheat cultivars were used for association mapping, and results indicated that TaSdr-B1 was significantly associated with GI. Analysis of the allelic distribution at the TaSdr-B1 locus showed that the frequencies of TaSdr-B1a associated with a lower GI were high in cultivars from Japan, Australia, Argentina, and the Middle and Lower Yangtze Valley Winter Wheat Region and Southwest Winter Wheat Region in China. This study provides not only a reliable functional marker for molecular-assisted selection of PHS in wheat breeding programs, but also gives novel information for a comprehensive understanding of seed dormancy.
Collapse
Affiliation(s)
- Yingjun Zhang
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | | | | | | |
Collapse
|
47
|
Singh AK, Knox RE, Clarke JM, Clarke FR, Singh A, DePauw RM, Cuthbert RD. Genetics of pre-harvest sprouting resistance in a cross of Canadian adapted durum wheat genotypes. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2014; 33:919-929. [PMID: 24659906 PMCID: PMC3956934 DOI: 10.1007/s11032-013-0006-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 12/11/2013] [Indexed: 05/06/2023]
Abstract
Severe losses attributable to pre-harvest sprouting (PHS) have been reported in Canada in recent years. The genetics of PHS resistance have been more extensively studied in hexaploid wheat and generally not using combinations of elite agronomic parents. The objective of our research was to understand the genetic nature of PHS resistance in an elite durum cross. A doubled haploid (DH) population and checks were phenotyped in replicated trials for grain yield and PHS traits over 3 years in western Canada. The response of intact spikes to sprouting conditions, sampled over two development time points, was measured in a rain simulation chamber. The DH population was genotyped with simple sequence repeat and Diversity Arrays Technology markers. Genotypes were a significant source of variation for grain yield and PHS resistance traits in each tested environment. Transgressive segregant DH genotypes were identified for grain yield and PHS resistance measurements. Low or no correlation was detected between grain yield and PHS, while correlation between PHS resistance measurements was moderate. The heritability of PHS resistance was moderate and higher than grain yield. Significant quantitative trait loci with small effect were detected on chromosomes 1A, 1B, 5B, 7A and 7B. Both parents contributed to the PHS resistance. Promising DH genotypes with high and stable grain yield as well as PHS resistance were identified, suggesting that grain yield and PHS can be improved simultaneously in elite genetic materials, and that these DH genotypes will be useful parental material for durum breeding programs.
Collapse
Affiliation(s)
- A. K. Singh
- Semiarid Prairie Agricultural Research Center, Agriculture and Agri-Food Canada, Swift Current, SK Canada
- Present Address: Department of Agronomy, Iowa State University, Ames, IA USA
| | - R. E. Knox
- Semiarid Prairie Agricultural Research Center, Agriculture and Agri-Food Canada, Swift Current, SK Canada
| | - J. M. Clarke
- University of Saskatchewan, Saskatoon, SK Canada
| | - F. R. Clarke
- Semiarid Prairie Agricultural Research Center, Agriculture and Agri-Food Canada, Swift Current, SK Canada
| | - A. Singh
- Semiarid Prairie Agricultural Research Center, Agriculture and Agri-Food Canada, Swift Current, SK Canada
- Present Address: Department of Agronomy, Iowa State University, Ames, IA USA
| | - R. M. DePauw
- Semiarid Prairie Agricultural Research Center, Agriculture and Agri-Food Canada, Swift Current, SK Canada
| | - R. D. Cuthbert
- Semiarid Prairie Agricultural Research Center, Agriculture and Agri-Food Canada, Swift Current, SK Canada
| |
Collapse
|
48
|
Gupta PK, Kulwal PL, Jaiswal V. Association mapping in crop plants: opportunities and challenges. ADVANCES IN GENETICS 2014; 85:109-47. [PMID: 24880734 DOI: 10.1016/b978-0-12-800271-1.00002-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The research area of association mapping (AM) is currently receiving major attention for genetic studies of quantitative traits in all major crops. However, the level of success and utility of AM achieved for crop improvement is not comparable to that in the area of human health care for diagnosis of complex human diseases. These AM studies in plants, as in humans, became possible due to the availability of DNA-based molecular markers and a variety of sophisticated statistical tools that are evolving on a regular basis. In this chapter, we first briefly review the significance of a variety of populations that are used in AM studies, then briefly describe the molecular markers and high-throughput genotyping strategies, and finally describe the approaches used for AM studies. The major part of the chapter is, however, devoted to analysis of reasons why the results of AM have been underutilized in plant breeding. We also examine the opportunities available and challenges faced while using AM for crop improvement programs. This includes a detailed discussion of the issues that have plagued AM studies, and the solutions that have become available to deal with these issues, so that in future, the results of AM studies may prove increasingly fruitful for crop improvement programs.
Collapse
Affiliation(s)
- Pushpendra K Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, UP, India
| | - Pawan L Kulwal
- State Level Biotechnology Centre, Mahatma Phule Agricultural University, Rahuri, MS, India
| | - Vandana Jaiswal
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, UP, India
| |
Collapse
|
49
|
Cross-validation in association mapping and its relevance for the estimation of QTL parameters of complex traits. Heredity (Edinb) 2013; 112:463-8. [PMID: 24326292 DOI: 10.1038/hdy.2013.126] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/26/2013] [Accepted: 10/25/2013] [Indexed: 12/18/2022] Open
Abstract
Association mapping has become a widely applied genomic approach to identify quantitative trait loci (QTL) and dissect the genetic architecture of complex traits. However, approaches to assess the quality of the obtained QTL results are lacking. We therefore evaluated the potential of cross-validation in association mapping based on a large sugar beet data set. Our results show that the proportion of the population that should be used as estimation and validation sets, respectively, depends on the size of the mapping population. Generally, a fivefold cross-validation, that is, 20% of the lines as independent validation set, appears appropriate for commonly used population sizes. The predictive power for the proportion of genotypic variance explained by QTL was overestimated by on average 38% indicating a strong bias in the estimated QTL effects. The cross-validated predictive power ranged between 4 and 50%, which are more realistic estimates of this parameter for complex traits. In addition, QTL frequency distributions can be used to assess the precision of QTL position estimates and the robustness of the detected QTL. In summary, cross-validation can be a valuable tool to assess the quality of QTL parameters in association mapping.
Collapse
|
50
|
Liu S, Sehgal SK, Li J, Lin M, Trick HN, Yu J, Gill BS, Bai G. Cloning and characterization of a critical regulator for preharvest sprouting in wheat. Genetics 2013; 195:263-73. [PMID: 23821595 PMCID: PMC3761307 DOI: 10.1534/genetics.113.152330] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/15/2013] [Indexed: 11/18/2022] Open
Abstract
Sprouting of grains in mature spikes before harvest is a major problem in wheat (Triticum aestivum) production worldwide. We cloned and characterized a gene underlying a wheat quantitative trait locus (QTL) on the short arm of chromosome 3A for preharvest sprouting (PHS) resistance in white wheat using comparative mapping and map-based cloning. This gene, designated TaPHS1, is a wheat homolog of a MOTHER OF FLOWERING TIME (TaMFT)-like gene. RNA interference-mediated knockdown of the gene confirmed that TaPHS1 positively regulates PHS resistance. We discovered two causal mutations in TaPHS1 that jointly altered PHS resistance in wheat. One GT-to-AT mutation generates a mis-splicing site, and the other A-to-T mutation creates a premature stop codon that results in a truncated nonfunctional transcript. Association analysis of a set of wheat cultivars validated the role of the two mutations on PHS resistance. The molecular characterization of TaPHS1 is significant for expediting breeding for PHS resistance to protect grain yield and quality in wheat production.
Collapse
Affiliation(s)
- Shubing Liu
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506
| | - Sunish K. Sehgal
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506
| | - Jiarui Li
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506
| | - Meng Lin
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506
| | - Harold N. Trick
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506
| | - Jianming Yu
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506
| | - Bikram S. Gill
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506
- Faculty of Science, Genomics and Biotechnology Section, Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506
- Hard Winter Wheat Genetics Research Unit, U.S. Department of Agriculture–Agricultural Research Service, Manhattan, Kansas 66506
| |
Collapse
|