1
|
Liu L, Wu D, Gu Y, Liu F, Liu B, Mao F, Yi X, Tang T, Zhao X. Comprehensive profiling of alternative splicing landscape during secondary dormancy in oilseed rape ( Brassica napus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:44. [PMID: 37313517 PMCID: PMC10248609 DOI: 10.1007/s11032-022-01314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Alternative splicing is a general mechanism that regulates gene expression at the post-transcriptional level, which increases the transcriptomic diversity. Oilseed rape (Brassica napus L.), one of the main oil crops worldwide, is prone to secondary dormancy. However, how alternative splicing landscape of oilseed rape seed changes in response to secondary dormancy is unknown. Here, we analyzed twelve RNA-seq libraries from varieties "Huaiyou-SSD-V1" and "Huaiyou-WSD-H2" which exhibited high (> 95%) and low (< 5%) secondary dormancy potential, respectively, and demonstrated that alternative splicing changes led to a significant increase with the diversity of the transcripts in response to secondary dormancy induction via polyethylene glycol 6000 (PEG6000) treatment. Among the four basic alternative splicing types, intron retention dominates, and exon skipping shows the rarest frequency. A total of 8% of expressed genes had two or more transcripts after PEG treatment. Further analysis revealed that global isoform expression percentage variations in alternative splicing in differently expressed genes (DEGs) is more than three times as much as those in non-DEGs, suggesting alternative splicing change is associated with the transcriptional activity change in response to secondary dormancy induction. Eventually, 342 differently spliced genes (DSGs) associated with secondary dormancy were identified, five of which were validated by RT-PCR. The number of the overlapped genes between DSGs and DEGs associated with secondary dormancy was much less than that of either DSGs or DEGs, suggesting that DSGs and DEGs may independently regulates secondary dormancy. Functional annotation analysis of DSGs revealed that spliceosome components are overrepresented among the DSGs, including small nuclear ribonucleoprotein particles (snRNPs), serine/arginine-rich (SR) proteins, and other splicing factors. Thus, it is proposed that the spliceosome components could be exploited to reduce secondary dormancy potential in oilseed rape. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01314-8.
Collapse
Affiliation(s)
- Lei Liu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Depeng Wu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Yujuan Gu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinghuangdao, Hebei 066600 China
| | - Fuxia Liu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Bin Liu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
| | - Feng Mao
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
| | - Xin Yi
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Tang Tang
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Xiangxiang Zhao
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| |
Collapse
|
2
|
Zhang C, Yuan Z, Wang Y, Sun W, Tang X, Sun Y, Yu S. Genetic Dissection of Seed Dormancy in Rice (Oryza sativa L.) by Using Two Mapping Populations Derived from Common Parents. RICE (NEW YORK, N.Y.) 2020; 13:52. [PMID: 32757080 PMCID: PMC7406625 DOI: 10.1186/s12284-020-00413-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/29/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Seed dormancy, a quality characteristic that plays a role in seed germination, seedling establishment and grain yield, is affected by multiple genes and environmental factors. The genetic and molecular mechanisms underlying seed dormancy in rice remain largely unknown. RESULTS Quantitative trait loci (QTLs) for seed dormancy were identified in two different mapping populations, a chromosome segment substitution line (CSSL) and backcross inbred line (BIL) population, both derived from the same parents Nipponbare, a japonica cultivar with seed dormancy, and 9311, an indica cultivar lacking seed dormancy. A total of 12 and 27 QTL regions for seed dormancy were detected in the CSSLs and BILs, respectively. Among these regions, four major loci (qSD3.1, qSD3.2, qSD5.2 and qSD11.2) were commonly identified for multiple germination parameters associated with seed dormancy in both populations, with Nipponbare alleles delaying the seed germination percentage and decreasing germination uniformity. Two loci (qSD3.1 and qSD3.2) were individually validated in the near-isogenic lines containing the QTL of interest. The effect of qSD3.2 was further confirmed in a CSSL-derived F2 population. Furthermore, both qSD3.1 and qSD3.2 were sensitive to abscisic acid and exhibited a significant epistatic interaction to increase seed dormancy. CONCLUSIONS Our results indicate that the integration of the developed CSSLs and BILs with high-density markers can provide a powerful tool for dissecting the genetic basis of seed dormancy in rice. Our findings regarding the major loci and their interactions with several promising candidate genes that are induced by abscisic acid and specifically expressed in the seeds will facilitate further gene discovery and a better understanding of the genetic and molecular mechanisms of seed dormancy for improving seed quality in rice breeding programs.
Collapse
Affiliation(s)
- Chaopu Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Zhiyang Yuan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Yuntong Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Wenqiang Sun
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Xinxin Tang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Yongjian Sun
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China.
| |
Collapse
|
3
|
Genetic Dissection of Seed Dormancy using Chromosome Segment Substitution Lines in Rice ( Oryza sativa L.). Int J Mol Sci 2020; 21:ijms21041344. [PMID: 32079255 PMCID: PMC7072991 DOI: 10.3390/ijms21041344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 01/26/2023] Open
Abstract
Timing of germination determines whether a new plant life cycle can be initiated; therefore, appropriate dormancy and rapid germination under diverse environmental conditions are the most important features for a seed. However, the genetic architecture of seed dormancy and germination behavior remains largely elusive. In the present study, a linkage analysis for seed dormancy and germination behavior was conducted using a set of 146 chromosome segment substitution lines (CSSLs), of which each carries a single or a few chromosomal segments of Nipponbare (NIP) in the background of Zhenshan 97 (ZS97). A total of 36 quantitative trait loci (QTLs) for six germination parameters were identified. Among them, qDOM3.1 was validated as a major QTL for seed dormancy in a segregation population derived from the qDOM3.1 near-isogenic line, and further delimited into a genomic region of 90 kb on chromosome 3. Based on genetic analysis and gene expression profiles, the candidate genes were restricted to eight genes, of which four were responsive to the addition of abscisic acid (ABA). Among them, LOC_Os03g01540 was involved in the ABA signaling pathway to regulate seed dormancy. The results will facilitate cloning the major QTLs and understanding the genetic architecture for seed dormancy and germination in rice and other crops.
Collapse
|
4
|
Di F, Wang T, Ding Y, Chen X, Wang H, Li J, Liu L. Genetic Mapping Combined with a Transcriptome Analysis to Screen for Candidate Genes Responsive to Abscisic Acid Treatment in Brassica napus Embryos During Seed Germination. DNA Cell Biol 2020; 39:533-547. [PMID: 32031882 DOI: 10.1089/dna.2019.5169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Brassica napus embryos contain precursor tissues for the leaves, stem, and root, as well as the cotyledons, and these precursor tissues play key roles in seed germination, seedling survival, and subsequent seedling growth. Abscisic acid (ABA) plays a prominent role in the inhibition of seed germination. The underlying molecular mechanisms of the embryo responses to ABA stress followed by inhibited seed germination have not been reported in B. napus to date. In this study, we conducted quantitative trait locus (QTL) analysis of B. napus seed in response to ABA stress using 170 recombinant inbred lines. Furthermore, we performed transcriptome sequencing (RNA-seq) analyses by using B. napus ZS11 embryos under sterile deionized water (control) and 10 mg/L (10A), 20 mg/L (20A), and 30 mg/L (30A) ABA treatment conditions. In total, 10 QTLs were screened for explaining 2.70-6.73% of the phenotypic variation under ABA stress. In addition, 1495, 3332, and 3868 differentially expressed genes (DEGs) were identified in the "control vs 10A," "control vs 20A," and "control vs 30A" comparisons, respectively. Gene Ontology (GO) enrichment analysis indicated that DEG functions are mainly related to response to stimuli, response to oxygen-containing compounds, response to lipids, and the transport and seed dormancy processes. These DEGs mainly participated in the response to plant hormone signal transduction, starch and sucrose metabolism, cutin, suberine, and wax biosynthesis, and phenylpropanoid biosynthesis processes pathways. Our results provide a foundation for further explorations of the molecular regulatory mechanisms of B. napus embryos in response to abiotic stress during the seed germination stage.
Collapse
Affiliation(s)
- Feifei Di
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Tengyue Wang
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Yiran Ding
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Xueping Chen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Hao Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Shanxi Rapeseed Branch of National Center for Oil Crops Genetic Improvement, Yangling, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Liu L, Liu F, Chu J, Yi X, Fan W, Tang T, Chen G, Guo Q, Zhao X. A transcriptome analysis reveals a role for the indole GLS-linked auxin biosynthesis in secondary dormancy in rapeseed (Brassica napus L.). BMC PLANT BIOLOGY 2019; 19:264. [PMID: 31215396 PMCID: PMC6582522 DOI: 10.1186/s12870-019-1866-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/03/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Brassica napus L. has little or no primary dormancy, but exhibits great variation in secondary dormancy. Secondary dormancy potential in oilseed rape can lead to the emergence of volunteer plants that cause genetic contamination, reduced quality and biosafety issues. However, the mechanisms underlying secondary dormancy are poorly understood. In this study, cultivars Huaiyou-WSD-H2 (H) and Huaiyou-SSD-V1 (V), which exhibit low (approximately 5%) and high (approximately 95%) secondary dormancy rate, respectively, were identified. Four samples, before (Hb and Vb) and after (Ha and Va) secondary dormancy induction by polyethylene glycol (PEG), were collected to identify the candidate genes involved in secondary dormancy via comparative transcriptome profile analysis. RESULTS A total of 998 differentially expressed genes (DEGs), which are mainly involved in secondary metabolism, transcriptional regulation, protein modification and signaling pathways, were then detected. Among these DEGs, the expression levels of those involved in the sulfur-rich indole glucosinolate (GLS)-linked auxin biosynthesis pathway were markedly upregulated in the dormant seeds (Va), which were validated by qRT-PCR and subsequently confirmed via detection of altered concentrations of indole-3-acetic acid (IAA), IAA conjugates and precursors. Furthermore, exogenous IAA applications to cultivar H enhanced secondary dormancy. CONCLUSION This study first (to our knowledge) elucidated that indole GLS-linked auxin biosynthesis is enhanced during secondary dormancy induced by PEG, which provides valuable information concerning secondary dormancy and expands the current understanding of the role of auxin in rapeseed.
Collapse
Affiliation(s)
- Lei Liu
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Fuxia Liu
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xin Yi
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Wenqi Fan
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127 China
| | - Tang Tang
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Guimin Chen
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Qiuhuan Guo
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiangxiang Zhao
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| |
Collapse
|
6
|
Behnke N, Suprianto E, Möllers C. A major QTL on chromosome C05 significantly reduces acid detergent lignin (ADL) content and increases seed oil and protein content in oilseed rape (Brassica napus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2477-2492. [PMID: 30143828 DOI: 10.1007/s00122-018-3167-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/17/2018] [Indexed: 05/27/2023]
Abstract
A reduction in acid detergent lignin content in oilseed rape resulted in an increase in seed oil and protein content. Worldwide increasing demand for vegetable oil and protein requires continuous breeding efforts to enhance the yield of oil and protein crop species. The oil-extracted meal of oilseed rape is currently mainly used for feeding livestock, but efforts are undertaken to use the oilseed rape protein in food production. One limiting factor is the high lignin content of black-seeded oilseed rape that negatively affects digestibility and sensory quality of food products compared to soybean. Breeding attempts to develop yellow seeded oilseed rape with reduced lignin content have not yet resulted in competitive cultivars. The objective of this work was to investigate the inheritance of seed quality in a DH population derived from the cross of the high oil lines SGDH14 and cv. Express. The DH population of 139 lines was tested in field experiments in 14 environments in north-west Europe. Seeds harvested from open pollinated plants were used for extensive seed quality analysis. A molecular marker map based on the Illumina Infinium 60 K Brassica SNP chip was used to map QTL. Amongst others, one major QTL for acid detergent lignin content, explaining 81% of the phenotypic variance, was identified on chromosome C05. Lines with reduced lignin content nevertheless did not show a yellowish appearance, but showed a reduced seed hull content. The position of the QTL co-located with QTL for oil and protein content of the defatted meal with opposite additive effects, suggesting that the reduction in lignin content resulted in an increase in oil and protein content.
Collapse
Affiliation(s)
- Nina Behnke
- Department of Crop Sciences, Georg-August-Universität Göttingen, Von-Siebold-Str. 8, 37075, Göttingen, Germany
| | - Edy Suprianto
- Department of Crop Sciences, Georg-August-Universität Göttingen, Von-Siebold-Str. 8, 37075, Göttingen, Germany
| | - Christian Möllers
- Department of Crop Sciences, Georg-August-Universität Göttingen, Von-Siebold-Str. 8, 37075, Göttingen, Germany.
| |
Collapse
|
7
|
Werner CR, Qian L, Voss-Fels KP, Abbadi A, Leckband G, Frisch M, Snowdon RJ. Genome-wide regression models considering general and specific combining ability predict hybrid performance in oilseed rape with similar accuracy regardless of trait architecture. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:299-317. [PMID: 29080901 DOI: 10.1007/s00122-017-3002-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/09/2017] [Indexed: 05/02/2023]
Abstract
Genomic prediction using the Brassica 60 k genotyping array is efficient in oilseed rape hybrids. Prediction accuracy is more dependent on trait complexity than on the prediction model. In oilseed rape breeding programs, performance prediction of parental combinations is of fundamental importance. Due to the phenomenon of heterosis, per se performance is not a reliable indicator for F1-hybrid performance, and selection of well-paired parents requires the testing of large quantities of hybrid combinations in extensive field trials. However, the number of potential hybrids, in general, dramatically exceeds breeding capacity and budget. Integration of genomic selection (GS) could substantially increase the number of potential combinations that can be evaluated. GS models can be used to predict the performance of untested individuals based only on their genotypic profiles, using marker effects previously predicted in a training population. This allows for a preselection of promising genotypes, enabling a more efficient allocation of resources. In this study, we evaluated the usefulness of the Illumina Brassica 60 k SNP array for genomic prediction and compared three alternative approaches based on a homoscedastic ridge regression BLUP and three Bayesian prediction models that considered general and specific combining ability (GCA and SCA, respectively). A total of 448 hybrids were produced in a commercial breeding program from unbalanced crosses between 220 paternal doubled haploid lines and five male-sterile testers. Predictive ability was evaluated for seven agronomic traits. We demonstrate that the Brassica 60 k genotyping array is an adequate and highly valuable platform to implement genomic prediction of hybrid performance in oilseed rape. Furthermore, we present first insights into the application of established statistical models for prediction of important agronomical traits with contrasting patterns of polygenic control.
Collapse
Affiliation(s)
- Christian R Werner
- Department of Plant Breeding, Justus Liebig University, 35392, Giessen, Germany
| | - Lunwen Qian
- Department of Plant Breeding, Justus Liebig University, 35392, Giessen, Germany
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Kai P Voss-Fels
- Department of Plant Breeding, Justus Liebig University, 35392, Giessen, Germany
| | - Amine Abbadi
- NPZ Innovation GmbH, Hohenlieth, 24363, Holtsee, Germany
| | | | - Matthias Frisch
- Institute of Agronomy and Plant Breeding II, Justus Liebig University, 35392, Giessen, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, Justus Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
8
|
Werner CR, Qian L, Voss-Fels KP, Abbadi A, Leckband G, Frisch M, Snowdon RJ. Genome-wide regression models considering general and specific combining ability predict hybrid performance in oilseed rape with similar accuracy regardless of trait architecture. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017. [PMID: 29080901 DOI: 10.1007/s00122‐017‐3002‐5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
KEY MESSAGE Genomic prediction using the Brassica 60 k genotyping array is efficient in oilseed rape hybrids. Prediction accuracy is more dependent on trait complexity than on the prediction model. In oilseed rape breeding programs, performance prediction of parental combinations is of fundamental importance. Due to the phenomenon of heterosis, per se performance is not a reliable indicator for F1-hybrid performance, and selection of well-paired parents requires the testing of large quantities of hybrid combinations in extensive field trials. However, the number of potential hybrids, in general, dramatically exceeds breeding capacity and budget. Integration of genomic selection (GS) could substantially increase the number of potential combinations that can be evaluated. GS models can be used to predict the performance of untested individuals based only on their genotypic profiles, using marker effects previously predicted in a training population. This allows for a preselection of promising genotypes, enabling a more efficient allocation of resources. In this study, we evaluated the usefulness of the Illumina Brassica 60 k SNP array for genomic prediction and compared three alternative approaches based on a homoscedastic ridge regression BLUP and three Bayesian prediction models that considered general and specific combining ability (GCA and SCA, respectively). A total of 448 hybrids were produced in a commercial breeding program from unbalanced crosses between 220 paternal doubled haploid lines and five male-sterile testers. Predictive ability was evaluated for seven agronomic traits. We demonstrate that the Brassica 60 k genotyping array is an adequate and highly valuable platform to implement genomic prediction of hybrid performance in oilseed rape. Furthermore, we present first insights into the application of established statistical models for prediction of important agronomical traits with contrasting patterns of polygenic control.
Collapse
Affiliation(s)
- Christian R Werner
- Department of Plant Breeding, Justus Liebig University, 35392, Giessen, Germany
| | - Lunwen Qian
- Department of Plant Breeding, Justus Liebig University, 35392, Giessen, Germany.,Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Kai P Voss-Fels
- Department of Plant Breeding, Justus Liebig University, 35392, Giessen, Germany
| | - Amine Abbadi
- NPZ Innovation GmbH, Hohenlieth, 24363, Holtsee, Germany
| | | | - Matthias Frisch
- Institute of Agronomy and Plant Breeding II, Justus Liebig University, 35392, Giessen, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, Justus Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
9
|
Lu Q, Niu X, Zhang M, Wang C, Xu Q, Feng Y, Yang Y, Wang S, Yuan X, Yu H, Wang Y, Chen X, Liang X, Wei X. Genome-Wide Association Study of Seed Dormancy and the Genomic Consequences of Improvement Footprints in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:2213. [PMID: 29354150 PMCID: PMC5760558 DOI: 10.3389/fpls.2017.02213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/18/2017] [Indexed: 05/03/2023]
Abstract
Seed dormancy is an important agronomic trait affecting grain yield and quality because of pre-harvest germination and is influenced by both environmental and genetic factors. However, our knowledge of the factors controlling seed dormancy remains limited. To better reveal the molecular mechanism underlying this trait, a genome-wide association study was conducted in an indica-only population consisting of 453 accessions genotyped using 5,291 SNPs. Nine known and new significant SNPs were identified on eight chromosomes. These lead SNPs explained 34.9% of the phenotypic variation, and four of them were designed as dCAPS markers in the hope of accelerating molecular breeding. Moreover, a total of 212 candidate genes was predicted and eight candidate genes showed plant tissue-specific expression in expression profile data from different public bioinformatics databases. In particular, LOC_Os03g10110, which had a maize homolog involved in embryo development, was identified as a candidate regulator for further biological function investigations. Additionally, a polymorphism information content ratio method was used to screen improvement footprints and 27 selective sweeps were identified, most of which harbored domestication-related genes. Further studies suggested that three significant SNPs were adjacent to the candidate selection signals, supporting the accuracy of our genome-wide association study (GWAS) results. These findings show that genome-wide screening for selective sweeps can be used to identify new improvement-related DNA regions, although the phenotypes are unknown. This study enhances our knowledge of the genetic variation in seed dormancy, and the new dormancy-associated SNPs will provide real benefits in molecular breeding.
Collapse
Affiliation(s)
- Qing Lu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement and Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Xiaojun Niu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Mengchen Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Caihong Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Qun Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yue Feng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yaolong Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shan Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiaoping Yuan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Hanyong Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yiping Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement and Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Xuanqiang Liang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement and Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Xinghua Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- *Correspondence: Xinghua Wei
| |
Collapse
|
10
|
Schwarz N, Armbruster U, Iven T, Brückle L, Melzer M, Feussner I, Jahns P. Tissue-specific accumulation and regulation of zeaxanthin epoxidase in Arabidopsis reflect the multiple functions of the enzyme in plastids. PLANT & CELL PHYSIOLOGY 2015; 56:346-57. [PMID: 25416291 DOI: 10.1093/pcp/pcu167] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The enzyme zeaxanthin epoxidase (ZEP) catalyzes the conversion of zeaxanthin to violaxanthin, a key reaction for ABA biosynthesis and the xanthophyll cycle. Both processes are important for acclimation to environmental stress conditions, in particular drought (ABA biosynthesis) and light (xanthophyll cycle) stress. Hence, both ZEP functions may require differential regulation to optimize plant fitness. The key to understanding the function of ZEP in both stress responses might lie in its spatial and temporal distribution in plant tissues. Therefore, we analyzed the distribution of ZEP in plant tissues and plastids under drought and light stress by use of a ZEP-specific antibody. In addition, we determined the pigment composition of the plant tissues and chloroplast membrane subcompartments in response to these stresses. The ZEP protein was detected in all plant tissues (except flowers) concomitant with xanthophylls. The highest levels of ZEP were present in leaf chloroplasts and root plastids. Within chloroplasts, ZEP was localized predominantly in the thylakoid membrane and stroma, while only a small fraction was bound by the envelope membrane. Light stress affected neither the accumulation nor the relative distribution of ZEP in chloroplasts, while drought stress led to an increase of ZEP in roots and to a degradation of ZEP in leaves. However, drought stress-induced increases in ABA were similar in both tissues. These data support a tissue- and stress-specific accumulation of the ZEP protein in accordance with its different functions in ABA biosynthesis and the xanthophyll cycle.
Collapse
Affiliation(s)
- Nadine Schwarz
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Ute Armbruster
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, USA Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Tim Iven
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, D-37077 Göttingen, Germany
| | - Lena Brückle
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Michael Melzer
- Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany
| | - Ivo Feussner
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, D-37077 Göttingen, Germany
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Genotyping of endosperms to determine seed dormancy genes regulating germination through embryonic, endospermic, or maternal tissues in rice. G3-GENES GENOMES GENETICS 2014; 5:183-93. [PMID: 25480961 PMCID: PMC4321027 DOI: 10.1534/g3.114.015362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Seed dormancy is imposed by one or more of the embryo, endosperm, and maternal tissues that belong to two generations and represent two ploidy levels. Many quantitative trait loci (QTL) have been identified for seed dormancy as measured by gross effects on reduced germination rate or delayed germination in crop or model plants. This research developed an endosperm genotype−based genetic approach to determine specific tissues through which a mapped QTL regulates germination using rice as a model. This approach involves testing germination velocity for partially after-ripened seeds harvested from single plants heterozygous for a tested QTL and genotyping endosperms from individual germinated and nongerminated seeds with a codominant DNA marker located on the QTL peak region. Information collected about the QTL includes genotypic frequencies in germinated and/or nongerminated subpopulations; allelic frequency distributions during a germination period; endosperm or embryo genotypic differences in germination velocity; and genotypic frequencies for gametes involved in the double fertilization to form the sampled seeds. Using this approach, the seed dormancy loci SD12, SD1-2, and SD7-1 were determined to regulate germination through the embryo, endosperm, and maternal tissues, respectively; SD12 and SD1-2 acted additively on germination velocity in the offspring tissues; and SD12 also was associated with the preferential fertilization of male gametes in rice. This new genetic approach can be used to characterize mapped genes/QTL for tissue-specific functions in endospermic seeds and for marker-assisted selection of QTL alleles before or immediately after germination in crop breeding.
Collapse
|
12
|
Schatzki J, Ecke W, Becker HC, Möllers C. Mapping of QTL for the seed storage proteins cruciferin and napin in a winter oilseed rape doubled haploid population and their inheritance in relation to other seed traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1213-22. [PMID: 24595811 DOI: 10.1007/s00122-014-2292-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/21/2014] [Indexed: 05/03/2023]
Abstract
Cruciferin (cru) and napin (nap) were negatively correlated and the cru/nap ratio was closely negative correlated with glucosinolate content indicating a link between the two biosynthetic pathways. Canola-type oilseed rape (Brassica napus L.) is an economically important oilseed crop in temperate zones. Apart from the oil, the canola protein shows potential as a value-added food and nutraceutical ingredient. The two major storage protein groups occurring in oilseed rape are the 2 S napins and 12 S cruciferins. The aim of the present study was to analyse the genetic variation and the inheritance of napin and cruciferin content of the seed protein in the winter oilseed rape doubled haploid population Express 617 × R53 and to determine correlations to other seed traits. Seed samples were obtained from field experiments performed in 2 years at two locations with two replicates in Germany. A previously developed molecular marker map of the DH population was used to map quantitative trait loci (QTL) of the relevant traits. The results indicated highly significant effects of the year and the genotype on napin and cruciferin content as well as on the ratio of cruciferin to napin. Heritabilities were comparatively high with 0.79 for napin and 0.77 for cruciferin. Napin and cruciferin showed a significant negative correlation (-0.36**) and a close negative correlation of the cru/nap ratio to glucosinolate content was observed (-0.81**). Three QTL for napin and two QTL for cruciferin were detected, together explaining 47 and 35 % of the phenotypic variance. A major QTL for glucosinolate content was detected on linkage group N19 whose confidence interval overlapped with QTL for napin and cruciferin content. Results indicate a relationship between seed protein composition and glucosinolate content.
Collapse
Affiliation(s)
- Jörg Schatzki
- Department of Crop Sciences, Plant Breeding, Georg-August-Universität Göttingen, Von-Siebold-Str. 8, 37075, Göttingen, Germany
| | | | | | | |
Collapse
|