1
|
Dipta B, Sood S, Mangal V, Bhardwaj V, Thakur AK, Kumar V, Singh B. KASP: a high-throughput genotyping system and its applications in major crop plants for biotic and abiotic stress tolerance. Mol Biol Rep 2024; 51:508. [PMID: 38622474 DOI: 10.1007/s11033-024-09455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
Advances in plant molecular breeding have resulted in the development of new varieties with superior traits, thus improving the crop germplasm. Breeders can screen a large number of accessions without rigorous and time-consuming phenotyping by marker-assisted selection (MAS). Molecular markers are one of the most imperative tools in plant breeding programmes for MAS to develop new cultivars possessing multiple superior traits. Single nucleotide polymorphisms (SNPs) are ideal for MAS due to their low cost, low genotyping error rates, and reproducibility. Kompetitive Allele Specific PCR (KASP) is a globally recognized technology for SNP genotyping. KASP is an allele-specific oligo extension-based PCR assay that uses fluorescence resonance energy transfer (FRET) to detect genetic variations such as SNPs and insertions/deletions (InDels) at a specific locus. Additionally, KASP allows greater flexibility in assay design, which leads to a higher success rate and the capability to genotype a large population. Its versatility and ease of use make it a valuable tool in various fields, including genetics, agriculture, and medical research. KASP has been extensively used in various plant-breeding applications, such as the identification of germplasm resources, quality control (QC) analysis, allele mining, linkage mapping, quantitative trait locus (QTL) mapping, genetic map construction, trait-specific marker development, and MAS. This review provides an overview of the KASP assay and emphasizes its validation in crop improvement related to various biotic and abiotic stress tolerance and quality traits.
Collapse
Affiliation(s)
- Bhawna Dipta
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| | - Salej Sood
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India.
| | - Vikas Mangal
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| | - Vinay Bhardwaj
- ICAR-National Research Centre on Seed Spices, Tabiji, Ajmer, Rajasthan, 305206, India
| | - Ajay Kumar Thakur
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| | - Vinod Kumar
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| |
Collapse
|
2
|
Ribeiro CAG, de Sousa Tinoco SM, de Souza VF, Negri BF, Gault CM, Pastina MM, Magalhaes JV, Guimarães LJM, de Barros EG, Buckler ES, Guimaraes CT. Genome-Wide Association Study for Root Morphology and Phosphorus Acquisition Efficiency in Diverse Maize Panels. Int J Mol Sci 2023; 24:ijms24076233. [PMID: 37047206 PMCID: PMC10094163 DOI: 10.3390/ijms24076233] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Maximizing soil exploration through modifications of the root system is a strategy for plants to overcome phosphorus (P) deficiency. Genome-wide association with 561 tropical maize inbred lines from Embrapa and DTMA panels was undertaken for root morphology and P acquisition traits under low- and high-P concentrations, with 353,540 SNPs. P supply modified root morphology traits, biomass and P content in the global maize panel, but root length and root surface area changed differentially in Embrapa and DTMA panels. This suggests that different root plasticity mechanisms exist for maize adaptation to low-P conditions. A total of 87 SNPs were associated to phenotypic traits in both P conditions at −log10(p-value) ≥ 5, whereas only seven SNPs reached the Bonferroni significance. Among these SNPs, S9_137746077, which is located upstream of the gene GRMZM2G378852 that encodes a MAPKKK protein kinase, was significantly associated with total seedling dry weight, with the same allele increasing root length and root surface area under P deficiency. The C allele of S8_88600375, mapped within GRMZM2G044531 that encodes an AGC kinase, significantly enhanced root length under low P, positively affecting root surface area and seedling weight. The broad genetic diversity evaluated in this panel suggests that candidate genes and favorable alleles could be exploited to improve P efficiency in maize breeding programs of Africa and Latin America.
Collapse
Affiliation(s)
- Carlos Alexandre Gomes Ribeiro
- Programa de Pós-Graduação em Genética e Melhoramento, Universidade Federal de Viçosa, Viçosa 36570-000, Minas Gerais, Brazil
| | | | - Vander Fillipe de Souza
- Programa de Pós-Graduação em Bioengenharia, Universidade Federal de São João del-Rei, São João del-Rei 36301-160, Minas Gerais, Brazil
| | - Barbara França Negri
- Programa de Pós-Graduação em Bioengenharia, Universidade Federal de São João del-Rei, São João del-Rei 36301-160, Minas Gerais, Brazil
| | | | | | | | | | - Everaldo Gonçalves de Barros
- Programa de Pós-Graduação em Genética e Melhoramento, Universidade Federal de Viçosa, Viçosa 36570-000, Minas Gerais, Brazil
| | - Edward S. Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA
- USDA-ARS, Robert Holley Center, Ithaca, NY 14853, USA
| | - Claudia Teixeira Guimaraes
- Embrapa Milho e Sorgo, Sete Lagoas 35701-970, Minas Gerais, Brazil
- Programa de Pós-Graduação em Bioengenharia, Universidade Federal de São João del-Rei, São João del-Rei 36301-160, Minas Gerais, Brazil
- Correspondence: ; Tel.: +55-31-3027-1300
| |
Collapse
|
3
|
The rising threat of geminiviruses: molecular insights into the disease mechanism and mitigation strategies. Mol Biol Rep 2023; 50:3835-3848. [PMID: 36701042 DOI: 10.1007/s11033-023-08266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Geminiviruses are among the most threatening emerging plant viruses, accountable for a huge loss to agricultural production worldwide. These viruses have been responsible for some serious outbreaks during the last few decades across different parts of the world. Sincere efforts have been made to regulate the disease incidence by incorporating a multi-dimensional approach, and this process has been facilitated greatly by the advent of molecular techniques. But, the mixed infection due to the polyphagous nature of vectors results in viral recombination followed by the emergence of novel viral strains which thus renders the existing mitigation strategies ineffective. Hence, a multifaceted insight into the molecular mechanism of the disease is really needed to understand the regulatory points; much has been done in this direction during the last few years. The present review aims to explore all the latest developments made so far and to organize the information in a comprehensive manner so that some novel hypotheses for controlling the disease may be generated. METHODS AND RESULTS Starting with the background information, diverse genera of geminiviruses are listed along with their pathological and economic impacts. A comprehensive and detailed mechanism of infection is elaborated to study the interactions between vector, host, and virus at different stages in the life cycle of geminiviruses. Finally, an effort isalso made to analyze the progress made at the molecular level for the development of various mitigation strategies and suggest more effective and better approaches for controlling the disease. CONCLUSION The study has provided a thorough understanding of molecular mechanism of geminivirus infection.
Collapse
|
4
|
Rashid Z, Babu V, Sharma SS, Singh PK, Nair SK. Identification and validation of a key genomic region on chromosome 6 for resistance to Fusarium stalk rot in tropical maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4549-4563. [PMID: 36271945 PMCID: PMC9734215 DOI: 10.1007/s00122-022-04239-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
A key genomic region was identified for resistance to FSR at 168 Mb on chromosome 6 in GWAS and haplotype regression analysis, which was validated by QTL mapping in two populations. Fusarium stalk rot (FSR) of maize is an economically important post-flowering stalk rot (PFSR) disease caused by Fusarium verticillioides. The pathogen invades the plant individually, or in combination with other stalk rot pathogens or secondary colonizers, thereby making it difficult to make accurate selection for resistance. For identification and validation of genomic regions associated with FSR resistance, a genome-wide association study (GWAS) was conducted with 342 maize lines. The panel was screened for FSR in three environments using standard artificial inoculation methodology. GWAS using the mixed linear model corrected for population structure and kinship was done, in which 290,626 SNPs from genotyping-by-sequencing were used. A total of 7 SNPs, five on chromosome 6 showing strong LD at 168 Mb, were identified to be associated with FSR. Haplotype regression analysis identified 32 haplotypes with a significant effect on the trait. In a QTL mapping experiment in two populations for validating the identified variants, QTLs were identified with confidence intervals having overlapped physical coordinates in both the populations on chromosome 6, which was closely located to the GWAS-identified variants on chromosome 6. It makes this genomic region a crucial one to further investigate the possibility of developing trait markers for deployment in breeding pipelines. It was noted that previously reported QTLs for other stalk rots in maize mapped within the same physical intervals of several haplotypes identified for FSR resistance in this study. The possibility of QTLs controlling broad-spectrum resistance for PFSR in general requires further investigation.
Collapse
Affiliation(s)
- Zerka Rashid
- International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Greater, Hyderabad, 502324, Telangana, India
| | - Veerendra Babu
- International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Greater, Hyderabad, 502324, Telangana, India
| | - Shyam Sundar Sharma
- Maharana Pratap University of Agriculture and Technology (MPUAT), Udaipur, 313001, Rajasthan, India
| | - Pradeep Kumar Singh
- International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Greater, Hyderabad, 502324, Telangana, India
- Corteva Agriscience Seeds India Pvt Ltd., Madhapur, Hyderabad, 500081, Telangana, India
| | - Sudha Krishnan Nair
- International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Greater, Hyderabad, 502324, Telangana, India.
| |
Collapse
|
5
|
Prasanna BM, Burgueño J, Beyene Y, Makumbi D, Asea G, Woyengo V, Tarekegne A, Magorokosho C, Wegary D, Ndhlela T, Zaman-Allah M, Matova PM, Mwansa K, Mashingaidze K, Fato P, Teklewold A, Vivek BS, Zaidi PH, Vinayan MT, Patne N, Rakshit S, Kumar R, Jat SL, Singh SB, Kuchanur PH, Lohithaswa HC, Singh NK, Koirala KB, Ahmed S, Vicente FS, Dhliwayo T, Cairns JE. Genetic trends in CIMMYT's tropical maize breeding pipelines. Sci Rep 2022; 12:20110. [PMID: 36418412 PMCID: PMC9684471 DOI: 10.1038/s41598-022-24536-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Fostering a culture of continuous improvement through regular monitoring of genetic trends in breeding pipelines is essential to improve efficiency and increase accountability. This is the first global study to estimate genetic trends across the International Maize and Wheat Improvement Center (CIMMYT) tropical maize breeding pipelines in eastern and southern Africa (ESA), South Asia, and Latin America over the past decade. Data from a total of 4152 advanced breeding trials and 34,813 entries, conducted at 1331 locations in 28 countries globally, were used for this study. Genetic trends for grain yield reached up to 138 kg ha-1 yr-1 in ESA, 118 kg ha-1 yr-1 South Asia and 143 kg ha-1 yr-1 in Latin America. Genetic trend was, in part, related to the extent of deployment of new breeding tools in each pipeline, strength of an extensive phenotyping network, and funding stability. Over the past decade, CIMMYT's breeding pipelines have significantly evolved, incorporating new tools/technologies to increase selection accuracy and intensity, while reducing cycle time. The first pipeline, Eastern Africa Product Profile 1a (EA-PP1a), to implement marker-assisted forward-breeding for resistance to key diseases, coupled with rapid-cycle genomic selection for drought, recorded a genetic trend of 2.46% per year highlighting the potential for deploying new tools/technologies to increase genetic gain.
Collapse
Affiliation(s)
- Boddupalli M. Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, P.O. Box 1041, Nairobi, 00621 Kenya
| | | | - Yoseph Beyene
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, P.O. Box 1041, Nairobi, 00621 Kenya
| | - Dan Makumbi
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, P.O. Box 1041, Nairobi, 00621 Kenya
| | - Godfrey Asea
- National Crops Resources Research Institute (NaCRRI), National Agricultural Research Organization, P.O. Box 7084, Kampala, Uganda
| | - Vincent Woyengo
- Kenya Agricultural and Livestock Research Organization (KALRO), P.O. Box 169, Kakamega, 50100 Kenya
| | - Amsal Tarekegne
- CIMMYT, P.O. Box MP163, Harare, Zimbabwe
- Present Address: Zamseed, Lusaka, Zambia
| | | | | | | | | | - Prince M. Matova
- Department of Research and Specialist Services (DR&SS), Crop Breeding Institute, 5th Street Extension, Harare, Zimbabwe
- Present Address: Mukushi Seeds (Pvt) Ltd, Harare, Zimbabwe
| | - Kabamba Mwansa
- Zambia Agricultural Research Institute (ZARI), Lusaka, Zambia
| | | | - Pedro Fato
- Agricultural Research Institute of Mozambique (IIAM), Maputo, Mozambique
| | | | - B. S. Vivek
- CIMMYT, ICRISAT Campus, Patancheru, Greater Hyderabad, Telangana India
| | - P. H. Zaidi
- CIMMYT, ICRISAT Campus, Patancheru, Greater Hyderabad, Telangana India
| | - M. T. Vinayan
- CIMMYT, ICRISAT Campus, Patancheru, Greater Hyderabad, Telangana India
| | - Nagesh Patne
- CIMMYT, ICRISAT Campus, Patancheru, Greater Hyderabad, Telangana India
| | - Sujay Rakshit
- ICAR-Indian Institute of Maize Research (IIMR), Ludhiana, Punjab India
| | - Ramesh Kumar
- ICAR-Indian Institute of Maize Research (IIMR), Ludhiana, Punjab India
| | - S. L. Jat
- ICAR-Indian Institute of Maize Research (IIMR), Ludhiana, Punjab India
| | - S. B. Singh
- ICAR-Indian Institute of Maize Research (IIMR), Ludhiana, Punjab India
| | - Prakash H. Kuchanur
- University of Agricultural Sciences (UAS), Raichur College of Agriculture, Bheemarayanagudi, Yadagiri, Karnataka India
| | - H. C. Lohithaswa
- University of Agricultural Sciences (UAS), Bangalore, Karnataka India
| | - N. K. Singh
- G.B. Pant, University of Agriculture and Technology, Pantnagar, Uttarakhand India
| | - K. B. Koirala
- Nepal Agricultural Research Council (NARC), Kathmandu, Nepal
| | - Salahuddin Ahmed
- Bangladesh Wheat and Maize Research Institute (BWMRI), Dinajpur, Bangladesh
| | | | | | | |
Collapse
|
6
|
Qu J, Chassaigne-Ricciulli AA, Fu F, Yu H, Dreher K, Nair SK, Gowda M, Beyene Y, Makumbi D, Dhliwayo T, Vicente FS, Olsen M, Prasanna BM, Li W, Zhang X. Low-Density Reference Fingerprinting SNP Dataset of CIMMYT Maize Lines for Quality Control and Genetic Diversity Analyses. PLANTS (BASEL, SWITZERLAND) 2022; 11:3092. [PMID: 36432819 PMCID: PMC9697014 DOI: 10.3390/plants11223092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
CIMMYT maize lines (CMLs), which represent the tropical maize germplasm, are freely available worldwide. All currently released 615 CMLs and fourteen temperate maize inbred lines were genotyped with 180 kompetitive allele-specific PCR single nucleotide polymorphisms to develop a reference fingerprinting SNP dataset that can be used to perform quality control (QC) and genetic diversity analyses. The QC analysis identified 25 CMLs with purity, identity, or mislabeling issues. Further field observation, purification, and re-genotyping of these CMLs are required. The reference fingerprinting SNP dataset was developed for all of the currently released CMLs with 152 high-quality SNPs. The results of principal component analysis and average genetic distances between subgroups showed a clear genetic divergence between temperate and tropical maize, whereas the three tropical subgroups partially overlapped with one another. More than 99% of the pairs of CMLs had genetic distances greater than 0.30, showing their high genetic diversity, and most CMLs are distantly related. The heterotic patterns, estimated with the molecular markers, are consistent with those estimated using pedigree information in two major maize breeding programs at CIMMYT. These research findings are helpful for ensuring the regeneration and distribution of the true CMLs, via QC analysis, and for facilitating the effective utilization of the CMLs, globally.
Collapse
Affiliation(s)
- Jingtao Qu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco 56237, Mexico
| | | | - Fengling Fu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoqiang Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Kate Dreher
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco 56237, Mexico
| | - Sudha K. Nair
- Asia Regional Maize Program, International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Hyderabad 502324, Telangana, India
| | - Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), Village Market, P.O. Box 1041, Nairobi 00621, Kenya
| | - Yoseph Beyene
- International Maize and Wheat Improvement Center (CIMMYT), Village Market, P.O. Box 1041, Nairobi 00621, Kenya
| | - Dan Makumbi
- International Maize and Wheat Improvement Center (CIMMYT), Village Market, P.O. Box 1041, Nairobi 00621, Kenya
| | - Thanda Dhliwayo
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco 56237, Mexico
| | - Felix San Vicente
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco 56237, Mexico
| | - Michael Olsen
- International Maize and Wheat Improvement Center (CIMMYT), Village Market, P.O. Box 1041, Nairobi 00621, Kenya
| | - Boddupalli M. Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), Village Market, P.O. Box 1041, Nairobi 00621, Kenya
| | - Wanchen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco 56237, Mexico
| |
Collapse
|
7
|
Ren J, Wu P, Huestis GM, Zhang A, Qu J, Liu Y, Zheng H, Alakonya AE, Dhliwayo T, Olsen M, San Vicente F, Prasanna BM, Chen J, Zhang X. Identification and fine mapping of a major QTL (qRtsc8-1) conferring resistance to maize tar spot complex and validation of production markers in breeding lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1551-1563. [PMID: 35181836 PMCID: PMC9110495 DOI: 10.1007/s00122-022-04053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
A major QTL of qRtsc8-1 conferring TSC resistance was identified and fine mapped to a 721 kb region on chromosome 8 at 81 Mb, and production markers were validated in breeding lines. Tar spot complex (TSC) is a major foliar disease of maize in many Central and Latin American countries and leads to severe yield loss. To dissect the genetic architecture of TSC resistance, a genome-wide association study (GWAS) panel and a bi-parental doubled haploid population were used for GWAS and selective genotyping analysis, respectively. A total of 115 SNPs in bin 8.03 were detected by GWAS and three QTL in bins 6.05, 6.07, and 8.03 were detected by selective genotyping. The major QTL qRtsc8-1 located in bin 8.03 was detected by both analyses, and it explained 14.97% of the phenotypic variance. To fine map qRtsc8-1, the recombinant-derived progeny test was implemented. Recombinations in each generation were backcrossed, and the backcross progenies were genotyped with Kompetitive Allele Specific PCR (KASP) markers and phenotyped for TSC resistance individually. The significant tests for comparing the TSC resistance between the two classes of progenies with and without resistant alleles were used for fine mapping. In BC5 generation, qRtsc8-1 was fine mapped in an interval of ~ 721 kb flanked by markers of KASP81160138 and KASP81881276. In this interval, the candidate genes GRMZM2G063511 and GRMZM2G073884 were identified, which encode an integral membrane protein-like and a leucine-rich repeat receptor-like protein kinase, respectively. Both genes are involved in maize disease resistance responses. Two production markers KASP81160138 and KASP81160155 were verified in 471 breeding lines. This study provides valuable information for cloning the resistance gene, and it will also facilitate the routine implementation of marker-assisted selection in the breeding pipeline for improving TSC resistance.
Collapse
Affiliation(s)
- Jiaojiao Ren
- College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, China
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Penghao Wu
- College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Gordon M Huestis
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Ao Zhang
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jingtao Qu
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yubo Liu
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Hongjian Zheng
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Amos E Alakonya
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Thanda Dhliwayo
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Michael Olsen
- International Maize and Wheat Improvement Center (CIMMYT), Village Market, P. O. Box 1041, Nairobi, 00621, Kenya
| | - Felix San Vicente
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Boddupalli M Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), Village Market, P. O. Box 1041, Nairobi, 00621, Kenya
| | - Jiafa Chen
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico.
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico.
| |
Collapse
|
8
|
Back to the wild: mining maize (Zea mays L.) disease resistance using advanced breeding tools. Mol Biol Rep 2022; 49:5787-5803. [PMID: 35064401 DOI: 10.1007/s11033-021-06815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/06/2021] [Indexed: 10/19/2022]
Abstract
Cultivated modern maize (Zea mays L.) originated through the continuous process of domestication from its wild progenitors. Today, maize is considered as the most important cereal crop which is extensively cultivated in all parts of the world. Maize shows remarkable genotypic and phenotypic diversity which makes it an ideal model species for crop genetic research. However, intensive breeding and artificial selection of desired agronomic traits greatly narrow down the genetic bases of maize. This reduction in genetic diversity among cultivated maize led to increase the chance of more attack of biotic stress as climate changes hampering the maize grain production globally. Maize germplasm requires to integrate both durable multiple-diseases and multiple insect-pathogen resistance through tapping the unexplored resources of maize landraces. Revisiting the landraces seed banks will provide effective opportunities to transfer the resistant genes into the modern cultivars. Here, we describe the maize domestication process and discuss the unique genes from wild progenitors which potentially can be utilized for disease resistant in maize. We also focus on the genetics and disease resistance mechanism of various genes against maize biotic stresses and then considered the different molecular breeding tools for gene transfer and advanced high resolution mapping for gene pyramiding in maize lines. At last, we provide an insight for targeting identified key genes through CRISPR/Cas9 genome editing system to enhance the maize resilience towards biotic stress.
Collapse
|
9
|
Emeraghi M, Achigan-Dako EG, Nwaoguala CNC, Oselebe H. Maize streak virus research in Africa: an end or a crossroad. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3785-3803. [PMID: 34309683 DOI: 10.1007/s00122-021-03914-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
The economic importance of the maize streak virus disease to the African maize production dynamic is to be appreciated now more than ever due to the preponderant influence of a changing climate. Continued dependence on a single major-effect quantitative trait locus (QTL) called Msv1 on Chromosome 1 of Maize (Zea mays L.) is not guaranteed to ensure durable resistance to the causal pathogen. With over ten decades of research on the disease and its associated host plant resistance mechanisms, it is pertinent to consider future approaches to attaining durability by looking to the synergistic roles of moderate- and minor-effect QTLs located on other chromosomes so as to facilitate a secure farming system for sub-Saharan Africa. For this review, more than 40 publications relating to maize streak disease research were methodically analysed with about 30% making specific reference to conventional, molecular and transgenic approaches employed in introgressing, maintaining and improving streak resistance in maize. A meta-analysis of mapped QTLs conferring streak resistance was conducted in a bid to reveal any inter-dependence or co-localization of resistant loci and to aid decision-making for marker-assisted breeding. With the changing climatic conditions around the globe, man's preparedness in the event of an epidemic following any evolutionary process in the streak viral genome was determined as insufficient. Modern breeding approaches including gene pyramiding that could be considered in maize breeding programmes to ensure durability for streak resistance were proposed while improving maize for other abiotic stress tolerance, particularly drought.
Collapse
Affiliation(s)
- Mary Emeraghi
- Laboratory of Genetics, Biotechnology and Seed Science, Faculty of Agronomic Sciences, University of Abomey-Calavi, 01BP526, Cotonou, Republic of Benin
- Department of Agronomy and Environmental Management, Faculty of Agriculture and Agricultural Technology, Benson Idahosa University, Benin City, Nigeria
| | - Enoch G Achigan-Dako
- Laboratory of Genetics, Biotechnology and Seed Science, Faculty of Agronomic Sciences, University of Abomey-Calavi, 01BP526, Cotonou, Republic of Benin.
| | - Chibuzo N C Nwaoguala
- Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Happiness Oselebe
- Department of Crop Production and Landscape Management, Faculty of Agriculture and Resource Management, Ebonyi State University, Abakaliki, Nigeria
| |
Collapse
|
10
|
Shahriar SA, Islam MN, Chun CNW, Rahim MA, Paul NC, Uddain J, Siddiquee S. Control of Plant Viral Diseases by CRISPR/Cas9: Resistance Mechanisms, Strategies and Challenges in Food Crops. PLANTS (BASEL, SWITZERLAND) 2021; 10:1264. [PMID: 34206201 PMCID: PMC8309070 DOI: 10.3390/plants10071264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022]
Abstract
Protecting food crops from viral pathogens is a significant challenge for agriculture. An integral approach to genome-editing, known as CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR associated protein 9), is used to produce virus-resistant cultivars. The CRISPR/Cas9 tool is an essential part of modern plant breeding due to its attractive features. Advances in plant breeding programs due to the incorporation of Cas9 have enabled the development of cultivars with heritable resistance to plant viruses. The resistance to viral DNA and RNA is generally provided using the Cas9 endonuclease and sgRNAs (single-guide RNAs) complex, targeting particular virus and host plant genomes by interrupting the viral cleavage or altering the plant host genome, thus reducing the replication ability of the virus. In this review, the CRISPR/Cas9 system and its application to staple food crops resistance against several destructive plant viruses are briefly described. We outline the key findings of recent Cas9 applications, including enhanced virus resistance, genetic mechanisms, research strategies, and challenges in economically important and globally cultivated food crop species. The research outcome of this emerging molecular technology can extend the development of agriculture and food security. We also describe the information gaps and address the unanswered concerns relating to plant viral resistance mediated by CRISPR/Cas9.
Collapse
Affiliation(s)
- Saleh Ahmed Shahriar
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - M. Nazrul Islam
- Laboratory of Plant Pathology and Microbiology, Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada;
| | - Charles Ng Wai Chun
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Md. Abdur Rahim
- Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Narayan Chandra Paul
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea;
| | - Jasim Uddain
- Department of Horticulture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Shafiquzzaman Siddiquee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
11
|
Rashid Z, Sofi M, Harlapur SI, Kachapur RM, Dar ZA, Singh PK, Zaidi PH, Vivek BS, Nair SK. Genome-wide association studies in tropical maize germplasm reveal novel and known genomic regions for resistance to Northern corn leaf blight. Sci Rep 2020; 10:21949. [PMID: 33319847 PMCID: PMC7738672 DOI: 10.1038/s41598-020-78928-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/26/2020] [Indexed: 02/08/2023] Open
Abstract
Northern Corn Leaf Blight (NCLB) caused by Setosphaeria turcica, is one of the most important diseases of maize world-wide, and one of the major reasons behind yield losses in maize crop in Asia. In the present investigation, a high-resolution genome wide association study (GWAS) was conducted for NCLB resistance in three association mapping panels, predominantly consisting of tropical lines adapted to different agro-ecologies. These panels were phenotyped for disease severity across three locations with high disease prevalence in India. High density SNPs from Genotyping-by-sequencing were used in GWAS, after controlling for population structure and kinship matrices, based on single locus mixed linear model (MLM). Twenty-two SNPs were identified, that revealed a significant association with NCLB in the three mapping panels. Haplotype regression analysis revealed association of 17 significant haplotypes at FDR ≤ 0.05, with two common haplotypes across three maize panels. Several of the significantly associated SNPs/haplotypes were found to be co-located in chromosomal bins previously reported for major genes like Ht2, Ht3 and Htn1 and QTL for NCLB resistance and multiple foliar disease resistance. Phenotypic variance explained by these significant SNPs/haplotypes ranged from low to moderate, suggesting a breeding strategy of combining multiple resistance alleles towards resistance for NCLB.
Collapse
Affiliation(s)
- Zerka Rashid
- International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Greater Hyderabad Telangana, 502324, India
| | - Mehrajuddin Sofi
- High Mountain Arid Agricultural Research Institute (HMAARI) Stakna, SKUAST-Kashmir, Leh, 194101, India
| | - Sharanappa I Harlapur
- University of Agricultural Sciences, Krishi Nagar, Dharwad, Karnataka, 580005, India
| | | | - Zahoor Ahmed Dar
- Sher-E-Kashmir University of Agriculture Sciences and Technology (SKUAST), Srinagar, Jammu and Kashmir, 190001, India
| | - Pradeep Kumar Singh
- International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Greater Hyderabad Telangana, 502324, India
| | - Pervez Haider Zaidi
- International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Greater Hyderabad Telangana, 502324, India
| | - Bindiganavile Sampath Vivek
- International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Greater Hyderabad Telangana, 502324, India
| | - Sudha Krishnan Nair
- International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Greater Hyderabad Telangana, 502324, India.
| |
Collapse
|
12
|
Jaganathan D, Bohra A, Thudi M, Varshney RK. Fine mapping and gene cloning in the post-NGS era: advances and prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1791-1810. [PMID: 32040676 PMCID: PMC7214393 DOI: 10.1007/s00122-020-03560-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/29/2020] [Indexed: 05/18/2023]
Abstract
Improvement in traits of agronomic importance is the top breeding priority of crop improvement programs. Majority of these agronomic traits show complex quantitative inheritance. Identification of quantitative trait loci (QTLs) followed by fine mapping QTLs and cloning of candidate genes/QTLs is central to trait analysis. Advances in genomic technologies revolutionized our understanding of genetics of complex traits, and genomic regions associated with traits were employed in marker-assisted breeding or cloning of QTLs/genes. Next-generation sequencing (NGS) technologies have enabled genome-wide methodologies for the development of ultra-high-density genetic linkage maps in different crops, thus allowing placement of candidate loci within few kbs in genomes. In this review, we compare the marker systems used for fine mapping and QTL cloning in the pre- and post-NGS era. We then discuss how different NGS platforms in combination with advanced experimental designs have improved trait analysis and fine mapping. We opine that efficient genotyping/sequencing assays may circumvent the need for cumbersome procedures that were earlier used for fine mapping. A deeper understanding of the trait architectures of agricultural significance will be crucial to accelerate crop improvement.
Collapse
Affiliation(s)
- Deepa Jaganathan
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University (TNAU), Coimbatore, India
| | - Abhishek Bohra
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| |
Collapse
|
13
|
Prasanna BM, Palacios-Rojas N, Hossain F, Muthusamy V, Menkir A, Dhliwayo T, Ndhlela T, San Vicente F, Nair SK, Vivek BS, Zhang X, Olsen M, Fan X. Molecular Breeding for Nutritionally Enriched Maize: Status and Prospects. Front Genet 2020; 10:1392. [PMID: 32153628 PMCID: PMC7046684 DOI: 10.3389/fgene.2019.01392] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Maize is a major source of food security and economic development in sub-Saharan Africa (SSA), Latin America, and the Caribbean, and is among the top three cereal crops in Asia. Yet, maize is deficient in certain essential amino acids, vitamins, and minerals. Biofortified maize cultivars enriched with essential minerals and vitamins could be particularly impactful in rural areas with limited access to diversified diet, dietary supplements, and fortified foods. Significant progress has been made in developing, testing, and deploying maize cultivars biofortified with quality protein maize (QPM), provitamin A, and kernel zinc. In this review, we outline the status and prospects of developing nutritionally enriched maize by successfully harnessing conventional and molecular marker-assisted breeding, highlighting the need for intensification of efforts to create greater impacts on malnutrition in maize-consuming populations, especially in the low- and middle-income countries. Molecular marker-assisted selection methods are particularly useful for improving nutritional traits since conventional breeding methods are relatively constrained by the cost and throughput of nutritional trait phenotyping.
Collapse
Affiliation(s)
| | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Vignesh Muthusamy
- ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Abebe Menkir
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | | | | | | | | | | | | | - Mike Olsen
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Xingming Fan
- Institute of Crop Sciences, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, China
| |
Collapse
|
14
|
Gedil M, Menkir A. An Integrated Molecular and Conventional Breeding Scheme for Enhancing Genetic Gain in Maize in Africa. FRONTIERS IN PLANT SCIENCE 2019; 10:1430. [PMID: 31781144 PMCID: PMC6851238 DOI: 10.3389/fpls.2019.01430] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/15/2019] [Indexed: 05/22/2023]
Abstract
Maize production in West and Central Africa (WCA) is constrained by a wide range of interacting stresses that keep productivity below potential yields. Among the many problems afflicting maize production in WCA, drought, foliar diseases, and parasitic weeds are the most critical. Several decades of efforts devoted to the genetic improvement of maize have resulted in remarkable genetic gain, leading to increased yields of maize on farmers' fields. The revolution unfolding in the areas of genomics, bioinformatics, and phenomics is generating innovative tools, resources, and technologies for transforming crop breeding programs. It is envisaged that such tools will be integrated within maize breeding programs, thereby advancing these programs and addressing current and future challenges. Accordingly, the maize improvement program within International Institute of Tropical Agriculture (IITA) is undergoing a process of modernization through the introduction of innovative tools and new schemes that are expected to enhance genetic gains and impact on smallholder farmers in the region. Genomic tools enable genetic dissections of complex traits and promote an understanding of the physiological basis of key agronomic and nutritional quality traits. Marker-aided selection and genome-wide selection schemes are being implemented to accelerate genetic gain relating to yield, resilience, and nutritional quality. Therefore, strategies that effectively combine genotypic information with data from field phenotyping and laboratory-based analysis are currently being optimized. Molecular breeding, guided by methodically defined product profiles tailored to different agroecological zones and conditions of climate change, supported by state-of-the-art decision-making tools, is pivotal for the advancement of modern, genomics-aided maize improvement programs. Accelerated genetic gain, in turn, catalyzes a faster variety replacement rate. It is critical to forge and strengthen partnerships for enhancing the impacts of breeding products on farmers' livelihood. IITA has well-established channels for delivering its research products/technologies to partner organizations for further testing, multiplication, and dissemination across various countries within the subregion. Capacity building of national agricultural research system (NARS) will facilitate the smooth transfer of technologies and best practices from IITA and its partners.
Collapse
Affiliation(s)
- Melaku Gedil
- Bioscience Center and Maize Improvement Program, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Abebe Menkir
- Maize Improvement Program, International Institute of Tropical Agriculture, Ibadan, Nigeria
| |
Collapse
|
15
|
Rashid Z, Singh PK, Vemuri H, Zaidi PH, Prasanna BM, Nair SK. Genome-wide association study in Asia-adapted tropical maize reveals novel and explored genomic regions for sorghum downy mildew resistance. Sci Rep 2018; 8:366. [PMID: 29321632 PMCID: PMC5762920 DOI: 10.1038/s41598-017-18690-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/15/2017] [Indexed: 11/28/2022] Open
Abstract
Globally, downy mildews are among the important foliar diseases of maize that cause significant yield losses. We conducted a genome-wide association study for sorghum downy mildew (SDM; Peronosclerospora sorghi) resistance in a panel of 368 inbred lines adapted to the Asian tropics. High density SNPs from Genotyping-by-sequencing were used in GWAS after controlling for population structure and kinship in the panel using a single locus mixed model. The study identified a set of 26 SNPs that were significantly associated with SDM resistance, with Bonferroni corrected P values ≤ 0.05. Among all the identified SNPs, the minor alleles were found to be favorable to SDM resistance in the mapping panel. Trend regression analysis with 16 independent genetic variants including 12 SNPs and four haplotype blocks identified SNP S2_6154311 on chromosome 2 with P value 2.61E-24 and contributing 26.7% of the phenotypic variation. Six of the SNPs/haplotypes were within the same chromosomal bins as the QTLs for SDM resistance mapped in previous studies. Apart from this, eight novel genomic regions for SDM resistance were identified in this study; they need further validation before being applied in the breeding pipeline. Ten SNPs identified in this study were co-located in reported mildew resistance genes.
Collapse
Affiliation(s)
- Zerka Rashid
- International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Greater Hyderabad, 502324, India
| | - Pradeep Kumar Singh
- International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Greater Hyderabad, 502324, India
| | - Hindu Vemuri
- International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Greater Hyderabad, 502324, India
| | - Pervez Haider Zaidi
- International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Greater Hyderabad, 502324, India
| | - Boddupalli Maruthi Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), P. O. Box 1041, Village Market, Nairobi, 00621, Kenya
| | - Sudha Krishnan Nair
- International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Greater Hyderabad, 502324, India.
| |
Collapse
|
16
|
Genomic-based-breeding tools for tropical maize improvement. Genetica 2017; 145:525-539. [PMID: 28875394 DOI: 10.1007/s10709-017-9981-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/14/2017] [Indexed: 10/18/2022]
Abstract
Maize has traditionally been the main staple diet in the Southern Asia and Sub-Saharan Africa and widely grown by millions of resource poor small scale farmers. Approximately, 35.4 million hectares are sown to tropical maize, constituting around 59% of the developing worlds. Tropical maize encounters tremendous challenges besides poor agro-climatic situations with average yields recorded <3 tones/hectare that is far less than the average of developed countries. On the contrary to poor yields, the demand for maize as food, feed, and fuel is continuously increasing in these regions. Heterosis breeding introduced in early 90 s improved maize yields significantly, but genetic gains is still a mirage, particularly for crop growing under marginal environments. Application of molecular markers has accelerated the pace of maize breeding to some extent. The availability of array of sequencing and genotyping technologies offers unrivalled service to improve precision in maize-breeding programs through modern approaches such as genomic selection, genome-wide association studies, bulk segregant analysis-based sequencing approaches, etc. Superior alleles underlying complex traits can easily be identified and introgressed efficiently using these sequence-based approaches. Integration of genomic tools and techniques with advanced genetic resources such as nested association mapping and backcross nested association mapping could certainly address the genetic issues in maize improvement programs in developing countries. Huge diversity in tropical maize and its inherent capacity for doubled haploid technology offers advantage to apply the next generation genomic tools for accelerating production in marginal environments of tropical and subtropical world. Precision in phenotyping is the key for success of any molecular-breeding approach. This article reviews genomic technologies and their application to improve agronomic traits in tropical maize breeding has been reviewed in detail.
Collapse
|
17
|
Chen Q, Song J, Du WP, Xu LY, Jiang Y, Zhang J, Xiang XL, Yu GR. Identification, Mapping, and Molecular Marker Development for Rgsr8.1: A New Quantitative Trait Locus Conferring Resistance to Gibberella Stalk Rot in Maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1355. [PMID: 28824686 PMCID: PMC5540892 DOI: 10.3389/fpls.2017.01355] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/20/2017] [Indexed: 05/20/2023]
Abstract
Maize stalk rot is a major fungal disease worldwide, and is difficult to control by chemical methods. Therefore, in maize breeding, quantitative trait loci (QTLs) conferring resistance are important for controlling the disease. Next-generation sequencing technologies are considered a rapid and efficient method to establish the association of agronomic traits with molecular markers or candidate genes. In the present study, we employed QTL-seq, which is a whole-genome resequencing-based approach, to identify candidate genomic regions conferring resistance to maize stalk rot. A novel resistance QTL Rgsr8.1 was finely mapped, conferring broad-spectrum resistance to Gibberella stalk rot (GSR). Segregation analysis in F2 and BC1F1 populations, which were derived from a cross between 18327 (Susceptible) and S72356 (Resistant), indicated that the resistance to GSR was likely to be a quantitatively inherited trait in maize. The result of QTL-seq showed that the resistance to GSR was mapped on chromosome 8 from 161.001 to 170.6 Mb. Based on the simple sequence repeat (SSR) markers, single-nucleotide polymorphism (SNP) markers, and the recombinant test, the location of Rgsr8.1 was narrowed down to 2.04 Mb, flanked by SSR-65 and SNP-25 markers at the physical location from 164.69 to 166.72 Mb based on the maize reference genome. In this region, two candidate resistant genes were found with, one auxin-responsive elements and the other encoding a disease resistance protein. In summary, these results will be useful in maize breeding programs to improve the resistance to GSR in maize.
Collapse
|
18
|
Liu C, Hua J, Liu C, Zhang D, Hao Z, Yong H, Xie C, Li M, Zhang S, Weng J, Li X. Fine mapping of a quantitative trait locus conferring resistance to maize rough dwarf disease. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2333-2342. [PMID: 27544523 DOI: 10.1007/s00122-016-2770-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
A QTL qMrdd8 that confers resistance to MRDD was fine mapped into an interval of 347 kb; one SNP and two InDels identified in the interval were significantly associated with resistance to MRDD. Maize rough dwarf disease (MRDD) is highly prevalent in the summer maize-growing areas in China, and leads to significant yield losses in maize (Zea mays L.). In this study, the quantitative trait locus (QTL) qMrdd8, which confers resistance to MRDD, was fine mapped. Initially, qMrdd8 was consistently identified in the interval between the simple sequence repeat markers umc1617 and phi121 in three F2 sub-populations derived from a cross between the resistant recombinant inbred line NL203 and the susceptible line B73. Subsequently, qMrdd8 was fine mapped into an interval of 347 kb defined by the markers IDRQ2 and IDRQ20 using a recombinant-derived progeny test strategy. Based on single nucleotide polymorphism (SNP) genotypes identified using the MaizeSNP50 BeadChip, a long haplotype including qMrdd8 was identified in four resistant inbred lines. One SNP, the 2549-bp insertion/deletion polymorphism (InDel) InDel25, and the 2761-bp InDel27, which all were significantly associated with resistance to MRDD in a set of 226 maize inbred lines (P < 0.05), were detected within qMrdd8. Furthermore, two candidate genes, CG1 and CG2, were detected in the interval using RNA sequencing (RNA-Seq), and InDel25 was localized within the candidate gene CG1. In conclusion, the fine mapping of qMrdd8 will be helpful in cloning the resistance gene, and the three polymorphic markers identified in this study could be used to improve MRDD resistance via a marker-assisted selection approach.
Collapse
Affiliation(s)
- Changlin Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Jinge Hua
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Chang Liu
- Northeast Agricultural University, Harbin, 150000, Heilongjiang, China
| | - Degui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Zhuanfang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Hongjun Yong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Chuanxiao Xie
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Mingshun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Shihuang Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Xinhai Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
19
|
Liu C, Zhou Q, Dong L, Wang H, Liu F, Weng J, Li X, Xie C. Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing. BMC Genomics 2016; 17:915. [PMID: 27842488 PMCID: PMC5109822 DOI: 10.1186/s12864-016-3240-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The maize kernel row number (KRN) is a key component that contributes to grain yield and has high broad-sense heritability (H 2 ). Quantitative trait locus/loci (QTL) mapping using a high-density genetic map is a powerful approach to detecting loci that are responsible for traits of interest. Bulked segregant ribonucleic acid (RNA) sequencing (BSR-seq) is another rapid and cost-effective strategy to identify QTL. Combining QTL mapping using a high-density genetic map and BSR-seq may dissect comprehensively the genetic architecture underlying the maize KRN. RESULTS A panel of 300 F2 individuals derived from inbred lines abe2 and B73 were genotyped using the specific-locus amplified fragment sequencing (SLAF-seq) method. A total of 4,579 high-quality polymorphic SLAF markers were obtained and used to construct a high-density genetic map with a total length of 2,123 centimorgan (cM) and an average distance between adjacent markers of 0.46 cM. Combining the genetic map and KRN of F2 individuals, four QTL (qKRN1, qKRN2, qKRN5, and qKRN8-1) were identified on chromosomes 1, 2, 5, and 8, respectively. The physical intervals of these four QTL ranged from 4.36 Mb for qKRN8-1 to 7.11 Mb for qKRN1 with an average value of 6.08 Mb. Based on high-throughput sequencing of two RNA pools bulked from leaves of plants with extremely high and low KRNs, two QTL were detected on chromosome 8 in the 10-25 Mb (BSR_QTL1) and 60-150 Mb (BSR_QTL2) intervals. According to the physical positions of these QTL, qKRN8-1 was included by BSR_QTL2. In addition, qKRN8-1 was validated using QTL mapping with a recombinant inbred lines population that was derived from inbred lines abe2 and B73. CONCLUSIONS In this study, we proved that combining QTL mapping using a high-density genetic map and BSR-seq is a powerful and cost-effective approach to comprehensively revealing genetic architecture underlying traits of interest. The QTL for the KRN detected in this study, especially qKRN8-1, can be used for performing fine mapping experiments and marker-assisted selection in maize breeding.
Collapse
Affiliation(s)
- Changlin Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Qiang Zhou
- Anhui Agricultural University, Hefei, Anhui Province, 230036, China
| | - Le Dong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Hui Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Fang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Xinhai Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Chuanxiao Xie
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|