1
|
Dalprá Dariva F, Subode S, Cho J, Nick C, Francis D. Identification and Validation of Quantitative Trait Loci Associated with Fruit Puffiness in a Processing Tomato Population. PLANTS (BASEL, SWITZERLAND) 2024; 13:1454. [PMID: 38891263 PMCID: PMC11174995 DOI: 10.3390/plants13111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Physiological disorders impact the yield and quality of marketable fruit in tomato. Puffy fruit caused by cavities inside the locule can be problematic for processing and fresh market quality. In this paper, we used a recombinant inbred line (RIL) and three derived processing tomato populations to map and validate quantitative trait loci (QTLs) for fruit puffiness across environments. Binary interval mapping was used for mapping the incidence of fruit puffiness, and non-parametric interval mapping and parametric composite interval mapping were used for mapping severity. Marker-trait regressions were carried out to validate putative QTLs in subsequent crosses. QTLs were detected on chromosome (Chr) 1, 2, and 4. Only the QTL on Chr 1 was validated in progeny from subsequent crosses. This QTL explained up to 22.5% of the variance in the percentage of puffy fruit, with a significant interaction between loci on Chr 2 and 4, increasing the percentage of puffy fruit by an additional 15%. The allele responsible for puffy fruit on Chr 1 was inherited from parent FG02-188 and was dominant towards increased incidence and severity. Marker-assisted selection (MAS) for the QTL on Chr 1 was as efficient as genomic selection (GS) in reducing the incidence and severity of puffy fruit, despite the potential contribution of other loci.
Collapse
Affiliation(s)
- Françoise Dalprá Dariva
- Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA; (F.D.D.)
- Departamento de Agronomia, Programa de Pós-graduação em Fitotecnia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Viçosa 36570-900, MG, Brazil;
| | - Su Subode
- Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA; (F.D.D.)
| | - Jihuen Cho
- Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA; (F.D.D.)
| | - Carlos Nick
- Departamento de Agronomia, Programa de Pós-graduação em Fitotecnia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Viçosa 36570-900, MG, Brazil;
| | - David Francis
- Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA; (F.D.D.)
| |
Collapse
|
2
|
Yang Q, Huang Y, Cui L, Gan C, Qiu Z, Yan C, Deng X. Genome-Wide Identification of the CDPK Gene Family and Their Involvement in Taproot Cracking in Radish. Int J Mol Sci 2023; 24:15059. [PMID: 37894740 PMCID: PMC10606364 DOI: 10.3390/ijms242015059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Taproot cracking, a severe and common physiological disorder, markedly reduces radish yield and commercial value. Calcium-dependent protein kinase (CDPK) plays a pivotal role in various plant developmental processes; however, its function in radish taproot cracking remains largely unknown. Here, 37 RsCDPK gene members were identified from the long-read radish genome "QZ-16". Phylogenetic analysis revealed that the CDPK members in radish, tomato, and Arabidopsis were clustered into four groups. Additionally, synteny analysis identified 13 segmental duplication events in the RsCDPK genes. Analysis of paraffin-embedded sections showed that the density and arrangement of fleshy taproot cortex cells are important factors that affect radish cracking. Transcriptome sequencing of the fleshy taproot cortex revealed 5755 differentially expressed genes (DEGs) (3252 upregulated and 2503 downregulated) between non-cracking radish "HongYun" and cracking radish "505". These DEGs were significantly enriched in plant hormone signal transduction, phenylpropanoid biosynthesis, and plant-pathogen interaction KEGG pathways. Furthermore, when comparing the 37 RsCDPK gene family members and RNA-seq DEGs, we identified six RsCDPK genes related to taproot cracking in radish. Soybean hairy root transformation experiments showed that RsCDPK21 significantly and positively regulates root length development. These findings provide valuable insights into the relationship between radish taproot cracking and RsCDPK gene function.
Collapse
Affiliation(s)
| | | | | | | | | | - Chenghuan Yan
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Q.Y.); (Y.H.); (L.C.); (C.G.); (Z.Q.)
| | - Xiaohui Deng
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Q.Y.); (Y.H.); (L.C.); (C.G.); (Z.Q.)
| |
Collapse
|
3
|
Zhan Y, Hu W, He H, Dang X, Chen S, Bie Z. A major QTL identification and candidate gene analysis of watermelon fruit cracking using QTL-seq and RNA-seq. FRONTIERS IN PLANT SCIENCE 2023; 14:1166008. [PMID: 37255568 PMCID: PMC10225605 DOI: 10.3389/fpls.2023.1166008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Fruit cracking decreases the total production and the commercial value of watermelon. The molecular mechanisms of fruit cracking are unknown. In this study, 164 recombinant inbred lines (RILs) of watermelon, derived from the crossing of the WQ1 (cracking-sensitive) and WQ2 (cracking-tolerant) lines, were sequenced using specific length amplified fragment sequencing (SLAF-seq). A high-density genetic linkage map was constructed with 3,335 markers spanning 1,322.74 cM, at an average 0.40 cM across whole-genome flanking markers. The cracking tolerance capacity (CTC), depth of fruit cracking (DFC), rind thickness (RT), and rind hardness (RH) were measured for quantitative trait locus (QTL) analysis. Of the four traits analyzed, one major QTL with high phenotypic variation (41.04%-61.37%) was detected at 76.613-76.919 cM on chromosome 2, which contained 104 annotated genes. Differential gene expression analysis with RNA sequencing (RNA-seq) data between the two parents identified 4,508 differentially expressed genes (DEGs). Comparison of the genes between the QTL region and the DEGs obtained eight coexisting genes. Quantitative real-time PCR (qRT-PCR) analysis revealed that these genes were significant differentially expressed between the two parents. These results provide new insights into the identification of QTLs or genes and marker-assisted breeding in watermelon.
Collapse
Affiliation(s)
- Yuanfeng Zhan
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Hu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Huang He
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xuanmin Dang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhilong Bie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Sterken MG, Nijveen H, van Zanten M, Jiménez-Gómez JM, Geshnizjani N, Willems LAJ, Rienstra J, Hilhorst HWM, Ligterink W, Snoek BL. Plasticity of maternal environment-dependent expression-QTLs of tomato seeds. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:28. [PMID: 36810666 PMCID: PMC9944408 DOI: 10.1007/s00122-023-04322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 10/27/2022] [Indexed: 06/18/2023]
Abstract
Seeds are essential for plant reproduction, survival, and dispersal. Germination ability and successful establishment of young seedlings strongly depend on seed quality and on environmental factors such as nutrient availability. In tomato (Solanum lycopersicum) and many other species, seed quality and seedling establishment characteristics are determined by genetic variation, as well as the maternal environment in which the seeds develop and mature. The genetic contribution to variation in seed and seedling quality traits and environmental responsiveness can be estimated at transcriptome level in the dry seed by mapping genomic loci that affect gene expression (expression QTLs) in contrasting maternal environments. In this study, we applied RNA-sequencing to construct a linkage map and measure gene expression of seeds of a tomato recombinant inbred line (RIL) population derived from a cross between S. lycopersicum (cv. Moneymaker) and S. pimpinellifolium (G1.1554). The seeds matured on plants cultivated under different nutritional environments, i.e., on high phosphorus or low nitrogen. The obtained single-nucleotide polymorphisms (SNPs) were subsequently used to construct a genetic map. We show how the genetic landscape of plasticity in gene regulation in dry seeds is affected by the maternal nutrient environment. The combined information on natural genetic variation mediating (variation in) responsiveness to the environment may contribute to knowledge-based breeding programs aiming to develop crop cultivars that are resilient to stressful environments.
Collapse
Affiliation(s)
- Mark G. Sterken
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Harm Nijveen
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
- Laboratory of Bioinformatics, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Martijn van Zanten
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jose M. Jiménez-Gómez
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Nafiseh Geshnizjani
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Leo A. J. Willems
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Juriaan Rienstra
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Henk W. M. Hilhorst
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Wilco Ligterink
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Basten L. Snoek
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
- Theoretical Biology and Bioinformatics, Institute of Biodynamics and Biocomplexity, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
5
|
Wang Y, Zhao J, Chen Q, Zheng K, Deng X, Gao W, Pei W, Geng S, Deng Y, Li C, Chen Q, Qu Y. Quantitative trait locus mapping and identification of candidate genes for resistance to Verticillium wilt in four recombinant inbred line populations of Gossypium hirsutum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111562. [PMID: 36509244 DOI: 10.1016/j.plantsci.2022.111562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 05/16/2023]
Abstract
Improving resistance to Verticillium wilt is of great significance for achieving high and stable yields of Upland cotton (Gossypium hirsutum). To deeply understand the genetic basis of cotton resistance to Verticillium wilt, Verticillium wilt-resistant Upland Lumianyan 28 and four Verticillium wilt-susceptible Acala cotton cultivars were used to create four recombinant inbred line (RIL) populations of 469 families through nested hybridization. Phenotypic data collected in five stressful environments were used to select resistant and sensitive lines and create a mixed pool of extreme phenotypes for BSA-seq. A total of 8 QTLs associated with Verticillium wilt resistance were identified on 4 chromosomes, of which qVW-A12-5 was detected simultaneously in the RIL populations and in one of the RIL populations and was identified for the first time. According to the sequence comparison and transcriptome analysis of candidate genes in the QTL interval between parents and pools, 4 genes were identified in the qVW-A12-5 interval. qRT-PCR of parental and phenotypically extreme lines revealed that Gh_CPR30 was induced by and may be a candidate gene for resistance to Verticillium wilt in G. hirsutum. Furthermore, VIGS technology revealed that the disease severity index (DSI) of the Gh_CPR30-silenced plants was significantly higher than that of the control. These results indicate that the Gh_CPR30 gene plays an important role in the resistance of G. hirsutum to Verticillium wilt, and the study provides a molecular basis for analyzing the molecular mechanism underlying G. hirsutum resistance to Verticillium wilt.
Collapse
Affiliation(s)
- Yuxiang Wang
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Jieyin Zhao
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Qin Chen
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Kai Zheng
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Xiaojuan Deng
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Wenju Gao
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shiwei Geng
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Yahui Deng
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Chunping Li
- Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830052, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Yanying Qu
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China.
| |
Collapse
|
6
|
Wang Y, Zhao Y, Wu Y, Zhao X, Hao Z, Luo H, Yuan Z. Transcriptional profiling of long non-coding RNAs regulating fruit cracking in Punica granatum L. under bagging. FRONTIERS IN PLANT SCIENCE 2022; 13:943547. [PMID: 36304394 PMCID: PMC9592827 DOI: 10.3389/fpls.2022.943547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Fruit cracking tremendously damages the appearance of fruit, easily leads to pathogen invasion, greatly reduces the marketability and causes immense economic losses. The pivotal role of long non-coding RNAs (lncRNAs) in diverse biological processes has been confirmed, while the roles of lncRNAs underlying fruit cracking remain poorly understood. In this study, the incidence of fruit cracking was 7.26% under the bagging treatment, the control group was 38.11%, indicating that bagging considerably diminished the fruit cracking rate. LncRNA libraries for fruit cracking (FC), fruit non-cracking (FNC) and fruit non-cracking under bagging (FB) in pomegranate (Punica granatum L.) were performed and analysed via high-throughput transcriptome sequencing. A total of 3194 lncRNAs were obtained with a total length of 4898846 nt and an average length of 1533.77 nt in pomegranate. We identified 42 differentially expressed lncRNAs (DELs) and 137 differentially expressed mRNAs (DEGs) in FC vs FNC and 35 DELs and 160 DEGs in FB vs FC that formed co-expression networks respectively, suggesting that there are involved in phytohormone signaling pathway, lignin catabolic process, lipid transport/binding, cutin biosynthetic process and cell wall organization. We also found that 18 cis-acting DELs regulated 18 target genes, and 10 trans-acting DELs regulated 24 target genes in FC vs FNC, 23 DELs regulate 23 target genes for the cis-acting lncRNAs and 12 DELs regulated 36 target genes in FB vs FC, which provides an understanding for the regulation of the fruit cracking. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results demonstrated that DELs participated in calcium ion binding, glycerophospholipid metabolism, flavonoid biosynthetic process, cell wall biogenesis, xyloglucan metabolic process, hormone signal transduction and starch and sucrose metabolism. Our findings provide new insights into the roles of lncRNAs in regulating the fruit cracking and lay the foundation for further improvement of pomegranate quality.
Collapse
Affiliation(s)
- Yuying Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yujie Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xueqing Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zhaoxiang Hao
- Zaozhuang Pomegranate Research Center, Institute of Botany, Zaozhuang, China
| | - Hua Luo
- Zaozhuang Pomegranate Research Center, Institute of Botany, Zaozhuang, China
| | - Zhaohe Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
7
|
Discovery of Genomic Regions and Candidate Genes Controlling Root Development Using a Recombinant Inbred Line Population in Rapeseed ( Brassica napus L.). Int J Mol Sci 2022; 23:ijms23094781. [PMID: 35563170 PMCID: PMC9102059 DOI: 10.3390/ijms23094781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Marker-assisted selection enables breeders to quickly select excellent root architectural variations, which play an essential role in plant productivity. Here, ten root-related and shoot biomass traits of a new F6 recombinant inbred line (RIL) population were investigated under hydroponics and resulted in high heritabilities from 0.61 to 0.83. A high-density linkage map of the RIL population was constructed using a Brassica napus 50k Illumina single nucleotide polymorphism (SNP) array. A total of 86 quantitative trait loci (QTLs) explaining 4.16–14.1% of the phenotypic variances were detected and integrated into eight stable QTL clusters, which were repeatedly detected in different experiments. The codominant markers were developed to be tightly linked with three major QTL clusters, qcA09-2, qcC08-2, and qcC08-3, which controlled both root-related and shoot biomass traits and had phenotypic contributions greater than 10%. Among these, qcA09-2, renamed RT.A09, was further fine-mapped to a 129-kb interval with 19 annotated genes in the B. napus reference genome. By integrating the results of real-time PCR and comparative sequencing, five genes with expression differences and/or amino acid differences were identified as important candidate genes for RT.A09. Our findings laid the foundation for revealing the molecular mechanism of root development and developed valuable markers for root genetic improvement in rapeseed.
Collapse
|
8
|
Gao Y, Hu Y, Shen J, Meng X, Suo J, Zhang Z, Song L, Wu J. Acceleration of Aril Cracking by Ethylene in Torreya grandis During Nut Maturation. FRONTIERS IN PLANT SCIENCE 2021; 12:761139. [PMID: 34745193 PMCID: PMC8565854 DOI: 10.3389/fpls.2021.761139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Torreya grandis 'Merrillii' is a famous nut with great nutritional value and high medicinal value. Aril cracking is an important process for seed dispersal, which is also an indicator of seed maturation. However, the cracking mechanism of T. grandis aril during the maturation stage remains largely unknown. Here, we provided a comprehensive view of the physiological and molecular levels of aril cracking in T. grandis by systematically analyzing its anatomical structure, physiological parameters, and transcriptomic response during the cracking process. These results showed that the length of both epidermal and parenchymatous cell layers significantly increased from 133 to 144 days after seed protrusion (DASP), followed by a clear separation between parenchymatous cell layers and kernel, which was accompanied by a breakage between epidermal and parenchymatous cell layers. Moreover, analyses of cell wall composition showed that a significant degradation of cellular wall polysaccharides occurred during aril cracking. To examine the global gene expression changes in arils during the cracking process, the transcriptomes (96 and 141 DASP) were analyzed. KEGG pathway analysis of DEGs revealed that 4 of the top 10 enriched pathways were involved in cell wall modification and 2 pathways were related to ethylene biosynthesis and ethylene signal transduction. Furthermore, combining the analysis results of co-expression networks between different transcription factors, cell wall modification genes, and exogenous ethylene treatments suggested that the ethylene signal transcription factors (ERF11 and ERF1A) were involved in aril cracking of T. grandis by regulation of EXP and PME. Our findings provided new insights into the aril cracking trait in T. grandis.
Collapse
Affiliation(s)
- Yadi Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Yuanyuan Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Jiayi Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Xuecheng Meng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Jinwei Suo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Zuying Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| |
Collapse
|
9
|
Quero-García J, Letourmy P, Campoy JA, Branchereau C, Malchev S, Barreneche T, Dirlewanger E. Multi-year analyses on three populations reveal the first stable QTLs for tolerance to rain-induced fruit cracking in sweet cherry (Prunus avium L.). HORTICULTURE RESEARCH 2021; 8:136. [PMID: 34059661 PMCID: PMC8166915 DOI: 10.1038/s41438-021-00571-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 06/01/2023]
Abstract
Rain-induced fruit cracking is a major problem in sweet cherry cultivation. Basic research has been conducted to disentangle the physiological and mechanistic bases of this complex phenomenon, whereas genetic studies have lagged behind. The objective of this work was to disentangle the genetic determinism of rain-induced fruit cracking. We hypothesized that a large genetic variation would be revealed, by visual field observations conducted on mapping populations derived from well-contrasted cultivars for cracking tolerance. Three populations were evaluated over 7-8 years by estimating the proportion of cracked fruits for each genotype at maturity, at three different areas of the sweet cherry fruit: pistillar end, stem end, and fruit side. An original approach was adopted to integrate, within simple linear models, covariates potentially related to cracking, such as rainfall accumulation before harvest, fruit weight, and firmness. We found the first stable quantitative trait loci (QTLs) for cherry fruit cracking, explaining percentages of phenotypic variance above 20%, for each of these three types of cracking tolerance, in different linkage groups, confirming the high complexity of this trait. For these and other QTLs, further analyses suggested the existence of at least two-linked QTLs in each linkage group, some of which showed confidence intervals close to 5 cM. These promising results open the possibility of developing marker-assisted selection strategies to select cracking-tolerant sweet cherry cultivars. Further studies are needed to confirm the stability of the reported QTLs over different genetic backgrounds and environments and to narrow down the QTL confidence intervals, allowing the exploration of underlying candidate genes.
Collapse
Affiliation(s)
- José Quero-García
- INRAE, Biologie du Fruit et Pathologie, Université de Bordeaux, UMR 1332, F-33140, Villenave d'Ornon, France.
| | - Philippe Letourmy
- CIRAD, UPR AIDA, University of Montpellier, TA B-115/02, Avenue Agropolis, 34398, Montpellier Cedex 5, France
| | - José Antonio Campoy
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, 50289, Cologne, Germany
| | - Camille Branchereau
- INRAE, Biologie du Fruit et Pathologie, Université de Bordeaux, UMR 1332, F-33140, Villenave d'Ornon, France
| | - Svetoslav Malchev
- Fruit Growing Institute - Plovdiv, 12 Ostromila Str., 4004, Plovdiv, Bulgaria
| | - Teresa Barreneche
- INRAE, Biologie du Fruit et Pathologie, Université de Bordeaux, UMR 1332, F-33140, Villenave d'Ornon, France
| | - Elisabeth Dirlewanger
- INRAE, Biologie du Fruit et Pathologie, Université de Bordeaux, UMR 1332, F-33140, Villenave d'Ornon, France
| |
Collapse
|
10
|
Hou L, Chen W, Zhang Z, Pang X, Li Y. Genome-wide association studies of fruit quality traits in jujube germplasm collections using genotyping-by-sequencing. THE PLANT GENOME 2020; 13:e20036. [PMID: 33217218 DOI: 10.1002/tpg2.20036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 05/06/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Chinese jujube (Ziziphus jujuba Mill.) is an important fruit crop and harbors many highly diverse traits of potential economic importance. Fruit size, stone size, and fruit cracking have an important influence on the commercial value of jujube. This study is the first to conduct a genome-wide association study (GWAS) on 180 accessions of jujube and focuses on locating single-nucleotide polymorphisms (SNPs) associated with nine important fruit quality traits. Genotyping was performed using genotyping-by-sequencing and 4651 high-quality SNPs were identified. A genetic diversity analysis revealed the presence of three distinct groups, and rapid linkage disequilibrium decay was observed in this jujube population. Using a mixed linear model, a total of 45 significant SNP-trait associations were detected, among which 33 SNPs had associations with fruit size-related traits, nine were associated with stone size-related traits, and three with fruit cracking-related traits. In total, 21 candidate genes involved in cell expansion, abiotic stress responses, hormone signaling, and growth development were identified from the genome sequences of jujube. These results are useful as basic data for GWAS of other jujube traits, and these significant SNP loci and candidate genes should aid marker-assisted breeding and genomic selection of improved jujube cultivars.
Collapse
Affiliation(s)
- Lu Hou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Wu Chen
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhiyong Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoming Pang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yingyue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
11
|
Capel C, Albaladejo I, Egea I, Massaretto IL, Yuste‐Lisbona FJ, Pineda B, García‐Sogo B, Angosto T, Flores FB, Moreno V, Lozano R, Bolarín MC, Capel J. The res (restored cell structure by salinity) tomato mutant reveals the role of the DEAD-box RNA helicase SlDEAD39 in plant development and salt response. PLANT, CELL & ENVIRONMENT 2020; 43:1722-1739. [PMID: 32329086 PMCID: PMC7384196 DOI: 10.1111/pce.13776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 05/29/2023]
Abstract
Increasing evidences highlight the importance of DEAD-box RNA helicases in plant development and stress responses. In a previous study, we characterized the tomato res mutant (restored cell structure by salinity), showing chlorosis and development alterations that reverted under salt-stress conditions. Map-based cloning demonstrates that RES gene encodes SlDEAD39, a chloroplast-targeted DEAD-box RNA helicase. Constitutive expression of SlDEAD39 complements the res mutation, while the silencing lines had a similar phenotype than res mutant, which is also reverted under salinity. Functional analysis of res mutant proved SlDEAD39 is involved in the in vivo processing of the chloroplast, 23S rRNA, at the hidden break-B site, a feature also supported by in vitro binding experiments of the protein. In addition, our results show that other genes coding for chloroplast-targeted DEAD-box proteins are induced by salt-stress, which might explain the rescue of the res mutant phenotype. Interestingly, salinity restored the phenotype of res adult plants by increasing their sugar content and fruit yield. Together, these results propose an unprecedented role of a DEAD-box RNA helicase in regulating plant development and stress response through the proper ribosome and chloroplast functioning, which, in turn, represents a potential target to improve salt tolerance in tomato crops.
Collapse
Affiliation(s)
- Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Irene Albaladejo
- Centro de Edafología y Biología Aplicada del Segura (CEBAS‐CSIC)Campus Universitario de EspinardoEspinardo‐MurciaSpain
- Ctra Viator‐PJ. Mami S/NAlmeríaSpain
| | - Isabel Egea
- Centro de Edafología y Biología Aplicada del Segura (CEBAS‐CSIC)Campus Universitario de EspinardoEspinardo‐MurciaSpain
| | - Isabel L. Massaretto
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, Food Research Center (FoRC‐CEPID)University of São PauloSão PauloBrazil
| | | | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (IBMCP‐UPV/CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Begoña García‐Sogo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP‐UPV/CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Francisco B. Flores
- Centro de Edafología y Biología Aplicada del Segura (CEBAS‐CSIC)Campus Universitario de EspinardoEspinardo‐MurciaSpain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (IBMCP‐UPV/CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - María C. Bolarín
- Centro de Edafología y Biología Aplicada del Segura (CEBAS‐CSIC)Campus Universitario de EspinardoEspinardo‐MurciaSpain
| | - Juan Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| |
Collapse
|
12
|
Sun S, Wang X, Wang K, Cui X. Dissection of complex traits of tomato in the post-genome era. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1763-1776. [PMID: 31745578 DOI: 10.1007/s00122-019-03478-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
We present the main advances of dissection of complex traits in tomato by omics, the genes identified to control complex traits and the application of CRISPR/Cas9 in tomato breeding. Complex traits are believed to be under the control of multiple genes, each with different effects and interaction with environmental factors. Advance development of sequencing and molecular technologies has enabled the recognition of the genomic structure of most organisms and the identification of a nearly limitless number of markers that have made it to accelerate the speed of QTL identification and gene cloning. Meanwhile, multiomics have been used to identify the genetic variations among different tomato species, determine the expression profiles of genes in different tissues and at distinct developmental stages, and detect metabolites in different pathways and processes. The combination of these data facilitates to reveal mechanism underlying complex traits. Moreover, mutants generated by mutagens and genome editing provide relatively rich genetic variation for deciphering the complex traits and exploiting them in tomato breeding. In this article, we present the main advances of complex trait dissection in tomato by omics since the release of the tomato genome sequence in 2012. We provide further insight into some tomato complex traits because of the causal genetic variations discovered so far and explore the utilization of CRISPR/Cas9 for the modification of tomato complex traits.
Collapse
Affiliation(s)
- Shuai Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaotian Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ketao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xia Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
13
|
Transcriptome analysis of metabolisms related to fruit cracking during ripening of a cracking-susceptible grape berry cv. Xiangfei (Vitis vinifera L.). Genes Genomics 2020; 42:639-650. [PMID: 32274647 DOI: 10.1007/s13258-020-00930-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Grape is an economically valuable fruit around the world. However, some cultivars are prone to fruit cracking during ripening, leading to severe losses. OBJECTIVE We aimed to find important metabolisms related to fruit cracking during ripening process. METHODS RNA-Sequence and analysis was applied to the pericarp of cracking-susceptible 'Xiang Fei' at 1 (W1), 2 (W2) and 3 weeks (W3) after veraison on Illumina HiSeq xten; RESULTS: Compared with W1, the berry cracking rate increased significantly in W2 and W3. Through transcriptomic analysis, a total of 22,609 genes were expressed in the grape pericarp, among which 805 and 2758 genes were significantly differentially regulated in W1-vs.-W2 and W1-vs.-W3 comparison, respectively. Besides, 304 and 354 genes were up- and down-regulated in both comparisons. The significantly enriched GO terms of both W1-W2 and W1-W3 are related to cell wall and wax biosynthesis. And lipid metabolism, which are involved in the top 20 enriched KEGG pathways of both comparisons, was related to wax biosynthesis. Further, GO enrichment analysis of differentially expressed genes (DEGs) with same regulatory changes also indicated that the continuously up-regulated DEGs are significantly enriched in cell wall component biosynthesis and hydrolase. CONCLUSION These findings suggested that genes related to cell wall metabolism and cuticle biosynthesis may play important roles in regulating grape berry cracking. Our results provide a reference for further studies on the molecular mechanism underlying fruit cracking.
Collapse
|
14
|
Liao N, Hu Z, Li Y, Hao J, Chen S, Xue Q, Ma Y, Zhang K, Mahmoud A, Ali A, Malangisha GK, Lyu X, Yang J, Zhang M. Ethylene-responsive factor 4 is associated with the desirable rind hardness trait conferring cracking resistance in fresh fruits of watermelon. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1066-1077. [PMID: 31610078 PMCID: PMC7061880 DOI: 10.1111/pbi.13276] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/26/2019] [Accepted: 10/06/2019] [Indexed: 05/11/2023]
Abstract
Fruit rind plays a pivotal role in alleviating water loss and disease and particularly in cracking resistance as well as the transportability, storability and shelf-life quality of the fruit. High susceptibility to cracking due to low rind hardness is largely responsible for severe annual yield losses of fresh fruits such as watermelon in the field and during the postharvest process. However, the candidate gene controlling the rind hardness phenotype remains unclear to date. Herein, we report, for the first time, an ethylene-responsive transcription factor 4 (ClERF4) associated with variation in rind hardness via a combinatory genetic map with bulk segregant analysis (BSA). Strikingly, our fine-mapping approach revealed an InDel of 11 bp and a neighbouring SNP in the ClERF4 gene on chromosome 10, conferring cracking resistance in F2 populations with variable rind hardness. Furthermore, the concomitant kompetitive/competitive allele-specific PCR (KASP) genotyping data sets of 104 germplasm accessions strongly supported candidate ClERF4 as a causative gene associated with fruit rind hardness variability. In conclusion, our results provide new insight into the underlying mechanism controlling rind hardness, a desirable trait in fresh fruit. Moreover, the findings will further enable the molecular improvement of fruit cracking resistance in watermelon via precisely targeting the causative gene relevant to rind hardness, ClERF4.
Collapse
Affiliation(s)
- Nanqiao Liao
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
- Key laboratory of Horticultural Plant growthDevelopment and Quality ImprovementMinistry of AgricultureHangzhouChina
| | - Yingying Li
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Junfang Hao
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Shuna Chen
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Qin Xue
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Yuyuan Ma
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Kejia Zhang
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Ahmed Mahmoud
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Abid Ali
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Guy Kateta Malangisha
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Xiaolong Lyu
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
- Key laboratory of Horticultural Plant growthDevelopment and Quality ImprovementMinistry of AgricultureHangzhouChina
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhouChina
- Key laboratory of Horticultural Plant growthDevelopment and Quality ImprovementMinistry of AgricultureHangzhouChina
| |
Collapse
|
15
|
Gonzalo MJ, Li YC, Chen KY, Gil D, Montoro T, Nájera I, Baixauli C, Granell A, Monforte AJ. Genetic Control of Reproductive Traits in Tomatoes Under High Temperature. FRONTIERS IN PLANT SCIENCE 2020; 11:326. [PMID: 32391023 PMCID: PMC7193983 DOI: 10.3389/fpls.2020.00326] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/05/2020] [Indexed: 05/05/2023]
Abstract
Global climate change is increasing the range of temperatures that crop plants must face during their life cycle, giving negative effects to yields. In this changing scenario, understanding the genetic control of plant responses to a range of increasing temperature conditions is a prerequisite to developing cultivars with increased resilience. The current work reports the identification of Quantitative Trait Loci (QTL) involved in reproductive traits affected by temperature, such as the flower number (FLN) and fruit number (FRN) per truss and percentage of fruit set (FRS), stigma exsertion (SE), pollen viability (PV) and the incidence of the physiological disorder tipburn (TB). These traits were investigated in 168 Recombinant Inbred Lines (RIL) and 52 Introgression Lines (IL) derived from the cross between Solanum lycopersicum var. "MoneyMaker" and S. pimpinellifolium accession TO-937. Mapping populations were cultivated under increased temperature regimen conditions: T1 (25°C day/21°C night), T2 (30°C day/25°C night) and T3 (35°C day/30°C night). The increase in temperature drastically affected several reproductive traits, for example, FRS in Moneymaker was reduced between 75 and 87% at T2 and T3 when compared to T1, while several RILs showed a reduction of less than 50%. QTL analysis allowed the identification of genomic regions affecting these traits at different temperatures regimens. A total of 22 QTLs involved in reproductive traits at different temperatures were identified by multi-environmental QTL analysis and eight involved in pollen viability traits. Most QTLs were temperature specific, except QTLs on chromosomes 1, 2, 4, 6, and 12. Moreover, a QTL located in chromosome 7 was identified for low incidence of TP in the RIL population, which was confirmed in ILs with introgressions on chromosome 7. Furthermore, ILs with introgressions in chromosomes 1 and 12 had good FRN and FRS in T3 in replicated trials. These results represent a catalog of QTLs and pre-breeding materials that could be used as the starting point for deciphering the genetic control of the genetic response of reproductive traits at different temperatures and paving the road for developing new cultivars adapted to climate change.
Collapse
Affiliation(s)
- Maria José Gonzalo
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Yi-Cheng Li
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Kai-Yi Chen
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - David Gil
- Enza Zaden Centro de Investigación S.L., Almería, Spain
| | | | | | - Carlos Baixauli
- Centro de Experiencias de Cajamar en Paiporta, Paiporta, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Antonio José Monforte
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
- *Correspondence: Antonio José Monforte,
| |
Collapse
|
16
|
Yu X, Choi SR, Chhapekar SS, Lu L, Ma Y, Lee JY, Hong S, Kim YY, Oh SH, Lim YP. Genetic and physiological analyses of root cracking in radish (Raphanus sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3425-3437. [PMID: 31562568 DOI: 10.1007/s00122-019-03435-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
A major QTL conferring tolerance to radish (Raphanus sativus) root cracking was mapped for the first time and two calcium regulatory genes were identified that positively associated with the cracking phenomenon. Root cracking is a severe physiological disorder that significantly decreases the yield and commercial value of radish. The genetic and physiological mechanisms underlying this root cracking disorder have not been characterized. In this study, quantitative trait loci (QTLs) putatively associated with radish root cracking were mapped. Ten QTLs were distributed in six linkage groups, among these QTLs, 'RCr1' in LG1 was detected over 3 consecutive years and was considered to be a major QTL for root cracking. The QTL 'RCr1' was responsible for 4.47-18.11% of variance in the root cracking phenotype. We subsequently identified two candidate genes, RsANNAT and RsCDPK. Both genes encode proteins involved in calcium binding, ion transport, and Ca2+ signal transduction, which are important for regulating plant development and adaptations to the environment. These genes were co-localized to the major QTL region. Additionally, we analyzed physiological changes (i.e., root firmness, cell wall content, and cell-wall-bound calcium content) in two parental lines during different developmental stages. Moreover, we observed that the RsANNAT and RsCDPK expression levels are positively correlated with Ca2+ contents in the roots of the cracking-tolerant '835' cultivar. Thus, these genes may influence root cracking. The data provided herein may support the useful information to understand root cracking behavior in radish and may enable breeders to develop new cultivars exhibiting increased tolerance to root and fruit cracking.
Collapse
Affiliation(s)
- Xiaona Yu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
- Agronomy Department, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Su Ryun Choi
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Sushil Satish Chhapekar
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Lu Lu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Yinbo Ma
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Ji-Young Lee
- School of Biological Sciences, College of Natural Science, Seoul National University, Seoul, South Korea
| | - Seongmin Hong
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Yoon-Young Kim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
- Department of Variety Examination, National Forest Seed Variety Center, Chungju, 27495, South Korea
| | - Sang Heon Oh
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
17
|
Li K, Wen W, Alseekh S, Yang X, Guo H, Li W, Wang L, Pan Q, Zhan W, Liu J, Li Y, Wu X, Brotman Y, Willmitzer L, Li J, Fernie AR, Yan J. Large-scale metabolite quantitative trait locus analysis provides new insights for high-quality maize improvement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:216-230. [PMID: 30888713 DOI: 10.1111/tpj.14317] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/27/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
It is generally recognized that many favorable genes which were lost during domestication, including those related to both nutritional value and stress resistance, remain hidden in wild relatives. To uncover such genes in teosinte, an ancestor of maize, we conducted metabolite profiling in a BC2 F7 population generated from a cross between the maize wild relative (Zea mays ssp. mexicana) and maize inbred line Mo17. In total, 65 primary metabolites were quantified in four tissues (seedling-stage leaf, grouting-stage leaf, young kernel and mature kernel) with clear tissue-specific patterns emerging. Three hundred and fifty quantitative trait loci (QTLs) for these metabolites were obtained, which were distributed unevenly across the genome and included two QTL hotspots. Metabolite concentrations frequently increased in the presence of alleles from the teosinte genome while the opposite was observed for grain yield and shape trait QTLs. Combination of the multi-tissue transcriptome and metabolome data provided considerable insight into the metabolic variations between maize and its wild relatives. This study thus identifies favorable genes hidden in the wild relative which should allow us to balance high yield and quality in future modern crop breeding programs.
Collapse
Affiliation(s)
- Kun Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Weiwei Wen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Centre of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Xiaohong Yang
- Beijing Key Laboratory of Crop Genetic Improvement, National Maize Improvement Center of China, China Agricultural University, West Yuanmingyuan Lu 2, 100193, Haidian, Beijing, China
| | - Huan Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Luxi Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Qingchun Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Wei Zhan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Yanhua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Xiao Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Lothar Willmitzer
- Centre of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Jiansheng Li
- Beijing Key Laboratory of Crop Genetic Improvement, National Maize Improvement Center of China, China Agricultural University, West Yuanmingyuan Lu 2, 100193, Haidian, Beijing, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Centre of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| |
Collapse
|
18
|
Jiang F, Lopez A, Jeon S, de Freitas ST, Yu Q, Wu Z, Labavitch JM, Tian S, Powell ALT, Mitcham E. Disassembly of the fruit cell wall by the ripening-associated polygalacturonase and expansin influences tomato cracking. HORTICULTURE RESEARCH 2019; 6:17. [PMID: 30729007 PMCID: PMC6355925 DOI: 10.1038/s41438-018-0105-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/07/2018] [Accepted: 10/14/2018] [Indexed: 05/06/2023]
Abstract
Fruit cracking is an important problem in horticultural crop production. Polygalacturonase (SlPG) and expansin (SlEXP1) proteins cooperatively disassemble the polysaccharide network of tomato fruit cell walls during ripening and thereby, enable softening. A Golden 2-like (GLK2) transcription factor, SlGLK2 regulates unripe fruit chloroplast development and results in elevated soluble solids and carotenoids in ripe fruit. To determine whether SlPG, SlEXP1, or SlGLK2 influence the rate of tomato fruit cracking, the incidence of fruit epidermal cracking was compared between wild-type, Ailsa Craig (WT) and fruit with suppressed SlPG and SlEXP1 expression (pg/exp) or expressing a truncated nonfunctional Slglk2 (glk2). Treating plants with exogenous ABA increases xylemic flow into fruit. Our results showed that ABA treatment of tomato plants greatly increased cracking of fruit from WT and glk2 mutant, but not from pg/exp genotypes. The pg/exp fruit were firmer, had higher total soluble solids, denser cell walls and thicker cuticles than fruit of the other genotypes. Fruit from the ABA treated pg/exp fruit had cell walls with less water-soluble and more ionically and covalently-bound pectins than fruit from the other lines, demonstrating that ripening-related disassembly of the fruit cell wall, but not elimination of SlGLK2, influences cracking. Cracking incidence was significantly correlated with cell wall and wax thickness, and the content of cell wall protopectin and cellulose, but not with Ca2+ content.
Collapse
Affiliation(s)
- Fangling Jiang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Department of Plant Sciences, University of California, Davis, 95616 USA
| | - Alfonso Lopez
- Department of Plant Sciences, University of California, Davis, 95616 USA
| | - Shinjae Jeon
- Department of Plant Sciences, University of California, Davis, 95616 USA
- Gangwon Agricultural Research and Extension Services, Chuncheon, 200-150 South Korea
| | | | - Qinghui Yu
- Department of Plant Sciences, University of California, Davis, 95616 USA
- Institute of Vegetables, Xinjiang Academy of Agricultural Sciences, 830091 Urumchi, China
| | - Zhen Wu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - John M. Labavitch
- Department of Plant Sciences, University of California, Davis, 95616 USA
| | - Shengke Tian
- Department of Plant Sciences, University of California, Davis, 95616 USA
- College of Environmental and Resource Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Ann L. T. Powell
- Department of Plant Sciences, University of California, Davis, 95616 USA
| | - Elizabeth Mitcham
- Department of Plant Sciences, University of California, Davis, 95616 USA
| |
Collapse
|
19
|
Razali R, Bougouffa S, Morton MJL, Lightfoot DJ, Alam I, Essack M, Arold ST, Kamau AA, Schmöckel SM, Pailles Y, Shahid M, Michell CT, Al-Babili S, Ho YS, Tester M, Bajic VB, Negrão S. The Genome Sequence of the Wild Tomato Solanum pimpinellifolium Provides Insights Into Salinity Tolerance. FRONTIERS IN PLANT SCIENCE 2018; 9:1402. [PMID: 30349549 PMCID: PMC6186997 DOI: 10.3389/fpls.2018.01402] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/04/2018] [Indexed: 05/19/2023]
Abstract
Solanum pimpinellifolium, a wild relative of cultivated tomato, offers a wealth of breeding potential for desirable traits such as tolerance to abiotic and biotic stresses. Here, we report the genome assembly and annotation of S. pimpinellifolium 'LA0480.' Moreover, we present phenotypic data from one field experiment that demonstrate a greater salinity tolerance for fruit- and yield-related traits in S. pimpinellifolium compared with cultivated tomato. The 'LA0480' genome assembly size (811 Mb) and the number of annotated genes (25,970) are within the range observed for other sequenced tomato species. We developed and utilized the Dragon Eukaryotic Analyses Platform (DEAP) to functionally annotate the 'LA0480' protein-coding genes. Additionally, we used DEAP to compare protein function between S. pimpinellifolium and cultivated tomato. Our data suggest enrichment in genes involved in biotic and abiotic stress responses. To understand the genomic basis for these differences in S. pimpinellifolium and S. lycopersicum, we analyzed 15 genes that have previously been shown to mediate salinity tolerance in plants. We show that S. pimpinellifolium has a higher copy number of the inositol-3-phosphate synthase and phosphatase genes, which are both key enzymes in the production of inositol and its derivatives. Moreover, our analysis indicates that changes occurring in the inositol phosphate pathway may contribute to the observed higher salinity tolerance in 'LA0480.' Altogether, our work provides essential resources to understand and unlock the genetic and breeding potential of S. pimpinellifolium, and to discover the genomic basis underlying its environmental robustness.
Collapse
Affiliation(s)
- Rozaimi Razali
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mitchell J. L. Morton
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Damien J. Lightfoot
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Division of Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Magbubah Essack
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Stefan T. Arold
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Allan A. Kamau
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Division of Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sandra M. Schmöckel
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Yveline Pailles
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mohammed Shahid
- International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Craig T. Michell
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Al-Babili
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Yung Shwen Ho
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mark Tester
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Vladimir B. Bajic
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Division of Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sónia Negrão
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
20
|
Yang M, Chen L, Wu X, Gao X, Li C, Song Y, Zhang D, Shi Y, Li Y, Li YX, Wang T. Characterization and fine mapping of qkc7.03: a major locus for kernel cracking in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:437-448. [PMID: 29143067 DOI: 10.1007/s00122-017-3012-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/26/2017] [Indexed: 05/20/2023]
Abstract
A major locus conferring kernel cracking in maize was characterized and fine mapped to an interval of 416.27 kb. Meanwhile, combining the results of transcriptomic analysis, the candidate gene was inferred. Seed development requires a proper structural and physiological balance between the maternal tissues and the internal structures of the seeds. In maize, kernel cracking is a disorder in this balance that seriously limits quality and yield and is characterized by a cracked pericarp at the kernel top and endosperm everting. This study elucidated the genetic basis and characterization of kernel cracking. Primarily, a near isogenic line (NIL) with a B73 background exhibited steady kernel cracking across environments. Therefore, deprived mapping populations were developed from this NIL and its recurrent parent B73. A major locus on chromosome 7, qkc7.03, was identified to be associated with the cracking performance. According to a progeny test of recombination events, qkc7.03 was fine mapped to a physical interval of 416.27 kb. In addition, obvious differences were observed in embryo development and starch granule arrangement within the endosperm between the NIL and its recurrent parent upon the occurrence of kernel cracking. Moreover, compared to its recurrent parent, the transcriptome of the NIL showed a significantly down-regulated expression of genes related to zeins, carbohydrate synthesis and MADS-domain transcription factors. The transcriptomic analysis revealed ten annotated genes within the target region of qkc7.03, and only GRMZM5G899476 was differently expressed between the NIL and its recurrent parent, indicating that this gene might be a candidate gene for kernel cracking. The results of this study facilitate the understanding of the potential mechanism underlying kernel cracking in maize.
Collapse
Affiliation(s)
- Mingtao Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Lin Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Xun Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Xing Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Chunhui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Yanchun Song
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Dengfeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Yunsu Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Yu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Yong-Xiang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China.
| | - Tianyu Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China.
| |
Collapse
|
21
|
Capel C, Yuste-Lisbona FJ, López-Casado G, Angosto T, Heredia A, Cuartero J, Fernández-Muñoz R, Lozano R, Capel J. QTL mapping of fruit mineral contents provides new chances for molecular breeding of tomato nutritional traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:903-913. [PMID: 28280866 DOI: 10.1007/s00122-017-2859-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
Agronomical characterization of a RIL population for fruit mineral contents allowed for the identification of QTL controlling these fruit quality traits, flanked by co-dominant markers useful for marker-assisted breeding. Tomato quality is a multi-variant attribute directly depending on fruit chemical composition, which in turn determines the benefits of tomato consumption for human health. Commercially available tomato varieties possess limited variability in fruit quality traits. Wild species, such as Solanum pimpinellifolium, could provide different nutritional advantages and can be used for tomato breeding to improve overall fruit quality. Determining the genetic basis of the inheritance of all the traits that contribute to tomato fruit quality will increase the efficiency of the breeding program necessary to take advantage of the wild species variability. A high-density linkage map has been constructed from a recombinant inbred line (RIL) population derived from a cross between tomato Solanum lycopersicum and the wild-relative species S. pimpinellifolium. The RIL population was evaluated for fruit mineral contents during three consecutive growing seasons. The data obtained allowed for the identification of main QTL and novel epistatic interaction among QTL controlling fruit mineral contents on the basis of a multiple-environment analysis. Most of the QTL were flanked by candidate genes providing valuable information for both tomato breeding for new varieties with novel nutritional properties and the starting point to identify the genes underlying these QTL, which will help to reveal the genetic basis of tomato fruit nutritional properties.
Collapse
Affiliation(s)
- Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120, Almería, Spain
| | - Fernando J Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120, Almería, Spain
| | - Gloria López-Casado
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750, Algarrobo-Costa, Málaga, Spain
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120, Almería, Spain
| | - Antonio Heredia
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750, Algarrobo-Costa, Málaga, Spain
| | - Jesús Cuartero
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750, Algarrobo-Costa, Málaga, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750, Algarrobo-Costa, Málaga, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120, Almería, Spain
| | - Juan Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120, Almería, Spain.
- Departamento de Biología y Geología (Genética), Edificio CITE II-B, Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain.
| |
Collapse
|