1
|
Roller S, Würschum T. Genetic architecture of phosphorus use efficiency across diverse environmental conditions: insights from maize elite and landrace lines. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:363-380. [PMID: 39435644 DOI: 10.1093/jxb/erae431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Phosphorus is an essential nutrient for all crops. Thus, a better understanding of the genetic control of phosphorus use efficiency evident in physiological, developmental, and morphological traits and its environmental plasticity is required to establish the basis for maintaining or enhancing yield while making agriculture more sustainable. In this study, we utilized a diverse panel of maize (Zea mays L.), including 398 elite and landrace lines, phenotyped across three environments and two phosphorus fertilization treatments. We performed genome-wide association mapping for 13 traits, including phosphorus uptake and allocation, that showed a strong environment dependency in their expression. Our results highlight the complex genetic architecture of phosphorus use efficiency as well as the substantial differences between the evaluated genetic backgrounds. Despite harboring more of the identified quantitative trait loci, almost all of the favorable alleles from landraces were found to be present in at least one of the two elite heterotic groups. Notably, we also observed trait-specific genetic control even among biologically related characteristics, as well as a substantial plasticity of the genetic architecture of several traits in response to the environment and phosphorus fertilization. Collectively, our work illustrates the difficulties in improving phosphorus use efficiency, but also presents possible solutions for the future contribution of plant breeding to improve the phosphorus cycle.
Collapse
Affiliation(s)
- Sandra Roller
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, D-70593, Germany
| | - Tobias Würschum
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, D-70593, Germany
| |
Collapse
|
2
|
Urzinger S, Avramova V, Frey M, Urbany C, Scheuermann D, Presterl T, Reuscher S, Ernst K, Mayer M, Marcon C, Hochholdinger F, Brajkovic S, Ordas B, Westhoff P, Ouzunova M, Schön CC. Embracing native diversity to enhance the maximum quantum efficiency of photosystem II in maize. PLANT PHYSIOLOGY 2024; 197:kiae670. [PMID: 39711175 PMCID: PMC11702984 DOI: 10.1093/plphys/kiae670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/24/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
The sustainability of maize cultivation would benefit tremendously from early sowing, but is hampered by low temperatures during early development in temperate climates. We show that allelic variation within the gene encoding subunit M of the NADH-dehydrogenase-like (NDH) complex (ndhm1) in a European maize landrace affects several quantitative traits that are relevant during early development in cold climates through NDH-mediated cyclic electron transport around photosystem I, a process crucial for photosynthesis and photoprotection. Beginning with a genome-wide association study for maximum potential quantum yield of photosystem II in dark-adapted leaves (Fv/Fm), we capitalized on the large phenotypic effects of a hAT transposon insertion in ndhm1 on multiple quantitative traits (early plant height [EPH], Fv/Fm, chlorophyll content, and cold tolerance) caused by the reduced protein levels of NDHM and associated NDH components. Analysis of the ndhm1 native allelic series revealed a rare allele of ndhm1 that is associated with small albeit significant improvements of Fv/Fm, photosystem II efficiency in light-adapted leaves (ΦPSII), and EPH compared with common alleles. Our work showcases the extraction of favorable alleles from locally adapted landraces, offering an efficient strategy for broadening the genetic variation of elite germplasm by breeding or genome editing.
Collapse
Affiliation(s)
- Sebastian Urzinger
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Viktoriya Avramova
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Monika Frey
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Claude Urbany
- Maize Breeding, KWS SAAT SE & Co. KGaA, Einbeck 37574, Germany
| | | | - Thomas Presterl
- Maize Breeding, KWS SAAT SE & Co. KGaA, Einbeck 37574, Germany
| | - Stefan Reuscher
- Maize Breeding, KWS SAAT SE & Co. KGaA, Einbeck 37574, Germany
| | - Karin Ernst
- Institute of Molecular and Developmental Biology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Manfred Mayer
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Caroline Marcon
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Sarah Brajkovic
- Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Bernardo Ordas
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Pontevedra 36080, Spain
| | - Peter Westhoff
- Institute of Molecular and Developmental Biology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Milena Ouzunova
- Maize Breeding, KWS SAAT SE & Co. KGaA, Einbeck 37574, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| |
Collapse
|
3
|
Tyborski N, Koehler T, Steiner FA, Tung SY, Wild AJ, Carminati A, Mueller CW, Vidal A, Wolfrum S, Pausch J, Lueders T. Consistent prokaryotic community patterns along the radial root axis of two Zea mays L. landraces across two distinct field locations. Front Microbiol 2024; 15:1386476. [PMID: 39091306 PMCID: PMC11292614 DOI: 10.3389/fmicb.2024.1386476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
The close interconnection of plants with rhizosphere- and root-associated microorganisms is well recognized, and high expectations are raised for considering their symbioses in the breeding of future crop varieties. However, it is unclear how consistently plant-mediated selection, a potential target in crop breeding, influences microbiome members compared to selection imposed by the agricultural environment. Landraces may have traits shaping their microbiome, which were lost during the breeding of modern varieties, but knowledge about this is scarce. We investigated prokaryotic community composition along the radial root axis of two European maize (Zea mays L.) landraces. A sampling gradient included bulk soil, a distal and proximal rhizosphere fraction, and the root compartment. Our study was replicated at two field locations with differing edaphic and climatic conditions. Further, we tested for differences between two plant developmental stages and two precipitation treatments. Community data were generated by metabarcoding of the V4 SSU rRNA region. While communities were generally distinct between field sites, the effects of landrace variety, developmental stage, and precipitation treatment were comparatively weak and not statistically significant. Under all conditions, patterns in community composition corresponded strongly to the distance to the root. Changes in α- and β-diversity, as well as abundance shifts of many taxa along this gradient, were similar for both landraces and field locations. Most affected taxa belonged to a core microbiome present in all investigated samples. Remarkably, we observed consistent enrichment of Actinobacteriota (particularly Streptomyces, Lechevalieria) and Pseudomonadota (particularly Sphingobium) toward the root. Further, we report a depletion of ammonia-oxidizers along this axis at both field sites. We identified clear enrichment and depletion patterns in microbiome composition along the radial root axis of Z. mays. Many of these were consistent across two distinct field locations, plant developmental stages, precipitation treatments, and for both landraces. This suggests a considerable influence of plant-mediated effects on the microbiome. We propose that the affected taxa have key roles in the rhizosphere and root microbiome of Z. mays. Understanding the functions of these taxa appears highly relevant for the development of methods aiming to promote microbiome services for crops.
Collapse
Affiliation(s)
- Nicolas Tyborski
- Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Tina Koehler
- Root-Soil Interaction, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Franziska A. Steiner
- Soil Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Shu-Yin Tung
- Institute for Agroecology and Organic Farming, Bavarian State Research Center for Agriculture (LfL), Freising, Germany
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Andreas J. Wild
- Agroecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Andrea Carminati
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Carsten W. Mueller
- Soil Science, Institute of Ecology, Technical University of Berlin, Berlin, Germany
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Alix Vidal
- Soil Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Sebastian Wolfrum
- Institute for Agroecology and Organic Farming, Bavarian State Research Center for Agriculture (LfL), Freising, Germany
| | - Johanna Pausch
- Agroecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Tillmann Lueders
- Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
4
|
Melchinger AE, Fernando R, Melchinger AJ, Schön CC. Optimizing selection based on BLUPs or BLUEs in multiple sets of genotypes differing in their population parameters. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:104. [PMID: 38622324 PMCID: PMC11018695 DOI: 10.1007/s00122-024-04592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/05/2024] [Indexed: 04/17/2024]
Abstract
KEY MESSAGE Selection response in truncation selection across multiple sets of candidates hinges on their post-selection proportions, which can deviate grossly from their initial proportions. For BLUPs, using a uniform threshold for all candidates maximizes the selection response, irrespective of differences in population parameters. Plant breeding programs typically involve multiple families from either the same or different populations, varying in means, genetic variances and prediction accuracy of BLUPs or BLUEs for true genetic values (TGVs) of candidates. We extend the classical breeder's equation for truncation selection from single to multiple sets of genotypes, indicating that the expected overall selection response ( Δ G Tot ) for TGVs depends on the selection response within individual sets and their post-selection proportions. For BLUEs, we show that maximizingΔ G Tot requires thresholds optimally tailored for each set, contingent on their population parameters. For BLUPs, we prove thatΔ G Tot is maximized by applying a uniform threshold across all candidates from all sets. We provide explicit formulas for the origin of the selected candidates from different sets and show that their proportions before and after selection can differ substantially, especially for sets with inferior properties and low proportion. We discuss implications of these results for (a) optimum allocation of resources to training and prediction sets and (b) the need to counteract narrowing the genetic variation under genomic selection. For genomic selection of hybrids based on BLUPs of GCA of their parent lines, selecting distinct proportions in the two parent populations can be advantageous, if these differ substantially in the variance and/or prediction accuracy of GCA. Our study sheds light on the complex interplay of selection thresholds and population parameters for the selection response in plant breeding programs, offering insights into the effective resource management and prudent application of genomic selection for improved crop development.
Collapse
Affiliation(s)
- Albrecht E Melchinger
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany.
| | - Rohan Fernando
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | | | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| |
Collapse
|
5
|
Lanzl T, Melchinger AE, Schön CC. Influence of the mating design on the additive genetic variance in plant breeding populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:236. [PMID: 37906322 PMCID: PMC10618341 DOI: 10.1007/s00122-023-04447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/14/2023] [Indexed: 11/02/2023]
Abstract
KEY MESSAGE Mating designs determine the realized additive genetic variance in a population sample. Deflated or inflated variances can lead to reduced or overly optimistic assessment of future selection gains. The additive genetic variance [Formula: see text] inherent to a breeding population is a major determinant of short- and long-term genetic gain. When estimated from experimental data, it is not only the additive variances at individual loci (QTL) but also covariances between QTL pairs that contribute to estimates of [Formula: see text]. Thus, estimates of [Formula: see text] depend on the genetic structure of the data source and vary between population samples. Here, we provide a theoretical framework for calculating the expectation and variance of [Formula: see text] from genotypic data of a given population sample. In addition, we simulated breeding populations derived from different numbers of parents (P = 2, 4, 8, 16) and crossed according to three different mating designs (disjoint, factorial and half-diallel crosses). We calculated the variance of [Formula: see text] and of the parameter b reflecting the covariance component in [Formula: see text] standardized by the genic variance. Our results show that mating designs resulting in large biparental families derived from few disjoint crosses carry a high risk of generating progenies exhibiting strong covariances between QTL pairs on different chromosomes. We discuss the consequences of the resulting deflated or inflated [Formula: see text] estimates for phenotypic and genome-based selection as well as for applying the usefulness criterion in selection. We show that already one round of recombination can effectively break negative and positive covariances between QTL pairs induced by the mating design. We suggest to obtain reliable estimates of [Formula: see text] and its components in a population sample by applying statistical methods differing in their treatment of QTL covariances.
Collapse
Affiliation(s)
- Tobias Lanzl
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Albrecht E Melchinger
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
| |
Collapse
|
6
|
Hackauf B, Siekmann D, Fromme FJ. Improving Yield and Yield Stability in Winter Rye by Hybrid Breeding. PLANTS (BASEL, SWITZERLAND) 2022; 11:2666. [PMID: 36235531 PMCID: PMC9571156 DOI: 10.3390/plants11192666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Rye is the only cross-pollinating small-grain cereal. The unique reproduction biology results in an exceptional complexity concerning genetic improvement of rye by breeding. Rye is a close relative of wheat and has a strong adaptation potential that refers to its mating system, making this overlooked cereal readily adjustable to a changing environment. Rye breeding addresses the emerging challenges of food security associated with climate change. The systematic identification, management, and use of its valuable natural diversity became a feasible option in outbreeding rye only following the establishment of hybrid breeding late in the 20th century. In this article, we review the most recent technological advances to improve yield and yield stability in winter rye. Based on recently released reference genome sequences, SMART breeding approaches are described to counterbalance undesired linkage drag effects of major restorer genes on grain yield. We present the development of gibberellin-sensitive semidwarf hybrids as a novel plant breeding innovation based on an approach that is different from current methods of increasing productivity in rye and wheat. Breeding of new rye cultivars with improved performance and resilience is indispensable for a renaissance of this healthy minor cereal as a homogeneous commodity with cultural relevance in Europe that allows for comparatively smooth but substantial complementation of wheat with rye-based diets, supporting the necessary restoration of the balance between human action and nature.
Collapse
Affiliation(s)
- Bernd Hackauf
- Julius Kühn Institute, Institute for Breeding Research on Agricultural Crops, Rudolf-Schick-Platz 3a, 18190 Sanitz, Germany
| | - Dörthe Siekmann
- Hybro Saatzucht GmbH & Co. KG, Langlinger Straße 3, 29565 Wriedel, Germany
| | | |
Collapse
|
7
|
Mayer M, Hölker AC, Presterl T, Ouzunova M, Melchinger AE, Schön CC. Genetic diversity of European maize landraces: Dataset on the molecular and phenotypic variation of derived doubled-haploid populations. Data Brief 2022; 42:108164. [PMID: 35510267 PMCID: PMC9058946 DOI: 10.1016/j.dib.2022.108164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Genetic variation is the basis of selection, evolution and breeding. Maize landraces represent a rich source of allelic diversity, but their efficient utilization in breeding and research has been hampered by their heterogeneous and heterozygous nature and insufficient information about most accessions. While molecular inventories of germplasm repositories are growing steadily, linking these data to meaningful phenotypes for quantitative traits is challenging. Here, we present comprehensive molecular and phenotypic data for ∼1,000 doubled-haploid (DH) lines derived from three pre-selected European maize landraces. Due to their full homozygosity, the DH lines can be multiplied ad libitum and represent a powerful biological resource available to the community. The DH lines allow high-precision phenotyping in repeated experiments and reveal the full additive genetic variance of the population. The DH lines were evaluated for nine agronomically important, quantitative traits in multi-environment field trials comprising seven locations and two years. The DH populations revealed high genetic variance and high heritability for the analysed traits. The DH lines were genotyped with 600k SNP markers. After stringent quality filtering 500k markers remained for further analyses. This is the largest resource of landrace derived DH material in maize, unprecedented in its structure and dimension. The presented data are ideal for linking molecular variation to meaningful phenotypes. They can be used for genome-wide association studies, genomic prediction, and population genetic analyses as well as for developing and testing statistical methods. All plant material is available to the community for conducting additional experiments, extending the panel of traits and environments, and for testing the landrace-derived lines in combination with other genetic material.
Collapse
Affiliation(s)
- Manfred Mayer
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Armin C Hölker
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany.,KWS SAAT SE & Co. KGaA, 37574 Einbeck, Germany
| | | | | | - Albrecht E Melchinger
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
8
|
Theoretical and experimental assessment of genome-based prediction in landraces of allogamous crops. Proc Natl Acad Sci U S A 2022; 119:e2121797119. [PMID: 35486687 PMCID: PMC9170147 DOI: 10.1073/pnas.2121797119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceGenetic variation inherent in landraces is essential for broadening the genetic diversity of our crops. This study pioneers the development of a theoretical framework to link molecular inventories of plant genetic resources to phenotypic variation, allowing an informed choice of landraces and their crossing partners. We show that genome-based prediction of genetic values can be implemented successfully in landrace-derived material, despite a strongly reduced level of relatedness compared with elite germplasm. Theoretical derivations are validated with unique experimental data collected on two different landraces. Our results are a pivotal contribution toward the optimization of genome-enabled prebreeding schemes.
Collapse
|
9
|
Würschum T, Weiß TM, Renner J, Friedrich Utz H, Gierl A, Jonczyk R, Römisch-Margl L, Schipprack W, Schön CC, Schrag TA, Leiser WL, Melchinger AE. High-resolution association mapping with libraries of immortalized lines from ancestral landraces. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:243-256. [PMID: 34668978 PMCID: PMC8741726 DOI: 10.1007/s00122-021-03963-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/29/2021] [Indexed: 05/30/2023]
Abstract
Association mapping with immortalized lines of landraces offers several advantages including a high mapping resolution, as demonstrated here in maize by identifying the causal variants underlying QTL for oil content and the metabolite allantoin. Landraces are traditional varieties of crops that present a valuable yet largely untapped reservoir of genetic variation to meet future challenges of agriculture. Here, we performed association mapping in a panel comprising 358 immortalized maize lines from six European Flint landraces. Linkage disequilibrium decayed much faster in the landraces than in the elite lines included for comparison, permitting a high mapping resolution. We demonstrate this by fine-mapping a quantitative trait locus (QTL) for oil content down to the phenylalanine insertion F469 in DGAT1-2 as the causal variant. For the metabolite allantoin, related to abiotic stress response, we identified promoter polymorphisms and differential expression of an allantoinase as putative cause of variation. Our results demonstrate the power of this approach to dissect QTL potentially down to the causal variants, toward the utilization of natural or engineered alleles in breeding. Moreover, we provide guidelines for studies using ancestral landraces for crop genetic research and breeding.
Collapse
Affiliation(s)
- Tobias Würschum
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany.
| | - Thea M Weiß
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany
- State Plant Breeding Institute, University of Hohenheim, 70599, Stuttgart, Germany
| | - Juliane Renner
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany
| | - H Friedrich Utz
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany
| | - Alfons Gierl
- Genetics, Technical University of Munich, Wissenschaftszentrum Weihenstephan, 85354, Freising, Germany
| | - Rafal Jonczyk
- Genetics, Technical University of Munich, Wissenschaftszentrum Weihenstephan, 85354, Freising, Germany
| | - Lilla Römisch-Margl
- Genetics, Technical University of Munich, Wissenschaftszentrum Weihenstephan, 85354, Freising, Germany
| | - Wolfgang Schipprack
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Tobias A Schrag
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany
| | - Willmar L Leiser
- State Plant Breeding Institute, University of Hohenheim, 70599, Stuttgart, Germany
| | - Albrecht E Melchinger
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany.
| |
Collapse
|
10
|
Geibel J, Reimer C, Pook T, Weigend S, Weigend A, Simianer H. How imputation can mitigate SNP ascertainment Bias. BMC Genomics 2021; 22:340. [PMID: 33980139 PMCID: PMC8114708 DOI: 10.1186/s12864-021-07663-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022] Open
Abstract
Background Population genetic studies based on genotyped single nucleotide polymorphisms (SNPs) are influenced by a non-random selection of the SNPs included in the used genotyping arrays. The resulting bias in the estimation of allele frequency spectra and population genetics parameters like heterozygosity and genetic distances relative to whole genome sequencing (WGS) data is known as SNP ascertainment bias. Full correction for this bias requires detailed knowledge of the array design process, which is often not available in practice. This study suggests an alternative approach to mitigate ascertainment bias of a large set of genotyped individuals by using information of a small set of sequenced individuals via imputation without the need for prior knowledge on the array design. Results The strategy was first tested by simulating additional ascertainment bias with a set of 1566 chickens from 74 populations that were genotyped for the positions of the Affymetrix Axiom™ 580 k Genome-Wide Chicken Array. Imputation accuracy was shown to be consistently higher for populations used for SNP discovery during the simulated array design process. Reference sets of at least one individual per population in the study set led to a strong correction of ascertainment bias for estimates of expected and observed heterozygosity, Wright’s Fixation Index and Nei’s Standard Genetic Distance. In contrast, unbalanced reference sets (overrepresentation of populations compared to the study set) introduced a new bias towards the reference populations. Finally, the array genotypes were imputed to WGS by utilization of reference sets of 74 individuals (one per population) to 98 individuals (additional commercial chickens) and compared with a mixture of individually and pooled sequenced populations. The imputation reduced the slope between heterozygosity estimates of array data and WGS data from 1.94 to 1.26 when using the smaller balanced reference panel and to 1.44 when using the larger but unbalanced reference panel. This generally supported the results from simulation but was less favorable, advocating for a larger reference panel when imputing to WGS. Conclusions The results highlight the potential of using imputation for mitigation of SNP ascertainment bias but also underline the need for unbiased reference sets. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07663-6.
Collapse
Affiliation(s)
- Johannes Geibel
- Department of Animal Sciences, Animal Breeding and Genetics Group, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany. .,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany.
| | - Christian Reimer
- Department of Animal Sciences, Animal Breeding and Genetics Group, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Torsten Pook
- Department of Animal Sciences, Animal Breeding and Genetics Group, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Steffen Weigend
- Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany.,Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Höltystrasse 10, 31535, Neustadt-Mariensee, Germany
| | - Annett Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Höltystrasse 10, 31535, Neustadt-Mariensee, Germany
| | - Henner Simianer
- Department of Animal Sciences, Animal Breeding and Genetics Group, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| |
Collapse
|
11
|
Geibel J, Reimer C, Weigend S, Weigend A, Pook T, Simianer H. How array design creates SNP ascertainment bias. PLoS One 2021; 16:e0245178. [PMID: 33784304 PMCID: PMC8009414 DOI: 10.1371/journal.pone.0245178] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs), genotyped with arrays, have become a widely used marker type in population genetic analyses over the last 10 years. However, compared to whole genome re-sequencing data, arrays are known to lack a substantial proportion of globally rare variants and tend to be biased towards variants present in populations involved in the development process of the respective array. This affects population genetic estimators and is known as SNP ascertainment bias. We investigated factors contributing to ascertainment bias in array development by redesigning the Axiom™ Genome-Wide Chicken Array in silico and evaluating changes in allele frequency spectra and heterozygosity estimates in a stepwise manner. A sequential reduction of rare alleles during the development process was shown. This was mainly caused by the identification of SNPs in a limited set of populations and a within-population selection of common SNPs when aiming for equidistant spacing. These effects were shown to be less severe with a larger discovery panel. Additionally, a generally massive overestimation of expected heterozygosity for the ascertained SNP sets was shown. This overestimation was 24% higher for populations involved in the discovery process than not involved populations in case of the original array. The same was observed after the SNP discovery step in the redesign. However, an unequal contribution of populations during the SNP selection can mask this effect but also adds uncertainty. Finally, we make suggestions for the design of specialized arrays for large scale projects where whole genome re-sequencing techniques are still too expensive.
Collapse
Affiliation(s)
- Johannes Geibel
- Department of Animal Sciences, Animal Breeding and Genetics Group, University of Goettingen, Göttingen, Germany
- Center for Integrated Breeding Research, University of Goettingen, Göttingen, Germany
- * E-mail:
| | - Christian Reimer
- Department of Animal Sciences, Animal Breeding and Genetics Group, University of Goettingen, Göttingen, Germany
- Center for Integrated Breeding Research, University of Goettingen, Göttingen, Germany
| | - Steffen Weigend
- Center for Integrated Breeding Research, University of Goettingen, Göttingen, Germany
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt-Mariensee, Germany
| | - Annett Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt-Mariensee, Germany
| | - Torsten Pook
- Department of Animal Sciences, Animal Breeding and Genetics Group, University of Goettingen, Göttingen, Germany
- Center for Integrated Breeding Research, University of Goettingen, Göttingen, Germany
| | - Henner Simianer
- Department of Animal Sciences, Animal Breeding and Genetics Group, University of Goettingen, Göttingen, Germany
- Center for Integrated Breeding Research, University of Goettingen, Göttingen, Germany
| |
Collapse
|
12
|
Gaikpa DS, Kessel B, Presterl T, Ouzunova M, Galiano-Carneiro AL, Mayer M, Melchinger AE, Schön CC, Miedaner T. Exploiting genetic diversity in two European maize landraces for improving Gibberella ear rot resistance using genomic tools. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:793-805. [PMID: 33274402 PMCID: PMC7925457 DOI: 10.1007/s00122-020-03731-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE High genetic variation in two European maize landraces can be harnessed to improve Gibberella ear rot resistance by integrated genomic tools. Fusarium graminearum (Fg) causes Gibberella ear rot (GER) in maize leading to yield reduction and contamination of grains with several mycotoxins. This study aimed to elucidate the molecular basis of GER resistance among 500 doubled haploid lines derived from two European maize landraces, "Kemater Landmais Gelb" (KE) and "Petkuser Ferdinand Rot" (PE). The two landraces were analyzed individually using genome-wide association studies and genomic selection (GS). The lines were genotyped with a 600-k maize array and phenotyped for GER severity, days to silking, plant height, and seed-set in four environments using artificial infection with a highly aggressive Fg isolate. High genotypic variances and broad-sense heritabilities were found for all traits. Genotype-environment interaction was important throughout. The phenotypic (r) and genotypic ([Formula: see text]) correlations between GER severity and three agronomic traits were low (r = - 0.27 to 0.20; [Formula: see text]= - 0.32 to 0.22). For GER severity, eight QTLs were detected in KE jointly explaining 34% of the genetic variance. In PE, no significant QTLs for GER severity were detected. No common QTLs were found between GER severity and the three agronomic traits. The mean prediction accuracies ([Formula: see text]) of weighted GS (wRR-BLUP) were higher than [Formula: see text] of marker-assisted selection (MAS) and unweighted GS (RR-BLUP) for GER severity. Using KE as the training set and PE as the validation set resulted in very low [Formula: see text] that could be improved by using fixed marker effects in the GS model.
Collapse
Affiliation(s)
| | - Bettina Kessel
- Kleinwanzlebener Saatzucht (KWS) KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | - Thomas Presterl
- Kleinwanzlebener Saatzucht (KWS) KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | - Milena Ouzunova
- Kleinwanzlebener Saatzucht (KWS) KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | | | - Manfred Mayer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Albrecht E Melchinger
- Institute of Plant Breeding, Population Genetics and Seed Science, University of Hohenheim, Stuttgart, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
13
|
Galiano-Carneiro AL, Kessel B, Presterl T, Miedaner T. Intercontinental trials reveal stable QTL for Northern corn leaf blight resistance in Europe and in Brazil. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:63-79. [PMID: 32995900 PMCID: PMC7813747 DOI: 10.1007/s00122-020-03682-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE NCLB is the most devastating leaf disease in European maize, and the introduction of Brazilian resistance donors can efficiently increase the resistance levels of European maize germplasm. Northern corn leaf blight (NCLB) is one of the most devastating leaf pathogens in maize (Zea mays L.). Maize cultivars need to be equipped with broad and stable NCLB resistance to cope with production intensification and climate change. Brazilian germplasm is a great source to increase low NCLB resistance levels in European materials, but little is known about their effect in European environments. To investigate the usefulness of Brazilian germplasm as NCLB resistance donors, we conducted multi-parent QTL mapping, evaluated the potential of marker-assisted selection as well as genome-wide selection of 742 F1-derived DH lines. The line per se performance was evaluated in one location in Brazil and six location-by-year combinations (= environments) in Europe, while testcrosses were assessed in two locations in Brazil and further 10 environments in Europe. Jointly, we identified 17 QTL for NCLB resistance explaining 3.57-30.98% of the genotypic variance each. Two of these QTL were detected in both Brazilian and European environments indicating the stability of these QTL in contrasting ecosystems. We observed moderate to high genomic prediction accuracies between 0.58 and 0.83 depending on population and continent. Collectively, our study illustrates the potential use of tropical resistance sources to increase NCLB resistance level in applied European maize breeding programs.
Collapse
Affiliation(s)
| | - Bettina Kessel
- Kleinwanzlebener Saatzucht (KWS) KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | - Thomas Presterl
- Kleinwanzlebener Saatzucht (KWS) KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
14
|
Discovery of beneficial haplotypes for complex traits in maize landraces. Nat Commun 2020; 11:4954. [PMID: 33009396 PMCID: PMC7532167 DOI: 10.1038/s41467-020-18683-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/06/2020] [Indexed: 12/17/2022] Open
Abstract
Genetic variation is of crucial importance for crop improvement. Landraces are valuable sources of diversity, but for quantitative traits efficient strategies for their targeted utilization are lacking. Here, we map haplotype-trait associations at high resolution in ~1000 doubled-haploid lines derived from three maize landraces to make their native diversity for early development traits accessible for elite germplasm improvement. A comparative genomic analysis of the discovered haplotypes in the landrace-derived lines and a panel of 65 breeding lines, both genotyped with 600k SNPs, points to untapped beneficial variation for target traits in the landraces. The superior phenotypic performance of lines carrying favorable landrace haplotypes as compared to breeding lines with alternative haplotypes confirms these findings. Stability of haplotype effects across populations and environments as well as their limited effects on undesired traits indicate that our strategy has high potential for harnessing beneficial haplotype variation for quantitative traits from genetic resources. Genetic variations present in landraces are critical for crop genetic improvement. Here, the authors map haplotype-trait associations in ~1000 doubled haploid lines derived from three European maize landraces and identify beneficial haplotypes for quantitative traits that are not present in breeding lines.
Collapse
|
15
|
European maize genomes highlight intraspecies variation in repeat and gene content. Nat Genet 2020; 52:950-957. [PMID: 32719517 PMCID: PMC7467862 DOI: 10.1038/s41588-020-0671-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/25/2020] [Indexed: 12/22/2022]
Abstract
The diversity of maize (Zea mays) is the backbone of modern heterotic patterns and hybrid breeding. Historically, US farmers exploited this variability to establish today’s highly productive Corn Belt inbred lines from blends of dent and flint germplasm pools. Here, we report de novo genome sequences of four European flint lines assembled to pseudomolecules with scaffold N50 ranging from 6.1 to 10.4 Mb. Comparative analyses with two US Corn Belt lines explains the pronounced differences between both germplasms. While overall syntenic order and consolidated gene annotations reveal only moderate pangenomic differences, whole-genome alignments delineating the core and dispensable genome, and the analysis of heterochromatic knobs and orthologous long terminal repeat retrotransposons unveil the dynamics of the maize genome. The high-quality genome sequences of the flint pool complement the maize pangenome and provide an important tool to study maize improvement at a genome scale and to enhance modern hybrid breeding. De novo genome assemblies of four European flint maize lines and comparison with two US Corn Belt genomes provide insights into the dynamics of intraspecies variation in repeat and gene content in maize genomes.
Collapse
|
16
|
Zeitler L, Ross-Ibarra J, Stetter MG. Selective Loss of Diversity in Doubled-Haploid Lines from European Maize Landraces. G3 (BETHESDA, MD.) 2020; 10:2497-2506. [PMID: 32467127 PMCID: PMC7341142 DOI: 10.1534/g3.120.401196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/28/2019] [Indexed: 11/18/2022]
Abstract
Maize landraces are well adapted to their local environments and present valuable sources of genetic diversity for breeding and conservation. But the maintenance of open-pollinated landraces in ex-situ programs is challenging, as regeneration of seed can often lead to inbreeding depression and the loss of diversity due to genetic drift. Recent reports suggest that the production of doubled-haploid (DH) lines from landraces may serve as a convenient means to preserve genetic diversity in a homozygous form that is immediately useful for modern breeding. The production of doubled-haploid (DH) lines presents an extreme case of inbreeding which results in instantaneous homozygosity genome-wide. Here, we analyzed the effect of DH production on genetic diversity, using genome-wide SNP data from hundreds of individuals of five European landraces and their related DH lines. In contrast to previous findings, we observe a dramatic loss of diversity at both the haplotype level and that of individual SNPs. We identify thousands of SNPs that exhibit allele frequency differences larger than expected under models of neutral genetic drift and document losses of shared haplotypes. We find evidence consistent with selection at functional sites that are potentially involved in the diversity differences between landrace and DH populations. Although we were unable to uncover more details about the mode of selection, we conclude that landrace DH lines may be a valuable tool for the introduction of variation into maize breeding programs but come at the cost of decreased genetic diversity.
Collapse
Affiliation(s)
- Leo Zeitler
- Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
- Department of Plant Sciences, University of California, Davis, CA
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, University of California, Davis, CA,
- Department of Evolution and Ecology, Genome Center, and Center for Population Biology, University of California, Davis, CA, and
| | - Markus G Stetter
- Department of Plant Sciences, University of California, Davis, CA,
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences, University of Cologne, Germany
| |
Collapse
|
17
|
Frey FP, Pitz M, Schön CC, Hochholdinger F. Transcriptomic diversity in seedling roots of European flint maize in response to cold. BMC Genomics 2020; 21:300. [PMID: 32293268 PMCID: PMC7158136 DOI: 10.1186/s12864-020-6682-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/17/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Low temperatures decrease the capacity for biomass production and lead to growth retardation up to irreversible cellular damage in modern maize cultivars. European flint landraces are an untapped genetic resource for genes and alleles conferring cold tolerance which they acquired during their adaptation to the agroecological conditions in Europe. RESULTS Based on a phenotyping experiment of 276 doubled haploid lines derived from the European flint landrace "Petkuser Ferdinand Rot" diverging for cold tolerance, we selected 21 of these lines for an RNA-seq experiment. The different genotypes showed highly variable transcriptomic responses to cold. We identified 148, 3254 and 563 genes differentially expressed with respect to cold treatment, cold tolerance and growth rate at cold, respectively. Gene ontology (GO) term enrichment demonstrated that the detoxification of reactive oxygen species is associated with cold tolerance, whereas amino acids might play a crucial role as antioxidant precursors and signaling molecules. CONCLUSION Doubled haploids representing a European maize flint landrace display genotype-specific transcriptome patterns associated with cold response, cold tolerance and seedling growth rate at cold. Identification of cold regulated genes in European flint germplasm, could be a starting point for introgressing such alleles in modern breeding material for maize improvement.
Collapse
Affiliation(s)
- Felix P. Frey
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| | - Marion Pitz
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| | - Chris-Carolin Schön
- Department of Plant Breeding, Technische Universität München, Freising, Germany
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| |
Collapse
|
18
|
Allier A, Teyssèdre S, Lehermeier C, Charcosset A, Moreau L. Genomic prediction with a maize collaborative panel: identification of genetic resources to enrich elite breeding programs. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:201-215. [PMID: 31595338 DOI: 10.1007/s00122-019-03451-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/28/2019] [Indexed: 05/02/2023]
Abstract
Collaborative diversity panels and genomic prediction seem relevant to identify and harness genetic resources for polygenic trait-specific enrichment of elite germplasms. In plant breeding, genetic diversity is important to maintain the pace of genetic gain and the ability to respond to new challenges in a context of climatic and social expectation changes. Many genetic resources are accessible to breeders but cannot all be considered for broadening the genetic diversity of elite germplasm. This study presents the use of genomic predictions trained on a collaborative diversity panel, which assembles genetic resources and elite lines, to identify resources to enrich an elite germplasm. A maize collaborative panel (386 lines) was considered to estimate genome-wide marker effects. Relevant predictive abilities (0.40-0.55) were observed on a large population of private elite materials, which supported the interest of such a collaborative panel for diversity management perspectives. Grain-yield estimated marker effects were used to select a donor that best complements an elite recipient at individual loci or haplotype segments, or that is expected to give the best-performing progeny with the elite. Among existing and new criteria that were compared, some gave more weight to the donor-elite complementarity than to the donor value, and appeared more adapted to long-term objective. We extended this approach to the selection of a set of donors complementing an elite population. We defined a crossing plan between identified donors and elite recipients. Our results illustrated how collaborative projects based on diversity panels including both public resources and elite germplasm can contribute to a better characterization of genetic resources in view of their use to enrich elite germplasm.
Collapse
Affiliation(s)
- Antoine Allier
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
- RAGT2n, Genetics and Analytics Unit, 12510, Druelle, France
| | | | | | - Alain Charcosset
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Laurence Moreau
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
19
|
Hölker AC, Mayer M, Presterl T, Bolduan T, Bauer E, Ordas B, Brauner PC, Ouzunova M, Melchinger AE, Schön CC. European maize landraces made accessible for plant breeding and genome-based studies. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3333-3345. [PMID: 31559526 PMCID: PMC6820615 DOI: 10.1007/s00122-019-03428-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/17/2019] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE Doubled-haploid libraries from landraces capture native genetic diversity for a multitude of quantitative traits and make it accessible for breeding and genome-based studies. Maize landraces comprise large allelic diversity. We created doubled-haploid (DH) libraries from three European flint maize landraces and characterized them with respect to their molecular diversity, population structure, trait means, variances, and trait correlations. In total, 899 DH lines were evaluated using high-quality genotypic and multi-environment phenotypic data from up to 11 environments. The DH lines covered 95% of the molecular variation present in 35 landraces of an earlier study and represent the original three landrace populations in an unbiased manner. A comprehensive analysis of the target trait plant development at early growth stages as well as other important agronomic traits revealed large genetic variation for line per se and testcross performance. The majority of the 378 DH lines evaluated as testcrosses outperformed the commercial hybrids for early development. For total biomass yield, we observed a yield gap of 15% between mean testcross yield of the commercial hybrids and mean testcross yield of the DH lines. The DH lines also exhibited genetic variation for undesirable traits like root lodging and tillering, but correlations with target traits early development and yield were low or nonsignificant. The presented diversity atlas is a valuable, publicly available resource for genome-based studies to identify novel trait variation and evaluate the prospects of genomic prediction in landrace-derived material.
Collapse
Affiliation(s)
- Armin C Hölker
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Manfred Mayer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | | | | | - Eva Bauer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Bernardo Ordas
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), 36080, Pontevedra, Spain
| | - Pedro C Brauner
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593, Stuttgart, Germany
- Maize Breeding, KWS SAAT SE, 37574, Einbeck, Germany
| | | | - Albrecht E Melchinger
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593, Stuttgart, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany.
| |
Collapse
|
20
|
Brauner PC, Schipprack W, Utz HF, Bauer E, Mayer M, Schön CC, Melchinger AE. Testcross performance of doubled haploid lines from European flint maize landraces is promising for broadening the genetic base of elite germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1897-1908. [PMID: 30877313 DOI: 10.1007/s00122-019-03325-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/11/2019] [Indexed: 05/19/2023]
Abstract
Selected doubled haploid lines averaged similar testcross performance as their original landraces, and the best of them approached the yields of elite inbreds, demonstrating their potential to broaden the narrow genetic diversity of the flint germplasm pool. Maize landraces represent a rich source of genetic diversity that remains largely idle because the high genetic load and performance gap to elite germplasm hamper their use in modern breeding programs. Production of doubled haploid (DH) lines can mitigate problems associated with the use of landraces in pre-breeding. Our objective was to assess in comparison with modern materials the testcross performance (TP) of the best 89 out of 389 DH lines developed from six landraces and evaluated in previous studies for line per se performance (LP). TP with a dent tester was evaluated for the six original landraces, ~ 15 DH lines from each landrace selected for LP, and six elite flint inbreds together with nine commercial hybrids for grain and silage traits. Mean TP of the DH lines rarely differed significantly from TP of their corresponding landrace, which averaged in comparison with the mean TP of the elite flint inbreds ~ 20% lower grain yield and ~ 10% lower dry matter and methane yield. Trait correlations of DH lines closely agreed with the literature; correlation of TP with LP was zero for grain yield, underpinning the need to evaluate TP in addition to LP. For all traits, we observed substantial variation for TP among the DH lines and the best showed similar TP yields as the elite inbreds. Our results demonstrate the high potential of landraces for broadening the narrow genetic base of the flint heterotic pool and the usefulness of the DH technology for exploiting idle genetic resources from gene banks.
Collapse
Affiliation(s)
- Pedro C Brauner
- Institute of Plant Breeding, Seed Sciences and Population Genetics, University of Hohenheim, Fruwirthstraße 21, 70599, Stuttgart, Germany
| | - Wolfgang Schipprack
- Institute of Plant Breeding, Seed Sciences and Population Genetics, University of Hohenheim, Fruwirthstraße 21, 70599, Stuttgart, Germany
| | - H Friedrich Utz
- Institute of Plant Breeding, Seed Sciences and Population Genetics, University of Hohenheim, Fruwirthstraße 21, 70599, Stuttgart, Germany
| | - Eva Bauer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Manfred Mayer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Albrecht E Melchinger
- Institute of Plant Breeding, Seed Sciences and Population Genetics, University of Hohenheim, Fruwirthstraße 21, 70599, Stuttgart, Germany.
| |
Collapse
|
21
|
Brauner PC, Müller D, Schopp P, Böhm J, Bauer E, Schön CC, Melchinger AE. Genomic Prediction Within and Among Doubled-Haploid Libraries from Maize Landraces. Genetics 2018; 210:1185-1196. [PMID: 30257934 PMCID: PMC6283160 DOI: 10.1534/genetics.118.301286] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/24/2018] [Indexed: 12/24/2022] Open
Abstract
Thousands of maize landraces are stored in seed banks worldwide. Doubled-haploid libraries (DHL) produced from landraces harness their rich genetic diversity for future breeding. We investigated the prospects of genomic prediction (GP) for line per se performance in DHL from six European landraces and 53 elite flint (EF) lines by comparing four scenarios: GP within a single library (sL); GP between pairs of libraries (LwL); and GP among combined libraries, either including (cLi) or excluding (cLe) lines from the training set (TS) that belong to the same DHL as the prediction set. For scenario sL, with N = 50 lines in the TS, the prediction accuracy (ρ) among seven agronomic traits varied from -0.53 to 0.57 for the DHL and reached up to 0.74 for the EF lines. For LwL, ρ was close to zero for all DHL and traits. Whereas scenario cLi showed improved ρ values compared to sL, ρ for cLe remained at the low level observed for LwL. Forecasting ρ with deterministic equations yielded inflated values compared to empirical estimates of ρ for the DHL, but conserved the ranking. In conclusion, GP is promising within DHL, but large TS sizes (N > 100) are needed to achieve decent prediction accuracy because LD between QTL and markers is the primary source of information that can be exploited by GP. Since production of DHL from landraces is expensive, we recommend GP only for very large DHL produced from a few highly preselected landraces.
Collapse
Affiliation(s)
- Pedro C Brauner
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany
| | - Dominik Müller
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany
| | - Pascal Schopp
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany
| | - Juliane Böhm
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany
| | - Eva Bauer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Albrecht E Melchinger
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|