1
|
Camboué M, Janoueix A, Tandonnet JP, Spilmont AS, Moisy C, Mathieu G, Cordelières F, Teillon J, Santesteban LG, Ollat N, Cookson SJ. Phenotyping xylem connections in grafted plants using X-ray micro-computed tomography. PLANT, CELL & ENVIRONMENT 2024; 47:2351-2361. [PMID: 38516728 DOI: 10.1111/pce.14883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/15/2024] [Accepted: 03/03/2024] [Indexed: 03/23/2024]
Abstract
Plants are able to naturally graft or inosculate their trunks, branches and roots together, this mechanism is used by humans to graft together different genotypes for a range of purposes. Grafts are considered successful if functional vascular connections between the two genotypes occur. Various techniques can evaluate xylem connections across the graft interface. However, these methods are generally unable to assess the heterogeneity and three-dimensional (3D) structure of xylem vessel connections. Here we present the use of X-ray micro-computed tomography to characterize the 3D morphology of grafts of grapevine. We show that xylem vessels form between the two plants of natural root and human-made stem grafts. The main novelty of this methodology is that we were able to visualize the 3D network of functional xylem vessels connecting the scion and rootstock in human-made stem grafts thanks to the addition of a contrast agent to the roots and improved image analysis pipelines. In addition, we reveal the presence of extensive diagonal xylem connections between the main axial xylem vessels in 2-year old grapevine stems. In conclusion, we present a method that has the potential to provide new insights into the structure and function of xylem vessels in large tissue samples.
Collapse
Affiliation(s)
- Marilou Camboué
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, Bordeaux, France
| | - Anne Janoueix
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, Bordeaux, France
| | - Jean-Pascal Tandonnet
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, Bordeaux, France
| | - Anne-Sophie Spilmont
- IFV, French Institute of Vine and Wine, Domaine de l'Espiguette, Le Grau-du-Roi, France
| | - Cédric Moisy
- IFV, French Institute of Vine and Wine, Domaine de l'Espiguette, Le Grau-du-Roi, France
- UMR AGAP Institut, UMT Geno Vigne, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Guillaume Mathieu
- IFV, French Institute of Vine and Wine, Domaine de l'Espiguette, Le Grau-du-Roi, France
| | | | - Jérémie Teillon
- Univ. Bordeaux, CNRS, INSERM, BIC, US4, UAR 3420, Bordeaux, France
| | - Luis Gonzaga Santesteban
- Departement of Agronomy, Biotechnology and Food Science, Univ. Pública de Navarra UPNA, Pamplona, Navarra, Spain
| | - Nathalie Ollat
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, Bordeaux, France
| | - Sarah Jane Cookson
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, Bordeaux, France
| |
Collapse
|
2
|
Chedid E, Avia K, Dumas V, Ley L, Reibel N, Butterlin G, Soma M, Lopez-Lozano R, Baret F, Merdinoglu D, Duchêne É. LiDAR Is Effective in Characterizing Vine Growth and Detecting Associated Genetic Loci. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0116. [PMID: 38026470 PMCID: PMC10655830 DOI: 10.34133/plantphenomics.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
The strong societal demand to reduce pesticide use and adaptation to climate change challenges the capacities of phenotyping new varieties in the vineyard. High-throughput phenotyping is a way to obtain meaningful and reliable information on hundreds of genotypes in a limited period. We evaluated traits related to growth in 209 genotypes from an interspecific grapevine biparental cross, between IJ119, a local genitor, and Divona, both in summer and in winter, using several methods: fresh pruning wood weight, exposed leaf area calculated from digital images, leaf chlorophyll concentration, and LiDAR-derived apparent volumes. Using high-density genetic information obtained by the genotyping by sequencing technology (GBS), we detected 6 regions of the grapevine genome [quantitative trait loci (QTL)] associated with the variations of the traits in the progeny. The detection of statistically significant QTLs, as well as correlations (R2) with traditional methods above 0.46, shows that LiDAR technology is effective in characterizing the growth features of the grapevine. Heritabilities calculated with LiDAR-derived total canopy and pruning wood volumes were high, above 0.66, and stable between growing seasons. These variables provided genetic models explaining up to 47% of the phenotypic variance, which were better than models obtained with the exposed leaf area estimated from images and the destructive pruning weight measurements. Our results highlight the relevance of LiDAR-derived traits for characterizing genetically induced differences in grapevine growth and open new perspectives for high-throughput phenotyping of grapevines in the vineyard.
Collapse
Affiliation(s)
- Elsa Chedid
- INRAE,
University of Strasbourg, UMR SVQV, 28, rue de Herrlisheim, 68000 Colmar, France
| | - Komlan Avia
- INRAE,
University of Strasbourg, UMR SVQV, 28, rue de Herrlisheim, 68000 Colmar, France
| | - Vincent Dumas
- INRAE,
University of Strasbourg, UMR SVQV, 28, rue de Herrlisheim, 68000 Colmar, France
| | - Lionel Ley
- INRAE, UEAV, 28, rue de Herrlisheim, 68000 Colmar, France
| | - Nicolas Reibel
- INRAE, UEAV, 28, rue de Herrlisheim, 68000 Colmar, France
| | - Gisèle Butterlin
- INRAE,
University of Strasbourg, UMR SVQV, 28, rue de Herrlisheim, 68000 Colmar, France
| | - Maxime Soma
- INRAE, Aix-Marseille Université, UMR RECOVER, 3275 Route de Cézanne, 13182 Aix-en-Provence, France
| | - Raul Lopez-Lozano
- INRAE,
Avignon Université, UMR EMMAH, UMT CAPTE, 228, route de l’aérodrome, 84914 Avignon, France
| | - Frédéric Baret
- INRAE,
Avignon Université, UMR EMMAH, UMT CAPTE, 228, route de l’aérodrome, 84914 Avignon, France
| | - Didier Merdinoglu
- INRAE,
University of Strasbourg, UMR SVQV, 28, rue de Herrlisheim, 68000 Colmar, France
| | - Éric Duchêne
- INRAE,
University of Strasbourg, UMR SVQV, 28, rue de Herrlisheim, 68000 Colmar, France
| |
Collapse
|
3
|
Blois L, de Miguel M, Bert PF, Ollat N, Rubio B, Voss-Fels KP, Schmid J, Marguerit E. Dissecting the genetic architecture of root-related traits in a grafted wild Vitis berlandieri population for grapevine rootstock breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:223. [PMID: 37838631 PMCID: PMC10576685 DOI: 10.1007/s00122-023-04472-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/25/2023] [Indexed: 10/16/2023]
Abstract
In woody perennial plants, quantitative genetics and association studies remain scarce for root-related traits, due to the time required to obtain mature plants and the complexity of phenotyping. In grapevine, a grafted cultivated plant, most of the rootstocks used are hybrids between American Vitis species (V. rupestris, V. riparia, and V. berlandieri). In this study, we used a wild population of an American Vitis species (V. berlandieri) to analyze the genetic architecture of the root-related traits of rootstocks in a grafted context. We studied a population consisting of 211 genotypes, with one to five replicates each (n = 846 individuals), plus four commercial rootstocks as control genotypes (110R, 5BB, Börner, and SO4). After two independent years of experimentation, the best linear unbiased estimates method revealed root-related traits with a moderate-to-high heritability (0.36-0.82) and coefficient of genetic variation (0.15-0.45). A genome-wide association study was performed with the BLINK model, leading to the detection of 11 QTL associated with four root-related traits (one QTL was associated with the total number of roots, four were associated with the number of small roots (< 1 mm in diameter), two were associated with the number of medium-sized roots (1 mm < diameter < 2 mm), and four were associated with mean diameter) accounting for up to 25.1% of the variance. Three genotypes were found to have better root-related trait performances than the commercial rootstocks and therefore constitute possible new candidates for use in grapevine rootstock breeding programs.
Collapse
Affiliation(s)
- Louis Blois
- EGFV, Bordeaux Sciences Agro, INRAE, ISVV, Univ. Bordeaux, 33882, Villenave d'Ornon, France.
- Department of Grapevine Breeding, Geisenheim University, Von Lade Str. 1, 65366, Geisenheim, Germany.
| | - Marina de Miguel
- EGFV, Bordeaux Sciences Agro, INRAE, ISVV, Univ. Bordeaux, 33882, Villenave d'Ornon, France
| | - Pierre-François Bert
- EGFV, Bordeaux Sciences Agro, INRAE, ISVV, Univ. Bordeaux, 33882, Villenave d'Ornon, France
| | - Nathalie Ollat
- EGFV, Bordeaux Sciences Agro, INRAE, ISVV, Univ. Bordeaux, 33882, Villenave d'Ornon, France
| | - Bernadette Rubio
- EGFV, Bordeaux Sciences Agro, INRAE, ISVV, Univ. Bordeaux, 33882, Villenave d'Ornon, France
| | - Kai P Voss-Fels
- Department of Grapevine Breeding, Geisenheim University, Von Lade Str. 1, 65366, Geisenheim, Germany
| | - Joachim Schmid
- Department of Grapevine Breeding, Geisenheim University, Von Lade Str. 1, 65366, Geisenheim, Germany
| | - Elisa Marguerit
- EGFV, Bordeaux Sciences Agro, INRAE, ISVV, Univ. Bordeaux, 33882, Villenave d'Ornon, France
| |
Collapse
|
4
|
Fichtl L, Hofmann M, Kahlen K, Voss-Fels KP, Cast CS, Ollat N, Vivin P, Loose S, Nsibi M, Schmid J, Strack T, Schultz HR, Smith J, Friedel M. Towards grapevine root architectural models to adapt viticulture to drought. FRONTIERS IN PLANT SCIENCE 2023; 14:1162506. [PMID: 36998680 PMCID: PMC10043487 DOI: 10.3389/fpls.2023.1162506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 05/31/2023]
Abstract
To sustainably adapt viticultural production to drought, the planting of rootstock genotypes adapted to a changing climate is a promising means. Rootstocks contribute to the regulation of scion vigor and water consumption, modulate scion phenological development and determine resource availability by root system architecture development. There is, however, a lack of knowledge on spatio-temporal root system development of rootstock genotypes and its interactions with environment and management that prevents efficient knowledge transfer into practice. Hence, winegrowers take only limited advantage of the large variability of existing rootstock genotypes. Models of vineyard water balance combined with root architectural models, using both static and dynamic representations of the root system, seem promising tools to match rootstock genotypes to frequently occurring future drought stress scenarios and address scientific knowledge gaps. In this perspective, we discuss how current developments in vineyard water balance modeling may provide the background for a better understanding of the interplay of rootstock genotypes, environment and management. We argue that root architecture traits are key drivers of this interplay, but our knowledge on rootstock architectures in the field remains limited both qualitatively and quantitatively. We propose phenotyping methods to help close current knowledge gaps and discuss approaches to integrate phenotyping data into different models to advance our understanding of rootstock x environment x management interactions and predict rootstock genotype performance in a changing climate. This could also provide a valuable basis for optimizing breeding efforts to develop new grapevine rootstock cultivars with optimal trait configurations for future growing conditions.
Collapse
Affiliation(s)
- Lukas Fichtl
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany
| | - Marco Hofmann
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany
| | - Katrin Kahlen
- Department of Modeling and Systems Analysis, Hochschule Geisenheim University, Geisenheim, Germany
| | - Kai P. Voss-Fels
- Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Clément Saint Cast
- EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Nathalie Ollat
- EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Philippe Vivin
- EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Simone Loose
- Department of Wine and Beverage Business, Hochschule Geisenheim University, Geisenheim, Germany
| | - Mariem Nsibi
- Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Joachim Schmid
- Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Timo Strack
- Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Hans Reiner Schultz
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany
| | - Jason Smith
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Orange, NSW, Australia
| | - Matthias Friedel
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany
| |
Collapse
|
5
|
Alahakoon D, Fennell A. Genetic analysis of grapevine root system architecture and loci associated gene networks. FRONTIERS IN PLANT SCIENCE 2023; 13:1083374. [PMID: 36816477 PMCID: PMC9932984 DOI: 10.3389/fpls.2022.1083374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Own-rooted grapevines and grapevine rootstocks are vegetatively propagated from cuttings and have an adventitious root system. Unraveling the genetic underpinnings of the adventitious root system architecture (RSA) is important for improving own-rooted and grafted grapevine sustainability for a changing climate. Grapevine RSA genetic analysis was conducted in an Vitis sp. 'VRS-F2' population. Nine root morphology, three total root system morphology, and two biomass traits that contribute to root anchorage and water and nutrient uptake were phenotyped. Quantitative trait loci (QTL) analysis was performed using a high density integrated GBS and rhAmpSeq genetic map. Thirty-one QTL were detected for eleven of the RSA traits (surface area, root volume, total root length, fresh weight, number of tips, forks or links, longest root and average root diameter, link length, and link surface area) revealing many small effects. Several QTL were colocated on chromosomes 1, 9, 13, 18, and 19. QTL with identical peak positions on chromosomes 1 or 13 were enriched for AP2-EREBP, AS2, C2C2-CO, HMG, and MYB transcription factors, and QTL on chromosomes 9 or 13 were enriched for the ALFIN-LIKE transcription factor and regulation of autophagy pathways. QTL modeling for individual root traits identified eight models explaining 13.2 to 31.8% of the phenotypic variation. 'Seyval blanc' was the grandparent contributing to the allele models that included a greater surface area, total root length, and branching (number of forks and links) traits promoting a greater root density. In contrast, V. riparia 'Manitoba 37' contributed the allele for greater average branch length (link length) and diameter, promoting a less dense elongated root system with thicker roots. LATERAL ORGAN BOUNDARY DOMAIN (LBD or AS2/LOB) and the PROTODERMAL FACTOR (PFD2 and ANL2) were identified as important candidate genes in the enriched pathways underlying the hotspots for grapevine adventitious RSA. The combined QTL hotspot and trait modeling identified transcription factors, cell cycle and circadian rhythm genes with a known role in root cell and epidermal layer differentiation, lateral root development and cortex thickness. These genes are candidates for tailoring grapevine root system texture, density and length in breeding programs.
Collapse
Affiliation(s)
| | - Anne Fennell
- Agronomy, Horticulture, and Plant Science Department, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
6
|
Gojon A, Nussaume L, Luu DT, Murchie EH, Baekelandt A, Rodrigues Saltenis VL, Cohan J, Desnos T, Inzé D, Ferguson JN, Guiderdonni E, Krapp A, Klein Lankhorst R, Maurel C, Rouached H, Parry MAJ, Pribil M, Scharff LB, Nacry P. Approaches and determinants to sustainably improve crop production. Food Energy Secur 2022. [DOI: 10.1002/fes3.369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Alain Gojon
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
| | - Laurent Nussaume
- UMR7265 Laboratoire de Biologie du Développement des Plantes Service de Biologie Végétale et de Microbiologie Environnementales Institut de Biologie Environnementale et Biotechnologie CNRS‐CEA‐Université Aix‐Marseille Saint‐Paul‐lez‐Durance France
| | - Doan T. Luu
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
| | - Erik H. Murchie
- School of Biosciences University of Nottingham Loughborough UK
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | | | | | - Thierry Desnos
- UMR7265 Laboratoire de Biologie du Développement des Plantes Service de Biologie Végétale et de Microbiologie Environnementales Institut de Biologie Environnementale et Biotechnologie CNRS‐CEA‐Université Aix‐Marseille Saint‐Paul‐lez‐Durance France
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - John N. Ferguson
- School of Biosciences University of Nottingham Loughborough UK
- Department of Plant Sciences University of Cambridge Cambridge UK
| | | | - Anne Krapp
- Institut Jean‐Pierre Bourgin INRAE AgroParisTech Université Paris‐Saclay Versailles France
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | | | - Hatem Rouached
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
- Department of Plant, Soil, and Microbial Sciences Michigan State University East Lansing Michigan USA
| | | | - Mathias Pribil
- Department of Plant and Environmental Sciences Copenhagen Plant Science Centre University of Copenhagen Frederiksberg Denmark
| | - Lars B. Scharff
- Department of Plant and Environmental Sciences Copenhagen Plant Science Centre University of Copenhagen Frederiksberg Denmark
| | - Philippe Nacry
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
| |
Collapse
|
7
|
Dafna A, Halperin I, Oren E, Isaacson T, Tzuri G, Meir A, Schaffer AA, Burger J, Tadmor Y, Buckler ES, Gur A. Underground heterosis for yield improvement in melon. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6205-6218. [PMID: 0 DOI: 10.1093/jxb/erab219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/13/2021] [Indexed: 05/15/2023]
Abstract
Abstract
Heterosis, the superiority of hybrids over their parents, is a major genetic force associated with plant fitness and crop yield enhancement. We investigated root-mediated yield heterosis in melons (Cucumis melo) by characterizing a common variety grafted onto 190 hybrid rootstocks, resulting from crossing 20 diverse inbreds in a diallel-mating scheme. Hybrid rootstocks improved yield by more than 40% compared with their parents, and the best hybrid yield outperformed the reference commercial variety by 65% under both optimal and minimal irrigation treatments. To characterize the genetics of underground heterosis we conducted whole genome re-sequencing of the 20 founder lines, and showed that parental genetic distance was no predictor for the level of heterosis. Through inference of the 190 hybrid genotypes from their parental genomes, followed by genome-wide association analysis, we mapped multiple quantitative trait loci for root-mediated yield. Yield enhancement of the four best-performing hybrid rootstocks was validated in multiple experiments with four different scion varieties. Our grafting approach is complementary to the common roots genetic approach that focuses mainly on variation in root system architecture, and is a step towards discovery of candidate genes involved in root function and yield enhancement.
Collapse
Affiliation(s)
- Asaf Dafna
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ilan Halperin
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elad Oren
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tal Isaacson
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Galil Tzuri
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Ayala Meir
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Arthur A Schaffer
- Plant Science Institute, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, Rishon LeZiyyon 7507101, Israel
| | - Joseph Burger
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Yaakov Tadmor
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Edward S Buckler
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY 14853, USA
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Amit Gur
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| |
Collapse
|
8
|
Gomès É, Maillot P, Duchêne É. Molecular Tools for Adapting Viticulture to Climate Change. FRONTIERS IN PLANT SCIENCE 2021; 12:633846. [PMID: 33643361 PMCID: PMC7902699 DOI: 10.3389/fpls.2021.633846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 05/04/2023]
Abstract
Adaptation of viticulture to climate change includes exploration of new geographical areas, new training systems, new management practices, or new varieties, both for rootstocks and scions. Molecular tools can be defined as molecular approaches used to study DNAs, RNAs, and proteins in all living organisms. We present here the current knowledge about molecular tools and their potential usefulness in three aspects of grapevine adaptation to the ongoing climate change. (i) Molecular tools for understanding grapevine response to environmental stresses. A fine description of the regulation of gene expression is a powerful tool to understand the physiological mechanisms set up by the grapevine to respond to abiotic stress such as high temperatures or drought. The current knowledge on gene expression is continuously evolving with increasing evidence of the role of alternative splicing, small RNAs, long non-coding RNAs, DNA methylation, or chromatin activity. (ii) Genetics and genomics of grapevine stress tolerance. The description of the grapevine genome is more and more precise. The genetic variations among genotypes are now revealed with new technologies with the sequencing of very long DNA molecules. High throughput technologies for DNA sequencing also allow now the genetic characterization at the same time of hundreds of genotypes for thousands of points in the genome, which provides unprecedented datasets for genotype-phenotype associations studies. We review the current knowledge on the genetic determinism of traits for the adaptation to climate change. We focus on quantitative trait loci and molecular markers available for developmental stages, tolerance to water stress/water use efficiency, sugar content, acidity, and secondary metabolism of the berries. (iii) Controlling the genome and its expression to allow breeding of better-adapted genotypes. High-density DNA genotyping can be used to select genotypes with specific interesting alleles but genomic selection is also a powerful method able to take into account the genetic information along the whole genome to predict a phenotype. Modern technologies are also able to generate mutations that are possibly interesting for generating new phenotypes but the most promising one is the direct editing of the genome at a precise location.
Collapse
Affiliation(s)
- Éric Gomès
- EGFV, University of Bordeaux – Bordeaux Sciences-Agro – INRAE, Villenave d’Ornon, France
| | - Pascale Maillot
- SVQV, INRAE – University of Strasbourg, Colmar, France
- University of Haute Alsace, Mulhouse, France
| | - Éric Duchêne
- SVQV, INRAE – University of Strasbourg, Colmar, France
| |
Collapse
|
9
|
Gautier AT, Chambaud C, Brocard L, Ollat N, Gambetta GA, Delrot S, Cookson SJ. Merging genotypes: graft union formation and scion-rootstock interactions. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:747-755. [PMID: 30481315 DOI: 10.1093/jxb/ery422] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/19/2018] [Indexed: 05/18/2023]
Abstract
Grafting has been utilised for at least the past 7000 years. Historically, grafting has been developed by growers without particular interest beyond the agronomical and ornamental effects, and thus knowledge about grafting has remained largely empirical. Much of the commercial production of fruit, and increasingly vegetables, relies upon grafting with rootstocks to provide resistance to soil-borne pathogens and abiotic stresses as well as to influence scion growth and performance. Although there is considerable agronomic knowledge about the use and selection of rootstocks for many species, we know little of the molecular mechanisms underlying rootstock adaptation to different soil environments and rootstock-conferred modifications of scion phenotypes. Furthermore, the processes involved in the formation of the graft union and graft compatibility are poorly understood despite over a hundred years of scientific study. In this paper, we provide an overview of what is known about grafting and the mechanisms underlying rootstock-scion interactions. We highlight recent studies that have advanced our understanding of graft union formation and outline subjects that require further development.
Collapse
Affiliation(s)
- Antoine T Gautier
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, ISVV, Chemin de Leysotte, Villenave d'Ornon, France
| | - Clément Chambaud
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, ISVV, Chemin de Leysotte, Villenave d'Ornon, France
| | - Lysiane Brocard
- Université de Bordeaux, CNRS, INSERM, UMS, INRA, Bordeaux Imaging Center, Plant Imaging Plateform, Villenave d'Ornon, France
| | - Nathalie Ollat
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, ISVV, Chemin de Leysotte, Villenave d'Ornon, France
| | - Gregory A Gambetta
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, ISVV, Chemin de Leysotte, Villenave d'Ornon, France
| | - Serge Delrot
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, ISVV, Chemin de Leysotte, Villenave d'Ornon, France
| | - Sarah J Cookson
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, ISVV, Chemin de Leysotte, Villenave d'Ornon, France
| |
Collapse
|