1
|
Doszhanova BN, Zatybekov AK, Didorenko SV, Suzuki T, Yamashita Y, Turuspekov Y. Identification of quantitative trait loci of pod dehiscence in a collection of soybean grown in the southeast of Kazakhstan. Vavilovskii Zhurnal Genet Selektsii 2024; 28:515-522. [PMID: 39280846 PMCID: PMC11393650 DOI: 10.18699/vjgb-24-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 09/18/2024] Open
Abstract
Soybean [Glycine max (L.) Merr.] is one of the important crops that are constantly increasing their cultivation area in Kazakhstan. It is particularly significant in the southeastern regions of the country, which are currently predominant areas for cultivating this crop. One negative trait reducing yield in these dry areas is pod dehiscence (PD). Therefore, it is essential to understand the genetic control of PD to breed new cultivars with high yield potential. In this study, we evaluated 273 soybean accessions from different regions of the world for PD resistance in the conditions of southeastern regions of Kazakhstan in 2019 and 2021. The field data for PD suggested that 12 accessions were susceptible to PD in both studied years, and 32 accessions, in one of the two studied years. The genotyping of the collection using a DNA marker for the Pdh1 gene, a major gene for PD, revealed that 244 accessions had the homozygous R (resistant) allele, 14 had the homozygous S (susceptible) allele, and 15 accessions showed heterozygosity. To identify additional quantitative trait loci (QTLs), we applied an association mapping study using a 6K SNP Illumina iSelect array. The results suggested that in addition to major QTL on chromosome 16, linked to the physical location of Pdh1, two minor QTLs were identified on chromosomes 10 and 13. Both minor QTLs for PD were associated with calmodulin-binding protein, which presumably plays an important role in regulating PD in dry areas. Thus, the current study provided additional insight into PD regulation in soybean. The identified QTLs for PD can be efficiently employed in breeding for high-yield soybean cultivars.
Collapse
Affiliation(s)
- B N Doszhanova
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - A K Zatybekov
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - S V Didorenko
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Almaty region, Kazakhstan
| | - T Suzuki
- Hokkaido Research Organization, Sapporo, Japan
| | - Y Yamashita
- Hokkaido Research Organization, Sapporo, Japan
| | - Y Turuspekov
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
2
|
Wen T, Zhang X, Zhu J, Zhang S, Rhaman MS, Zeng W. A SLAF-based high-density genetic map construction and genetic architecture of thermotolerant traits in maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1338086. [PMID: 38384753 PMCID: PMC10880447 DOI: 10.3389/fpls.2024.1338086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
The leaf scorching trait at flowering is a crucial thermosensitive phenotype in maize under high temperature stress (HS), yet the genetic basis of this trait remains poorly understood. In this study, we genotyped a 254 RIL-F2:8 population, derived from the leaf scorch-free parental inbred line Abe2 and the leaf scorching maternal inbred line B73, using the specific-locus amplified fragment sequencing (SLAF-seq) method. A total of 10,112 polymorphic SLAF markers were developed, and a high-density genetic map with a total length of 1,475.88 cM was constructed. The average sequencing depth of the parents was 55.23X, and that of the progeny was 12.53X. Then, we identified a total of 16 QTLs associated with thermotolerant traits at flowering, of which four QTLs of leaf scorching damage (LS) were distributed on chromosomes 1 (qLS1), 2 (qLS2.1, qLS2.2) and 3 (qLS3), which could explain 19.73% of phenotypic variation. Combining one qLS1 locus with QTL-seq results led to the identification of 6 candidate genes. Expression experiments and sequence variation indicated that Zm00001d033328, encoding N-acetyl-gamma-glutamyl-phosphate reductase, was the most likely candidate gene controlling thermotolerant traits at flowering. In summary, the high-density genetic map and genetic basis of thermotolerant traits lay a critical foundation for mapping other complex traits and identifying the genes associated with thermotolerant traits in maize.
Collapse
Affiliation(s)
- Tingting Wen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
- Seed Administration Station of Shandong Province, Jinan, China
| | - Xuefei Zhang
- Taian Daiyue District Bureau of Agriculture and Rural Affairs, Taian, China
| | - Jiaojiao Zhu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| | - Susu Zhang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| | - Mohammad Saidur Rhaman
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| | - Wei Zeng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| |
Collapse
|
3
|
Yong B, Zhu W, Wei S, Li B, Wang Y, Xu N, Lu J, Chen Q, He C. Parallel selection of loss-of-function alleles of Pdh1 orthologous genes in warm-season legumes for pod indehiscence and plasticity is related to precipitation. THE NEW PHYTOLOGIST 2023; 240:863-879. [PMID: 37501344 DOI: 10.1111/nph.19150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Pod dehiscence facilitates seed dispersal in wild legumes but results in yield loss in cultivated legumes. The evolutionary genetics of the legume pod dehiscence trait remain largely elusive. We characterized the pod dehiscence of chromosome segment substitution lines of Glycine max crossed with Glycine soja and found that the gene underlying the predominant quantitative trait locus (QTL) of soybean pod-shattering trait was Pod dehiscence 1 (Pdh1). A few rare loss-of-function (LoF) Pdh1 alleles were identified in G. soja, while only an allele featuring a premature stop codon was selected for pod indehiscence in cultivated soybean and spread to low-precipitation regions with increased frequency. Moreover, correlated interactions among Pdh1's haplotype, gene expression, and environmental changes for the developmental plasticity of the pod dehiscence trait were revealed in G. max. We found that orthologous Pdh1 genes specifically originated in warm-season legumes and their LoF alleles were then parallel-selected during the domestication of legume crops. Our results provide insights into the convergent evolution of pod dehiscence in warm-season legumes, facilitate an understanding of the intricate interactions between genetic robustness and environmental adaptation for developmental plasticity, and guide the breeding of new legume varieties with pod indehiscence.
Collapse
Affiliation(s)
- Bin Yong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Weiwei Zhu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Siming Wei
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Bingbing Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Yan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Nan Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Jiangjie Lu
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
4
|
Wang C, Bao Y, Yao Q, Long D, Xiao X, Fan X, Kang H, Zeng J, Sha L, Zhang H, Wu D, Zhou Y, Zhou Q, Wang Y, Cheng Y. Fine mapping of the reduced height gene Rht22 in tetraploid wheat landrace Jianyangailanmai (Triticum turgidum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3643-3660. [PMID: 36057866 DOI: 10.1007/s00122-022-04207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Rht22 was fine mapped in the interval of 0.53-1.48 Mb on 7AS, which reduces cell number of internode to cause semi-dwarfism in Jianyangailanmai. As a valuable germplasm resource for wheat genetic improvement, tetraploid wheat has several reduced height (Rht) and enhanced harvest index genes. Rht22, discovered in Jianyangailanmai (JAM, Triticum turgidum L., 2n = 4x = 28, AABB), significantly increases the spikelet number per spike, but its accurate chromosomal position is still unknown. In this study, a high-density genetic map was constructed using specific-length amplified fragment sequencing in an F7 RIL_DJ population, which was derived from a cross between dwarf Polish wheat (T. polonicum L., 2n = 4x = 28, AABB) and JAM. Two plant height loci, Qph.sicau-4B and Qph.sicau-7A, were mapped on chromosomes 4BS and 7AS, respectively. Qph.sicau-7A was mapped to the 0.33-4.46 Mb interval on 7AS and likely represents the candidate region of Rht22. Fine mapping confirmed and narrowed Rht22 on chromosome arm 7AS between Xbag295.s53 and Xb295.191 in three different populations. The physical region ranged from 0.53 to 1.48 Mb and included 18 candidate genes. Transcriptome analysis of two pairs of near-isogenic lines revealed that 135 differentially expressed genes (DEGs) were associated with semi-dwarfism. Of these, the expression of 83 annotated DEGs involved in hormones synthesis and signal transduction, cell wall composition, DNA replication, microtubule and phragmoplast arrays was significantly down-regulated in the semi-dwarf line. Therefore, Rht22 causes semi-dwarfism in JAM by disrupting these cellular processes, which impairs cell proliferation and reduces internode cell number.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yunjing Bao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qin Yao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Dan Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xue Xiao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Haiqin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, Sichuan, China.
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
5
|
Xue Y, Gao H, Liu X, Tang X, Cao D, Luan X, Zhao L, Qiu L. QTL Mapping of Palmitic Acid Content Using Specific-Locus Amplified Fragment Sequencing (SLAF-Seq) Genotyping in Soybeans (Glycine max L.). Int J Mol Sci 2022; 23:ijms231911273. [PMID: 36232577 PMCID: PMC9569734 DOI: 10.3390/ijms231911273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 10/27/2022] Open
Abstract
Soybeans are essential crops that supply protein and oil. The composition and contents of soybean fatty acids are relevant to human health and have a significant relationship with soybean oil processing and applications. Identifying quantitative trait locus (QTL) genes related to palmitic acid could facilitate the development of a range of nutritive soybean cultivars using molecular marker-assisted selection. In this study, we used a cultivar with higher palmitic acid content, ‘Dongnong42’, and a lower palmitic acid content cultivar, ‘Hobbit’, to establish F2:6 recombinant inbred lines. A high-density genetic map containing 9980 SLAF markers was constructed and distributed across 20 soybean chromosomes. The genetic map contained a total genetic distance of 2602.58 cM and an average genetic distance of 0.39 cM between adjacent markers. Two QTLs related to palmitic acid content were mapped using inclusive composite interval mapping, explaining 4.2–10.1% of the phenotypic variance in three different years and environments, including the QTL included in seed palmitic 7-3, which was validated by developing SSR markers. Based on the SNP/Indel and significant differential expression analyses of Dongnong42 and Hobbit, two genes, Glyma.15g119700 and Glyma.15g119800, were selected as candidate genes. The high-density genetic map, QTLs, and molecular markers will be helpful for the map-based cloning of palmitic acid content genes. These could be used to accelerate breeding for high nutritive value cultivars via molecular marker-assisted breeding.
Collapse
Affiliation(s)
- Yongguo Xue
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Huawei Gao
- National Key Facility for Crop Gene Resources and Genetic Improvemen, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinlei Liu
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiaofei Tang
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Dan Cao
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiaoyan Luan
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (L.Z.); (L.Q.)
| | - Lijuan Qiu
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
- National Key Facility for Crop Gene Resources and Genetic Improvemen, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (L.Z.); (L.Q.)
| |
Collapse
|
6
|
Yuan B, Yuan C, Wang Y, Liu X, Qi G, Wang Y, Dong L, Zhao H, Li Y, Dong Y. Identification of genetic loci conferring seed coat color based on a high-density map in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:968618. [PMID: 35979081 PMCID: PMC9376438 DOI: 10.3389/fpls.2022.968618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 05/26/2023]
Abstract
Seed coat color is a typical evolutionary trait. Identification of the genetic loci that control seed coat color during the domestication of wild soybean could clarify the genetic variations between cultivated and wild soybean. We used 276 F10 recombinant inbred lines (RILs) from the cross between a cultivated soybean (JY47) and a wild soybean (ZYD00321) as the materials to identify the quantitative trait loci (QTLs) for seed coat color. We constructed a high-density genetic map using re-sequencing technology. The average distance between adjacent markers was 0.31 cM on this map, comprising 9,083 bin markers. We identified two stable QTLs (qSC08 and qSC11) for seed coat color using this map, which, respectively, explained 21.933 and 26.934% of the phenotypic variation. Two candidate genes (CHS3C and CHS4A) in qSC08 were identified according to the parental re-sequencing data and gene function annotations. Five genes (LOC100786658, LOC100801691, LOC100806824, LOC100795475, and LOC100787559) were predicted in the novel QTL qSC11, which, according to gene function annotations, might control seed coat color. This result could facilitate the identification of beneficial genes from wild soybean and provide useful information to clarify the genetic variations for seed coat color in cultivated and wild soybean.
Collapse
Affiliation(s)
- Baoqi Yuan
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Cuiping Yuan
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Yumin Wang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Xiaodong Liu
- Crop Germplasm Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Guangxun Qi
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Yingnan Wang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Lingchao Dong
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Hongkun Zhao
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Yuqiu Li
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Yingshan Dong
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| |
Collapse
|
7
|
Li T, Li Q, Wang J, Yang Z, Tang Y, Su Y, Zhang J, Qiu X, Pu X, Pan Z, Zhang H, Liang J, Liu Z, Li J, Yan W, Yu M, Long H, Wei Y, Deng G. High-resolution detection of quantitative trait loci for seven important yield-related traits in wheat (Triticum aestivum L.) using a high-density SLAF-seq genetic map. BMC Genom Data 2022; 23:37. [PMID: 35562674 PMCID: PMC9107147 DOI: 10.1186/s12863-022-01050-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Yield-related traits including thousand grain weight (TGW), grain number per spike (GNS), grain width (GW), grain length (GL), plant height (PH), spike length (SL), and spikelet number per spike (SNS) are greatly associated with grain yield of wheat (Triticum aestivum L.). To detect quantitative trait loci (QTL) associated with them, 193 recombinant inbred lines derived from two elite winter wheat varieties Chuanmai42 and Chuanmai39 were employed to perform QTL mapping in six/eight environments. RESULTS A total of 30 QTLs on chromosomes 1A, 1B, 1D, 2A, 2B, 2D, 3A, 4A, 5A, 5B, 6A, 6D, 7A, 7B and 7D were identified. Among them, six major QTLs QTgw.cib-6A.1, QTgw.cib-6A.2, QGw.cib-6A, QGl.cib-3A, QGl.cib-6A, and QSl.cib-2D explaining 5.96-23.75% of the phenotypic variance were detected in multi-environments and showed strong and stable effects on corresponding traits. Three QTL clusters on chromosomes 2D and 6A containing 10 QTLs were also detected, which showed significant pleiotropic effects on multiple traits. Additionally, three Kompetitive Allele Specific PCR (KASP) markers linked with five of these major QTLs were developed. Candidate genes of QTgw.cib-6A.1/QGl.cib-6A and QGl.cib-3A were analyzed based on the spatiotemporal expression patterns, gene annotation, and orthologous search. CONCLUSIONS Six major QTLs for TGW, GL, GW and SL were detected. Three KASP markers linked with five of these major QTLs were developed. These QTLs and KASP markers will be useful for elucidating the genetic architecture of grain yield and developing new wheat varieties with high and stable yield in wheat.
Collapse
Affiliation(s)
- Tao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China
| | - Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jinhui Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yanyan Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yan Su
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Juanyu Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xvebing Qiu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xi Pu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zehou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Wuyun Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China
| | - Maoqun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
8
|
Seo JH, Dhungana SK, Kang BK, Baek IY, Sung JS, Ko JY, Jung CS, Kim KS, Jun TH. Development and Validation of SNP and InDel Markers for Pod-Shattering Tolerance in Soybean. Int J Mol Sci 2022; 23:2382. [PMID: 35216500 PMCID: PMC8880809 DOI: 10.3390/ijms23042382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Pod-shattering causes a significant yield loss in many soybean cultivars. Shattering-tolerant cultivars provide the most effective approach to minimizing this loss. We developed molecular markers for pod-shattering and validated them in soybeans with diverse genetic backgrounds. The genes Glyma.16g141200, Glyma.16g141500, and Glyma.16g076600, identified in our previous study by quantitative trait locus (QTL) mapping and whole-genome resequencing, were selected for marker development. The whole-genome resequencing of three parental lines (one shattering-tolerant and two shattering-susceptible) identified single nucleotide polymorphism (SNP) and/or insertion/deletion (InDel) regions within or near the selected genes. Two SNPs and one InDel were converted to Kompetitive Allele-Specific PCR (KASP) and InDel markers, respectively. The accuracy of the markers was examined in the two recombinant inbred line populations used for the QTL mapping, as well as the 120 varieties and elite lines, through allelic discrimination and phenotyping by the oven-drying method. Both types of markers successfully discriminated the pod shattering-tolerant and shattering-susceptible genotypes. The prediction accuracy, which was as high as 90.9% for the RILs and was 100% for the varieties and elite lines, also supported the accuracy and usefulness of these markers. Thus, the markers can be used effectively for genetic and genomic studies and the marker-assisted selection for pod-shattering tolerance in soybean.
Collapse
Affiliation(s)
- Jeong-Hyun Seo
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Korea; (J.-H.S.); (S.K.D.); (B.-K.K.); (I.-Y.B.); (J.-S.S.); (J.-Y.K.); (C.-S.J.)
| | - Sanjeev Kumar Dhungana
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Korea; (J.-H.S.); (S.K.D.); (B.-K.K.); (I.-Y.B.); (J.-S.S.); (J.-Y.K.); (C.-S.J.)
| | - Beom-Kyu Kang
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Korea; (J.-H.S.); (S.K.D.); (B.-K.K.); (I.-Y.B.); (J.-S.S.); (J.-Y.K.); (C.-S.J.)
| | - In-Youl Baek
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Korea; (J.-H.S.); (S.K.D.); (B.-K.K.); (I.-Y.B.); (J.-S.S.); (J.-Y.K.); (C.-S.J.)
| | - Jung-Sook Sung
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Korea; (J.-H.S.); (S.K.D.); (B.-K.K.); (I.-Y.B.); (J.-S.S.); (J.-Y.K.); (C.-S.J.)
| | - Jee-Yeon Ko
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Korea; (J.-H.S.); (S.K.D.); (B.-K.K.); (I.-Y.B.); (J.-S.S.); (J.-Y.K.); (C.-S.J.)
| | - Chan-Sik Jung
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Korea; (J.-H.S.); (S.K.D.); (B.-K.K.); (I.-Y.B.); (J.-S.S.); (J.-Y.K.); (C.-S.J.)
| | - Ki-Seung Kim
- Innovative Technology Department, FarmHannong, Ltd., Nonsan 33010, Korea;
| | - Tae-Hwan Jun
- Department of Plant Bioscience, Pusan National University, Miryang 50463, Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
| |
Collapse
|
9
|
Yang Z, Chi Y, Cui Y, Wang Z, Hu D, Yang H, Bhat JA, Wang H, Kan G, Yu D, Huang F. Ectopic expression of GmRNF1a encoding a soybean E3 ubiquitin ligase affects Arabidopsis silique development and dehiscence. PLANTA 2022; 255:55. [PMID: 35106662 DOI: 10.1007/s00425-022-03833-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
MAIN CONCLUSION A soybean E3 ubiquitin ligase, GmRNF1a, may affect pod dehiscence and seed development through MADS family genes. These results would be useful for the study of soybean pod and seed development. Pod dehiscence is one of the critical causes of yield loss in cultivated soybeans, and it is of great significance to understand the molecular mechanisms underlying pod dehiscence in soybeans. In this study, we identified a new RING family member of the E3 ubiquitin ligase, GmRNF1a, which was observed to interact with the MADS-box protein GmAGL1 to regulate siliques dehiscence. Tissue-specific gene expression analysis revealed that GmRNF1a was mainly expressed in flowers and pods in soybean. The subcellular localization assay showed the nuclear and cytoplasmic localization of GmRNF1a. In addition, it was found that GmRNF1a exhibits higher promoter activity in soybean hairy roots as well as in Arabidopsis leaves, flowers, and siliques. Heterologous expression of GmRNF1a in Arabidopsis showed that the transgenic Arabidopsis siliques had a faster maturation rate and cracked earlier than the wild-type plants. The functional and nucleotide diversity analysis suggests that GmRNF1a might play an important role in pod maturation and dehiscence and has been strongly selected for during soybean domestication.
Collapse
Affiliation(s)
- Zhongyi Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yingjun Chi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yanmei Cui
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Zhen Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Dezhou Hu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Hui Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Javaid Akhter Bhat
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Hui Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Guizhen Kan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Fang Huang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
10
|
Kushanov FN, Turaev OS, Ernazarova DK, Gapparov BM, Oripova BB, Kudratova MK, Rafieva FU, Khalikov KK, Erjigitov DS, Khidirov MT, Kholova MD, Khusenov NN, Amanboyeva RS, Saha S, Yu JZ, Abdurakhmonov IY. Genetic Diversity, QTL Mapping, and Marker-Assisted Selection Technology in Cotton ( Gossypium spp.). FRONTIERS IN PLANT SCIENCE 2021; 12:779386. [PMID: 34975965 PMCID: PMC8716771 DOI: 10.3389/fpls.2021.779386] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023]
Abstract
Cotton genetic resources contain diverse economically important traits that can be used widely in breeding approaches to create of high-yielding elite cultivars with superior fiber quality and adapted to biotic and abiotic stresses. Nevertheless, the creation of new cultivars using conventional breeding methods is limited by the cost and proved to be time consuming process, also requires a space to make field observations and measurements. Decoding genomes of cotton species greatly facilitated generating large-scale high-throughput DNA markers and identification of QTLs that allows confirmation of candidate genes, and use them in marker-assisted selection (MAS)-based breeding programs. With the advances of quantitative trait loci (QTL) mapping and genome-wide-association study approaches, DNA markers associated with valuable traits significantly accelerate breeding processes by replacing the selection with a phenotype to the selection at the DNA or gene level. In this review, we discuss the evolution and genetic diversity of cotton Gossypium genus, molecular markers and their types, genetic mapping and QTL analysis, application, and perspectives of MAS-based approaches in cotton breeding.
Collapse
Affiliation(s)
- Fakhriddin N. Kushanov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
- Department of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Ozod S. Turaev
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Dilrabo K. Ernazarova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
- Department of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Bunyod M. Gapparov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Barno B. Oripova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
- Department of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Mukhlisa K. Kudratova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Feruza U. Rafieva
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Kuvandik K. Khalikov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Doston Sh. Erjigitov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Mukhammad T. Khidirov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Madina D. Kholova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Naim N. Khusenov
- Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Roza S. Amanboyeva
- Department of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Sukumar Saha
- Crop Science Research Laboratory, USDA-ARS, Washington, DC, United States
| | - John Z. Yu
- Southern Plains Agricultural Research Center, USDA-ARS, Washington, DC, United States
| | - Ibrokhim Y. Abdurakhmonov
- Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| |
Collapse
|
11
|
Cao J, Shang Y, Xu D, Xu K, Cheng X, Pan X, Liu X, Liu M, Gao C, Yan S, Yao H, Gao W, Lu J, Zhang H, Chang C, Xia X, Xiao S, Ma C. Identification and Validation of New Stable QTLs for Grain Weight and Size by Multiple Mapping Models in Common Wheat. Front Genet 2020; 11:584859. [PMID: 33262789 PMCID: PMC7686802 DOI: 10.3389/fgene.2020.584859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/21/2020] [Indexed: 11/13/2022] Open
Abstract
Improvement of grain weight and size is an important objective for high-yield wheat breeding. In this study, 174 recombinant inbred lines (RILs) derived from the cross between Jing 411 and Hongmangchun 21 were used to construct a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq). Three mapping methods, including inclusive composite interval mapping (ICIM), genome-wide composite interval mapping (GCIM), and a mixed linear model performed with forward-backward stepwise (NWIM), were used to identify QTLs for thousand grain weight (TGW), grain width (GW), and grain length (GL). In total, we identified 30, 15, and 18 putative QTLs for TGW, GW, and GL that explain 1.1-33.9%, 3.1%-34.2%, and 1.7%-22.8% of the phenotypic variances, respectively. Among these, 19 (63.3%) QTLs for TGW, 10 (66.7%) for GW, and 7 (38.9%) for GL were consistent with those identified by genome-wide association analysis in 192 wheat varieties. Five new stable QTLs, including 3 for TGW (Qtgw.ahau-1B.1, Qtgw.ahau-4B.1, and Qtgw.ahau-4B.2) and 2 for GL (Qgl.ahau-2A.1 and Qgl.ahau-7A.2), were detected by the three aforementioned mapping methods across environments. Subsequently, five cleaved amplified polymorphic sequence (CAPS) markers corresponding to these QTLs were developed and validated in 180 Chinese mini-core wheat accessions. In addition, 19 potential candidate genes for Qtgw.ahau-4B.2 in a 0.31-Mb physical interval were further annotated, of which TraesCS4B02G376400 and TraesCS4B02G376800 encode a plasma membrane H+-ATPase and a serine/threonine-protein kinase, respectively. These new QTLs and CAPS markers will be useful for further marker-assisted selection and map-based cloning of target genes.
Collapse
Affiliation(s)
- Jiajia Cao
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yaoyao Shang
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Dongmei Xu
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Kangle Xu
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xinran Cheng
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xu Pan
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xue Liu
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Mingli Liu
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Chang Gao
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Shengnan Yan
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Hui Yao
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Wei Gao
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jie Lu
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Haiping Zhang
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Cheng Chang
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shihe Xiao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chuanxi Ma
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| |
Collapse
|
12
|
QTL Mapping and Candidate Gene Analysis for Pod Shattering Tolerance in Soybean ( Glycine max). PLANTS 2020; 9:plants9091163. [PMID: 32911865 PMCID: PMC7569788 DOI: 10.3390/plants9091163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022]
Abstract
Pod shattering is an important reproductive process in many wild species. However, pod shattering at the maturing stage can result in severe yield loss. The objectives of this study were to discover quantitative trait loci (QTLs) for pod shattering using two recombinant inbred line (RIL) populations derived from an elite cultivar having pod shattering tolerance, namely "Daewonkong", and to predict novel candidate QTL/genes involved in pod shattering based on their allele patterns. We found several QTLs with more than 10% phenotypic variance explained (PVE) on seven different chromosomes and found a novel candidate QTL on chromosome 16 (qPS-DS16-1) from the allele patterns in the QTL region. Out of the 41 annotated genes in the QTL region, six were found to contain SNP (single-nucleotide polymorphism)/indel variations in the coding sequence of the parents compared to the soybean reference genome. Among the six potential candidate genes, Glyma.16g076600, one of the genes with known function, showed a highly differential expression levels between the tolerant and susceptible parents in the growth stages R3 to R6. Further, Glyma.16g076600 is a homolog of AT4G19230 in Arabidopsis, whose function is related to abscisic acid catabolism. The results provide useful information to understand the genetic mechanism of pod shattering and could be used for improving the efficiency of marker-assisted selection for developing varieties of soybeans tolerant to pod shattering.
Collapse
|
13
|
Li Q, Pan Z, Gao Y, Li T, Liang J, Zhang Z, Zhang H, Deng G, Long H, Yu M. Quantitative Trait Locus (QTLs) Mapping for Quality Traits of Wheat Based on High Density Genetic Map Combined With Bulked Segregant Analysis RNA-seq (BSR-Seq) Indicates That the Basic 7S Globulin Gene Is Related to Falling Number. FRONTIERS IN PLANT SCIENCE 2020; 11:600788. [PMID: 33424899 PMCID: PMC7793810 DOI: 10.3389/fpls.2020.600788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/11/2020] [Indexed: 05/14/2023]
Abstract
Numerous quantitative trait loci (QTLs) have been identified for wheat quality; however, most are confined to low-density genetic maps. In this study, based on specific-locus amplified fragment sequencing (SLAF-seq), a high-density genetic map was constructed with 193 recombinant inbred lines derived from Chuanmai 42 and Chuanmai 39. In total, 30 QTLs with phenotypic variance explained (PVE) up to 47.99% were identified for falling number (FN), grain protein content (GPC), grain hardness (GH), and starch pasting properties across three environments. Five NAM genes closely adjacent to QGPC.cib-4A probably have effects on GPC. QGH.cib-5D was the only one detected for GH with high PVE of 33.31-47.99% across the three environments and was assumed to be related to the nearest pina-D1 and pinb-D1genes. Three QTLs were identified for FN in at least two environments, of which QFN.cib-3D had relatively higher PVE of 16.58-25.74%. The positive effect of QFN.cib-3D for high FN was verified in a double-haploid population derived from Chuanmai 42 × Kechengmai 4. The combination of these QTLs has a considerable effect on increasing FN. The transcript levels of Basic 7S globulin and Basic 7S globulin 2 in QFN.cib-3D were significantly different between low FN and high FN bulks, as observed through bulk segregant RNA-seq (BSR). These QTLs and candidate genes based on the high-density genetic map would be beneficial for further understanding of the genetic mechanism of quality traits and molecular breeding of wheat.
Collapse
Affiliation(s)
- Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- *Correspondence: Zhifen Pan, ; orcid.org/0000-0002-1692-5425
| | - Yuan Gao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zijin Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Maoqun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|