1
|
Yu T, Wang C, Fan J, Chen R, Liu G, Xu X, Ning J, Lu X. Single-cell RNA sequencing revealed the roles of macromolecule epidermal growth factor receptor (EGFR) in the hybrid sterility of hermaphroditic Argopecten scallops. Int J Biol Macromol 2024; 280:136062. [PMID: 39341320 DOI: 10.1016/j.ijbiomac.2024.136062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The macromolecule epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein that belongs to the protein kinase superfamily, which plays versatile functions in cell proliferation, development and fertility regulation. Almost all F1 hybrids obtained from the hermaphroditic bay scallops and Peruvian scallops exhibit infertility, and the genetic mechanism remains unclear. In this study, the comprehensive scRNA-seq was first conducted in the gonads of hybrid scallops, deducing the developmental sequence of germ cells and identifying the critical regulators in hybrid sterility: epidermal growth factor receptor. During the development from oogenesis phase germ cells to oocytes, the expression of the EGFR gene gradually decreased in sterile hybrids but increased in fertile hybrids. The significantly lower EGFR expression and ATP content, but higher ROS production rate was detected in the gonad of sterile hybrids than that in fertile hybrids, which might cause slow development of oocytes, stagnation of cell cycle, insufficient energy supply, high level of apoptosis and final sterility. Specific knock-down of EGFR gene led to decreased ATP content, increased ROS production rate, and inhibited oocyte maturation and gonadal development. These findings provide new insights into the roles of EGFR in hybrid infertility of bivalves and the healthy development of scallop breeding.
Collapse
Affiliation(s)
- Tieying Yu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunde Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Jiawei Fan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongjie Chen
- Laizhou Marine Development and Fishery Service Center, Laizhou 261400, China
| | - Guilong Liu
- Yantai Spring-Sea AquaSeed, Ltd., Yantai 264006, China
| | - Xin Xu
- Yantai Spring-Sea AquaSeed, Ltd., Yantai 264006, China
| | - Junhao Ning
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.
| | - Xia Lu
- School of Ocean, Yantai University, Yantai, Shandong 264005, China.
| |
Collapse
|
2
|
Jiao J, Zheng H, Zhou X, Huang Y, Niu Q, Ke L, Tang S, Liu H, Sun Y. The functions of laccase gene GhLAC15 in fiber colouration and development in brown-colored cotton. PHYSIOLOGIA PLANTARUM 2024; 176:e14415. [PMID: 38962818 DOI: 10.1111/ppl.14415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
The monotonicity of color type in naturally colored cottons (NCCs) has become the main limiting factor to their widespread use, simultaneously coexisting with poor fiber quality. The synchronous improvement of fiber quality and color become more urgent and crucial as the demand for sustainable development increases. The homologous gene of wild cotton Gossypium stocksii LAC15 in G. hirsutum, GhLAC15, was also dominantly expressed in the developing fibers of brown cotton XC20 from 5 DPA (day post anthesis) to 25 DPA, especially at the secondary cell wall thickening stage (20 DPA and 25 DPA). In XC20 plants with downregulated GhLAC15 (GhLAC15i), a remarkable reduction in proanthocyanidins (PAs) and lignin contents was observed. Some of the key genes in the phenylpropane and flavonoid biosynthesis pathway were down-regulated in GhLAC15i plants. Notably, the fiber length of GhLAC15i plants showed an obvious increase and the fiber color was lightened. Moreover, we found that the thickness of cotton fiber cell wall was decreased in GhLAC15i plants and the fiber surface became smoother compared to that of WT. Taken together, this study revealed that GhLAC15 played an important role in PAs and lignin biosynthesis in naturally colored cotton fibers. It might mediate fiber color and fiber quality by catalyzing PAs oxidation and lignin polymerization, ultimately regulating fiber colouration and development.
Collapse
Affiliation(s)
- Junye Jiao
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Hongli Zheng
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Xinping Zhou
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Yinshuai Huang
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Qingqing Niu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Liping Ke
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Shouwu Tang
- China Colored-cotton (Group) Co., Ltd., China
| | - Haifeng Liu
- China Colored-cotton (Group) Co., Ltd., China
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| |
Collapse
|
3
|
Liu Z, Duan N, Yang Z, Yue L, Fei Z, Kong S. Identification of male-fertility gene AsaNRF1 and molecular marker development in cultivated garlic ( Allium sativum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1419260. [PMID: 38863545 PMCID: PMC11165202 DOI: 10.3389/fpls.2024.1419260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Garlic cultivars are predominantly characterized by their sterility and reliance on asexual reproduction, which have traditionally prevented the use of hybrid breeding for cultivar improvement in garlic. Our investigation has revealed a notable exception in the garlic line G398, which demonstrates the ability to produce fertile pollen. Notably, at the seventh stage of anther development, callose degradation in the sterile line G390 was impeded, while G398 exhibited normal callose degradation. Transcriptome profiling revealed an enhanced expression of the callose-degrading gene, AsaNRF1, in the mature flower buds of the fertile line G398 compared to the sterile line G390. An insertion in the promoter of AsaNRF1 in G390 was identified, which led to its reduced expression at the tetrad stage and consequently delayed callose degradation, potentially resulting in the male sterility of G390. A discriminatory marker was developed to distinguish between fertile G398 and sterile G390, facilitating the assessment of male fertility in garlic germplasm resources. This study introduces a practical approach to harnessing garlic hybridization, which can further facilitate the breeding of new cultivars and the creation of novel male-fertile garlic germplasm using modern molecular biology methods.
Collapse
Affiliation(s)
- Zezhou Liu
- Institute of Vegetables, Shandong Academy of Agricultural Sciences/Key Laboratory for Biology of Greenhouse Vegetables of Shandong Province/National Center for Vegetable Improvement, Jinan, China
| | - Naibin Duan
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zonghui Yang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences/Key Laboratory for Biology of Greenhouse Vegetables of Shandong Province/National Center for Vegetable Improvement, Jinan, China
| | - Lixin Yue
- Institute of Vegetables, Shandong Academy of Agricultural Sciences/Key Laboratory for Biology of Greenhouse Vegetables of Shandong Province/National Center for Vegetable Improvement, Jinan, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Suping Kong
- Institute of Vegetables, Shandong Academy of Agricultural Sciences/Key Laboratory for Biology of Greenhouse Vegetables of Shandong Province/National Center for Vegetable Improvement, Jinan, China
| |
Collapse
|
4
|
Mei J, Niu Q, Xu K, Huang Y, Bai S, Zhu J, Li H, Miao M, Tong F, Yu D, Ke L, Sun Y. GhmiR858 Inhibits the Accumulation of Proanthocyanidins by Targeting GhTT2L in Cotton ( Gossypium hirsutum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15341-15351. [PMID: 37787767 DOI: 10.1021/acs.jafc.3c03884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Proanthocyanidins (PAs) are predominantly regulated at the transcriptional level by sophisticated regulatory networks. In cotton, the role of miRNAs as key regulatory factors at the post-transcriptional level is still unclear. Here, we demonstrated that GhmiR858 negatively regulates PA accumulation in cotton leaves and calli by targeting GhTT2L. Excessive expression of GhmiR858 restrained the expression of GhTT2L, resulting in a significant decrease in PA abundance. Conversely, a reduction in GhmiR858 activity upregulated GhTT2L, which increased PA accumulation. Additionally, GhTT2L was found to positively regulate PA accumulation in both cotton and Arabidopsis. Further analyses showed that GhTT2L interacted with transcription factor GhTTG1, which directly binds to the GhANR promoter, to facilitate its transcription. This study provides new information to guide future studies of the PA regulatory mechanisms affected by miRNAs as well as the breeding of novel varieties of colored cotton with rich PAs.
Collapse
Affiliation(s)
- Jun Mei
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qingqing Niu
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kunling Xu
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuyi Huang
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shimei Bai
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiayu Zhu
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hongwei Li
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Meng Miao
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fudan Tong
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongliang Yu
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liping Ke
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuqiang Sun
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
5
|
Song X, Zhang M, Shahzad K, Zhang X, Guo L, Qi T, Tang H, Wang H, Qiao X, Feng J, Han Y, Xing C, Wu J. Comparative Transcriptome Profiling of CMS-D2 and CMS-D8 Systems Characterizes Fertility Restoration Genes Network in Upland Cotton. Int J Mol Sci 2023; 24:10759. [PMID: 37445936 DOI: 10.3390/ijms241310759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Resolving the genetic basis of fertility restoration for cytoplasmic male sterility (CMS) can improve the efficiency of three-line hybrid breeding. However, the genetic determinants of male fertility restoration in cotton are still largely unknown. This study comprehensively compared the full-length transcripts of CMS-D2 and CMS-D8 systems to identify potential genes linked with fertility restorer genes Rf1 or Rf2. Target comparative analysis revealed a higher percentage of differential genes in each restorer line as compared to their corresponding sterile and maintainer lines. An array of genes with specific expression in the restorer line of CMS-D2 had functional annotations related to floral development and pathway enrichments in various secondary metabolites, while specifically expressed genes in the CMS-D8 restorer line showed functional annotations related to anther development and pathway enrichment in the biosynthesis of secondary metabolites. Further analysis identified potentially key genes located in the target region of fertility restorer genes Rf1 or Rf2. In particular, Ghir_D05G032450 can be the candidate gene related to restorer gene Rf1, and Ghir_D05G035690 can be the candidate gene associated with restorer gene Rf2. Further gene expression validation with qRT-PCR confirmed the accuracy of our results. Our findings provide useful insights into decoding the potential regulatory network that retrieves pollen fertility in cotton and will help to further reveal the differences in the genetic basis of fertility restoration for two CMS systems.
Collapse
Affiliation(s)
- Xiatong Song
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kashif Shahzad
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xuexian Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Liping Guo
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Tingxiang Qi
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Huini Tang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hailin Wang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiuqin Qiao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Juanjuan Feng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yang Han
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Chaozhu Xing
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jianyong Wu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
6
|
Zhang J, Zhang L, Liang D, Yang Y, Geng B, Jing P, Qu Y, Huang J. ROS accumulation-induced tapetal PCD timing changes leads to microspore abortion in cotton CMS lines. BMC PLANT BIOLOGY 2023; 23:311. [PMID: 37308826 DOI: 10.1186/s12870-023-04317-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cytoplasmic male sterility (CMS) is the basis of heterosis exploitation. CMS has been used to hybrid production in cotton, but its molecular mechanism remains unclear. CMS is associated with advanced or delayed tapetal programmed cell death (PCD), and reactive oxygen species (ROS) may mediate this process. In this study, we obtained Jin A and Yamian A, two CMS lines with different cytoplasmic sources. RESULTS Compared with maintainer Jin B, Jin A anthers showed advanced tapetal PCD with DNA fragmentation, producing excessive ROS which accumulated around the cell membrane, intercellular space and mitochondrial membrane. The activities of peroxidase (POD) and catalase (CAT) enzymes which can scavenge ROS were significantly decreased. However, Yamian A tapetal PCD was delayed with lower ROS content, and the activities of superoxide dismutase (SOD) and POD were higher than its maintainer. These differences in ROS scavenging enzyme activities may be caused by isoenzyme gene expressions. In addition, we found the excess ROS generated in Jin A mitochondria and ROS overflow from complex III might be the source in parallel with the reduction of ATP content. CONCLUSION ROS accumulation or abrogation were mainly caused by the joint action of ROS generation and scavenging enzyme activities transformation, which led to the abnormal progression of tapetal PCD, affected the development of microspores, and eventually contributed to male sterility. In Jin A, tapetal PCD in advance might be caused by mitochondrial ROS overproduction, accompanied by energy deficiency. The above studies will provide new insights into the cotton CMS and guide the follow-up research ideas.
Collapse
Affiliation(s)
- Jinlong Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Li Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Dong Liang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yujie Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Biao Geng
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Panpan Jing
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yunfang Qu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jinling Huang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
7
|
Zhao Y, Duan B, Liu Y, Wu Y, Yu D, Ke L, Cai F, Mei J, Zhu N, Sun Y. Identification and characterization of the LDAP family revealed GhLDAP2_Dt enhances drought tolerance in cotton. FRONTIERS IN PLANT SCIENCE 2023; 14:1167761. [PMID: 37260939 PMCID: PMC10228748 DOI: 10.3389/fpls.2023.1167761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/10/2023] [Indexed: 06/02/2023]
Abstract
Lipid droplet-associated proteins (LDAPs) play essential roles in tissue growth and development and in drought stress responses in plants. Cotton is an important fiber and cash crop; however, the LDAP family has not been characterized in cotton. In this study, a total of 14, six, seven, and seven genes were confirmed as LDAP family members in Gossypium hirsutum, Gossypium raimondii, Gossypium arboreum, and Gossypium stocksii, respectively. Additionally, expansion in the LDAP family occurred with the formation of Gossypium, which is mirrored in the number of LDAPs found in five Malvaceae species (Gossypioides kirkii, Bombax ceiba, Durio zibethinus, Theobroma cacao, and Corchorus capsularis), Arabidopsis thaliana, and Carica papaya. The phylogenetic tree showed that the LDAP genes in cotton can be divided into three groups (I, II, and III). The analysis of gene structure and conserved domains showed that LDAPs derived from group I (LDAP1/2/3) are highly conserved during evolution, while members from groups II and III had large variations in both domains and gene structures. The gene expression pattern analysis of LDAP genes showed that they are expressed not only in the reproductive organs (ovule) but also in vegetative organs (root, stem, and leaves). The expression level of two genes in group III, GhLDAP6_At/Dt, were significantly higher in fiber development than in other tissues, indicating that it may be an important regulator of cotton fiber development. In group III, GhLDAP2_At/Dt, especially GhLDAP2_Dt was strongly induced by various abiotic stresses. Decreasing the expression of GhLDAP2_Dt in cotton via virus-induced gene silencing increased the drought sensitivity, and the over-expression of GhLDAP2_Dt led to increased tolerance to mannitol-simulated osmotic stress at the germination stage. Thus, we conclude that GhLDAP2_Dt plays a positive role in drought tolerance.
Collapse
|
8
|
Hu F, Ye Z, Dong K, Zhang W, Fang D, Cao J. Divergent structures and functions of the Cupin proteins in plants. Int J Biol Macromol 2023; 242:124791. [PMID: 37164139 DOI: 10.1016/j.ijbiomac.2023.124791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Cupin superfamily proteins have extensive functions. Their members are not only involved in the development of plants but also responded to various stresses. Whereas, the research on the Cupin members has not attracted enough attention. In this article, we summarized the research progress on these family genes in recent years and explored their evolution, structural characteristics, and biological functions. The significance of members of the Cupin family in the development of plant cell walls, roots, leaves, flowers, fruits, and seeds and their role in stress response are highlighted. Simultaneously, the prospective application of Cupin protein in crop enhancement was introduced. Some members can enhance plant growth, development, and resistance to adversity, thereby increasing crop yield. It will be as a foundation for future effective crop research and breeding.
Collapse
Affiliation(s)
- Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Weimeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
9
|
Xu Y, Jiang Y, Jiao J, Zheng H, Wu Y, Li Y, Abdursul R, Zhao Y, Ke L, Sun Y. The cotton pectin methyl esterase gene GhPME21 functions in microspore development and fertility in Gossypium hirsutum L. PLANT MOLECULAR BIOLOGY 2023; 112:19-31. [PMID: 36929454 DOI: 10.1007/s11103-023-01344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/23/2023] [Indexed: 05/09/2023]
Abstract
Pectin widely exists in higher plants' cell walls and intercellular space of higher plants and plays an indispensable role in plant growth and development. We identified 55 differentially expressed genes related to pectin degradation by transcriptomic analysis in the male sterile mutant, ms1. A gene encoding pectin methylesterase (GhPME21) was found to be predominantly expressed in the developing stamens of cotton but was significantly down-regulated in ms1 stamens. The tapetal layer of GhPME21 interfered lines (GhPME21i) was significantly thickened compared to that of WT at the early stage; anther compartment morphology of GhPME21i lines was abnormal, and the microspore wall was broken at the middle stage; Alexander staining showed that the pollen grains of GhPME21i lines differed greatly in volume at the late stage. The mature pollen surfaces of GhPME21i lines were deposited with discontinuous and broken sheets and prickles viewed under SEM. Fewer pollen tubes were observed to germinate in vitro in GhPME21i lines, while tiny of those in vivo were found to elongate to the ovary. The seeds harvested from GhPME21i lines as pollination donors were dry and hollow. The changes of phenotypes in GhPME21i lines at various stages illustrated that the GhPME21 gene played a vital role in the development of cotton stamens and controlled plant fertility by affecting stamen development, pollen germination, and pollen tube elongation. The findings of this study laid the groundwork for further research into the molecular mechanisms of PMEs involved in microspore formation and the creation of cotton male sterility materials.
Collapse
Affiliation(s)
- Yihan Xu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Yanhua Jiang
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Junye Jiao
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Hongli Zheng
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Yuqing Wu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Yuling Li
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Rayhangul Abdursul
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Yanyan Zhao
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Liping Ke
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
10
|
Zheng H, Jiao J, Niu Q, Zhu N, Huang Y, Ke L, Tang S, Liu H, Sun Y. Cloning and functional analysis of GhDFR1, a key gene of flavonoid synthesis pathway in naturally colored cotton. Mol Biol Rep 2023; 50:4865-4873. [PMID: 37052804 DOI: 10.1007/s11033-023-08420-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND The naturally colored brown cotton fiber is the most widely used environmentally friendly textile material, which primarily contains proanthocyanidins and their derivatives. Many structural genes in the flavonoid synthesis pathway are known to improve the genetic resources of naturally colored cotton. Among them, DFR is a crucial late enzyme to synthesis both anthocyanins and proanthocyanidins in the plant flavonoid pathway. METHODS The protein sequences of GhDFRs were analyzed using bioinformatic tools. The expression levels of GhDFRs in various tissues and organs of upland cotton Zongxu1 (ZX1), were analyzed by quantitative real-time PCR, and the expression pattern of GhDFR1 during fiber development of white cotton and brown cotton was analyzed further. The function of GhDFR1 in NCC ZX1 was preliminarily analyzed by virus induced gene silencing (VIGS) technology. RESULTS Bioinformatic analysis revealed that GhDFRs sequences in upland cotton genome were extremely conserved. Furthermore, evolutionary tree analysis revealed that the functions of GhDFR1 and GhDFR2, and GhDFR3 and GhDFR4, presented different and shared some similarities. Our study showed GhDFR1 and GhDFR2 were specifically expressed in fibers, while GhDFR3 and GhDFR4 were specifically expressed in petals. GhDFR1 was exclusively expressed in brown cotton fiber at various stages of development and progressively increased with the growth of fiber, but the trend of expression in white cotton was quite the opposite. We silenced GhDFR1 expression in brown cotton fiber using VIGS technology, and observed the VIGS-interference plants. After reducing the expression level of GhDFR1, the period for significant GhDFR1 expression in the developing fibers changed, reducing the content of anthocyanins, and lightening the color of mature cotton fibers. CONCLUSION GhDFR1 was preferentially expressed in brown cotton during fiber development. The timing of GhDFR1 expression for flavonoid synthesis altered, resulting in anthocyanin contents reduced and the fiber color of the GhDFR1i lines lightened. These findings showed the role of GhDFR1 in fiber coloration of NCC and provided a new candidate for NCC genetic improvement.
Collapse
Affiliation(s)
- Hongli Zheng
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Junye Jiao
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Qingqing Niu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Ning Zhu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Yinshuai Huang
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Liping Ke
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Shouwu Tang
- China Colored-Cotton (Group) Co., Ltd., Ürümqi, 830011, Xinjiang, People's Republic of China
| | - Haifeng Liu
- China Colored-Cotton (Group) Co., Ltd., Ürümqi, 830011, Xinjiang, People's Republic of China.
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
11
|
Zhu N, Duan B, Zheng H, Mu R, Zhao Y, Ke L, Sun Y. An R2R3 MYB gene GhMYB3 functions in drought stress by negatively regulating stomata movement and ROS accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107648. [PMID: 37001303 DOI: 10.1016/j.plaphy.2023.107648] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
MYB transcription factors are one of the largest TF families involved in plant growth and development as well as biotic and abiotic stresses. In this study, we report the identification and functional characterization of a stress-responsive MYB gene (GhMYB3) from drought stress related transcriptome of upland cotton. GhMYB3, belonging to the R2R3-type, has high sequence similarity with AtMYB3 and was localized in the nucleus. Silence of GhMYB3 enhanced the drought tolerance of cotton seedlings and plants, reduced the water loss rate, and enhanced stomatal closure. In addition, GhMYB3i lines exhibited less ROS accumulation, as well as higher antioxidant enzyme activity and increased content of anthocyanins and proanthocyanidins than WT plants after drought stress. The expression level of flavonoid biosynthesis- and stress-related genes were up-regulated in GhMYB3i lines under drought stress condition. These results demonstrated that GhMYB3 acted as a negative regulator in upland cotton response to drought stress by regulating stomatal closure and ROS accumulation.
Collapse
Affiliation(s)
- Ning Zhu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Bailin Duan
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Hongli Zheng
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Rongrong Mu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Yanyan Zhao
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Liping Ke
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| |
Collapse
|
12
|
Wang H, Cheng Q, Zhai Z, Cui X, Li M, Ye R, Sun L, Shen H. Transcriptomic and Proteomic Analyses of Celery Cytoplasmic Male Sterile Line and Its Maintainer Line. Int J Mol Sci 2023; 24:ijms24044194. [PMID: 36835607 PMCID: PMC9967367 DOI: 10.3390/ijms24044194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 02/22/2023] Open
Abstract
Male sterility is a common phenomenon in the plant kingdom and based on the organelles harboring the male-sterility genes, it can be classified into the genic male sterility (GMS) and the cytoplasmic male sterility (CMS). In every generation, CMS can generate 100% male-sterile population, which is very important for the breeders to take advantage of the heterosis and for the seed producers to guarantee the seed purity. Celery is a cross-pollinated plant with the compound umbel type of inflorescence which carries hundreds of small flowers. These characteristics make CMS the only option to produce the commercial hybrid celery seeds. In this study, transcriptomic and proteomic analyses were performed to identify genes and proteins that are associated with celery CMS. A total of 1255 differentially expressed genes (DEGs) and 89 differentially expressed proteins (DEPs) were identified between the CMS and its maintainer line, then 25 genes were found to differentially expressed at both the transcript and protein levels. Ten DEGs involved in the fleece layer and outer pollen wall development were identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, most of which were down-regulated in the sterile line W99A. These DEGs and DEPs were mainly enriched in the pathways of "phenylpropanoid/sporopollenin synthesis/metabolism", "energy metabolism", "redox enzyme activity" and "redox processes". Results obtained in this study laid a foundation for the future investigation of mechanisms of pollen development as well as the reasons for the CMS in celery.
Collapse
Affiliation(s)
- Haoran Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Qing Cheng
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Ziqi Zhai
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Xiangyun Cui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Mingxuan Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Ruiquan Ye
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Liang Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
- Correspondence: (L.S.); (H.S.); Tel.: +86-10-6273-1014 (L.S.); +86-10-6273-2831 (H.S.)
| | - Huolin Shen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
- Correspondence: (L.S.); (H.S.); Tel.: +86-10-6273-1014 (L.S.); +86-10-6273-2831 (H.S.)
| |
Collapse
|
13
|
Zhang J, Wu P, Li N, Xu X, Wang S, Chang S, Zhang Y, Wang X, Liu W, Ma Y, Manghwar H, Zhang X, Min L, Guo X. A male-sterile mutant with necrosis-like dark spots on anthers was generated in cotton. FRONTIERS IN PLANT SCIENCE 2023; 13:1102196. [PMID: 36699851 PMCID: PMC9868585 DOI: 10.3389/fpls.2022.1102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Although conventional hybrid breeding has paved the way for improving cotton production and other properties, it is undoubtedly time and labor consuming, while the cultivation of male sterile line can fix the problem. Here, we induced male sterile mutants by simultaneously editing three cotton EXCESS MICROSPOROCYTES1 (GhEMS1) genes by CRISPR/Cas9. Notably, the GhEMS1 genes are homologous to AtEMS1 genes, which inhibit the production of middle layer and tapetum cells as well, leading to male sterility in cotton. Interestingly, there are necrosis-like dark spots on the surface of the anthers of GhEMS1s mutants, which is different from AtEMS1 mutant whose anther surface is clean and smooth, suggesting that the function of EMS1 gene has not been uncovered yet. Moreover, we have detected mutations in GhEMS1 genes from T0 to T3 mutant plants, which had necrosis-like dark spots as well, indicating that the mutation of the three GhEMS1 genes could be stably inherited. Dynamic transcriptomes showed plant hormone pathway and anther development genetic network were differential expression in mutant and wild-type anthers. And the lower level of IAA content in the mutant anthers than that in the wild type at four anther developmental stages may be the reason for the male sterility. This study not only facilitates the exploration of the basic research of cotton male sterile lines, but also provides germplasms for accelerating the hybrid breeding in cotton.
Collapse
Affiliation(s)
- Jun Zhang
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Peng Wu
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ning Li
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaolan Xu
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Songxin Wang
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Siyuan Chang
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuping Zhang
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xingxing Wang
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wangshu Liu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Hakim Manghwar
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xianlong Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaoping Guo
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Fei H, Yi SF, Zhang HM, Cheng Y, Zhang YQ, Yu X, Qian SC, Huang MM, Yang S. Transcriptome and 16S rRNA analysis revealed the response of largemouth bass (Micropterus salmoides) to Rhabdovirus infection. Front Immunol 2022; 13:973422. [PMID: 36275642 PMCID: PMC9585208 DOI: 10.3389/fimmu.2022.973422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
To better understand the response of largemouth bass (Micropterus salmoides) to Micropterus salmoides rhabdovirus (MSRV) infection, we investigated the intestinal bacterial flora and transcriptome profile of fish at 72 hours post-infection (hpi). Total of 1574 differentially expressed genes (DEGs) were identified in largemouth bass spleen following MSRV infection, including 573 upregulated and 1001 downregulated genes. KEGG and GO enrichment analysis revealed that upregulated genes were enriched in certain antiviral related signaling pathway, including NOD-like receptor (NLR), RIG-I like receptors (RLR) and regulation of the interferon (IFN)-γ-mediated signaling pathway, whereas some immune-related DEGs enriched in focal adhesion (FA) and ECM-receptor interaction(ECM-RI) were downregulated, as well as genes associated with metabolic processes, such as peroxisome proliferator-activated receptors (PPAR), adipocytokine signaling pathway, Glycerolipid and Retinol metabolism. Furthermore, the principal component analysis (PCA) and phylogenetic analysis revealed that MSRV infection significantly affected the microbiota of largemouth bass intestine; the LEfSe analysis showed that relative abundances of Streptococcus were significantly increased, while the content of Akkermansia, Enterococcus and Lactobacillus were remarkably decreased in the fish intestine following MSRV infection. Additionally, a high correlation was determined between the expressions of interferon-related upregulated genes and the relative abundance of Streptococcus by redundancy analysis (RDA). These results collectively illustrated that intestinal microbiota composition might be associated with the immune-related gene expression in largemouth bass in response to MSRV infection.
Collapse
Affiliation(s)
- Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shun fa Yi
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hui min Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yan Cheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ya qi Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiang Yu
- Department of Industrilaztion, Zhejiang Development & Planning Institute, Hangzhou, China
| | - Shi chao Qian
- Department of Fish disease, Huzhou Baijiayu Biotech Co., Ltd., Huzhou, China
| | - Meng meng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Shun Yang,
| |
Collapse
|
15
|
Fei H, Cheng Y, Zhang H, Yu X, Yi S, Huang M, Yang S. Effect of Autolyzed Yarrowia lipolytica on the Growth Performance, Antioxidant Capacity, Intestinal Histology, Microbiota, and Transcriptome Profile of Juvenile Largemouth Bass (Micropterus salmoides). Int J Mol Sci 2022; 23:ijms231810780. [PMID: 36142687 PMCID: PMC9503160 DOI: 10.3390/ijms231810780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
The improper components of formulated feed can cause the intestinal dysbiosis of juvenile largemouth bass and further affect fish health. A 28 day feeding trial was conducted to investigate the effect of partially replacing fish meal (FM) with autolyzed Yarrowia lipolytica (YL) on juvenile largemouth bass (Micropterus salmoides). We considered four diets—control, YL25, YL50, and YL75—in which 0%, 25%, 50%, and 75% of the FM content, respectively, was replaced with YL. According to results, the weight gain rate (WGR) and specific growth rate (SGR) of the fish with the YL25 and YL50 diets were significantly higher than the WGR and SGR with the control diet, while the YL75 diet significantly reduced fish growth and antioxidant enzymes activities, and shortened the villus height in the intestinal mucosa. The 16S rRNA analysis of the intestinal microbiota showed that the relative abundance of Mycoplasma was significantly increased with the YL25 and YL50 diets, while the Enterobacteriacea content was increased with the YL75 diet. Moreover, our transcriptome analysis revealed that certain differentially expressed genes (DEGs) that are associated with growth, metabolism, and immunity were modulated by YL inclusion treatment. Dietary YL25 and YL50 significantly reduced the mRNA level of ERBB receptor feedback inhibitor 1 (errfi1) and dual-specificity phosphatases (dusp), while the expression of the suppressor of cytokine signaling 1 (socs1), the transporter associated with antigen processing 2 subunit type a (tap2a), and the major histocompatibility complex class I-related gene (MHC-I-l) were sharply increased with YL75 treatment. We determined that the optimum dose of dietary YL required for maximum growth without any adverse influence on intestinal health was 189.82 g/kg (with 31.63% of the fishmeal replaced by YL), while an excessive substitution of YL for fishmeal led to suppressed growth and antioxidant capacity, as well as intestinal damage for juvenile largemouth bass.
Collapse
Affiliation(s)
- Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yan Cheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huimin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiang Yu
- Zhejiang Development &Planning Institute, Hangzhou 310012, China
| | - Shunfa Yi
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mengmeng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Correspondence: ; Tel.: +86-0571-8684-3199
| |
Collapse
|
16
|
Functional divergence of GLP genes between G. barbadense and G. hirsutum in response to Verticillium dahliae infection. Genomics 2022; 114:110470. [PMID: 36041636 DOI: 10.1016/j.ygeno.2022.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/25/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022]
Abstract
Germin-like proteins (GLPs) play important roles in plant disease resistance but are rarely reported in cotton. We compared the expression of GLPs in Verticillium dahliae inoculate G. hirsutum (susceptible) and G. barbadense (resistant) and enriched 11 differentially expressed GLPs. 2741 GLP proteins identified from 53 species determined that GLP probably originated from algae and could be classified into 7 clades according to phylogenetic analysis, among which Clade I is likely the most ancient. Cotton GLP (two allopolyploids and two diploids) genes within a shared clade were highly conserved. Intriguingly, clade VII genes were mainly located in gene clusters that derived from the expansion of LTR transposons. Clade VII members expressed mainly in root which is the first battle against Verticillium dahlia and could be induced more intensely in G. barbadense than G. hirsutum. The GLP genes are resistant to Verticillium dahliae, which can be further investigated against Verticillium wilt.
Collapse
|