1
|
Moin ASM, Nandakumar M, Diane A, Dehbi M, Butler AE. The Role of Heat Shock Proteins in Type 1 Diabetes. Front Immunol 2021; 11:612584. [PMID: 33584694 PMCID: PMC7873876 DOI: 10.3389/fimmu.2020.612584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023] Open
Abstract
Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease characterized by recognition of pancreatic β-cell proteins as self-antigens, called autoantigens (AAgs), followed by loss of pancreatic β-cells. (Pre-)proinsulin ([P]PI), glutamic acid decarboxylase (GAD), tyrosine phosphatase IA-2, and the zinc transporter ZnT8 are key molecules in T1D pathogenesis and are recognized by autoantibodies detected in routine clinical laboratory assays. However, generation of new autoantigens (neoantigens) from β-cells has also been reported, against which the autoreactive T cells show activity. Heat shock proteins (HSPs) were originally described as “cellular stress responders” for their role as chaperones that regulate the conformation and function of a large number of cellular proteins to protect the body from stress. HSPs participate in key cellular functions under both physiological and stressful conditions, including suppression of protein aggregation, assisting folding and stability of nascent and damaged proteins, translocation of proteins into cellular compartments and targeting irreversibly damaged proteins for degradation. Low HSP expression impacts many pathological conditions associated with diabetes and could play a role in diabetic complications. HSPs have beneficial effects in preventing insulin resistance and hyperglycemia in type 2 diabetes (T2D). HSPs are, however, additionally involved in antigen presentation, presenting immunogenic peptides to class I and class II major histocompatibility molecules; thus, an opportunity exists for HSPs to be employed as modulators of immunologic responses in T1D and other autoimmune disorders. In this review, we discuss the multifaceted roles of HSPs in the pathogenesis of T1D and in autoantigen-specific immune protection against T1D development.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Manjula Nandakumar
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Abdoulaye Diane
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Mohammed Dehbi
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Alexandra E Butler
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
2
|
Siva N, Johnson CR, Richard V, Jesch ED, Whiteside W, Abood AA, Thavarajah P, Duckett S, Thavarajah D. Lentil ( Lens culinaris Medikus) Diet Affects the Gut Microbiome and Obesity Markers in Rat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8805-8813. [PMID: 30102041 DOI: 10.1021/acs.jafc.8b03254] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lentil, a moderate-energy high-protein pulse crop, provides significant amounts of essential nutrients for healthy living. The objective of this study was to determine if a lentil-based diet affects food and energy intake, body weight, percent body fat, liver weight, and body plasma triacylglycerols (TGs) as well as the composition of fecal microbiota in rats. A total of 36 Sprague-Dawley rats were treated with either a standard diet, a 3.5% high amylose corn starch diet, or a 70.8% red lentil diet for 6 weeks. By week 6, rats fed the lentil diet had significantly lower mean body weight (443 ± 47 g/rat) than those fed the control (511 ± 51 g/rat) or corn (502 ± 38 g/rat) diets. Further, mean percent body fat and TG concentration were lower, and lean body mass was higher in rats fed the lentil diet than those fed the corn diet. Fecal abundance of Actinobacteria and Bacteriodetes were greater in rats fed the lentil or corn starch diets than those fed the control diet. Fecal abundance of Firmicutes, a bacterial phylum comprising multiple pathogenic species, decreased in rats fed the lentil and high-amylose corn starch diets vs the control diet. The lentil-based diet decreased body weight, percent body fat, and plasma triacylglycerols in rats and suppressed intestinal colonization by pathogens.
Collapse
Affiliation(s)
- Niroshan Siva
- Plant and Environmental Sciences , Clemson University , 270 Poole Agricultural Center , Clemson , South Carolina 29634 , United States
| | - Casey R Johnson
- Mayo Clinic School of Medicine , 200 First Street SW , Rochester , Minnesota 55905 , United States
| | - Vincent Richard
- Biological Sciences , Clemson University , Clemson , South Carolina 29634 , United States
| | - Elliot D Jesch
- Food, Nutrition, and Packaging Sciences , Clemson University , Clemson , South Carolina 29634 , United States
| | - William Whiteside
- Food, Nutrition, and Packaging Sciences , Clemson University , Clemson , South Carolina 29634 , United States
| | - Abdullah A Abood
- Biological Sciences , Clemson University , Clemson , South Carolina 29634 , United States
| | - Pushparajah Thavarajah
- Plant and Environmental Sciences , Clemson University , 270 Poole Agricultural Center , Clemson , South Carolina 29634 , United States
| | - Susan Duckett
- Animal and Veterinary Sciences , Clemson University , Clemson , South Carolina 29634 , United States
| | - Dil Thavarajah
- Plant and Environmental Sciences , Clemson University , 270 Poole Agricultural Center , Clemson , South Carolina 29634 , United States
| |
Collapse
|
3
|
Hu C, Wong FS, Wen L. Type 1 diabetes and gut microbiota: Friend or foe? Pharmacol Res 2015; 98:9-15. [PMID: 25747961 PMCID: PMC4469505 DOI: 10.1016/j.phrs.2015.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes is a T cell-mediated autoimmune disease. Environmental factors play an important role in the initiation of the disease in genetically predisposed individuals. With the improved control of infectious disease, the incidence of autoimmune diseases, particularly type 1 diabetes, has dramatically increased in developed countries. Increasing evidence suggests that gut microbiota are involved in the pathogenesis of type 1 diabetes. Here we focus on recent advances in this field and provide a rationale for novel therapeutic strategies targeting gut microbiota for the prevention of type 1 diabetes.
Collapse
Affiliation(s)
- Changyun Hu
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - F Susan Wong
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff, UK
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
ElEssawy B, Li XC. Type 1 diabetes and T regulatory cells. Pharmacol Res 2015; 98:22-30. [PMID: 25959211 DOI: 10.1016/j.phrs.2015.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 12/11/2022]
Abstract
T-regulatory cells (Tregs) play a fundamental role in the creation and maintenance of peripheral tolerance. Deficits in the numbers and/or function of Tregs may be an underlying cause of human autoimmune diseases including type 1 Diabetes Mellitus (T1D), whereas an over-abundance of Tregs can hinder immunity against cancer or pathogens. The importance of Tregs in the control of autoimmunity is well established in a variety of experimental animal models. In mice, manipulating the numbers and/or function of Tregs can decrease pathology in a wide range of contexts, including autoimmunity and it is widely assumed that similar approaches will be possible in humans. T1D, the most prevalent human autoimmune disease, has been a focus of interventions either through direct and indirect in vivo proliferations or through adoptive transfer of the in vitro generated antigen specific and non specific Treg. Some challenges still need to be addressed, including a more specific phenotype marker for Tregs; the reproducibility of satisfactory animal results in human and the reconcile of discrepancies between in vitro and in vivo studies. In this article, we will highlight the role of Tregs in autoimmune disease in general with a special focus on T1D, highlighting progress made and challenges ahead in developing Treg-based therapies.
Collapse
Affiliation(s)
| | - Xian C Li
- Immunobiology & Transplantation Research, Houston Methodist Hospital, Texas Medical Center, 6670 Bertner Avenue, R7-211, Houston, TX 77030, United States.
| |
Collapse
|
5
|
Pan K, Chen H, Davidson PM, Zhong Q. Thymol nanoencapsulated by sodium caseinate: physical and antilisterial properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1649-1657. [PMID: 24484459 DOI: 10.1021/jf4055402] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this work, thymol was encapsulated in sodium caseinate using high shear homogenization. The transparent dispersion at neutral pH was stable for 30 days at room temperature as determined by dynamic light scattering and atomic force microscopy, which agreed with high ζ potential of nanoparticles. The slightly decreased particle dimension during storage indicates the absence of Ostwald ripening. When molecular binding was studied by fluorescence spectroscopy, thymol was observed to bind with tyrosine and possibly other amino acid residues away from tryptophan of caseins. At pH 4.6 (isoelectric point of caseins), the stabilization of thymol nanoparticles against aggregation was enabled by soluble soybean polysaccharide, resulting from the combined electrostatic and steric repulsions. The encapsulated thymol showed the significantly improved antilisterial activity in milk with different fat levels when compared to thymol crystals, resulting from the quicker mixing and increased solubility in the milk serum. The transparent thymol nanodispersions have promising applications to improve microbiological safety and quality of foods.
Collapse
Affiliation(s)
- Kang Pan
- Department of Food Science and Technology, The University of Tennessee , 2510 River Drive, Knoxville, Tennessee 37996-4539, United States
| | | | | | | |
Collapse
|
6
|
Pan K, Zhong Q, Baek SJ. Enhanced dispersibility and bioactivity of curcumin by encapsulation in casein nanocapsules. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6036-43. [PMID: 23734864 DOI: 10.1021/jf400752a] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In this work, a novel encapsulation method was studied by spray-drying a warm aqueous ethanol solution with codissolved sodium caseinate (NaCas) and lipophilic food components, using curcumin as a model compound. The encapsulation caused the loss of crystallinity of curcumin. After hydration of spray-dried powder and centrifugation, 137 μg/mL curcumin was dispersed in the transparent dispersion, which was 4 decades higher than its water solubility. Dynamic light scattering and atomic force microscopy results showed that curcumin-loaded casein nanoparticles were bigger than those of NaCas processed at encapsulation conditions but were smaller than those of the native NaCas. The increased nanoparticle dimension, together with fluorescence and FTIR spectroscopy results, suggested that curcumin was entrapped in the nanoparticle core through hydrophobic interactions. The curcumin encapsulated in casein nanoparticles had higher biological activity, as assessed by antioxidant and cell proliferation assays, than pristine curcumin, likely due to the improved dispersibility. This simple approach may be applied to encapsulate various lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Kang Pan
- Department of Food Science and Technology and ‡Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee in Knoxville , Knoxville, Tennessee 37996, United States
| | | | | |
Collapse
|
7
|
Johnson CR, Thavarajah D, Combs GF, Thavarajah P. Lentil (Lens culinaris L.): A prebiotic-rich whole food legume. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.11.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Visser JTJ, Bos NA, Harthoorn LF, Stellaard F, Beijer-Liefers S, Rozing J, van Tol EAF. Potential mechanisms explaining why hydrolyzed casein-based diets outclass single amino acid-based diets in the prevention of autoimmune diabetes in diabetes-prone BB rats. Diabetes Metab Res Rev 2012; 28:505-13. [PMID: 22539454 DOI: 10.1002/dmrr.2311] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND It remains controversial whether avoidance of dietary diabetogenic triggers, such as cow's milk proteins, can prevent type 1 diabetes in genetically susceptible individuals. Here, different extensive casein hydrolysates (HC) and single amino acid (AA) formulations were tested for their effect on mechanisms underlying autoimmune diabetes pathogenesis in diabetes-prone BioBreeding rats. Intestinal integrity, gut microbiota composition and mucosal immune reactivity were studies to assess whether these formulations have differential effects in autoimmune diabetes prevention. METHODS Diabetes-prone BioBreeding rats received diets in which the protein fraction was exchanged for the different hydrolysates or AA compositions, starting from weaning until the end of the experiment (d150). Diabetes development was monitored, and faecal and ileal samples were collected. Gut microbiota composition and cytokine/tight junction mRNA expression were measured by quantitative polymerase chain reaction. Cytokine levels of ileum explant cultures were measured by ELISA, and intestinal permeability was measured in vivo by lactulose-mannitol assay. RESULTS Both HC-diet fed groups revealed remarkable reduction of diabetes incidence with the most pronounced effect in Nutramigen®-fed animals. Interestingly, AA-fed rats only showed delayed autoimmune diabetes development. Furthermore, both HC-fed groups had improved intestinal barrier function when compared with control chow or AA-fed animals. Interestingly, higher IL-10 levels were measured in ileum tissue explants from Nutramigen®-fed rats. Beneficial gut microbiota changes (increased Lactobacilli and reduced Bacteroides spp. levels) were found associated especially with HC-diet interventions. CONCLUSIONS Casein hydrolysates were found superior to AA-mix in autoimmune diabetes prevention. This suggests the presence of specific peptides that beneficially affect mechanisms that may play a critical role in autoimmune diabetes pathogenesis.
Collapse
Affiliation(s)
- J T J Visser
- Department of Cell Biology, Section Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
9
|
Hansen CHF, Krych L, Nielsen DS, Vogensen FK, Hansen LH, Sørensen SJ, Buschard K, Hansen AK. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia 2012; 55:2285-94. [PMID: 22572803 DOI: 10.1007/s00125-012-2564-7] [Citation(s) in RCA: 354] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
Abstract
AIMS/HYPOTHESIS Increasing evidence suggests that environmental factors changing the normal colonisation pattern in the gut strongly influence the risk of developing autoimmune diabetes. The aim of this study was to investigate, both during infancy and adulthood, whether treatment with vancomycin, a glycopeptide antibiotic specifically directed against Gram-positive bacteria, could influence immune homeostasis and the development of diabetic symptoms in the NOD mouse model for diabetes. METHODS Accordingly, one group of mice received vancomycin from birth until weaning (day 28), while another group received vancomycin from 8 weeks of age until onset of diabetes. Pyrosequencing of the gut microbiota and flow cytometry of intestinal immune cells was used to investigate the effect of vancomycin treatment. RESULTS At the end of the study, the cumulative diabetes incidence was found to be significantly lower for the neonatally treated group compared with the untreated group, whereas the insulitis score and blood glucose levels were significantly lower for the mice treated as adults compared with the other groups. Mucosal inflammation was investigated by intracellular cytokine staining of the small intestinal lymphocytes, which displayed an increase in cluster of differentiation (CD)4(+) T cells producing pro-inflammatory cytokines in the neonatally treated mice. Furthermore, bacteriological examination of the gut microbiota composition by pyrosequencing revealed that vancomycin depleted many major genera of Gram-positive and Gram-negative microbes while, interestingly, one single species, Akkermansia muciniphila, became dominant. CONCLUSIONS/INTERPRETATION The early postnatal period is a critical time for microbial protection from type 1 diabetes and it is suggested that the mucolytic bacterium A. muciniphila plays a protective role in autoimmune diabetes development, particularly during infancy.
Collapse
Affiliation(s)
- C H F Hansen
- Section of Biomedicine, Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 57, 1870, Frederiksberg C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 2011; 91:151-75. [PMID: 21248165 DOI: 10.1152/physrev.00003.2008] [Citation(s) in RCA: 583] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The primary functions of the gastrointestinal tract have traditionally been perceived to be limited to the digestion and absorption of nutrients and to electrolytes and water homeostasis. A more attentive analysis of the anatomic and functional arrangement of the gastrointestinal tract, however, suggests that another extremely important function of this organ is its ability to regulate the trafficking of macromolecules between the environment and the host through a barrier mechanism. Together with the gut-associated lymphoid tissue and the neuroendocrine network, the intestinal epithelial barrier, with its intercellular tight junctions, controls the equilibrium between tolerance and immunity to non-self antigens. Zonulin is the only physiological modulator of intercellular tight junctions described so far that is involved in trafficking of macromolecules and, therefore, in tolerance/immune response balance. When the finely tuned zonulin pathway is deregulated in genetically susceptible individuals, both intestinal and extraintestinal autoimmune, inflammatory, and neoplastic disorders can occur. This new paradigm subverts traditional theories underlying the development of these diseases and suggests that these processes can be arrested if the interplay between genes and environmental triggers is prevented by reestablishing the zonulin-dependent intestinal barrier function. This review is timely given the increased interest in the role of a "leaky gut" in the pathogenesis of several pathological conditions targeting both the intestine and extraintestinal organs.
Collapse
Affiliation(s)
- Alessio Fasano
- Mucosal Biology Research Center and Center for Celiac Research, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| |
Collapse
|
11
|
Visser JTJ, Lammers K, Hoogendijk A, Boer MW, Brugman S, Beijer-Liefers S, Zandvoort A, Harmsen H, Welling G, Stellaard F, Bos NA, Fasano A, Rozing J. Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat. Diabetologia 2010; 53:2621-8. [PMID: 20853098 PMCID: PMC2974912 DOI: 10.1007/s00125-010-1903-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 07/23/2010] [Indexed: 01/19/2023]
Abstract
AIMS/HYPOTHESIS Impaired intestinal barrier function is observed in type 1 diabetes patients and animal models of the disease. Exposure to diabetogenic antigens from the intestinal milieu due to a compromised intestinal barrier is considered essential for induction of the autoimmune process leading to type 1 diabetes. Since a hydrolysed casein (HC) diet prevents autoimmune diabetes onset in diabetes-prone (DP)-BioBreeding (BB) rats, we studied the role of the HC diet on intestinal barrier function and, therefore, prevention of autoimmune diabetes onset in this animal model. METHODS DP-BB rats were fed the HC diet from weaning onwards and monitored for autoimmune diabetes development. Intestinal permeability was assessed in vivo by lactulose-mannitol test and ex vivo by measuring transepithelial electrical resistance (TEER). Levels of serum zonulin, a physiological tight junction modulator, were measured by ELISA. Ileal mRNA expression of Myo9b, Cldn1, Cldn2 and Ocln (which encode the tight junction-related proteins myosin IXb, claudin-1, claudin-2 and occludin) and Il-10, Tgf-ß (also known as Il10 and Tgfb, respectively, which encode regulatory cytokines) was analysed by quantitative PCR. RESULTS The HC diet reduced autoimmune diabetes by 50% in DP-BB rats. In DP-BB rats, prediabetic gut permeability negatively correlated with the moment of autoimmune diabetes onset. The improved intestinal barrier function that was induced by HC diet in DP-BB rats was visualised by decreasing lactulose:mannitol ratio, decreasing serum zonulin levels and increasing ileal TEER. The HC diet modified ileal mRNA expression of Myo9b, and Cldn1 and Cldn2, but left Ocln expression unaltered. CONCLUSIONS/INTERPRETATION Improved intestinal barrier function might be an important intermediate in the prevention of autoimmune diabetes by the HC diet in DP-BB rats. Effects on tight junctions, ileal cytokines and zonulin production might be important mechanisms for this effect.
Collapse
Affiliation(s)
- J T J Visser
- Department of Cell Biology, Section Immunology, University Medical Center Groningen, University of Groningen, PO Box 196, 9700 AD Groningen, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Visser J, Hillebrands JL, Walther Boer M, Bos NA, Rozing J. Prevention of diabetes by a hydrolysed casein-based diet in diabetes-prone BioBreeding rats does not involve restoration of the defective natural regulatory T cell function. Diabetologia 2009; 52:1445-7. [PMID: 19396422 PMCID: PMC2688613 DOI: 10.1007/s00125-009-1370-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 03/26/2009] [Indexed: 10/26/2022]
Affiliation(s)
- J Visser
- Department of Cell Biology, Immunology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
13
|
Waldron-Lynch F, Herold KC. Advances in Type 1 diabetes therapeutics: immunomodulation and beta-cell salvage. Endocrinol Metab Clin North Am 2009; 38:303-17, viii. [PMID: 19328413 DOI: 10.1016/j.ecl.2009.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Refinements in our understanding of the pathogenic mechanisms of Type 1 diabetes from studies of animal models and clinical observation have led to new clinical trials to prevent disease progression and restore the loss of beta-cells that defines the disease. Antigen-specific agents have shown initial promise and non-antigen-specific agents now have improved safety compared with older agents. In addition, preclinical studies with other agents have shown efficacy. Ultimately, a combination of immunologic and cellular therapies may be needed to restore metabolic control. Agents that augment recovery of dysfunctional beta-cells, and other compounds that may be able to induce beta-cell replication, are logical additions once immune tolerance is achieved.
Collapse
|
14
|
Visser J, Rozing J, Sapone A, Lammers K, Fasano A. Tight junctions, intestinal permeability, and autoimmunity: celiac disease and type 1 diabetes paradigms. Ann N Y Acad Sci 2009; 1165:195-205. [PMID: 19538307 PMCID: PMC2886850 DOI: 10.1111/j.1749-6632.2009.04037.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autoimmune diseases are characterized by tissue damage and loss of function due to an immune response that is directed against specific organs. This review is focused on celiac disease (CD), an autoimmune enteropathy, and type 1 diabetes (T1D), a hyperglycosaemia caused by a destructive autoimmune process targeting the insulin-producing pancreatic islet cells. Even if environmental factors and genetic susceptibility are clearly involved in the pathogenesis of autoimmunity, for most autoimmune disorders there is no or little knowledge about the causing agent or genetic makeup underlying the disease. In this respect, CD represents a unique autoimmune disorder because a close genetic association with HLA-DQ2 or HLA-DQ8 haplotypes and, more importantly, the environmental trigger (the gliadin fraction of gluten-containing grains wheat, barley, and rye) are known. Conversely, the trigger for autoimmune destruction of pancreatic ss cells in T1D is unclear. Interestingly, recent data suggest that gliadin is also involved in the pathogenesis of T1D. There is growing evidence that increased intestinal permeability plays a pathogenic role in various autoimmune diseases including CD and T1D. Therefore, we hypothesize that besides genetic and environmental factors, loss of intestinal barrier function is necessary to develop autoimmunity. In this review, each of these components will be briefly reviewed.
Collapse
Affiliation(s)
- Jeroen Visser
- Department of Cell Biology, Section Immunology and Histology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan Rozing
- Department of Cell Biology, Section Immunology and Histology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anna Sapone
- Mucosal Biology Research Center and Center for Celiac Research, University of Maryland School of Medicine, Baltimore, MD
| | - Karen Lammers
- Mucosal Biology Research Center and Center for Celiac Research, University of Maryland School of Medicine, Baltimore, MD
| | - Alessio Fasano
- Mucosal Biology Research Center and Center for Celiac Research, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
15
|
Giannoukakis N, Phillips B, Trucco M. Toward a cure for type 1 diabetes mellitus: diabetes-suppressive dendritic cells and beyond. Pediatr Diabetes 2008; 9:4-13. [PMID: 18540865 DOI: 10.1111/j.1399-5448.2008.00401.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Insulin has been the gold standard therapy for diabetes since its discovery and commercial availability. It remains the only pharmacologic therapy for type 1 diabetes (T1D), an autoimmune disease in which autoreactive T cells specifically kill the insulin-producing beta cells. Nevertheless, not even molecularly produced insulin administered four or five times per day can provide a physiologic regulation able to prevent the complications that account for the morbidity and mortality of diabetic patients. Also, insulin does not eliminate the T1D hallmark: beta-cell-specific autoimmunity. In other words, insulin is not a 'cure'. A successful cure must meet the following criteria: (i) it must either replace or maintain the functional integrity of the natural, insulin-producing tissue, the endocrine islets of Langerhans' and, more specifically, the insulin-producing beta cells; (ii) it must, at least, control the autoimmunity or eliminate it altogether; and (iii) it must be easy to apply to a large number of patients. Criterion 1 has been partially realized by allogeneic islet transplantation. Criterion 2 has been partially realized using monoclonal antibodies specific for T-cell surface proteins. Criterion 3 has yet to be realized, given that most of the novel therapies are currently quasi-patient-specific. Herein, we outline the current status of non-insulin-based therapies for T1D, with a focus on cell-based immunomodulation which we propose can achieve all three criteria illustrated above.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Division of Immunogenetics, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | |
Collapse
|
16
|
Pozzilli P. Immuno-intervention and preservation of beta-cell function in type 1 diabetes. Diabetes Metab Res Rev 2007; 23:255-6. [PMID: 17476663 DOI: 10.1002/dmrr.746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Brugman S, Klatter FA, Visser JTJ, Wildeboer-Veloo ACM, Harmsen HJM, Rozing J, Bos NA. Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia 2006; 49:2105-8. [PMID: 16816951 DOI: 10.1007/s00125-006-0334-0] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 05/09/2006] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS Accumulating data suggest that the gut immune system plays a role in the development of type 1 diabetes. The intestinal flora is essential for the development of the (gut) immune system and the establishment of tolerance. It has been reported that oral administration of food and bacterial antigens early in life suppresses later development of diabetes in the Bio-Breeding diabetes-prone (BB-DP) rat. This study was designed to investigate the possible relationship between the development of diabetes and the composition of intestinal flora. MATERIALS AND METHODS The intestinal flora of BB-DP rats, a rat model for type 1 diabetes, was characterised long before the clinical onset of diabetes by fluorescent in situ hybridisation. In a separate experiment, BB-DP rats were treated with antibiotics and the effect on diabetes incidence and level of insulitis was analysed. RESULTS We observed a difference in bacterial composition between rats that eventually did and those that did not develop diabetes. This difference was detectable long before clinical onset of the disease. Rats that did not develop diabetes at a later age displayed a lower amount of Bacteroides sp. Modulation of the intestinal flora through antibiotic treatment decreased the incidence and delayed the onset of diabetes. A combination of antibiotic treatment and a protective hydrolysed casein diet completely prevented diabetes in the BB-DP rat. CONCLUSIONS/INTERPRETATION Our data suggest that the intestinal flora is involved in the development of type 1 diabetes. Factors influencing composition of the intestinal flora could be a target for therapeutic intervention.
Collapse
Affiliation(s)
- S Brugman
- Department of Cell Biology, Immunology Section, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
van Eden W, van der Zee R, Prakken B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 2005; 5:318-30. [PMID: 15803151 DOI: 10.1038/nri1593] [Citation(s) in RCA: 392] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Immune responses to certain heat-shock proteins (HSPs) develop in almost all inflammatory diseases; however, the significance of such responses is only now becoming clear. In experimental disease models, HSPs can prevent or arrest inflammatory damage, and in initial clinical trials in patients with chronic inflammatory disease, HSP-derived peptides have been shown to promote the production of anti-inflammatory cytokines, indicating that HSPs have immunoregulatory potential. In this Review, we discuss the unique characteristics of HSPs that endow them with these immunoregulatory qualities.
Collapse
Affiliation(s)
- Willem van Eden
- Division of Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands.
| | | | | |
Collapse
|
19
|
Current literature in diabetes. Diabetes Metab Res Rev 2005; 21:297-308. [PMID: 15858786 DOI: 10.1002/dmrr.565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|