1
|
Martinez-Calle M, Courbon G, Hunt-Tobey B, Francis C, Spindler J, Wang X, dos Reis LM, Martins CS, Salusky IB, Malluche H, Nickolas TL, Moyses RM, Martin A, David V. Transcription factor HNF4α2 promotes osteogenesis and prevents bone abnormalities in mice with renal osteodystrophy. J Clin Invest 2023; 133:e159928. [PMID: 37079387 PMCID: PMC10231994 DOI: 10.1172/jci159928] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/17/2023] [Indexed: 04/21/2023] Open
Abstract
Renal osteodystrophy (ROD) is a disorder of bone metabolism that affects virtually all patients with chronic kidney disease (CKD) and is associated with adverse clinical outcomes including fractures, cardiovascular events, and death. In this study, we showed that hepatocyte nuclear factor 4α (HNF4α), a transcription factor mostly expressed in the liver, is also expressed in bone, and that osseous HNF4α expression was dramatically reduced in patients and mice with ROD. Osteoblast-specific deletion of Hnf4α resulted in impaired osteogenesis in cells and mice. Using multi-omics analyses of bones and cells lacking or overexpressing Hnf4α1 and Hnf4α2, we showed that HNF4α2 is the main osseous Hnf4α isoform that regulates osteogenesis, cell metabolism, and cell death. As a result, osteoblast-specific overexpression of Hnf4α2 prevented bone loss in mice with CKD. Our results showed that HNF4α2 is a transcriptional regulator of osteogenesis, implicated in the development of ROD.
Collapse
Affiliation(s)
- Marta Martinez-Calle
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Guillaume Courbon
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bridget Hunt-Tobey
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Connor Francis
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jadeah Spindler
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xueyan Wang
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Luciene M. dos Reis
- LIM 16, Nephrology Department, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Carolina S.W. Martins
- LIM 16, Nephrology Department, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Isidro B. Salusky
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Hartmut Malluche
- Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Thomas L. Nickolas
- Department of Medicine, Columbia Irving University Medical Center, New York, New York, USA
| | - Rosa M.A. Moyses
- LIM 16, Nephrology Department, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Aline Martin
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Valentin David
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
Jungtrakoon Thamtarana P, Marucci A, Pannone L, Bonnefond A, Pezzilli S, Biagini T, Buranasupkajorn P, Hastings T, Mendonca C, Marselli L, Di Paola R, Abubakar Z, Mercuri L, Alberico F, Flex E, Ceròn J, Porta-de-la-Riva M, Ludovico O, Carella M, Martinelli S, Marchetti P, Mazza T, Froguel P, Trischitta V, Doria A, Prudente S. Gain of Function of Malate Dehydrogenase 2 and Familial Hyperglycemia. J Clin Endocrinol Metab 2022; 107:668-684. [PMID: 34718610 PMCID: PMC8852227 DOI: 10.1210/clinem/dgab790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Genes causing familial forms of diabetes mellitus are only partially known. OBJECTIVE We set out to identify the genetic cause of hyperglycemia in multigenerational families with an apparent autosomal dominant form of adult-onset diabetes not due to mutations in known monogenic diabetes genes. METHODS Existing whole-exome sequencing (WES) data were used to identify exonic variants segregating with diabetes in 60 families from the United States and Italy. Functional studies were carried out in vitro (transduced MIN6-K8 cells) and in vivo (Caenorhabditis elegans) to assess the diabetogenic potential of 2 variants in the malate dehydrogenase 2 (MDH2) gene linked with hyperglycemia in 2 of the families. RESULTS A very rare mutation (p.Arg52Cys) in MDH2 strongly segregated with hyperglycemia in 1 family from the United States. An infrequent MDH2 missense variant (p.Val160Met) also showed disease cosegregation in a family from Italy, although with reduced penetrance. In silico, both Arg52Cys and Val160Met were shown to affect MDH2 protein structure and function. In transfected HepG2 cells, both variants significantly increased MDH2 enzymatic activity, thereby decreasing the NAD+/NADH ratio-a change known to affect insulin signaling and secretion. Stable expression of human wild-type MDH2 in MIN6-K8 cell lines enhanced glucose- and GLP-1-stimulated insulin secretion. This effect was blunted by the Cys52 or Met160 substitutions. Nematodes carrying equivalent changes at the orthologous positions of the mdh-2 gene showed impaired glucose-stimulated insulin secretion. CONCLUSION Our findings suggest a central role of MDH2 in human glucose homeostasis and indicate that gain of function variants in this gene may be involved in the etiology of familial forms of diabetes.
Collapse
Affiliation(s)
- Prapaporn Jungtrakoon Thamtarana
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA
- Cellular and Molecular Biology of Diabetes Research Group, Siriraj Center of Research Excellence for Diabetes and Obesity, Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Antonella Marucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Luca Pannone
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Université de Lille, CHU de Lille, Lille, France
- Department of Metabolism, Imperial College London, London, UK
| | - Serena Pezzilli
- Research Unit of Metabolic and Cardiovascular Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo,Italy
- Medical Genetics, University of Chieti, Chieti, Italy
| | - Tommaso Biagini
- Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo,Italy
| | | | - Timothy Hastings
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA
| | - Christine Mendonca
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rosa Di Paola
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Zuroida Abubakar
- Cellular and Molecular Biology of Diabetes Research Group, Siriraj Center of Research Excellence for Diabetes and Obesity, Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Luana Mercuri
- Research Unit of Metabolic and Cardiovascular Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo,Italy
| | - Federica Alberico
- Research Unit of Metabolic and Cardiovascular Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo,Italy
| | - Elisabetta Flex
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Julian Ceròn
- Modeling human diseases in C. elegans. Genes, Diseases and Therapies Program, Bellvitge Biomedical Research Institute – IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Montserrat Porta-de-la-Riva
- Modeling human diseases in C. elegans. Genes, Diseases and Therapies Program, Bellvitge Biomedical Research Institute – IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Ornella Ludovico
- Department of Clinical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo,Italy
| | - Massimo Carella
- Research Unit of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo,Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Tommaso Mazza
- Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo,Italy
| | - Philippe Froguel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Université de Lille, CHU de Lille, Lille, France
- Department of Metabolism, Imperial College London, London, UK
| | - Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Alessandro Doria
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA
- Alessandro Doria, MD, PhD, MPH, Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA.
| | - Sabrina Prudente
- Research Unit of Metabolic and Cardiovascular Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo,Italy
- Correspondence: Sabrina Prudente, PhD, Fondazione IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Institute, Viale Regina Margherita 261, 00198 Rome, Italy.
| |
Collapse
|
3
|
Nurun Nabi A, Ebihara A. Diabetes and Renin-Angiotensin-Aldosterone System: Pathophysiology and Genetics. RENIN-ANGIOTENSIN ALDOSTERONE SYSTEM 2021. [DOI: 10.5772/intechopen.97518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Diabetes mellitus (DM) is a metabolic disorder and characterized by hyperglycemia. Being a concern of both the developed and developing world, diabetes is a global health burden and is a major cause of mortality world-wide. The most common is the type 2 diabetes mellitus (T2DM), which is mainly caused by resistance to insulin. Long-term complications of diabetes cause microvascular related problems (eg. nephropathy, neuropathy and retinopathy) along with macrovascular complications (eg. cardiovascular diseases, ischemic heart disease, peripheral vascular disease). Renin-angiotensin-aldosterone system (RAAS) regulates homeostasis of body fluid that in turn, maintains blood pressure. Thus, RAAS plays pivotal role in the pathogenesis of long-term DM complications like cardiovascular diseases and chronic kidney diseases. T2DM is a polygenic disease, and the roles of RAAS components in insulin signaling pathway and insulin resistance have been well documented. Hyperglycemia has been found to be associated with the increased plasma renin activity, arterial pressure and renal vascular resistance. Several studies have reported involvement of single variants within particular genes in initiation and development of T2D using different approaches. This chapter aims to investigate and discuss potential genetic polymorphisms underlying T2D identified through candidate gene studies, genetic linkage studies, genome wide association studies.
Collapse
|
4
|
Maturity Onset Diabetes of the Young-New Approaches for Disease Modelling. Int J Mol Sci 2021; 22:ijms22147553. [PMID: 34299172 PMCID: PMC8303136 DOI: 10.3390/ijms22147553] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a genetically heterogeneous group of monogenic endocrine disorders that is characterised by autosomal dominant inheritance and pancreatic β-cell dysfunction. These patients are commonly misdiagnosed with type 1 or type 2 diabetes, as the clinical symptoms largely overlap. Even though several biomarkers have been tested none of which could be used as single clinical discriminator. The correct diagnosis for individuals with MODY is of utmost importance, as the applied treatment depends on the gene mutation or is subtype-specific. Moreover, in patients with HNF1A-MODY, additional clinical monitoring can be included due to the high incidence of vascular complications observed in these patients. Finally, stratification of MODY patients will enable better and newer treatment options for MODY patients, once the disease pathology for each patient group is better understood. In the current review the clinical characteristics and the known disease-related abnormalities of the most common MODY subtypes are discussed, together with the up-to-date applied diagnostic criteria and treatment options. Additionally, the usage of pluripotent stem cells together with CRISPR/Cas9 gene editing for disease modelling with the possibility to reveal new pathophysiological mechanisms in MODY is discussed.
Collapse
|
5
|
Stankute I, Verkauskiene R, Blouin JL, Klee P, Dobrovolskiene R, Danyte E, Dirlewanger M, Santoni F, Razanskaite-Virbickiene D, Marciulionyte D, Jasinskiene E, Mockeviciene G, Schwitzgebel VM. Systematic Genetic Study of Youth With Diabetes in a Single Country Reveals the Prevalence of Diabetes Subtypes, Novel Candidate Genes, and Response to Precision Therapy. Diabetes 2020; 69:1065-1071. [PMID: 32086287 DOI: 10.2337/db19-0974] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/27/2020] [Indexed: 11/13/2022]
Abstract
Identifying gene variants causing monogenic diabetes (MD) increases understanding of disease etiology and allows for implementation of precision therapy to improve metabolic control and quality of life. Here, we aimed to assess the prevalence of MD in youth with diabetes in Lithuania, uncover potential diabetes-related gene variants, and prospectively introduce precision treatment. First, we assessed all pediatric and most young-adult patients with diabetes in Lithuania (n = 1,209) for diabetes-related autoimmune antibodies. We then screened all antibody-negative patients (n = 153) using targeted high-throughput sequencing of >300 potential candidate genes. In this group, 40.7% had MD, with the highest percentage (100%) in infants (diagnosis at ages 0-12 months), followed by those diagnosed at ages >1-18 years (40.3%) and >18-25 years (22.2%). The overall prevalence of MD in youth with diabetes in Lithuania was 3.5% (1.9% for GCK diabetes, 0.7% for HNF1A, 0.2% for HNF4A and ABCC8, 0.3% for KCNJ11, and 0.1% for INS). Furthermore, we identified likely pathogenic variants in 11 additional genes. Microvascular complications were present in 26% of those with MD. Prospective treatment change was successful in >50% of eligible candidates, with C-peptide >252 pmol/L emerging as the best prognostic factor.
Collapse
Affiliation(s)
- Ingrida Stankute
- Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rasa Verkauskiene
- Institute of Endocrinology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jean-Louis Blouin
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Genetic Medicine and Laboratory, University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Klee
- Pediatric Endocrine and Diabetes Unit, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Evalda Danyte
- Institute of Endocrinology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mirjam Dirlewanger
- Pediatric Endocrine and Diabetes Unit, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Federico Santoni
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Dale Marciulionyte
- Institute of Endocrinology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Edita Jasinskiene
- Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Giedre Mockeviciene
- Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Valerie M Schwitzgebel
- Pediatric Endocrine and Diabetes Unit, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Wu L, Wang CC. Genetic variants in promoter regions associated with type 2 diabetes mellitus: A large-scale meta-analysis and subgroup analysis. J Cell Biochem 2019; 120:13012-13025. [PMID: 30860284 DOI: 10.1002/jcb.28572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/20/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Promoter plays important roles in regulating transcription of genes. Association studies of genetic variants in promoter region with type 2 diabetes (T2D) risk have been reported, but most were limited to small number of individual genetic variants and insufficient sample sizes. In addition, the effect of study populations and demographic characteristics were often neglected. METHODS In this study, we conducted a large-scale meta-analysis and subgroup analysis of T2D associated genetic variants in the promoter regions to evaluate their contribution to the susceptibility in T2D. Alleles and genotypes from cohort or case-controlled studies were extracted for future study. Total 41 742 cases and 50 493 controls for three loci were involved in 70 articles. RESULTS Seventy case-controlled studies of three genes with 41 742 cases and 50 493 controls were included. Meta-analysis showed only rs266729 and rs17300539 of ADIPOQ, and rs1884613, rs2144908, and rs4810424 of HNF4A were significantly associated with T2D risk. Subgroup analysis showed that both rs266729 and rs17300539 of ADIPOQ were associated with the risk of T2D in Caucasian population, but only rs266729 of ADIPOQ in Asian population and rs2144908 in other population including multinational North American. For diagnostic criteria, rs266729 of ADIPOQ and rs2144908 of HNF4A were associated with T2D risk when WHO/ADA diagnostic criteria were used. For genotyping methods, both rs266729 of ADIPOQ and rs2144908 of HNF4A were associated with T2D risk when other than Taqman and Sequencing methods were used. CONCLUSIONS T2D was significantly associated with promoter rs266729, rs17300539, rs1884613, rs2144908, and rs4810424, and the association of T2D risk were affected by study population, diagnostic criteria, and genotype methods.
Collapse
Affiliation(s)
- Ling Wu
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong
| | - Chi Chiu Wang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
7
|
Witka BZ, Oktaviani DJ, Marcellino M, Barliana MI, Abdulah R. Type 2 Diabetes-Associated Genetic Polymorphisms as Potential Disease Predictors. Diabetes Metab Syndr Obes 2019; 12:2689-2706. [PMID: 31908510 PMCID: PMC6927489 DOI: 10.2147/dmso.s230061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
Diabetes is a major cause of mortality worldwide. There are several types of diabetes, with type 2 diabetes mellitus (T2DM) being the most common. Many factors, including environmental and genetic factors, are involved in the etiology of the disease. Numerous studies have reported the role of genetic polymorphisms in the initiation and development of T2DM. While genome-wide association studies have identified around more than 200 susceptibility loci, it remains unclear whether these loci are correlated with the pathophysiology of the disease. The present review aimed to elucidate the potential genetic mechanisms underlying T2DM. We found that some genetic polymorphisms were related to T2DM, either in the form of single-nucleotide polymorphisms or direct amino acid changes in proteins. These polymorphisms are potential predictors for the management of T2DM.
Collapse
Affiliation(s)
- Beska Z Witka
- Departement of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Dede J Oktaviani
- Departement of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Marcellino Marcellino
- Departement of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Melisa I Barliana
- Departement of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
- Correspondence: Melisa I Barliana Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM. 21, Jatinangor45363, Indonesia Email
| | - Rizky Abdulah
- Departement of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
8
|
The molecular functions of hepatocyte nuclear factors - In and beyond the liver. J Hepatol 2018; 68:1033-1048. [PMID: 29175243 DOI: 10.1016/j.jhep.2017.11.026] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022]
Abstract
The hepatocyte nuclear factors (HNFs) namely HNF1α/β, FOXA1/2/3, HNF4α/γ and ONECUT1/2 are expressed in a variety of tissues and organs, including the liver, pancreas and kidney. The spatial and temporal manner of HNF expression regulates embryonic development and subsequently the development of multiple tissues during adulthood. Though the HNFs were initially identified individually based on their roles in the liver, numerous studies have now revealed that the HNFs cross-regulate one another and exhibit synergistic relationships in the regulation of tissue development and function. The complex HNF transcriptional regulatory networks have largely been elucidated in rodent models, but less so in human biological systems. Several heterozygous mutations in these HNFs were found to cause diseases in humans but not in rodents, suggesting clear species-specific differences in mutational mechanisms that remain to be uncovered. In this review, we compare and contrast the expression patterns of the HNFs, the HNF cross-regulatory networks and how these liver-enriched transcription factors serve multiple functions in the liver and beyond, extending our focus to the pancreas and kidney. We also summarise the insights gained from both human and rodent studies of mutations in several HNFs that are known to lead to different disease conditions.
Collapse
|
9
|
Wang X, Li W, Ma L, Ping F, Liu J, Wu X, Mao J, Wang X, Nie M. Variants in MODY genes associated with maternal lipids profiles in second trimester of pregnancy. J Gene Med 2017; 19. [PMID: 28591938 DOI: 10.1002/jgm.2962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/15/2017] [Accepted: 06/03/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Xiaojing Wang
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Wei Li
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Liangkun Ma
- Department of Obstetrics and Gynecology; Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Fan Ping
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Juntao Liu
- Department of Obstetrics and Gynecology; Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Xueyan Wu
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Jiangfeng Mao
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Xi Wang
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Min Nie
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| |
Collapse
|
10
|
Granados-Silvestre MA, Ortiz-López MG, Granados J, Canizales-Quinteros S, Peñaloza-Espinosa RI, Lechuga C, Acuña-Alonzo V, Sánchez-Pozos K, Menjivar M. Susceptibility background for type 2 diabetes in eleven Mexican Indigenous populations: HNF4A gene analysis. Mol Genet Genomics 2017; 292:1209-1219. [PMID: 28688048 DOI: 10.1007/s00438-017-1340-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/20/2017] [Indexed: 12/30/2022]
Abstract
The genetic risk of developing type 2 diabetes (T2D) increases in parallel with the proportion of Native American ancestry. Mestizo Mexicans have a 70% Native Amerindian genetic background. The T130I polymorphism in the HNF4A gene has been associated with early-onset T2D in mestizo Mexicans. Thus, the aim of the present study was to evaluate the frequency and relationship of the T130I variant in the HNF4A gene with risk factors for developing T2D in eleven indigenous groups from Mexico. In two groups, all exons of the HNF4A gene were directly sequenced; in the remaining the T130I polymorphism was analyzed by restriction fragment length polymorphism. Ancestry informative markers were assessed to confirm the Amerindian component. An additional analysis of EHH was carried out. Interestingly, HNF4A gene screening revealed only the presence of the T130I polymorphism. The range frequency of the risk allele (T) in the indigenous groups was from 2.7 to 16%. Genotypic frequencies (T130I/I130I) were higher and significantly different from those of all of the populations included in the HapMap Project (P < 0.005). EHH scores suggest a positive selection for T130I polymorphism. Metabolic traits indicate a relationship between the T130I/I130I genotypes with high triglyceride concentrations in the indigenous groups (P < 0.005). These results strongly suggest that the high frequency of the T130I polymorphism and its biological relationship with dysfunction in lipid metabolism in Mexican indigenous groups is a risk factor for the developing of T2D in Mexicans.
Collapse
Affiliation(s)
- M A Granados-Silvestre
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Edif. F, 2o piso, Lab. 202, Av Universidad 3000, Circuito Interior S/N, Coyoacán, Cd. Universitaria, CP 04510, Mexico City, Mexico
| | - M G Ortiz-López
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Edif. F, 2o piso, Lab. 202, Av Universidad 3000, Circuito Interior S/N, Coyoacán, Cd. Universitaria, CP 04510, Mexico City, Mexico
- Laboratorio de Endocrinología Molecular, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Gustavo A. Madero, CP 07760, Mexico City, Mexico
| | - J Granados
- Departamento de Trasplantes, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez, Belisario Domínguez Secc 16, CP 14080, Mexico City, Mexico
| | - S Canizales-Quinteros
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Edif. F, 2o piso, Lab. 202, Av Universidad 3000, Circuito Interior S/N, Coyoacán, Cd. Universitaria, CP 04510, Mexico City, Mexico
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química Universidad Nacional Autónoma de México, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Tlalpan, Arenal Tepepan, CP 14610, Mexico City, Mexico
| | - Rosenda I Peñaloza-Espinosa
- Unidad de Investigación Médica en Genética Humana, Centro Médico Nacional, Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtémoc 300, Cuauhtémoc, CP 06720, Mexico City, Mexico
| | - C Lechuga
- Centro Cultural Universitario "Casa de las Diligencias", Universidad Autónoma del Estado de México, Av Benito Juárez Garcia Sur 114, Centro, CP 50000, Toluca, Mexico State, Mexico
| | - V Acuña-Alonzo
- Escuela Nacional de Antropología e Historia, Instituto Nacional de Antropología e Historia, Mexico City, Mexico
| | - K Sánchez-Pozos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Edif. F, 2o piso, Lab. 202, Av Universidad 3000, Circuito Interior S/N, Coyoacán, Cd. Universitaria, CP 04510, Mexico City, Mexico
| | - M Menjivar
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Edif. F, 2o piso, Lab. 202, Av Universidad 3000, Circuito Interior S/N, Coyoacán, Cd. Universitaria, CP 04510, Mexico City, Mexico.
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química Universidad Nacional Autónoma de México, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Tlalpan, Arenal Tepepan, CP 14610, Mexico City, Mexico.
| |
Collapse
|
11
|
Cheng M, Liu X, Yang M, Han L, Xu A, Huang Q. Computational analyses of type 2 diabetes-associated loci identified by genome-wide association studies. J Diabetes 2017; 9:362-377. [PMID: 27121852 DOI: 10.1111/1753-0407.12421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/31/2016] [Accepted: 04/23/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) of type 2 diabetes (T2D) have discovered a number of loci that contribute to susceptibility to the disease. Future challenges include elucidation of functional mechanisms through which these GWAS-identified loci modulate T2D disease risk. The aim of the present study was to comprehensively characterize T2D associated single nucleotide polymorphisms (SNPs) and genes through computational approaches. METHODS Computational biology approaches used in the present study included comparative genomic analyses and functional annotation using GWAS3D and RegulomeDB, investigation of the effects of T2D-associated SNPs on miRNA binding and protein phosphorylation, and gene ontology, pathway enrichment, protein-protein interaction (PPI) networks and functional module analysis of T2D-associated genes from previously published GWAS. RESULTS Computational analysis identified a number of T2D GWAS-associated SNPs that were located at protein binding sites, including CCCTC-binding factor (CTCF), E1A binding protein p300 (EP300), hepatocyte nuclear factor 4alpha (HNF4A), transcription factor 7 like 2 (TCF7L2), forkhead box A1 (FOXA1) and A2 (FOXA2), and potentially affected the binding of miRNAs and protein phosphorylation. Pathway enrichment analysis confirmed two well-known maturity onset diabetes of the young and T2D pathways, whereas PPI network analysis identified highly interconnected "hub" genes, such as TCF7L2, melatonin receptor 1B (MTNR1B), and solute carrier family 30 (zinc transporter), member 8 (SLC30A8), that created two tight subnetworks. CONCLUSIONS The results provide objectives and clues for future experimental studies and further insights into the molecular pathogenesis of T2D.
Collapse
Affiliation(s)
- Mengrong Cheng
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Xinhong Liu
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Mei Yang
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Lanchun Han
- College of Life Sciences, Central China Normal University, Wuhan, China
- Institute of Public Health and Molecular Medicine Analysis, Central China Normal University, Wuhan, China
| | - Aimin Xu
- Li Cha Chung Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qingyang Huang
- College of Life Sciences, Central China Normal University, Wuhan, China
- Institute of Public Health and Molecular Medicine Analysis, Central China Normal University, Wuhan, China
| |
Collapse
|
12
|
Laver TW, Colclough K, Shepherd M, Patel K, Houghton JAL, Dusatkova P, Pruhova S, Morris AD, Palmer CN, McCarthy MI, Ellard S, Hattersley AT, Weedon MN. The Common p.R114W HNF4A Mutation Causes a Distinct Clinical Subtype of Monogenic Diabetes. Diabetes 2016; 65:3212-7. [PMID: 27486234 PMCID: PMC5035684 DOI: 10.2337/db16-0628] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/26/2016] [Indexed: 12/21/2022]
Abstract
HNF4A mutations cause increased birth weight, transient neonatal hypoglycemia, and maturity onset diabetes of the young (MODY). The most frequently reported HNF4A mutation is p.R114W (previously p.R127W), but functional studies have shown inconsistent results; there is a lack of cosegregation in some pedigrees and an unexpectedly high frequency in public variant databases. We confirm that p.R114W is a pathogenic mutation with an odds ratio of 30.4 (95% CI 9.79-125, P = 2 × 10(-21)) for diabetes in our MODY cohort compared with control subjects. p.R114W heterozygotes did not have the increased birth weight of patients with other HNF4A mutations (3,476 g vs. 4,147 g, P = 0.0004), and fewer patients responded to sulfonylurea treatment (48% vs. 73%, P = 0.038). p.R114W has reduced penetrance; only 54% of heterozygotes developed diabetes by age 30 years compared with 71% for other HNF4A mutations. We redefine p.R114W as a pathogenic mutation that causes a distinct clinical subtype of HNF4A MODY with reduced penetrance, reduced sensitivity to sulfonylurea treatment, and no effect on birth weight. This has implications for diabetes treatment, management of pregnancy, and predictive testing of at-risk relatives. The increasing availability of large-scale sequence data is likely to reveal similar examples of rare, low-penetrance MODY mutations.
Collapse
Affiliation(s)
- Thomas W Laver
- Institute of Biomedical & Clinical Science, University of Exeter, Exeter, U.K
| | - Kevin Colclough
- Institute of Biomedical & Clinical Science, University of Exeter, Exeter, U.K. Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, U.K
| | - Maggie Shepherd
- Institute of Biomedical & Clinical Science, University of Exeter, Exeter, U.K
| | - Kashyap Patel
- Institute of Biomedical & Clinical Science, University of Exeter, Exeter, U.K
| | - Jayne A L Houghton
- Institute of Biomedical & Clinical Science, University of Exeter, Exeter, U.K. Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, U.K
| | - Petra Dusatkova
- Department of Paediatrics, Second Faculty of Medicine, Charles University
and University Hospital Motol, Prague, Czech Republic
| | - Stepanka Pruhova
- Department of Paediatrics, Second Faculty of Medicine, Charles University
and University Hospital Motol, Prague, Czech Republic
| | - Andrew D Morris
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, U.K
| | - Colin N Palmer
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, U.K
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K. Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, U.K. National Institute for Health Research Oxford Biomedical Research Centre, Churchill Hospital, Oxford, U.K
| | - Sian Ellard
- Institute of Biomedical & Clinical Science, University of Exeter, Exeter, U.K. Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, U.K
| | - Andrew T Hattersley
- Institute of Biomedical & Clinical Science, University of Exeter, Exeter, U.K
| | - Michael N Weedon
- Institute of Biomedical & Clinical Science, University of Exeter, Exeter, U.K.
| |
Collapse
|
13
|
Wu H, Deng X, Shi Y, Su Y, Wei J, Duan H. PGC-1α, glucose metabolism and type 2 diabetes mellitus. J Endocrinol 2016; 229:R99-R115. [PMID: 27094040 DOI: 10.1530/joe-16-0021] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/11/2016] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by glucose metabolic disturbance. A number of transcription factors and coactivators are involved in this process. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is an important transcription coactivator regulating cellular energy metabolism. Accumulating evidence has indicated that PGC-1α is involved in the regulation of T2DM. Therefore, a better understanding of the roles of PGC-1α may shed light on more efficient therapeutic strategies. Here, we review the most recent progress on PGC-1α and discuss its regulatory network in major glucose metabolic tissues such as the liver, skeletal muscle, pancreas and kidney. The significant associations between PGC-1α polymorphisms and T2DM are also discussed in this review.
Collapse
Affiliation(s)
- Haijiang Wu
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Xinna Deng
- Departments of Oncology & ImmunotherapyHebei General Hospital, Shijiazhuang, China
| | - Yonghong Shi
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Ye Su
- Mathew Mailing Centre for Translational Transplantation StudiesLawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada Departments of Medicine and PathologyUniversity of Western Ontario, London, Ontario, Canada
| | - Jinying Wei
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Huijun Duan
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| |
Collapse
|
14
|
Nair AK, Piaggi P, McLean NA, Kaur M, Kobes S, Knowler WC, Bogardus C, Hanson RL, Baier LJ. Assessment of established HDL-C loci for association with HDL-C levels and type 2 diabetes in Pima Indians. Diabetologia 2016; 59:481-91. [PMID: 26670163 PMCID: PMC4744100 DOI: 10.1007/s00125-015-3835-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/20/2015] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Epidemiological studies in Pima Indians identified elevated levels of HDL-cholesterol (HDL-C) as a protective factor against type 2 diabetes risk in women. We assessed whether HDL-C-associated single-nucleotide polymorphisms (SNPs) also associate with type 2 diabetes in female Pima Indians. METHODS Twenty-one SNPs in established HDL-C loci were initially analysed in 2,675 full-heritage Pima Indians. SNPs shown to associate with HDL-C (12 SNPs) were assessed for association with type 2 diabetes in 7,710 Pima Indians (55.6% female sex). The CETP locus provided the strongest evidence for association with HDL-C and was further interrogated by analysing tag SNPs. RESULTS Twelve of the 21 SNPs analysed had a significant association with HDL-C in Pima Indians; five SNPs representing four loci (CETP, DOCK6, PPP1R3B and ABCA1) reached genome-wide significance. Three SNPs, at CETP, KLF14 and HNF4A, associated with type 2 diabetes only in female participants with the HDL-C-lowering allele increasing diabetes risk (p values: 3.2 × 10(-4) to 7.7 × 10(-5)); the association remained significant even after adjustment for HDL-C. Additional analysis across CETP identified rs6499863 as having the strongest association with type 2 diabetes in female participants (p = 5.0 × 10(-6)) and this association remained independent of the HDL-C association. CONCLUSIONS/INTERPRETATION SNPs at the CETP, HNF4A and KLF14 locus are associated with HDL-C levels and type 2 diabetes (in female participants). However, since HNF4A and KLF14 are established loci for type 2 diabetes, it is unlikely that HDL-C solely mediates these associations.
Collapse
Affiliation(s)
- Anup K Nair
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445 North 5th Street, Phoenix, AZ, 85004, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445 North 5th Street, Phoenix, AZ, 85004, USA
| | - Nellie A McLean
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445 North 5th Street, Phoenix, AZ, 85004, USA
| | - Manmeet Kaur
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445 North 5th Street, Phoenix, AZ, 85004, USA
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445 North 5th Street, Phoenix, AZ, 85004, USA
| | - William C Knowler
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445 North 5th Street, Phoenix, AZ, 85004, USA
| | - Clifton Bogardus
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445 North 5th Street, Phoenix, AZ, 85004, USA
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445 North 5th Street, Phoenix, AZ, 85004, USA
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445 North 5th Street, Phoenix, AZ, 85004, USA.
| |
Collapse
|
15
|
Yang Y, Zhou TC, Liu YY, Li X, Wang WX, Irwin DM, Zhang YP. Identification of HNF4A Mutation p.T130I and HNF1A Mutations p.I27L and p.S487N in a Han Chinese Family with Early-Onset Maternally Inherited Type 2 Diabetes. J Diabetes Res 2016; 2016:3582616. [PMID: 26981542 PMCID: PMC4766352 DOI: 10.1155/2016/3582616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/17/2015] [Accepted: 01/14/2016] [Indexed: 12/03/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) is characterized by the onset of diabetes before the age of 25 years, positive family history, high genetic predisposition, monogenic mutations, and an autosomal dominant mode of inheritance. Here, we aimed to investigate the mutations and to characterize the phenotypes of a Han Chinese family with early-onset maternally inherited type 2 diabetes. Detailed clinical assessments and genetic screening for mutations in the HNF4α, GCK, HNF-1α, IPF-1, HNF1β, and NEUROD1 genes were carried out in this family. One HNF4A mutation (p.T130I) and two HNF1A polymorphisms (p.I27L and p.S487N) were identified. Mutation p.T130I was associated with both early-onset and late-onset diabetes and caused downregulated HNF4A expression, whereas HNF1A polymorphisms p.I27L and p.S487N were associated with the age of diagnosis of diabetes. We demonstrated that mutation p.T130I in HNF4A was pathogenic as were the predicted polymorphisms p.I27L and p.S487N in HNF1A by genetic and functional analysis. Our results show that mutations in HNF4A and HNF1A genes might account for this early-onset inherited type 2 diabetes.
Collapse
Affiliation(s)
- Ying Yang
- Department of Endocrinology, The Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Tai-Cheng Zhou
- Department of Endocrinology, The Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
- The Central Laboratory of the Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | - Yong-Ying Liu
- Department of Endocrinology, The Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | - Xiao Li
- The Central Laboratory of the Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | - Wen-Xue Wang
- Laboratory of Biochemistry and Molecular Biology, Yunnan University, Kunming, Yunnan 650091, China
| | - David M. Irwin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5S 2E8
| | - Ya-Ping Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
16
|
Ma R, Yang H, Li J, Yang X, Chen X, Hu Y, Wang Z, Xue L, Zhou W. Association of HNF4α gene polymorphisms with susceptibility to type 2 diabetes. Mol Med Rep 2016; 13:2241-6. [PMID: 26781905 DOI: 10.3892/mmr.2016.4780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 11/06/2015] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to explore the association between single nucleotide polymorphisms (SNPs) in the hepatocyte nuclear factor‑4α (HNF‑4α) gene and the incidence of type 2 diabetes in the Chinese Bai population in Dali city, China. The polymerase chain reaction‑restriction fragment length polymorphism method was used to analyze four SNPs (rs4810424, rs1884613, rs1884614 and rs2144908) in the HNF‑4α gene in 44 patients with type 2 diabetes and 87 healthy controls in Chinese Bai individuals. The haploid type was subsequently built to assess its association with the incidence of type 2 diabetes in the Bai population in Dali city. No significant differences were observed between the genotype and allele frequencies of the four SNPs in the HNF‑4α gene and type 2 diabetes mellitus (P>0.05). However, the frequency of haplotype, CCTA, built by rs4810424, rs1884613, rs1884614 and rs2144908 was significantly higher in the type 2 diabetes mellitus group compared with the control group (χ2=8.34, P=0.004). The four polymorphisms, rs4810424, rs1884613, rs1884614 and rs2144908, in the HNF‑4α gene were not the susceptible loci for type 2 diabetes in the Bai population of Dali city, however, the haplotype, CCTA, built from the four SNPs may increase the risk of type 2 diabetes in this population.
Collapse
Affiliation(s)
- Run Ma
- Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Hongying Yang
- Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jingfang Li
- Clinical Laboratory, Cancer Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Xu Yang
- Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Xiaohong Chen
- Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Ying Hu
- Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Zhou Wang
- Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Li Xue
- Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Wei Zhou
- Department of Ophthalmology, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| |
Collapse
|
17
|
Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet 2015; 47:1415-25. [PMID: 26551672 PMCID: PMC4666734 DOI: 10.1038/ng.3437] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 10/07/2015] [Indexed: 12/15/2022]
Abstract
We performed fine-mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in/near KCNQ1. “Credible sets” of variants most likely to drive each distinct signal mapped predominantly to non-coding sequence, implying that T2D association is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine-mapping implicated rs10830963 as driving T2D association. We confirmed that this T2D-risk allele increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D-risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
Collapse
|
18
|
Tientcheu LD, Maertzdorf J, Weiner J, Adetifa IM, Mollenkopf HJ, Sutherland JS, Donkor S, Kampmann B, Kaufmann SHE, Dockrell HM, Ota MO. Differential transcriptomic and metabolic profiles of M. africanum- and M. tuberculosis-infected patients after, but not before, drug treatment. Genes Immun 2015; 16:347-55. [PMID: 26043170 PMCID: PMC4515549 DOI: 10.1038/gene.2015.21] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/15/2015] [Accepted: 04/24/2015] [Indexed: 12/11/2022]
Abstract
The epidemiology of Mycobacterium tuberculosis (Mtb) and M. africanum (Maf) suggest differences in their virulence, but the host immune profile to better understand the pathogenesis of tuberculosis (TB) have not been studied. We compared the transcriptomic and metabolic profiles between Mtb and Maf-infected TB cases to identify host biomarkers associated with lineages-specific pathogenesis and response to anti-TB chemotherapy. Venous blood samples from Mtb- and Maf-infected patients obtained before and after anti-TB treatment were analysed for cell composition, gene expression and metabolic profiles. Prior to treatment, similar transcriptomic profiles were seen in Maf- and Mtb-infected patients. In contrast, post-treatment, over 1600 genes related to immune responses and metabolic diseases were differentially expressed between the groups. Notably, the upstream regulator hepatocyte nuclear factor 4-alpha (HNF4α), which regulated 15% of these genes, was markedly enriched. Serum metabolic profiles were similar in both group pre-treatment, but the decline in pro-inflammatory metabolites post-treatment were most pronounced in Mtb-infected patients. Together, the differences in both peripheral blood transcriptomic and serum metabolic profiles between Maf- and Mtb-infected patients observed over the treatment period, might be indicative of intrinsic host factors related to susceptibility to TB and/or differential efficacy of the standard anti-TB treatment on the two lineages.
Collapse
Affiliation(s)
- L D Tientcheu
- 1] Vaccinology Theme, Medical Research Council Unit, The Gambia, Banjul, The Gambia [2] Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK [3] Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - J Maertzdorf
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - J Weiner
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - I M Adetifa
- Disease Control and Elimination Theme, Medical Research Council Unit-The Gambia, Fajara, The Gambia
| | - H-J Mollenkopf
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - J S Sutherland
- Vaccinology Theme, Medical Research Council Unit, The Gambia, Banjul, The Gambia
| | - S Donkor
- Vaccinology Theme, Medical Research Council Unit, The Gambia, Banjul, The Gambia
| | - B Kampmann
- Vaccinology Theme, Medical Research Council Unit, The Gambia, Banjul, The Gambia
| | - S H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - H M Dockrell
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - M O Ota
- 1] Vaccinology Theme, Medical Research Council Unit, The Gambia, Banjul, The Gambia [2] World Health Organization Regional Office for Africa, Brazzaville, Congo
| |
Collapse
|
19
|
Early-onset type 2 diabetes mellitus is associated to HNF4A T130I polymorphism in families of central Spain. J Investig Med 2014; 62:968-74. [PMID: 25361053 DOI: 10.1097/jim.0000000000000114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Type 2 diabetes mellitus (type 2 DM) and maturity-onset diabetes of the young present some similar clinical and biochemical characteristics that make them difficult to differentiate. Currently, the polymorphism T130I (rs1800961) in the HNF4A (hepatocyte nuclear factor 4A) gene has been described as a risk factor to type 2 DM and shows an autosomal dominant inheritance pattern associated to β-cell function decrease. The aim of the present work was to characterize the phenotypic profile of the T130I carrier and noncarrier relatives included in 3 unrelated families. METHODS We studied GCK, HNF1A, and HNF4A genes by polymerase chain reaction and sequencing in 3 unrelated subjects from Valladolid, Spain, in which maturity-onset diabetes of the young was suspected. We collected genetic, clinical, and biochemical data from these subjects and their relatives in order to check the presence of the T130I polymorphism. RESULTS The heterozygous T130I mutation was the unique functional gene variation that could explain diabetes phenotype. We observed significant differences in glucose metabolism, lipid profile, and Homeostasis Model Assessment index when we compared T130I mutation carriers and noncarriers. Diabetes diagnosed in T130I mutation carriers was related to stressful situations in an earlier age and tightly associated with gestational diabetes. Fasting plasma glucose and HbA(1c) levels increased with age in all carriers (r = 0.69 and r = 0.66, P < 0.01), respectively. CONCLUSIONS Our study supports the T130I variant in HNF4A as a major susceptibility genotype associated with early-onset type 2 DM. Healthy carriers of this mutation require a stricter control in the population of central Spain.
Collapse
|
20
|
Prediabetes is associated with HNF-4 α P2 promoter polymorphism rs1884613: a case-control study in Han Chinese population and an updated meta-analysis. DISEASE MARKERS 2014; 2014:231736. [PMID: 25400315 PMCID: PMC4226192 DOI: 10.1155/2014/231736] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/11/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Controversy remains for the association between hepatocyte nuclear factor 4α (HNF-4α) P2 promoter polymorphism rs1884613 and type 2 diabetes (T2D). There was no association test of this polymorphism with prediabetes and T2D in the Chinese population. Moreover, an updated meta-analysis in various ethnic groups is needed to establish the contribution of rs1884613 to T2D risk. METHODS Using the Sequenom MassARRAY platform approach, we genotyped rs1884613 of HNF-4α in the P2 promoter region among 490 T2D patients, 471 individuals with prediabetes, and 575 healthy controls. All the individuals were recruited from 16 community health service centers in Nanshan district in Shenzhen province. Using STATA 11.0 software, meta-analysis was performed to summarize the overall contribution of rs1884613 to T2D risk. RESULTS Polymorphism rs1884613 was associated with genetic susceptibility to prediabetes in the whole samples (OR = 1.40, 95% CI = 1.16-1.68, P = 0.0001) and the female subgrouped samples (OR = 1.48, 95% CI = 1.14-1.92, P = 0.003) after adjusting for age and body mass index (BMI). In contrast, there was no association of rs1884613 with T2D in the whole samples and male in our case-control study and meta-analysis. CONCLUSIONS Our results suggest that rs1884613 contributes to susceptibility to prediabetes, whereas this polymorphism may not play an important role in the development of T2D.
Collapse
|
21
|
Ferguson JF, Matthews GJ, Townsend RR, Raj DS, Kanetsky PA, Budoff M, Fischer MJ, Rosas SE, Kanthety R, Rahman M, Master SR, Qasim A, Li M, Mehta NN, Shen H, Mitchell BD, O'Connell JR, Shuldiner AR, Ho WK, Young R, Rasheed A, Danesh J, He J, Kusek JW, Ojo AO, Flack J, Go AS, Gadegbeku CA, Wright JT, Saleheen D, Feldman HI, Rader DJ, Foulkes AS, Reilly MP. Candidate gene association study of coronary artery calcification in chronic kidney disease: findings from the CRIC study (Chronic Renal Insufficiency Cohort). J Am Coll Cardiol 2013; 62:789-98. [PMID: 23727086 DOI: 10.1016/j.jacc.2013.01.103] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/16/2013] [Accepted: 01/20/2013] [Indexed: 01/05/2023]
Abstract
OBJECTIVES This study sought to identify loci for coronary artery calcification (CAC) in patients with chronic kidney disease (CKD). BACKGROUND CKD is associated with increased CAC and subsequent coronary heart disease (CHD), but the mechanisms remain poorly defined. Genetic studies of CAC in CKD may provide a useful strategy for identifying novel pathways in CHD. METHODS We performed a candidate gene study (∼2,100 genes; ∼50,000 single nucleotide polymorphisms [SNPs]) of CAC within the CRIC (Chronic Renal Insufficiency Cohort) study (N = 1,509; 57% European, 43% African ancestry). SNPs with preliminary evidence of association with CAC in CRIC were examined for association with CAC in the PennCAC (Penn Coronary Artery Calcification) (N = 2,560) and AFCS (Amish Family Calcification Study) (N = 784) samples. SNPs with suggestive replication were further analyzed for association with myocardial infarction (MI) in the PROMIS (Pakistan Risk of Myocardial Infarction Study) (N = 14,885). RESULTS Of 268 SNPs reaching p < 5 × 10(-4) for CAC in CRIC, 28 SNPs in 23 loci had nominal support (p < 0.05 and in same direction) for CAC in PennCAC or AFCS. Besides chr9p21 and COL4A1, known loci for CHD, these included SNPs having reported genome-wide association study association with hypertension (e.g., ATP2B1). In PROMIS, 4 of the 23 suggestive CAC loci (chr9p21, COL4A1, ATP2B1, and ABCA4) had significant associations with MI, consistent with their direction of effect on CAC. CONCLUSIONS We identified several loci associated with CAC in CKD that also relate to MI in a general population sample. CKD imparts a high risk of CHD and may provide a useful setting for discovery of novel CHD genes and pathways.
Collapse
Affiliation(s)
- Jane F Ferguson
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Colclough K, Bellanne-Chantelot C, Saint-Martin C, Flanagan SE, Ellard S. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha and 4 alpha in maturity-onset diabetes of the young and hyperinsulinemic hypoglycemia. Hum Mutat 2013; 34:669-85. [PMID: 23348805 DOI: 10.1002/humu.22279] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 01/08/2013] [Indexed: 12/16/2022]
Abstract
Maturity-onset diabetes of the young (MODY) is a monogenic disorder characterized by autosomal dominant inheritance of young-onset (typically <25 years), noninsulin-dependent diabetes due to defective insulin secretion. MODY is both clinically and genetically heterogeneous with mutations in at least 10 genes. Mutations in the HNF1A gene encoding hepatocyte nuclear factor-1 alpha are the most common cause of MODY in most adult populations studied. The number of different pathogenic HNF1A mutations totals 414 in 1,247 families. Mutations in the HNF4A gene encoding hepatocyte nuclear factor-4 alpha are a rarer cause of MODY with 103 different mutations reported in 173 families to date. Sensitivity to treatment with sulfonylurea tablets is a feature of both HNF1A and HNF4A mutations. The HNF4A MODY phenotype has been expanded by the reports of macrosomia in ∼50% of babies, and more rarely, neonatal hyperinsulinemic hypoglycemia. The identification of an HNF1A or HNF4A gene mutation has important implications for clinical management in diabetes and pregnancy, but MODY is significantly underdiagnosed. Current research is focused on identifying biomarkers and developing probability models to identify those patients most likely to have MODY, until next generation sequencing technology enables cost-effective gene analysis for all patients with young onset diabetes.
Collapse
Affiliation(s)
- Kevin Colclough
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | | | | | | | | |
Collapse
|
23
|
Abstract
A new generation of genetic studies of diabetes is underway. Following from initial genome-wide association (GWA) studies, more recent approaches have used genotyping arrays of more densely spaced markers, imputation of ungenotyped variants based on improved reference haplotype panels, and sequencing of protein-coding exomes and whole genomes. Experimental and statistical advances make possible the identification of novel variants and loci contributing to trait variation and disease risk. Integration of sequence variants with functional analysis is critical to interpreting the consequences of identified variants. We briefly review these methods and technologies and describe how they will continue to expand our understanding of the genetic risk factors and underlying biology of diabetes.
Collapse
Affiliation(s)
- Karen L. Mohlke
- 5096 Genetic Medicine, 120 Mason Farm Drive, University of North Carolina, Chapel Hill, NC 27599-7264, USA, Tel: 919-966-2913, Fax: 919-843-0291
| | - Laura J. Scott
- M4134 SPH II, 1415 Washington Heights, University of Michigan, Ann Arbor, MI 48109-2029, USA, Tel: 734-763-0006, Fax: 734-763-2215
| |
Collapse
|
24
|
Affiliation(s)
- Stefan S Fajans
- Department of Internal Medicine, Universityof Michigan Health System, Ann Arbor, MI, USA.
| | | |
Collapse
|
25
|
Hellwege JN, Hicks PJ, Palmer ND, Ng MCY, Freedman BI, Bowden DW. Examination of Rare Variants in HNF4 α in European Americans with Type 2 Diabetes. ACTA ACUST UNITED AC 2011; 2. [PMID: 23227446 DOI: 10.4172/2155-6156.1000145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The hepatocyte nuclear factor 4-α (HNF4α) gene codes for a transcription factor which is responsible for regulating gene transcription in pancreatic beta cells, in addition to its primary role in hepatic gene regulation. Mutations in this gene can lead to maturity-onset diabetes of the young (MODY), an uncommon, autosomal dominant, non-insulin dependent form of diabetes. Mutations in HNF4α have been found in few individuals, and infrequently have they segregated completely with MODY in families. In addition, due to similarity of phenotypes, it is unclear what proportion of type 2 diabetes (T2DM) in the general population is due to MODY or HNF4α mutations specifically. In this study, 27 documented rare and common variants were genotyped in a European American population of 1270 T2DM cases and 1017 controls from review of databases and literature implicating HNF4α variants in MODY and T2DM. Seventeen variants were found to be monomorphic. Two cases and one control subject had one copy of a 6-bp P2 promoter deletion. The intron 1 variant (rs6103716; MAF = 0.31) was not significantly associated with disease status (p>0.8) and the missense variant Thr130Ile (rs1800961; MAF = 0.027) was also not significantly different between cases and controls (p>0.2), but showed a trend consistent with association with T2DM. Four variants were found to be rare as heterozygotes in small numbers of subjects. Since many variants were infrequent, a pooled chi-squared analysis of rare variants was used to assess the overall burden of variants between cases and controls. This analysis revealed no significant difference (P=0.22). We conclude there is little evidence to suggest that HNF4α variants contribute significantly to risk of T2DM in the general population, but a modest contribution cannot be excluded. In addition, the observation of some mutations in controls suggests they are not highly penetrant MODY-causing variants.
Collapse
Affiliation(s)
- Jacklyn N Hellwege
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA ; Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA ; Program in Molecular Genetics and Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | | | |
Collapse
|