1
|
Liu J, Xu S, Gao B, Yuan M, Zhong L, Guo R. Protective effect of SERCA2a-SUMOylation by SUMO-1 on diabetes-induced atherosclerosis and aortic vascular injury. Mol Cell Biochem 2025; 480:279-293. [PMID: 38438822 DOI: 10.1007/s11010-024-04953-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/26/2024] [Indexed: 03/06/2024]
Abstract
Diabetes is a major risk factor for cardiovascular disease. However, the exact mechanism by which diabetes contributes to vascular damage is not fully understood. The aim of this study was to investigate the role of SUMO-1 mediated SERCA2a SUMOylation in the development of atherosclerotic vascular injury associated with diabetes mellitus. ApoE-/- mice were treated with streptozotocin (STZ) injection combined with high-fat feeding to simulate diabetic atherosclerosis and vascular injury. Human aortic vascular smooth muscle cells (HAVSMCs) were treated with high glucose (HG, 33.3 mM) and palmitic acid (PA, 200 µM) for 24 h to mimic a model of diabetes-induced vascular injury in vitro. Aortic vascular function, phenotypic conversion, migration, proliferation, intracellular Ca2+ concentration, the levels of small ubiquitin-like modifier type 1 (SUMO1), SERCA2a and SUMOylated SERCA2a were detected. Diabetes-induced atherosclerotic mice presented obvious atherosclerotic plaques and vascular injury, companied by significantly lower levels of SUMO1 and SERCA2a in aorta. HG and PA treatment in HAVSMCs reduced the expressions of SUMO1, SERCA2a and SUMOylated SERCA2a, facilitated the HAVSMCs phenotypic transformation, proliferation and migration, attenuated the Ca2+ transport, and increased the resting intracellular Ca2+ concentration. We also confirmed that SUMO1 directly bound to SERCA2a in HAVSMCs. Overexpression of SUMO1 restored the function and phenotypic contractile ability of HAVSMCs by upregulating SERCA2a SUMOylation, thereby alleviating HG and PA-induced vascular injury. These observations suggest an essential role of SUMO1 to protect diabetes-induced atherosclerosis and aortic vascular injury by the regulation of SERCA2a-SUMOylation and calcium homeostasis.
Collapse
MESH Headings
- Animals
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- SUMO-1 Protein/metabolism
- Sumoylation
- Mice
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/pathology
- Humans
- Aorta/pathology
- Aorta/metabolism
- Male
- Vascular System Injuries/metabolism
- Vascular System Injuries/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice, Knockout, ApoE
Collapse
Affiliation(s)
- Jinlin Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Shifang Xu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Bin Gao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Meng Yuan
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Li Zhong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China.
| |
Collapse
|
2
|
Wetzel C, Gallenstein N, Peters V, Fleming T, Marinovic I, Bodenschatz A, Du Z, Küper K, Dallanoce C, Aldini G, Schmoch T, Brenner T, Weigand MA, Zarogiannis SG, Schmitt CP, Bartosova M. Histidine containing dipeptides protect epithelial and endothelial cell barriers from methylglyoxal induced injury. Sci Rep 2024; 14:26640. [PMID: 39496731 PMCID: PMC11535046 DOI: 10.1038/s41598-024-77891-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
Integrity of epithelial and endothelial cell barriers is of critical importance for health, barrier disruption is a hallmark of numerous diseases, of which many are driven by carbonyl stressors such as methylglyoxal (MG). Carnosine and anserine exert some MG-quenching activity, but the impact of these and of other histidine containing dipeptides on cell barrier integrity has not been explored in detail. In human proximal tubular (HK-2) and umbilical vein endothelial (HUVEC) cells, exposure to 200 µM MG decreased transepithelial resistance (TER), i.e. increased ionic permeability and permeability for 4-, 10- and 70-kDa dextran, membrane zonula occludens (ZO-1) abundance was reduced, methylglyoxal 5-hydro-5-methylimidazolones (MG-H1) formation was increased. Carnosine, balenine (ß-ala-1methyl-histidine) and anserine (ß-ala-3-methyl-histidine) ameliorated MG-induced reduction of TER in both cell types. Incubation with histidine, 1-/3-methylhistidine, but not with ß-alanine alone, restored TER, although to a lower extent than the corresponding dipeptides. Carnosine and anserine normalized transport and membrane ZO-1 abundance. Aminoguanidine, a well-described MG-quencher, did not mitigate MG-induced loss of TER. Our results show that the effects of the dipeptides on epithelial and endothelial resistance and junction function depend on the methylation status of histidine and are not exclusively explained by their quenching activity.
Collapse
Affiliation(s)
- Charlotte Wetzel
- Centre for Paediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Nadia Gallenstein
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Verena Peters
- Centre for Paediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas Fleming
- Internal Medicine I and Clinical Chemistry, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Iva Marinovic
- Centre for Paediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Alea Bodenschatz
- Centre for Paediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Zhiwei Du
- Centre for Paediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Katharina Küper
- Centre for Paediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Clelia Dallanoce
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Milan, Italy
| | - Thomas Schmoch
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Department of Anesthesiology and Intensive Care Medicine, Hôpitaux Robert Schuman - Hôpital Kirchberg, Luxembourg City, Luxembourg
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thorsten Brenner
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Markus Alexander Weigand
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Sotirios G Zarogiannis
- Centre for Paediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Claus Peter Schmitt
- Centre for Paediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Maria Bartosova
- Centre for Paediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Kumar A, Suryakumar G, Singh SN, Rathor R. A comprehensive review on physiological and biological activities of carnosine: turning from preclinical facts to potential clinical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03427-7. [PMID: 39302423 DOI: 10.1007/s00210-024-03427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
Carnosine, a compound with plethora of benefits, was originally discovered in 1900 and is formed by the amide linkage of β-alanine and L-histidine. Carnosine production is limited by β-alanine whereas the imidazole ring of histidine moiety makes it a suitable buffer in physiological pH range. It is reported to be found in the skeletal muscle, brain, heart, and gastrointestinal tissues of humans. This review focuses on the biological properties of carnosine including pH buffering ability, antioxidant activity, anti-inflammatory activity, anti-aging effect, enhancement of cognitive function, and immunomodulation. The relevance of carnosine in muscle function attributing to enhancement of physical performance has also been highlighted. Studies spanning several years have proved the preclinical effectiveness of carnosine in treating diverse pathological diseases. A complete summary of all key activities of carnosine from in vivo investigations and clinical trials has been compiled. Considering its numerous advantages, carnosine may be a promising option for the development of a nutraceutical.
Collapse
Affiliation(s)
- Akshita Kumar
- Soldier Performance Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Geetha Suryakumar
- Soldier Performance Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Som Nath Singh
- Soldier Performance Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Richa Rathor
- Soldier Performance Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
4
|
Iacobini C, Vitale M, Sentinelli F, Haxhi J, Pugliese G, Menini S. Renal Expression and Localization of the Receptor for (Pro)renin and Its Ligands in Rodent Models of Diabetes, Metabolic Syndrome, and Age-Dependent Focal and Segmental Glomerulosclerosis. Int J Mol Sci 2024; 25:2217. [PMID: 38396894 PMCID: PMC10888662 DOI: 10.3390/ijms25042217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/27/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The (pro)renin receptor ((P)RR), a versatile protein found in various organs, including the kidney, is implicated in cardiometabolic conditions like diabetes, hypertension, and dyslipidemia, potentially contributing to organ damage. Importantly, changes in (pro)renin/(P)RR system localization during renal injury, a critical information base, remain unexplored. This study investigates the expression and topographic localization of the full length (FL)-(P)RR, its ligands (renin and prorenin), and its target cyclooxygenase-2 and found that they are upregulated in three distinct animal models of renal injury. The protein expression of these targets, initially confined to specific tubular renal cell types in control animals, increases in renal injury models, extending to glomerular cells. (P)RR gene expression correlates with protein changes in a genetic model of focal and segmental glomerulosclerosis. However, in diabetic and high-fat-fed mice, (P)RR mRNA levels contradict FL-(P)RR immunoreactivity. Research on diabetic mice kidneys and human podocytes exposed to diabetic glucose levels suggests that this inconsistency may result from disrupted intracellular (P)RR processing, likely due to increased Munc18-1 interacting protein 3. It follows that changes in FL-(P)RR cellular content mechanisms are specific to renal disease etiology, emphasizing the need for consideration in future studies exploring this receptor's involvement in renal damage of different origins.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (J.H.); (S.M.)
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (J.H.); (S.M.)
| | - Federica Sentinelli
- Department of Public Health and Infectious Diseases, “La Sapienza” University, 00189 Rome, Italy;
| | - Jonida Haxhi
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (J.H.); (S.M.)
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (J.H.); (S.M.)
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (J.H.); (S.M.)
| |
Collapse
|
5
|
Saadati S, Cameron J, Menon K, Hodge A, Lu ZX, de Courten M, Feehan J, de Courten B. Carnosine Did Not Affect Vascular and Metabolic Outcomes in Patients with Prediabetes and Type 2 Diabetes: A 14-Week Randomized Controlled Trial. Nutrients 2023; 15:4835. [PMID: 38004228 PMCID: PMC10674211 DOI: 10.3390/nu15224835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of morbidity and mortality in patients with prediabetes and type 2 diabetes mellitus (T2DM). Carnosine has been suggested as a potential approach to reduce ASCVD risk factors. However, there is a paucity of human data. Hence, we performed a 14-week double-blind randomized placebo-controlled trial to determine whether carnosine compared with placebo improves vascular and metabolic outcomes in individuals with prediabetes and T2DM. In total, 49 patients with prediabetes and T2DM with good glycemic control were randomly assigned either to receive 2 g/day carnosine or matching placebo. We evaluated endothelial dysfunction, arterial stiffness, lipid parameters, blood pressure, heart rate, hepatic and renal outcomes before and after the intervention. Carnosine supplementation had no effect on heart rate, peripheral and central blood pressure, endothelial function (logarithm of reactive hyperemia (LnRHI)), arterial stiffness (carotid femoral pulse wave velocity (CF PWV)), lipid parameters, liver fibroscan indicators, liver transient elastography, liver function tests, and renal outcomes compared to placebo. In conclusion, carnosine supplementation did not improve cardiovascular and cardiometabolic risk factors in adults with prediabetes and T2DM with good glycemic control. Therefore, it is improbable that carnosine supplementation would be a viable approach to mitigating the ASCVD risk in these populations. The trial was registered at clinicaltrials.gov (NCT02917928).
Collapse
Affiliation(s)
- Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (S.S.); (K.M.); (A.H.); (Z.X.L.)
| | - James Cameron
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (S.S.); (K.M.); (A.H.); (Z.X.L.)
- Monash Cardiovascular Research Centre, Monash Heart, Monash Health, Clayton, VIC 3168, Australia
| | - Kirthi Menon
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (S.S.); (K.M.); (A.H.); (Z.X.L.)
| | - Alexander Hodge
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (S.S.); (K.M.); (A.H.); (Z.X.L.)
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Zhong X. Lu
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (S.S.); (K.M.); (A.H.); (Z.X.L.)
- Monash Health Pathology, Clayton, VIC 3168, Australia
| | - Maximilian de Courten
- Mitchell Institute for Health and Education Policy, Victoria University, Melbourne, VIC 3011, Australia;
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (S.S.); (K.M.); (A.H.); (Z.X.L.)
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
6
|
Abstract
Epidemiologic studies detected an inverse relationship between HDL (high-density lipoprotein) cholesterol (HDL-C) levels and atherosclerotic cardiovascular disease (ASCVD), identifying HDL-C as a major risk factor for ASCVD and suggesting atheroprotective functions of HDL. However, the role of HDL-C as a mediator of risk for ASCVD has been called into question by the failure of HDL-C-raising drugs to reduce cardiovascular events in clinical trials. Progress in understanding the heterogeneous nature of HDL particles in terms of their protein, lipid, and small RNA composition has contributed to the realization that HDL-C levels do not necessarily reflect HDL function. The most examined atheroprotective function of HDL is reverse cholesterol transport, whereby HDL removes cholesterol from plaque macrophage foam cells and delivers it to the liver for processing and excretion into bile. Indeed, in several studies, HDL has shown inverse associations between HDL cholesterol efflux capacity and ASCVD in humans. Inflammation plays a key role in the pathogenesis of atherosclerosis and vulnerable plaque formation, and a fundamental function of HDL is suppression of inflammatory signaling in macrophages and other cells. Oxidation is also a critical process to ASCVD in promoting atherogenic oxidative modifications of LDL (low-density lipoprotein) and cellular inflammation. HDL and its proteins including apoAI (apolipoprotein AI) and PON1 (paraoxonase 1) prevent cellular oxidative stress and LDL modifications. Importantly, HDL in humans with ASCVD is oxidatively modified rendering HDL dysfunctional and proinflammatory. Modification of HDL with reactive carbonyl species, such as malondialdehyde and isolevuglandins, dramatically impairs the antiatherogenic functions of HDL. Importantly, treatment of murine models of atherosclerosis with scavengers of reactive dicarbonyls improves HDL function and reduces systemic inflammation, atherosclerosis development, and features of plaque instability. Here, we discuss the HDL antiatherogenic functions in relation to oxidative modifications and the potential of reactive dicarbonyl scavengers as a therapeutic approach for ASCVD.
Collapse
Affiliation(s)
- MacRae F. Linton
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
- 2. Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Patricia G. Yancey
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Huan Tao
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Sean S. Davies
- 2. Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
7
|
Caruso G, Di Pietro L, Cardaci V, Maugeri S, Caraci F. The therapeutic potential of carnosine: Focus on cellular and molecular mechanisms. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023. [DOI: 10.1016/j.crphar.2023.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
8
|
Iacobini C, Vitale M, Haxhi J, Pesce C, Pugliese G, Menini S. Mutual Regulation between Redox and Hypoxia-Inducible Factors in Cardiovascular and Renal Complications of Diabetes. Antioxidants (Basel) 2022; 11:2183. [PMID: 36358555 PMCID: PMC9686572 DOI: 10.3390/antiox11112183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/30/2023] Open
Abstract
Oxidative stress and hypoxia-inducible factors (HIFs) have been implicated in the pathogenesis of diabetic cardiovascular and renal diseases. Reactive oxygen species (ROS) mediate physiological and pathophysiological processes, being involved in the modulation of cell signaling, differentiation, and survival, but also in cyto- and genotoxic damage. As master regulators of glycolytic metabolism and oxygen homeostasis, HIFs have been largely studied for their role in cell survival in hypoxic conditions. However, in addition to hypoxia, other stimuli can regulate HIFs stability and transcriptional activity, even in normoxic conditions. Among these, a regulatory role of ROS and their byproducts on HIFs, particularly the HIF-1α isoform, has received growing attention in recent years. On the other hand, HIF-1α and HIF-2α exert mutually antagonistic effects on oxidative damage. In diabetes, redox-mediated HIF-1α deregulation contributes to the onset and progression of cardiovascular and renal complications, and recent findings suggest that deranged HIF signaling induced by hyperglycemia and other cellular stressors associated with metabolic disorders may cause mitochondrial dysfunction, oxidative stress, and inflammation. Understanding the mechanisms of mutual regulation between HIFs and redox factors and the specific contribution of the two main isoforms of HIF-α is fundamental to identify new therapeutic targets for vascular complications of diabetes.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Jonida Haxhi
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Carlo Pesce
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal Infantile Sciences (DINOGMI), Department of Excellence of MIUR, University of Genoa Medical School, 16132 Genoa, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| |
Collapse
|
9
|
Feehan J, Hariharan R, Buckenham T, Handley C, Bhatnagar A, Baba SP, de Courten B. Carnosine as a potential therapeutic for the management of peripheral vascular disease. Nutr Metab Cardiovasc Dis 2022; 32:2289-2296. [PMID: 35973888 DOI: 10.1016/j.numecd.2022.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/05/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
AIMS To evaluate the potential role of carnosine in the management of peripheral vascular disease. DATA SYNTHESIS Peripheral vascular disease is growing in its burden and impact; however it is currently under researched, and there are a lack of strong, non-invasive therapeutic options for the clinicians. Carnosine is a dipeptide stored particularly in muscle and brain tissue, which exhibits a wide range of physiological activities, which may be beneficial as an adjunct treatment for peripheral vascular disease. Carnosine's strong anti-inflammatory, antioxidant and antiglycating actions may aid in the prevention of plaque formation, through protective actions on the vascular endothelium, and the inhibition of foam cells. Carnosine may also improve angiogenesis, exercise performance and vasodilatory response, while protecting from ischemic tissue injury. CONCLUSIONS Carnosine may have a role as an adjunct treatment for peripheral vascular disease alongside typical exercise and surgical interventions, and may be used in high risk individuals to aid in the prevention of atherogenesis. CLINICAL RECOMMENDATION This review identifies a beneficial role for carnosine supplementation in the management of patients with peripheral vascular disease, in conjunction with exercise and revascularization. Carnosine as a supplement is safe, and associated with a host of beneficial effects in peripheral vascular disease and its key risk factors.
Collapse
Affiliation(s)
- Jack Feehan
- Institute for Health and Sport, Victoria University, Footscray, VIC, Australia
| | - Rohit Hariharan
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton VIC, Australia
| | - Timothy Buckenham
- Christchurch Clinical School of Medicine University of Otago and Christchurch Hospital, Christchurch, New Zealand
| | - Charles Handley
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton VIC, Australia
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, Christina Lee Brown Environment Institute, University of Louisville, Louisville, KY, USA
| | - Shahid Pervez Baba
- Diabetes and Obesity Center, Christina Lee Brown Environment Institute, University of Louisville, Louisville, KY, USA
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton VIC, Australia; School of Health and Biomedical Sciences, RMIT, Bundoora.
| |
Collapse
|
10
|
Shi L, Li Y, Zhou X, Guo Y, Han Q, Xia W, Yan C, Zhang L, Zhang W. Isopropyl-naphthylamide-hydrazine as a novel fluorescent reagent for ultrasensitive determination of carbonyl species on UPLC. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Food-Related Carbonyl Stress in Cardiometabolic and Cancer Risk Linked to Unhealthy Modern Diet. Nutrients 2022; 14:nu14051061. [PMID: 35268036 PMCID: PMC8912422 DOI: 10.3390/nu14051061] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Carbonyl stress is a condition characterized by an increase in the steady-state levels of reactive carbonyl species (RCS) that leads to accumulation of their irreversible covalent adducts with biological molecules. RCS are generated by the oxidative cleavage and cellular metabolism of lipids and sugars. In addition to causing damage directly, the RCS adducts, advanced glycation end-products (AGEs) and advanced lipoxidation end-products (ALEs), cause additional harm by eliciting chronic inflammation through receptor-mediated mechanisms. Hyperglycemia- and dyslipidemia-induced carbonyl stress plays a role in diabetic cardiovascular complications and diabetes-related cancer risk. Moreover, the increased dietary exposure to AGEs/ALEs could mediate the impact of the modern, highly processed diet on cardiometabolic and cancer risk. Finally, the transient carbonyl stress resulting from supraphysiological postprandial spikes in blood glucose and lipid levels may play a role in acute proinflammatory and proatherogenic changes occurring after a calorie dense meal. These findings underline the potential importance of carbonyl stress as a mediator of the cardiometabolic and cancer risk linked to today’s unhealthy diet. In this review, current knowledge in this field is discussed along with future research courses to offer new insights and open new avenues for therapeutic interventions to prevent diet-associated cardiometabolic disorders and cancer.
Collapse
|
12
|
Wang C, Chen J, Wang P, Qing S, Li W, Lu J. Endogenous Protective Factors and Potential Therapeutic Agents for Diabetes-Associated Atherosclerosis. Front Endocrinol (Lausanne) 2022; 13:821028. [PMID: 35557850 PMCID: PMC9086429 DOI: 10.3389/fendo.2022.821028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
The complications of macrovascular atherosclerosis are the leading cause of disability and mortality in patients with diabetes. It is generally believed that the pathogenesis of diabetic vascular complications is initiated by the imbalance between injury and endogenous protective factors. Multiple endogenous protective factors secreted by endothelium, liver, skeletal muscle and other tissues are recognized of their importance in combating injury factors and maintaining the homeostasis of vasculatures in diabetes. Among them, glucagon-like peptide-1 based drugs were clinically proven to be effective and recommended as the first-line medicine for the treatment of type 2 diabetic patients with high risks or established arteriosclerotic cardiovascular disease (CVD). Some molecules such as irisin and lipoxins have recently been perceived as new protective factors on diabetic atherosclerosis, while the protective role of HDL has been reinterpreted since the failure of several clinical trials to raise HDL therapy on cardiovascular events. The current review aims to summarize systemic endogenous protective factors for diabetes-associated atherosclerosis and discuss their mechanisms and potential therapeutic strategy or their analogues. In particular, we focus on the existing barriers or obstacles that need to be overcome in developing new therapeutic approaches for macrovascular complications of diabetes.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jin Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Pin Wang
- Department of Pharmacology, Naval Medical University, Shanghai, China
| | - Shengli Qing
- Department of Pharmacology, Naval Medical University, Shanghai, China
| | - Wenwen Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- *Correspondence: Jin Lu, ; Wenwen Li,
| | - Jin Lu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- *Correspondence: Jin Lu, ; Wenwen Li,
| |
Collapse
|
13
|
Normalizing HIF-1α Signaling Improves Cellular Glucose Metabolism and Blocks the Pathological Pathways of Hyperglycemic Damage. Biomedicines 2021; 9:biomedicines9091139. [PMID: 34572324 PMCID: PMC8471680 DOI: 10.3390/biomedicines9091139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022] Open
Abstract
Intracellular metabolism of excess glucose induces mitochondrial dysfunction and diversion of glycolytic intermediates into branch pathways, leading to cell injury and inflammation. Hyperglycemia-driven overproduction of mitochondrial superoxide was thought to be the initiator of these biochemical changes, but accumulating evidence indicates that mitochondrial superoxide generation is dispensable for diabetic complications development. Here we tested the hypothesis that hypoxia inducible factor (HIF)-1α and related bioenergetic changes (Warburg effect) play an initiating role in glucotoxicity. By using human endothelial cells and macrophages, we demonstrate that high glucose (HG) induces HIF-1α activity and a switch from oxidative metabolism to glycolysis and its principal branches. HIF1-α silencing, the carbonyl-trapping and anti-glycating agent ʟ-carnosine, and the glyoxalase-1 inducer trans-resveratrol reversed HG-induced bioenergetics/biochemical changes and endothelial-monocyte cell inflammation, pointing to methylglyoxal (MGO) as the non-hypoxic stimulus for HIF1-α induction. Consistently, MGO mimicked the effects of HG on HIF-1α induction and was able to induce a switch from oxidative metabolism to glycolysis. Mechanistically, methylglyoxal causes HIF1-α stabilization by inhibiting prolyl 4-hydroxylase domain 2 enzyme activity through post-translational glycation. These findings introduce a paradigm shift in the pathogenesis and prevention of diabetic complications by identifying HIF-1α as essential mediator of glucotoxicity, targetable with carbonyl-trapping agents and glyoxalase-1 inducers.
Collapse
|
14
|
Everaert I, Van der Stede T, Stautemas J, Hanssens M, van Aanhold C, Baelde H, Vanhaecke L, Derave W. Oral anserine supplementation does not attenuate type-2 diabetes or diabetic nephropathy in BTBR ob/ob mice. Amino Acids 2021; 53:1269-1277. [PMID: 34264387 DOI: 10.1007/s00726-021-03033-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/28/2021] [Indexed: 11/27/2022]
Abstract
Carnosine, a naturally occurring dipeptide present in an omnivorous diet, has been shown to ameliorate the development of metabolic syndrome, type-2 diabetes (T2D) and early- and advanced-stage diabetic nephropathy in different rodent models. Anserine, its methylated analogue, is more bio-available in humans upon supplementation without affecting its functionality. In this work, we investigated the effect of oral supplementation with anserine or carnosine on circulating and tissue anserine and carnosine levels and on the development of T2D and diabetic nephropathy in BTBR ob/ob mice. BTBR ob/ob mice were either supplemented with carnosine or anserine in drinking water (4 mM) for 18 weeks and compared with non-supplemented BTBR ob/ob and wild-type (WT) mice. Circulating and kidney, but not muscle, carnosine, and anserine levels were enhanced by supplementation with the respective dipeptides in ob/ob mice compared to non-treated ob/ob mice. The evolution of fasting blood glucose, insulin, fructosamine, triglycerides, and cholesterol was not affected by the supplementation regimens. The albumin/creatine ratio, glomerular hypertrophy, and mesangial matrix expansion were aggravated in ob/ob vs. WT mice, but not alleviated by supplementation. To conclude, long-term supplementation with anserine elevates circulating and kidney anserine levels in diabetic mice. However, anserine supplementation was not able to attenuate the development of T2D or diabetic nephropathy in BTBR ob/ob mice. Further research will have to elucidate whether anserine can attenuate milder forms of T2D or metabolic syndrome.
Collapse
Affiliation(s)
- Inge Everaert
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium.
| | - Thibaux Van der Stede
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
| | - Jan Stautemas
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
| | - Maxime Hanssens
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
| | - Cleo van Aanhold
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Ghent University, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
| |
Collapse
|
15
|
Cardiologist's approach to the diabetic patient: No further delay for a paradigm shift. Int J Cardiol 2021; 338:248-257. [PMID: 34058289 DOI: 10.1016/j.ijcard.2021.05.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 12/25/2022]
Abstract
Type 2 diabetes mellitus (DM) is constantly increasing worldwide and its most critical determinant of morbidity and mortality is still represented by cardiovascular (CV) complications. For years, cardiologists' approach to diabetic patients has been focused on risk factors optimization, with positive results. However, the management of DM per se was never truly considered in order to obtain prevention from major CV events, because medications used for glycemic control were not expected to gain CV benefit. Early trials concerning intensive versus conventional glycemia control did not prove useful in reducing the number of CV events. The introduction of new molecules led to a game change in DM treatment, as some new glucose-lowering drugs (GLDs), such as sodium-glucose linked transporter-2 inhibitors (SGLT-2i) and glucagon-like peptide 1 receptor agonists (GLP-1 RA), showed not only to be safe but also to ensure CV benefit. A combination of anti-atherogenic effects and hemodynamic improvements are likely explanations of the observed reduction of CV events and mortality. These evidence opened a completely new era in the field of GLDs and of DM treatment. Nonetheless, the presence of residual cardiovascular risk despite optimal medical therapy remains an issue and an aggressive strategy against multiple risk factors is suggested. A paradigm shift toward a new approach to DM management should be made with no further delay with the use of medications that may prevent CV events in an integrated strategy of CV risk reduction.
Collapse
|
16
|
Iacobini C, Vitale M, Pesce C, Pugliese G, Menini S. Diabetic Complications and Oxidative Stress: A 20-Year Voyage Back in Time and Back to the Future. Antioxidants (Basel) 2021; 10:727. [PMID: 34063078 PMCID: PMC8147954 DOI: 10.3390/antiox10050727] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Twenty years have passed since Brownlee and colleagues proposed a single unifying mechanism for diabetic complications, introducing a turning point in this field of research. For the first time, reactive oxygen species (ROS) were identified as the causal link between hyperglycemia and four seemingly independent pathways that are involved in the pathogenesis of diabetes-associated vascular disease. Before and after this milestone in diabetes research, hundreds of articles describe a role for ROS, but the failure of clinical trials to demonstrate antioxidant benefits and some recent experimental studies showing that ROS are dispensable for the pathogenesis of diabetic complications call for time to reflect. This twenty-year journey focuses on the most relevant literature regarding the main sources of ROS generation in diabetes and their role in the pathogenesis of cell dysfunction and diabetic complications. To identify future research directions, this review discusses the evidence in favor and against oxidative stress as an initial event in the cellular biochemical abnormalities induced by hyperglycemia. It also explores possible alternative mechanisms, including carbonyl stress and the Warburg effect, linking glucose and lipid excess, mitochondrial dysfunction, and the activation of alternative pathways of glucose metabolism leading to vascular cell injury and inflammation.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Carlo Pesce
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal Infantile Sciences (DINOGMI), Department of Excellence of MIUR, University of Genoa Medical School, 16132 Genoa, Italy;
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| |
Collapse
|
17
|
Masuoka N, Lei C, Li H, Hisatsune T. Influence of Imidazole-Dipeptides on Cognitive Status and Preservation in Elders: A Narrative Review. Nutrients 2021; 13:nu13020397. [PMID: 33513893 PMCID: PMC7912684 DOI: 10.3390/nu13020397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 01/02/2023] Open
Abstract
The worldwide increase in the number of patients with dementia is becoming a growing problem, while Alzheimer’s disease (AD), a primary neurodegenerative disorder, accounts for more than 70% of all dementia cases. Research on the prevention or reduction of AD occurrence through food ingredients has been widely conducted. In particular, histidine-containing dipeptides, also known as imidazole dipeptides derived from meat, have received much attention. Imidazole dipeptides are abundant in meats such as poultry, fish, and pork. As evidenced by data from recent human intervention trials conducted worldwide, daily supplementation of carnosine and anserine, which are both imidazole dipeptides, can improve memory loss in the elderly and reduce the risk of developing AD. This article also summarizes the latest researches on the biochemical properties of imidazole dipeptides and their effects on animal models associated with age-related cognitive decline. In this review, we focus on the results of human intervention studies using supplements of poultry-derived imidazole dipeptides, including anserine and carnosine, affecting the preservation of cognitive function in the elderly, and discuss how imidazole dipeptides act in the brain to prevent age-related cognitive decline and the onset of dementia.
Collapse
|
18
|
Menini S, Iacobini C, Vitale M, Pesce C, Pugliese G. Diabetes and Pancreatic Cancer-A Dangerous Liaison Relying on Carbonyl Stress. Cancers (Basel) 2021; 13:313. [PMID: 33467038 PMCID: PMC7830544 DOI: 10.3390/cancers13020313] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
Both type 2 (T2DM) and type 1 (T1DM) diabetes mellitus confer an increased risk of pancreatic cancer in humans. The magnitude and temporal trajectory of the risk conferred by the two forms of diabetes are similar, suggesting a common mechanism. Carbonyl stress is a hallmark of hyperglycemia and dyslipidemia, which accompanies T2DM, prediabetes, and obesity. Accumulating evidence demonstrates that diabetes promotes pancreatic ductal adenocarcinoma (PDAC) in experimental models of T2DM, a finding recently confirmed in a T1DM model. The carbonyl stress markers advanced glycation end-products (AGEs), the levels of which are increased in diabetes, were shown to markedly accelerate tumor development in a mouse model of Kras-driven PDAC. Consistently, inhibition of AGE formation by trapping their carbonyl precursors (i.e., reactive carbonyl species, RCS) prevented the PDAC-promoting effect of diabetes. Considering the growing attention on carbonyl stress in the onset and progression of several cancers, including breast, lung and colorectal cancer, this review discusses the mechanisms by which glucose and lipid imbalances induce a status of carbonyl stress, the oncogenic pathways activated by AGEs and their precursors RCS, and the potential use of carbonyl-scavenging agents and AGE inhibitors in PDAC prevention and treatment, particularly in high-risk diabetic individuals.
Collapse
Affiliation(s)
- Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (S.M.); (C.I.); (M.V.)
| | - Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (S.M.); (C.I.); (M.V.)
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (S.M.); (C.I.); (M.V.)
| | - Carlo Pesce
- Department of Neurosciences, Rehabilitation, Ophtalmology, Genetic and Maternal Infantile Sciences (DINOGMI), Department of Excellence of MIUR, University of Genoa Medical School, 16132 Genoa, Italy;
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (S.M.); (C.I.); (M.V.)
| |
Collapse
|
19
|
Scavenging of reactive dicarbonyls with 2-hydroxybenzylamine reduces atherosclerosis in hypercholesterolemic Ldlr -/- mice. Nat Commun 2020; 11:4084. [PMID: 32796843 PMCID: PMC7429830 DOI: 10.1038/s41467-020-17915-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Lipid peroxidation generates reactive dicarbonyls including isolevuglandins (IsoLGs) and malondialdehyde (MDA) that covalently modify proteins. Humans with familial hypercholesterolemia (FH) have increased lipoprotein dicarbonyl adducts and dysfunctional HDL. We investigate the impact of the dicarbonyl scavenger, 2-hydroxybenzylamine (2-HOBA) on HDL function and atherosclerosis in Ldlr−/− mice, a model of FH. Compared to hypercholesterolemic Ldlr−/− mice treated with vehicle or 4-HOBA, a nonreactive analogue, 2-HOBA decreases atherosclerosis by 60% in en face aortas, without changing plasma cholesterol. Ldlr−/− mice treated with 2-HOBA have reduced MDA-LDL and MDA-HDL levels, and their HDL display increased capacity to reduce macrophage cholesterol. Importantly, 2-HOBA reduces the MDA- and IsoLG-lysyl content in atherosclerotic aortas versus 4-HOBA. Furthermore, 2-HOBA reduces inflammation and plaque apoptotic cells and promotes efferocytosis and features of stable plaques. Dicarbonyl scavenging with 2-HOBA has multiple atheroprotective effects in a murine FH model, supporting its potential as a therapeutic approach for atherosclerotic cardiovascular disease. Hypercholesterolemia is associated with lipid peroxidation induced reactive dicarbonyl adducts. Here the authors show that the dicarbonyl scavenger, 2-hydroxybenzylamine(2-HOBA), decreases reactive dicarbonyl modifications of LDL and HDL, improves HDL function, reduces atherosclerosis and promotes features of stable plaques in a mouse model of hypercholestrolemia.
Collapse
|
20
|
Menini S, Iacobini C, de Latouliere L, Manni I, Vitale M, Pilozzi E, Pesce C, Cappello P, Novelli F, Piaggio G, Pugliese G. Diabetes promotes invasive pancreatic cancer by increasing systemic and tumour carbonyl stress in Kras G12D/+ mice. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:152. [PMID: 32778157 PMCID: PMC7418209 DOI: 10.1186/s13046-020-01665-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/04/2020] [Indexed: 01/13/2023]
Abstract
Background Type 1 and 2 diabetes confer an increased risk of pancreatic cancer (PaC) of similar magnitude, suggesting a common mechanism. The recent finding that PaC incidence increases linearly with increasing fasting glucose levels supports a central role for hyperglycaemia, which is known to cause carbonyl stress and advanced glycation end-product (AGE) accumulation through increased glycolytic activity and non-enzymatic reactions. This study investigated the impact of hyperglycaemia on invasive tumour development and the underlying mechanisms involved. Methods Pdx1-Cre;LSL-KrasG12D/+ mice were interbred with mitosis luciferase reporter mice, rendered diabetic with streptozotocin and treated or not with carnosinol (FL-926-16), a selective scavenger of reactive carbonyl species (RCS) and, as such, an inhibitor of AGE formation. Mice were monitored for tumour development by in vivo bioluminescence imaging. At the end of the study, pancreatic tissue was collected for histology/immunohistochemistry and molecular analyses. Mechanistic studies were performed in pancreatic ductal adenocarcinoma cell lines challenged with high glucose, glycolysis- and glycoxidation-derived RCS, their protein adducts AGEs and sera from diabetic patients. Results Cumulative incidence of invasive PaC at 22 weeks of age was 75% in untreated diabetic vs 25% in FL-926-16-gtreated diabetic and 8.3% in non-diabetic mice. FL-926-16 treatment suppressed systemic and pancreatic carbonyl stress, extracellular signal-regulated kinases (ERK) 1/2 activation, and nuclear translocation of Yes-associated protein (YAP) in pancreas. In vitro, RCS scavenging and AGE elimination completely inhibited cell proliferation stimulated by high glucose, and YAP proved essential in mediating the effects of both glucose-derived RCS and their protein adducts AGEs. However, RCS and AGEs induced YAP activity through distinct pathways, causing reduction of Large Tumour Suppressor Kinase 1 and activation of the Epidermal Growth Factor Receptor/ERK signalling pathway, respectively. Conclusions An RCS scavenger and AGE inhibitor prevented the accelerating effect of diabetes on PainINs progression to invasive PaC, showing that hyperglycaemia promotes PaC mainly through increased carbonyl stress. In vitro experiments demonstrated that both circulating RCS/AGEs and tumour cell-derived carbonyl stress generated by excess glucose metabolism induce proliferation by YAP activation, hence providing a molecular mechanism underlying the link between diabetes and PaC (and cancer in general).
Collapse
Affiliation(s)
- Stefano Menini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Via di Grottarossa, 1035-1039 -, 00189, Rome, Italy
| | - Carla Iacobini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Via di Grottarossa, 1035-1039 -, 00189, Rome, Italy
| | - Luisa de Latouliere
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Via di Grottarossa, 1035-1039 -, 00189, Rome, Italy.,SAFU-unit, Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Manni
- SAFU-unit, Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Via di Grottarossa, 1035-1039 -, 00189, Rome, Italy
| | - Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Via di Grottarossa, 1035-1039 -, 00189, Rome, Italy.,Pathology Unit, University "La Sapienza", Sant'Andrea Hospital, Rome, Italy
| | - Carlo Pesce
- DINOGMI, University of Genoa Medical School, Genoa, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Giulia Piaggio
- SAFU-unit, Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Via di Grottarossa, 1035-1039 -, 00189, Rome, Italy.
| |
Collapse
|
21
|
Menini S, Iacobini C, Vitale M, Pugliese G. The Inflammasome in Chronic Complications of Diabetes and Related Metabolic Disorders. Cells 2020; 9:E1812. [PMID: 32751658 PMCID: PMC7464565 DOI: 10.3390/cells9081812] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) ranks seventh as a cause of death worldwide. Chronic complications, including cardiovascular, renal, and eye disease, as well as DM-associated non-alcoholic fatty liver disease (NAFLD) account for most of the morbidity and premature mortality in DM. Despite continuous improvements in the management of late complications of DM, significant gaps remain. Therefore, searching for additional strategies to prevent these serious DM-related conditions is of the utmost importance. DM is characterized by a state of low-grade chronic inflammation, which is critical in the progression of complications. Recent clinical trials indicate that targeting the prototypic pro-inflammatory cytokine interleukin-1β (IL-1 β) improves the outcomes of cardiovascular disease, which is the first cause of death in DM patients. Together with IL-18, IL-1β is processed and secreted by the inflammasomes, a class of multiprotein complexes that coordinate inflammatory responses. Several DM-related metabolic factors, including reactive oxygen species, glyco/lipoxidation end products, and cholesterol crystals, have been involved in the pathogenesis of diabetic kidney disease, and diabetic retinopathy, and in the promoting effect of DM on the onset and progression of atherosclerosis and NAFLD. These metabolic factors are also well-established danger signals capable of regulating inflammasome activity. In addition to presenting the current state of knowledge, this review discusses how the mechanistic understanding of inflammasome regulation by metabolic danger signals may hopefully lead to novel therapeutic strategies targeting inflammation for a more effective treatment of diabetic complications.
Collapse
Affiliation(s)
| | | | | | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (S.M.); (C.I.); (M.V.)
| |
Collapse
|
22
|
Caruso G, Fresta CG, Grasso M, Santangelo R, Lazzarino G, Lunte SM, Caraci F. Inflammation as the Common Biological Link Between Depression and Cardiovascular Diseases: Can Carnosine Exert a Protective Role? Curr Med Chem 2020; 27:1782-1800. [PMID: 31296155 DOI: 10.2174/0929867326666190712091515] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/15/2019] [Accepted: 02/05/2019] [Indexed: 01/03/2023]
Abstract
Several epidemiological studies have clearly shown the high co-morbidity between depression and Cardiovascular Diseases (CVD). Different studies have been conducted to identify the common pathophysiological events of these diseases such as the overactivation of the hypothalamic- pituitary-adrenal axis and, most importantly, the dysregulation of immune system which causes a chronic pro-inflammatory status. The biological link between depression, inflammation, and CVD can be related to high levels of pro-inflammatory cytokines, such as IL-1β, TNF-α, and IL-6, released by macrophages which play a central role in the pathophysiology of both depression and CVD. Pro-inflammatory cytokines interfere with many of the pathophysiological mechanisms relevant to depression by upregulating the rate-limiting enzymes in the metabolic pathway of tryptophan and altering serotonin metabolism. These cytokines also increase the risk to develop CVD, because activation of macrophages under this pro-inflammatory status is closely associated with endothelial dysfunction and oxidative stress, a preamble to atherosclerosis and atherothrombosis. Carnosine (β-alanyl-L-histidine) is an endogenous dipeptide which exerts a strong antiinflammatory activity on macrophages by suppressing reactive species and pro-inflammatory cytokines production and altering pro-inflammatory/anti-inflammatory macrophage polarization. This dipeptide exhibits antioxidant properties scavenging reactive species and preventing oxidative stress-induced pathologies such as CVD. In the present review we will discuss the role of oxidative stress and chronic inflammation as common pathophysiological events both in depression and CVD and the preclinical and clinical evidence on the protective effect of carnosine in both diseases as well as the therapeutic potential of this dipeptide in depressed patients with a high co-morbidity of cardiovascular diseases.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Oasi Research Institute - IRCCS, Via Conte Ruggero, 73, Troina 94018, Italy
| | - Claudia G Fresta
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95125, Italy
| | - Margherita Grasso
- Oasi Research Institute - IRCCS, Via Conte Ruggero, 73, Troina 94018, Italy.,Department of Drug Sciences, University of Catania, Catania 95125, Italy
| | - Rosa Santangelo
- Department of Drug Sciences, University of Catania, Catania 95125, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania 95125, Italy
| | - Susan M Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence 66045, Kansas, United States.,Department of Pharmaceutical Chemistry, University of Kansas, Lawrence 66045, Kansas, United States.,Department of Chemistry, University of Kansas, Lawrence 66045, Kansas, United States
| | - Filippo Caraci
- Oasi Research Institute - IRCCS, Via Conte Ruggero, 73, Troina 94018, Italy.,Department of Drug Sciences, University of Catania, Catania 95125, Italy
| |
Collapse
|
23
|
Menini S, Iacobini C, Fantauzzi CB, Pugliese G. L-carnosine and its Derivatives as New Therapeutic Agents for the Prevention and Treatment of Vascular Complications of Diabetes. Curr Med Chem 2020; 27:1744-1763. [PMID: 31296153 DOI: 10.2174/0929867326666190711102718] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/20/2019] [Accepted: 04/25/2019] [Indexed: 02/01/2023]
Abstract
Vascular complications are among the most serious manifestations of diabetes. Atherosclerosis is the main cause of reduced life quality and expectancy in diabetics, whereas diabetic nephropathy and retinopathy are the most common causes of end-stage renal disease and blindness. An effective therapeutic approach to prevent vascular complications should counteract the mechanisms of injury. Among them, the toxic effects of Advanced Glycation (AGEs) and Lipoxidation (ALEs) end-products are well-recognized contributors to these sequelae. L-carnosine (β-alanyl-Lhistidine) acts as a quencher of the AGE/ALE precursors Reactive Carbonyl Species (RCS), which are highly reactive aldehydes derived from oxidative and non-oxidative modifications of sugars and lipids. Consistently, L-carnosine was found to be effective in several disease models in which glyco/lipoxidation plays a central pathogenic role. Unfortunately, in humans, L-carnosine is rapidly inactivated by serum carnosinase. Therefore, the search for carnosinase-resistant derivatives of Lcarnosine represents a suitable strategy against carbonyl stress-dependent disorders, particularly diabetic vascular complications. In this review, we present and discuss available data on the efficacy of L-carnosine and its derivatives in preventing vascular complications in rodent models of diabetes and metabolic syndrome. We also discuss genetic findings providing evidence for the involvement of the carnosinase/L-carnosine system in the risk of developing diabetic nephropathy and for preferring the use of carnosinase-resistant compounds in human disease. The availability of therapeutic strategies capable to prevent both long-term glucose toxicity, resulting from insufficient glucoselowering therapy, and lipotoxicity may help reduce the clinical and economic burden of vascular complications of diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Stefano Menini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy
| | - Carla Iacobini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy
| | | | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy
| |
Collapse
|
24
|
Prasad K, Bhanumathy KK. AGE-RAGE Axis in the Pathophysiology of Chronic Lower Limb Ischemia and a Novel Strategy for Its Treatment. Int J Angiol 2020; 29:156-167. [PMID: 33041612 DOI: 10.1055/s-0040-1710045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This review focuses on the role of advanced glycation end products (AGEs) and its cell receptor (RAGE) and soluble receptor (sRAGE) in the pathogenesis of chronic lower limb ischemia (CLLI) and its treatment. CLLI is associated with atherosclerosis in lower limb arteries. AGE-RAGE axis which comprises of AGE, RAGE, and sRAGE has been implicated in atherosclerosis and restenosis. It may be involved in atherosclerosis of lower limb resulting in CLLI. Serum and tissue levels of AGE, and expression of RAGE are elevated, and the serum levels of sRAGE are decreased in CLLI. It is known that AGE, and AGE-RAGE interaction increase the generation of various atherogenic factors including reactive oxygen species, nuclear factor-kappa B, cell adhesion molecules, cytokines, monocyte chemoattractant protein-1, granulocyte macrophage-colony stimulating factor, and growth factors. sRAGE acts as antiatherogenic factor because it reduces the generation of AGE-RAGE-induced atherogenic factors. Treatment of CLLI should be targeted at lowering AGE levels through reduction of dietary intake of AGE, prevention of AGE formation and degradation of AGE, suppression of RAGE expression, blockade of AGE-RAGE binding, elevation of sRAGE by upregulating sRAGE expression, and exogenous administration of sRAGE, and use of antioxidants. In conclusion, AGE-RAGE stress defined as a shift in the balance between stressors (AGE, RAGE) and antistressor (sRAGE) in favor of stressors, initiates the development of atherosclerosis resulting in CLLI. Treatment modalities would include reduction of AGE levels and RAGE expression, RAGE blocker, elevation of sRAGE, and antioxidants for prevention, regression, and slowing of progression of CLLI.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology (APP), College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kalpana K Bhanumathy
- Division of Oncology, Cancer Cluster Unit, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
25
|
Chmielewska K, Dzierzbicka K, Inkielewicz-Stępniak I, Przybyłowska M. Therapeutic Potential of Carnosine and Its Derivatives in the Treatment of Human Diseases. Chem Res Toxicol 2020; 33:1561-1578. [PMID: 32202758 DOI: 10.1021/acs.chemrestox.0c00010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite significant progress in the pathogenesis, diagnosis, treatment, and prevention of cancer and neurodegenerative diseases, their occurrence and mortality are still high around the world. The resistance of cancer cells to the drugs remains a significant problem in oncology today, while in the case of neuro-degenerative diseases, therapies reversing the process are still yet to be found. Furthermore, it is important to seek new chemotherapeutics reversing side effects of currently used drugs or helping them perform their function to inhibit progression of the disease. Carnosine, a dipeptide constisting of β-alanine and l-histidine, has a variety of functions to mention: antioxidant, antiglycation, and reducing the toxicity of metal ions. It has therefore been proposed to act as a therapeutic agent for many pathological states. The aim of this paper was to find if carnosine and its derivatives can be helpful in treating various diseases. Literature search presented in this review includes review and original papers found in SciFinder, PubMed, and Google Scholar. Searches were based on substantial keywords concerning therapeutic usage of carnosine and its derivatives in several diseases including neurodegenerative disorders and cancer. In this paper, we review articles and find that carnosine and its derivatives are potential therapeutic agents in many diseases including cancer, neurodegenerative diseases, diabetes, and schizophrenia. Carnosine and its derivatives can be used in treating neurodegenerative diseases, cancer, diabetes, or schizophrenia, although their usage is limited. Therefore, there's an urge to synthesize and analyze new substances, overcoming the limitation of carnosine itself.
Collapse
Affiliation(s)
- Klaudia Chmielewska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Iwona Inkielewicz-Stępniak
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Maja Przybyłowska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk 80-233, Poland
| |
Collapse
|
26
|
Singh A, Srinivasan AK, Chakrapani LN, Kalaiselvi P. LOX-1, the Common Therapeutic Target in Hypercholesterolemia: A New Perspective of Antiatherosclerotic Action of Aegeline. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8285730. [PMID: 31885819 PMCID: PMC6914969 DOI: 10.1155/2019/8285730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/25/2019] [Accepted: 10/05/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the major receptor for oxidized low-density lipoprotein (Ox-LDL) in the aorta of aged rats. Ox-LDL initiates LOX-1 activation in the endothelium of lipid-accumulating sites of both animal and human subjects of hypercholesterolemia. Targeting LOX-1 may provide a novel diagnostic strategy towards hypercholesterolemia and vascular diseases. HYPOTHESIS This study was planned to address whether aegeline (AG) could bind to LOX-1 with a higher affinity and modulate the uptake of Ox-LDL in hypercholesterolemia. STUDY DESIGN Thirty-six Wistar rats were divided into six groups. The pathology group rats were fed with high-cholesterol diet (HCD) for 45 days, and the treatment group rats were fed with HCD and aegeline/atorvastatin (AV) for the last 30 days. In vivo and in vitro experiments were carried out to assay the markers of atherosclerosis like Ox-LDL and LOX-1 levels. Histopathological examination was performed. Oil Red O staining was carried out in the IC-21 cell line. Docking studies were performed. RESULTS AG administration effectively brought down the lipid levels induced by HCD. The lowered levels of Ox-LDL and LOX-1 in AG-administered rats deem it to be a potent antihypercholesterolemic agent. Compared to AV, AG had a pronounced effect in downregulating the expression of lipids evidenced by Oil Red O staining. AG binds with LOX-1 at a higher affinity validated by docking. CONCLUSION This study validates AG to be an effective stratagem in bringing down the lipid stress induced by HCD and can be deemed as an antihypercholesterolemic agent.
Collapse
Affiliation(s)
- Abhilasha Singh
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, India
- Preclinical Stroke Modelling Laboratory, Burke Neurological Institute, Weill Cornell Medicine, White Plains, New York 10605, USA
| | - Ashok Kumar Srinivasan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, India
- Department of HIV, National Institute for Research in Tuberculosis, Chennai, India
| | - Lakshmi Narasimhan Chakrapani
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, India
| | - Periandavan Kalaiselvi
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|
27
|
Boakye AA, Zhang D, Guo L, Zheng Y, Hoetker D, Zhao J, Posa DK, Ng CK, Zheng H, Kumar A, Kumar V, Wempe MF, Bhatnagar A, Conklin DJ, Baba SP. Carnosine Supplementation Enhances Post Ischemic Hind Limb Revascularization. Front Physiol 2019; 10:751. [PMID: 31312142 PMCID: PMC6614208 DOI: 10.3389/fphys.2019.00751] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/31/2019] [Indexed: 01/12/2023] Open
Abstract
High (millimolar) concentrations of the histidine containing dipeptide - carnosine (β-alanine-L-histidine) are present in the skeletal muscle. The dipeptide has been shown to buffer intracellular pH, chelate transition metals, and scavenge lipid peroxidation products; however, its role in protecting against tissue injury remains unclear. In this study, we tested the hypothesis that carnosine protects against post ischemia by augmenting HIF-1α angiogenic signaling by Fe2+ chelation. We found that wild type (WT) C57BL/6 mice, subjected to hind limb ischemia (HLI) and supplemented with carnosine (1g/L) in drinking water, had improved blood flow recovery and limb function, enhanced revascularization and regeneration of myocytes compared with HLI mice placed on water alone. Carnosine supplementation enhanced the bioavailability of carnosine in the ischemic limb, which was accompanied by increased expression of proton-coupled oligopeptide transporters. Consistent with our hypothesis, carnosine supplementation augmented HIF-1α and VEGF expression in the ischemic limb and the mobilization of proangiogenic Flk-1+/Sca-1+ cells into circulation. Pretreatment of murine myoblast (C2C12) cells with octyl-D-carnosine or carnosine enhanced HIF-1α protein expression, VEGF mRNA levels and VEGF release under hypoxic conditions. Similarly pretreatment of WT C57/Bl6 mice with carnosine showed enhanced blood flow in the ischemic limb following HLI surgery. In contrast, pretreatment of hypoxic C2C12 cells with methylcarcinine, a carnosine analog, lacking Fe2+ chelating capacity, had no effect on HIF-1α levels and VEGF release. Collectively, these data suggest that carnosine promotes post ischemic revascularization via augmentation of pro-angiogenic HIF-1α/VEGF signaling, possibly by Fe2+ chelation.
Collapse
Affiliation(s)
- Adjoa A. Boakye
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - Deqing Zhang
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Luping Guo
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Yuting Zheng
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - David Hoetker
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Jingjing Zhao
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Dheeraj Kumar Posa
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Chin K. Ng
- Department of Radiology, University of Louisville, Louisville, KY, United States
| | - Huaiyu Zheng
- Department of Radiology, University of Louisville, Louisville, KY, United States
| | - Amit Kumar
- Department of Pharmaceutical Sciences, University of Colorado, Denver, Denver, CO, United States
| | - Vijay Kumar
- Department of Pharmaceutical Sciences, University of Colorado, Denver, Denver, CO, United States
| | - Michael F. Wempe
- Department of Pharmaceutical Sciences, University of Colorado, Denver, Denver, CO, United States
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Daniel J. Conklin
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Shahid P. Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| |
Collapse
|
28
|
Carnosine Protects Mouse Podocytes from High Glucose Induced Apoptosis through PI3K/AKT and Nrf2 Pathways. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4348973. [PMID: 31275971 PMCID: PMC6558648 DOI: 10.1155/2019/4348973] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy is the complication of diabetes mellitus that can lead to chronic renal failure. Reactive oxygen species (ROS) production plays an important role in its pathological process. Previous studies showed that carnosine may reduce diabetic nephropathy by antioxidant effect. However, the molecular mechanism of its antioxidant was not fully understood. In the current study, we developed high glucose containing different concentrations of carnosine to reduce ROS levels and podocytes apoptosis, and Cell Counting Kit-8 test was used to observe the cell viability. Carnosine (5-20mM) was found to protect mouse podocytes (MPC5) cells from HG-induced injury. Quantitative real-time PCR, Western blotting, and immunofluorescence staining revealed that high glucose induced ROS levels and podocytes apoptosis were downregulated by PI3K/AKT and Nrf2 signaling pathways. The current findings suggest that carnosine may reduce ROS levels and MPC5 cells apoptosis by PI3K/AKT and Nrf2 signaling pathways activation.
Collapse
|
29
|
AGE-RAGE stress: a changing landscape in pathology and treatment of Alzheimer's disease. Mol Cell Biochem 2019; 459:95-112. [PMID: 31079281 DOI: 10.1007/s11010-019-03553-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/04/2019] [Indexed: 12/27/2022]
Abstract
Numerous hypotheses including amyloid cascade, cholinergic, and oxidative have been proposed for pathogenesis of Alzheimer's disease (AD). The data suggest that advanced glycation end products (AGEs) and its receptor RAGE (receptor for AGE) are involved in the pathogenesis of AD. AGE-RAGE stress, defined as a balance between stressors (AGE, RAGE) and anti-stressors (sRAGE, AGE degraders) in favor of stressors, has been implicated in pathogenesis of diseases. AGE and its interaction with RAGE-mediated increase in the reactive oxygen species (ROS) damage brain because of its increased vulnerability to ROS. AGE and ROS increase the synthesis of amyloid β (Aβ) leading to deposition of Aβ and phosphorylation of tau, culminating in formation of plaques and neurofibrillary tangles. ROS increase the synthesis of Aβ, high-mobility group box 1(HMGB1), and S100 that interacts with RAGE to produce additional ROS resulting in enhancement of AD pathology. Elevation of ROS precedes the Aβ plaques formation. Because of involvement of AGE and RAGE in AD pathology, the treatment should be targeted at lowering AGE levels through reduction in consumption and formation of AGE, and lowering expression of RAGE, blocking of RAGE ligand binding, increasing levels of soluble RAGE (sRAGE), and use of antioxidants. The above treatment aspect of AD is lacking. In conclusion, AGE-RAGE stress initiates, and Aβ, HMGB1, and S100 enhance the progression of AD. Reduction of levels of AGE and RAGE, elevation of sRAGE, and antioxidants would be beneficial therapeutic modalities in the prevention, regression, and slowing of progression of AD.
Collapse
|
30
|
Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, Yuan Q, Yu H, Xu W, Xie X. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol 2019; 20:247-260. [PMID: 30384259 PMCID: PMC6205410 DOI: 10.1016/j.redox.2018.09.025] [Citation(s) in RCA: 400] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/12/2018] [Accepted: 09/29/2018] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress and inflammation interact in the development of diabetic atherosclerosis. Intracellular hyperglycemia promotes production of mitochondrial reactive oxygen species (ROS), increased formation of intracellular advanced glycation end-products, activation of protein kinase C, and increased polyol pathway flux. ROS directly increase the expression of inflammatory and adhesion factors, formation of oxidized-low density lipoprotein, and insulin resistance. They activate the ubiquitin pathway, inhibit the activation of AMP-protein kinase and adiponectin, decrease endothelial nitric oxide synthase activity, all of which accelerate atherosclerosis. Changes in the composition of the gut microbiota and changes in microRNA expression that influence the regulation of target genes that occur in diabetes interact with increased ROS and inflammation to promote atherosclerosis. This review highlights the consequences of the sustained increase of ROS production and inflammation that influence the acceleration of atherosclerosis by diabetes. The potential contributions of changes in the gut microbiota and microRNA expression are discussed.
Collapse
Affiliation(s)
- Ting Yuan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Ting Yang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Danli Fu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yangyang Hu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Jing Wang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Qing Yuan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hong Yu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Wenfeng Xu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
31
|
Liu J, Zhao M, Zhu Y, Wang X, Zheng L, Yin Y. LC-MS-Based Metabolomics and Lipidomics Study of High-Density-Lipoprotein-Modulated Glucose Metabolism with an apoA-I Knockout Mouse Model. J Proteome Res 2018; 18:48-56. [PMID: 30543107 DOI: 10.1021/acs.jproteome.8b00290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Type 2 diabetes mellitus (T2DM) has become a tremendous problem in public health nowadays. High-density lipoprotein (HDL) refers to a group of heterogeneous particles that circulate in blood, and a recent research finds that HDL acts a pivotal part of glucose metabolism. To understand systemic metabolic changes correlated with HDL in glucose metabolism, we applied LC-MS-based metabolomics and lipidomics to detect metabolomic and lipidomic profiles of plasma from apoA-I knockout mice fed a high-fat diet. Multivariate analysis was applied to differentiate apoA-I knockout mice and controls, and potential biomarkers were found. Pathway analysis demonstrated that several metabolic pathways such as aminoacyl-tRNA biosynthesis, arginine and proline metabolism, and phenylalanine, tyrosine, and tryptophan biosynthesis were dysregulated in apoA-I knockout mice. This study may provide a new insight into the underlying pathogenesis in T2DM and prove that LC-MS-based metabolomics and lipidomics are powerful approaches in finding potential biomarkers and disturbed pathways.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences , Peking University Health Science Center , Beijing 100191 , China
| | - Mingming Zhao
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education , Peking University Health Science Center , Beijing 100191 , China
| | - Yizhang Zhu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences , Peking University Health Science Center , Beijing 100191 , China
| | - Xu Wang
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education , Peking University Health Science Center , Beijing 100191 , China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education , Peking University Health Science Center , Beijing 100191 , China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences , Peking University Health Science Center , Beijing 100191 , China
| |
Collapse
|
32
|
Hypertension exaggerates renovascular resistance via miR-122-associated stress response in aging. J Hypertens 2018; 36:2226-2236. [DOI: 10.1097/hjh.0000000000001770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Chen JH, Lin X, Bu C, Zhang X. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies. Nutr Metab (Lond) 2018; 15:72. [PMID: 30337945 PMCID: PMC6180645 DOI: 10.1186/s12986-018-0306-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023] Open
Abstract
Advanced glycation end products (AGEs), a group of compounds that are formed by non-enzymatic reactions between carbonyl groups of reducing sugars and free amino groups of proteins, lipids or nucleic acids, can be obtained exogenously from diet or formed endogenously within the body. AGEs accumulate intracellularly and extracellularly in all tissues and body fluids and can cross-link with other proteins and thus affect their normal functions. Furthermore, AGEs can interact with specific cell surface receptors and hence alter cell intracellular signaling, gene expression, the production of reactive oxygen species and the activation of several inflammatory pathways. High levels of AGEs in diet as well as in tissues and the circulation are pathogenic to a wide range of diseases. With respect to mobility, AGEs accumulate in bones, joints and skeletal muscles, playing important roles in the development of osteoporosis, osteoarthritis, and sarcopenia with aging. This report covered the related pathological mechanisms and the potential pharmaceutical and dietary intervention strategies in reducing systemic AGEs. More prospective studies are needed to determine whether elevated serum AGEs and/or skin autofluorescence predict a decline in measures of mobility. In addition, human intervention studies are required to investigate the beneficial effects of exogenous AGEs inhibitors on mobility outcomes.
Collapse
Affiliation(s)
- Jie-Hua Chen
- Science and Technology Centre, By-Health Co. Ltd, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Science City, Luogang District, Guangzhou, 510000 China
| | - Xu Lin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Cuihong Bu
- Science and Technology Centre, By-Health Co. Ltd, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Science City, Luogang District, Guangzhou, 510000 China
| | - Xuguang Zhang
- Science and Technology Centre, By-Health Co. Ltd, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Science City, Luogang District, Guangzhou, 510000 China
| |
Collapse
|
34
|
Development and validation of a sensitive LC-MS/MS assay for the quantification of anserine in human plasma and urine and its application to pharmacokinetic study. Amino Acids 2018; 51:103-114. [PMID: 30302566 DOI: 10.1007/s00726-018-2663-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022]
Abstract
Carnosine (beta-alanyl-L-histidine) and its methylated analogue anserine are present in relevant concentrations in the omnivore human diet. Several studies reported promising therapeutic potential for carnosine in various rodent models of oxidative stress and inflammation-related chronic diseases. Nevertheless, the poor serum stability of carnosine in humans makes the translation of rodent models hard. Even though anserine and carnosine have similar biochemical properties, anserine has better serum stability. Despite this interesting profile, the research on anserine is scarce. The aim of this study was to explore the bioavailability and stability of synthesized anserine by (1) performing in vitro stability experiments in human plasma and molecular modelling studies and by (2) evaluating the plasma and urinary pharmacokinetic profile in healthy volunteers following different doses of anserine (4-10-20 mg/kg body weight). A bio-analytical method for measuring anserine levels was developed and validated using liquid chromatography-electrospray mass spectrometry. Both plasma (CMAX: 0.54-1.10-3.12 µM) and urinary (CMAX: 0.09-0.41-0.72 mg/mg creatinine) anserine increased dose-dependently following ingestion of 4-10-20 anserine mg/kg BW, respectively. The inter-individual variation in plasma anserine was mainly explained by the activity (R2 = 0.75) and content (R2 = 0.77) of the enzyme serum carnosinase-1. Compared to carnosine, a lower interaction energy of anserine with carnosinase-1 was suggested by molecular modelling studies. Conversely, the two dipeptides seems to have similar interaction with the PEPT1 transporter. It can be concluded that nutritionally relevant doses of synthesized anserine are well-absorbed and that its degradation by serum carnosinase-1 is less pronounced compared to carnosine. This makes anserine a good candidate as a more stable carnosine-analogue to attenuate chronic diseases in humans.
Collapse
|
35
|
Iacobini C, Blasetti Fantauzzi C, Bedini R, Pecci R, Bartolazzi A, Amadio B, Pesce C, Pugliese G, Menini S. Galectin-3 is essential for proper bone cell differentiation and activity, bone remodeling and biomechanical competence in mice. Metabolism 2018; 83:149-158. [PMID: 29432728 DOI: 10.1016/j.metabol.2018.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/19/2018] [Accepted: 02/03/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Galectin-3 is constitutively expressed in bone cells and was recently shown to modulate osteogenic transdifferentiation of vascular smooth muscle cells and atherosclerotic calcification. However, the role of galectin-3 in bone physiology is largely undefined. To address this issue, we analyzed (1) the skeletal features of 1-, 3- and 6-month-old galectin-3 null (Lgals3-/-) and wild type (WT) mice and (2) the differentiation and function of osteoblasts and osteoclasts derived from these animals. METHODS Long bone phenotype, gene expression profile, and remodeling were investigated by micro-computed tomography, real time-PCR, static and dynamic histomorphometry, and assessment of biochemical markers of bone resorption and formation. Bone competence was also evaluated by biomechanical testing at 3 months. In vitro, the effects of galectin-3 deficiency on bone cell differentiation and function were investigated by assessing (a) gene expression of osteoblast markers, alkaline phosphatase activity, mineralization assay, and WNT/β-catenin signaling (of which galectin-3 is a known regulator) in osteoblasts; and (b) tartrate-resistant acid phosphatase activity and bone resorption activity in osteoclasts. RESULTS Lgals3-/- mice revealed a wide range of age-dependent alterations including lower bone formation and higher bone resorption, accelerated age-dependent trabecular bone loss (p < 0.01 vs. WT at 3 months) and reduced bone strength (p < 0.01 vs. WT at 3 months). These abnormalities were accompanied by a steady inflammatory state, as revealed by higher bone expression of the pro-inflammatory cytokines interleukin (IL)-1β and IL-6 (p < 0.001 vs. WT at 3 months), increased content of osteal macrophages (p < 0.01 vs. WT at 3 months), and reduced expression of markers of alternative (M2) macrophage activation. Lgals3-/- osteoblasts and osteoclasts showed impaired terminal differentiation, reduced mineralization capacity (p < 0.01 vs. WT cells) and resorption activity (p < 0.01 vs. WT cells). Mechanistically, impaired differentiation and function of Lgals3-/- osteoblasts was associated with altered WNT/β-catenin signaling (p < 0.01 vs. WT cells). CONCLUSIONS These data provide evidence for a contribution of galectin-3 to bone cell maturation and function, bone remodeling, and biomechanical competence, thus identifying galectin-3 as a promising therapeutic target for age-related disorders of bone remodeling.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, 00189 Rome, Italy
| | | | - Rossella Bedini
- National Centre of Innovative Technologies in Public Health, Italian National Institute of Health, 00161 Rome, Italy
| | - Raffaella Pecci
- National Centre of Innovative Technologies in Public Health, Italian National Institute of Health, 00161 Rome, Italy
| | - Armando Bartolazzi
- Laboratory of Surgical and Experimental Pathology, Sant'Andrea University Hospital, 00189 Rome, Italy; Department of Oncology-Pathology, Cancer Center Karolinska Universitetssjukhuset Solna, S-17176 Stockholm, Sweden
| | - Bruno Amadio
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carlo Pesce
- DINOGMI, University of Genoa Medical School, 16132 Genoa, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, "La Sapienza" University, 00189 Rome, Italy.
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, 00189 Rome, Italy
| |
Collapse
|
36
|
Carnosine and advanced glycation end products: a systematic review. Amino Acids 2018; 50:1177-1186. [DOI: 10.1007/s00726-018-2592-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/21/2018] [Indexed: 02/07/2023]
|
37
|
Menini S, Iacobini C, de Latouliere L, Manni I, Ionta V, Blasetti Fantauzzi C, Pesce C, Cappello P, Novelli F, Piaggio G, Pugliese G. The advanced glycation end-product N ϵ -carboxymethyllysine promotes progression of pancreatic cancer: implications for diabetes-associated risk and its prevention. J Pathol 2018. [PMID: 29533466 DOI: 10.1002/path.5072] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diabetes is an established risk factor for pancreatic cancer (PaC), together with obesity, a Western diet, and tobacco smoking. The common mechanistic link might be the accumulation of advanced glycation end-products (AGEs), which characterizes all of the above disease conditions and unhealthy habits. Surprisingly, however, the role of AGEs in PaC has not been examined yet, despite the evidence of a tumour-promoting role of receptor for advanced glycation end-products (RAGE), the receptor for AGEs. Here, we tested the hypothesis that AGEs promote PaC through RAGE activation. To this end, we investigated the effects of the AGE Nϵ -carboxymethyllysine (CML) in human pancreatic ductal adenocarcinoma (PDA) cell lines and in a mouse model of Kras-driven PaC interbred with a bioluminescent model of proliferation. Tumour growth was monitored in vivo by bioluminescence imaging and confirmed by histology. CML promoted PDA cell growth and RAGE expression, in a concentration-dependent and time-dependent manner, and activated downstream tumourigenic signalling pathways. These effects were counteracted by RAGE antagonist peptide (RAP). Exogenous AGE administration to PaC-prone mice induced RAGE upregulation in pancreatic intraepithelial neoplasias (PanINs) and markedly accelerated progression to invasive PaC. At 11 weeks of age (6 weeks of CML treatment), PaC was observed in eight of 11 (72.7%) CML-treated versus one of 11 (9.1%) vehicle-treated [control (Ctr)] mice. RAP delayed PanIN development in Ctr mice but failed to prevent PaC promotion in CML-treated mice, probably because of competition with soluble RAGE for binding to AGEs and/or compensatory upregulation of the RAGE homologue CD166/ activated leukocyte cell adhesion molecule, which also favoured tumour spread. These findings indicate that AGEs modulate the development and progression of PaC through receptor-mediated mechanisms, and might be responsible for the additional risk conferred by diabetes and other conditions characterized by increased AGE accumulation. Finally, our data suggest that an AGE reduction strategy, instead of RAGE inhibition, might be suitable for the risk management and prevention of PaC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stefano Menini
- Department of Clinical and Molecular Medicine, 'La Sapienza' University, Rome, Italy
| | - Carla Iacobini
- Department of Clinical and Molecular Medicine, 'La Sapienza' University, Rome, Italy
| | - Luisa de Latouliere
- Department of Clinical and Molecular Medicine, 'La Sapienza' University, Rome, Italy
| | - Isabella Manni
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Vittoria Ionta
- Department of Clinical and Molecular Medicine, 'La Sapienza' University, Rome, Italy
| | | | - Carlo Pesce
- DINOGMI, University of Genoa Medical School, Genoa, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Giulia Piaggio
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, 'La Sapienza' University, Rome, Italy
| |
Collapse
|
38
|
Sowndhar Rajan B, Manivasagam S, Dhanusu S, Chandrasekar N, Krishna K, Kalaiarasu LP, Babu AA, Vellaichamy E. Diet with high content of advanced glycation end products induces systemic inflammation and weight gain in experimental mice: Protective role of curcumin and gallic acid. Food Chem Toxicol 2018; 114:237-245. [PMID: 29432842 DOI: 10.1016/j.fct.2018.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/04/2018] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
Abstract
The present study was aimed to investigate the effect of diet derived AGEs (dAGEs) on the circulatory levels of pro-inflammatory cytokines, chemokines and to evaluate the protective efficacy of natural anti-oxidants curcumin (CU) and gallic acid (GA) respectively against the dAGEs-induced systemic inflammation in experimental Swiss albino mice. The experimental mice were fed with dAGEs in the presence and absence of CU and GA for 6 months. The levels of 40 circulatory pro-inflammatory cytokines and chemokines were evaluated using Proteome-Cytokine Array kit. In addition, serum levels of N-ɛCML, CRP and HbA1c were estimated by ELISA method. Among the sixteen pro- and anti-inflammatory cytokines analysed, five (IL-16, IL-1α, ICAM, TIMP-1 and C5a) were found to be highly expressed (3.5-fold) and eleven cytokines were moderately expressed (2-fold) in dAGEs fed mice. In case of chemokines, three (BLC, SDF-1 and MCP-1) were found to be highly expressed (4-fold) and ten showed moderate expression (2-fold) as compared with basal diet fed mice. Interestingly, CU or GA co-treatment normalized the levels of circulatory pro- and anti-inflammatory cytokines, chemokines, N-ɛCML, CRP and HbA1c levels. Together, the present study suggests that dAGEs are positively associated with the development of systemic inflammation in experimental mice.
Collapse
Affiliation(s)
- Boopathi Sowndhar Rajan
- Peptide Research and Molecular Cardiology Lab, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Senthamizharasi Manivasagam
- Peptide Research and Molecular Cardiology Lab, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Suresh Dhanusu
- Peptide Research and Molecular Cardiology Lab, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Navvi Chandrasekar
- Peptide Research and Molecular Cardiology Lab, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Kalaiselvi Krishna
- Peptide Research and Molecular Cardiology Lab, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Lakshmi Priya Kalaiarasu
- Peptide Research and Molecular Cardiology Lab, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Aadhil Ashwaq Babu
- Peptide Research and Molecular Cardiology Lab, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Elangovan Vellaichamy
- Peptide Research and Molecular Cardiology Lab, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India.
| |
Collapse
|
39
|
Ling L, Chen L, Zhang C, Gui S, Zhao H, Li Z. High glucose induces podocyte epithelial‑to‑mesenchymal transition by demethylation‑mediated enhancement of MMP9 expression. Mol Med Rep 2018; 17:5642-5651. [PMID: 29436620 PMCID: PMC5866005 DOI: 10.3892/mmr.2018.8554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 10/30/2017] [Indexed: 01/13/2023] Open
Abstract
Abnormal expression of matrix metalloproteinase 9 (MMP9) is correlated with podocyte epithelial-to-mesenchymal transition (EMT) in diabetic nephropathy (DN). However, the mechanisms underlying this process are not well defined. Site-specific demethylation may sustain high expression levels of target genes. In the present study, in order to investigate the association between DNA demethylation of MMP9 promoter and podocyte EMT in DN, human podocytes were cultured in high-glucose (HG) medium and a rat model of DN was established by intraperitoneal injection of streptozotocin (STZ) to determine whether site-specific demethylation of the MMP9 promoter was involved in regulating podocyte EMT in DN. The MTT assay was used to assess the effects of HG culture on the growth of podocytes, and the demethylation status of the MMP9 promoter was assessed by bisulfite sequencing polymerase chain reaction. mRNA and protein expression levels of MMP9, α-smooth muscle actin (α-SMA), podocalyxin and fibronectin-1 in podocytes were assessed by reverse transcription-quantitative PCR (RT-qPCR) and western blot analyses. The results demonstrated that HG treatment up regulated the expression of MMP9, α-SMA and fibronectin-1, but down regulated the expression of podocalyxin in podocytes. The MMP9 promoter region was revealed to contain a variety of demethylated CpG sites, and HG treatment reduced the rate of MMP9 promotermethylation, which, in turn, enhanced its promoter activity. In summary, these data suggested that demethylation of the MMP9 promoter may serve an important role in podocyte EMT in DN. The demethylation status of the MMP9 promoter maybe used as an important prognostic marker of DN in clinic.
Collapse
Affiliation(s)
- Li Ling
- Department of Endocrinology, Guangdong Medical College Affiliated Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Libo Chen
- Department of Endocrinology, Guangdong Medical College Affiliated Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Changning Zhang
- Department of Endocrinology, Guangdong Medical College Affiliated Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Shuyan Gui
- Department of Endocrinology, Guangdong Medical College Affiliated Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Haiyan Zhao
- Department of Endocrinology, Guangdong Medical College Affiliated Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Zhengzhang Li
- Department of Endocrinology, Guangdong Medical College Affiliated Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518052, P.R. China
| |
Collapse
|
40
|
Zhang Y, Yang X, Qiu C, Liu F, Liu P, Liu Z. Matrine suppresses AGE-induced HAEC injury by inhibiting ROS-mediated NRLP3 inflammasome activation. Eur J Pharmacol 2018; 822:207-211. [PMID: 29374549 DOI: 10.1016/j.ejphar.2018.01.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 01/28/2023]
Abstract
Diabetes is characterized by a high level of advanced glycation end products (AGEs), which induce damage in the arterial endothelium. Matrine has been shown to have cardioprotective effects. This study's aim was to investigate the protective effects and possible molecular mechanisms of matrine in AGE-induced human aortic endothelial cell (HAEC) injury. Cultured HAECs were treated with AGEs and/or serially diluted matrine. Cell viability was evaluated by MTT assay. Intracellular reactive oxygen species production was determined by flow cytometry. The expression levels of nucleotide-binding, leucine-rich repeat, and pyrin-domain-containing 3 (NLRP3), adaptor molecule apoptosis-associated speck-like protein, cleaved caspase-1 and interleukin-1β (IL-1β) were assessed by Western blotting; the concentration of IL-1β in culture supernatants was determined by enzyme-linked immunosorbent assay (ELISA). In a concentration-dependent manner, matrine co-treatment with AGEs substantially inhibited the reduction in cell viability and the increase in intracellular reactive oxygen species induced by AGEs. Co-treatment with matrine significantly inhibited the AGE-induced increase in NLRP3, ASC, caspase-1, p20 and IL-1β expression in HAECs in a concentration-dependent manner. Moreover, the AGE-mediated increase in IL-1β expression in cell culture supernatants was also reduced by co-treatment with matrine in a concentration-dependent manner. AGEs induced HAEC injury by inducing reactive oxygen species -mediated NLRP3 inflammasome activation. Matrine recovered HAEC viability by inhibiting reactive oxygen species -mediated NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xiaoqiang Yang
- Department of Cardiology, Yangling Demonstration Zone Hospital, Yangling 712100, China
| | - Chuan Qiu
- Department of Biostatistics & Bioinformatics, School of Public Health & Tropical Medicine, Tulane University, New Orleans 70112, USA
| | - Fei Liu
- School of Forensic Medicine, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Peng Liu
- School of Forensic Medicine, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an 710068, China; Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
41
|
l -Carnosine supplementation attenuated fasting glucose, triglycerides, advanced glycation end products, and tumor necrosis factor– α levels in patients with type 2 diabetes: a double-blind placebo-controlled randomized clinical trial. Nutr Res 2018; 49:96-106. [DOI: 10.1016/j.nutres.2017.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/24/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022]
|
42
|
Iacobini C, Menini S, Blasetti Fantauzzi C, Pesce CM, Giaccari A, Salomone E, Lapolla A, Orioli M, Aldini G, Pugliese G. FL-926-16, a novel bioavailable carnosinase-resistant carnosine derivative, prevents onset and stops progression of diabetic nephropathy in db/db mice. Br J Pharmacol 2017; 175:53-66. [PMID: 29053168 DOI: 10.1111/bph.14070] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE The advanced glycation end products (AGEs) participate in the pathogenesis of diabetic nephropathy (DN) by promoting renal inflammation and injury. L-carnosine acts as a quencher of the AGE precursors reactive carbonyl species (RCS), but is rapidly inactivated by carnosinase. In this study, we evaluated the effect of FL-926-16, a carnosinase-resistant and bioavailable carnosine derivative, on the onset and progression of DN in db/db mice. EXPERIMENTAL APPROACH Adult male db/db mice and coeval db/m controls were left untreated or treated with FL-926-16 (30 mg·kg-1 body weight) from weeks 6 to 20 (prevention protocol) or from weeks 20 to 34 (regression protocol). KEY RESULTS In the prevention protocol, FL-926-16 significantly attenuated increases in creatinine (-80%), albuminuria (-77%), proteinuria (-75%), mean glomerular area (-34%), fractional (-40%) and mean (-42%) mesangial area in db/db mice. This protective effect was associated with a reduction in glomerular matrix protein expression and cell apoptosis, circulating and tissue oxidative and carbonyl stress, and renal inflammatory markers, including the NLRP3 inflammasome. In the regression protocol, the progression of DN was completely blocked, although not reversed, by FL-926-16. In cultured mesangial cells, FL-926-16 prevented NLRP3 expression induced by RCS but not by the AGE Nε -carboxymethyllysine. CONCLUSION AND IMPLICATIONS FL-926-16 is effective at preventing the onset of DN and halting its progression in db/db mice by quenching RCS, thereby reducing the accumulation of their protein adducts and the consequent inflammatory response. In a future perspective, this novel compound may represent a promising AGE-reducing approach for DN therapy.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical Molecular Medicine, 'La Sapienza' University, Rome, Italy
| | - Stefano Menini
- Department of Clinical Molecular Medicine, 'La Sapienza' University, Rome, Italy
| | | | | | - Andrea Giaccari
- Endo-Metabolic Diseases Unit, Catholic University, Rome, Italy
| | - Enrica Salomone
- Endo-Metabolic Diseases Unit, Catholic University, Rome, Italy
| | | | - Marica Orioli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giuseppe Pugliese
- Department of Clinical Molecular Medicine, 'La Sapienza' University, Rome, Italy
| |
Collapse
|
43
|
Deficiency of the Purinergic Receptor 2X 7 Attenuates Nonalcoholic Steatohepatitis Induced by High-Fat Diet: Possible Role of the NLRP3 Inflammasome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8962458. [PMID: 29270247 PMCID: PMC5705892 DOI: 10.1155/2017/8962458] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/02/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023]
Abstract
Molecular mechanisms driving transition from simple steatosis to nonalcoholic steatohepatitis (NASH), a critical step in the progression of nonalcoholic fatty liver disease (NAFLD) to cirrhosis, are poorly defined. This study aimed at investigating the role of the purinergic receptor 2X7 (PR2X7), through the NLRP3 inflammasome, in the development of NASH. To this end, mice knockout for the Pr2x7 gene (Pr2x7−/−) and coeval wild-type (WT) mice were fed a high-fat diet (HFD) or normal-fat diet for 16 weeks. NAFLD grade and stage were lower in Pr2x7−/− than WT mice, and only 1/7 Pr2x7−/− animals showed evidence of NASH, as compared with 4/7 WT mice. Molecular markers of inflammation, oxidative stress, and fibrosis were markedly increased in WT-HFD mice, whereas no or significantly reduced increments were detected in Pr2x7−/− animals, which showed also decreased modulation of genes of lipid metabolism. Deletion of Pr2x7 gene was associated with blunted or abolished activation of NLRP3 inflammasome and expression of its components, which were induced in liver sinusoidal endothelial cells challenged with appropriate stimuli. These data show that Pr2x7 gene deletion protects mice from HFD-induced NASH, possibly through blunted activation of NLRP3 inflammasome, suggesting that PR2X7 and NLRP3 may represent novel therapeutic targets.
Collapse
|
44
|
Cellular and Molecular Mechanisms of Diabetic Atherosclerosis: Herbal Medicines as a Potential Therapeutic Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9080869. [PMID: 28883907 PMCID: PMC5572632 DOI: 10.1155/2017/9080869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 01/09/2023]
Abstract
An increasing number of patients diagnosed with diabetes mellitus eventually develop severe coronary atherosclerosis disease. Both type 1 and type 2 diabetes mellitus increase the risk of cardiovascular disease associated with atherosclerosis. The cellular and molecular mechanisms affecting the incidence of diabetic atherosclerosis are still unclear, as are appropriate strategies for the prevention and treatment of diabetic atherosclerosis. In this review, we discuss progress in the study of herbs as potential therapeutic agents for diabetic atherosclerosis.
Collapse
|
45
|
Menini S, Iacobini C, Pugliese G, Pesce C. Dietary interventions to contrast the onset and progression of diabetic nephropathy: A critical survey of new data. Crit Rev Food Sci Nutr 2017; 58:1671-1680. [PMID: 28128635 DOI: 10.1080/10408398.2016.1278355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This article is a critical overview of recent contributions on the dietary corrections and the foods that have been claimed to delay or hinder the onset of diabetic nephropathy (DN) and its progression to end-stage renal disease. Innovative dietary and behavioral approaches to the prevention and therapy of DN appear to be the most captivating in consideration of the rather well-established protocols for glucose and blood pressure control in use. In addition to restricted caloric intake to contrast obesity and the metabolic syndrome, adjustments in the patient's macronutrients intake, and in particular some degree of reduction in protein, have been long considered in the prevention of DN progression. More recently, the focus has shifted to the source of proteins and the content of glycotoxins in the diet as well as to the role of specific micronutrients. Few clinical trials have specifically addressed the role of those micronutrients associated with diet proteins that show the most protective effect against DN. Research on clinical outcome and mechanisms of action of such micronutrients appears the most promising in order to develop both effective intervention on nutritional education of the patient and selection of functional foods capable of contrasting the onset and progression of DN.
Collapse
Affiliation(s)
- Stefano Menini
- a Department of Clinical and Molecular Medicine , "La Sapienza" University , Rome , Italy
| | - Carla Iacobini
- a Department of Clinical and Molecular Medicine , "La Sapienza" University , Rome , Italy
| | - Giuseppe Pugliese
- a Department of Clinical and Molecular Medicine , "La Sapienza" University , Rome , Italy
| | - Carlo Pesce
- b DINOGMI, University of Genoa Medical School , Genoa , Italy
| |
Collapse
|
46
|
Hipkiss AR. On the Relationship between Energy Metabolism, Proteostasis, Aging and Parkinson's Disease: Possible Causative Role of Methylglyoxal and Alleviative Potential of Carnosine. Aging Dis 2017; 8:334-345. [PMID: 28580188 PMCID: PMC5440112 DOI: 10.14336/ad.2016.1030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 10/30/2016] [Indexed: 12/25/2022] Open
Abstract
Recent research shows that energy metabolism can strongly influence proteostasis and thereby affect onset of aging and related disease such as Parkinson's disease (PD). Changes in glycolytic and proteolytic activities (influenced by diet and development) are suggested to synergistically create a self-reinforcing deleterious cycle via enhanced formation of triose phosphates (dihydroxyacetone-phosphate and glyceraldehyde-3-phosphate) and their decomposition product methylglyoxal (MG). It is proposed that triose phosphates and/or MG contribute to the development of PD and its attendant pathophysiological symptoms. MG can induce many of the macromolecular modifications (e.g. protein glycation) which characterise the aged-phenotype. MG can also react with dopamine to generate a salsolinol-like product, 1-acetyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinaline (ADTIQ), which accumulates in the Parkinson's disease (PD) brain and whose effects on mitochondria, analogous to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), closely resemble changes associated with PD. MG can directly damage the intracellular proteolytic apparatus and modify proteins into non-degradable (cross-linked) forms. It is suggested that increased endogenous MG formation may result from either, or both, enhanced glycolytic activity and decreased proteolytic activity and contribute to the macromolecular changes associated with PD. Carnosine, a naturally-occurring dipeptide, may ameliorate MG-induced effects due, in part, to its carbonyl-scavenging activity. The possibility that ingestion of highly glycated proteins could also contribute to age-related brain dysfunction is briefly discussed.
Collapse
Affiliation(s)
- Alan R. Hipkiss
- Aston Research Centre for Healthy Ageing (ARCHA), School of Health and Life Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
47
|
Albrecht T, Schilperoort M, Zhang S, Braun JD, Qiu J, Rodriguez A, Pastene DO, Krämer BK, Köppel H, Baelde H, de Heer E, Anna Altomare A, Regazzoni L, Denisi A, Aldini G, van den Born J, Yard BA, Hauske SJ. Carnosine Attenuates the Development of both Type 2 Diabetes and Diabetic Nephropathy in BTBR ob/ob Mice. Sci Rep 2017; 7:44492. [PMID: 28281693 PMCID: PMC5345040 DOI: 10.1038/srep44492] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/08/2017] [Indexed: 01/05/2023] Open
Abstract
We previously demonstrated that polymorphisms in the carnosinase-1 gene (CNDP1) determine the risk of nephropathy in type 2 diabetic patients. Carnosine, the substrate of the enzyme encoded by this gene, is considered renoprotective and could possibly be used to treat diabetic nephropathy (DN). In this study, we examined the effect of carnosine treatment in vivo in BTBR (Black and Tan, BRachyuric) ob/ob mice, a type 2 diabetes model which develops a phenotype that closely resembles advanced human DN. Treatment of BTBR ob/ob mice with 4 mM carnosine for 18 weeks reduced plasma glucose and HbA1c, concomitant with elevated insulin and C-peptide levels. Also, albuminuria and kidney weights were reduced in carnosine-treated mice, which showed less glomerular hypertrophy due to a decrease in the surface area of Bowman's capsule and space. Carnosine treatment restored the glomerular ultrastructure without affecting podocyte number, resulted in a modified molecular composition of the expanded mesangial matrix and led to the formation of carnosine-acrolein adducts. Our results demonstrate that treatment with carnosine improves glucose metabolism, albuminuria and pathology in BTBR ob/ob mice. Hence, carnosine could be a novel therapeutic strategy to treat patients with DN and/or be used to prevent DN in patients with diabetes.
Collapse
Affiliation(s)
- Thomas Albrecht
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Maaike Schilperoort
- The Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Shiqi Zhang
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Jana D Braun
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Jiedong Qiu
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Angelica Rodriguez
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Diego O Pastene
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Bernhard K Krämer
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Hannes Köppel
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Hans Baelde
- The Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Emile de Heer
- The Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Luca Regazzoni
- The Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Alessandra Denisi
- The Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giancarlo Aldini
- The Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Jacob van den Born
- Department of Nephrology, University Medical Center Groningen, Groningen, the Netherlands
| | - Benito A Yard
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Sibylle J Hauske
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| |
Collapse
|
48
|
Davies SS, Zhang LS. Reactive Carbonyl Species Scavengers-Novel Therapeutic Approaches for Chronic Diseases. ACTA ACUST UNITED AC 2017; 3:51-67. [PMID: 28993795 DOI: 10.1007/s40495-017-0081-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF THE REVIEW To summarize recent evidence supporting the use of reactive carbonyl species scavengers in the prevention and treatment of disease. RECENT FINDINGS The newly developed 2-aminomethylphenol class of scavengers shows great promise in preclinical trials for a number of diverse conditions including neurodegenerative diseases and cardiovascular disease. In addition, new studies with the thiol-based and imidazole-based scavengers have found new applications outside of adjunctive therapy for chemotherapeutics. SUMMARY Reactive oxygen species (ROS) generated by cells and tissues act as signaling molecules and as cytotoxic agents to defend against pathogens, but ROS also cause collateral damage to vital cellular components. The polyunsaturated fatty acyl chains of phospholipids in the cell membranes are particularly vulnerable to damaging peroxidation by ROS. Evidence suggests that the breakdown of these peroxidized lipids to reactive carbonyls species plays a critical role in many chronic diseases. Antioxidants that abrogate ROS-induced formation of reactive carbonyl species also abrogate normal ROS signaling and thus exert both beneficial and adverse functional effects. The use of scavengers of reactive dicarbonyl species represent an alternative therapeutic strategy to potentially mitigate the adverse effects of ROS without abrogating normal signaling by ROS. In this review, we focus on three classes of reactive carbonyl species scavengers: thiol-based scavengers (2-mercaptoethanesulfonate and amifostine), imidazole-based scavengers (carnosine and its analogs), and 2-aminomethylphenols-based scavengers (pyridoxamine, 2-hydroxybenzylamine, and 5'-O-pentyl-pyridoxamine) that are either undergoing pre-clinical studies, advancing to clinical trials, or are already in clinical use.
Collapse
Affiliation(s)
- Sean S Davies
- Department of Pharmacology and Division of Clinical Pharmacology, Vanderbilt University, 556 Robinson Research Building, 2220 Pierce Avenue, Nashville, TN 37232-6602
| | - Linda S Zhang
- Department of Pharmacology and Division of Clinical Pharmacology, Vanderbilt University, 556 Robinson Research Building, 2220 Pierce Avenue, Nashville, TN 37232-6602
| |
Collapse
|
49
|
Carnosine and the processes of ageing. Maturitas 2016; 93:28-33. [DOI: 10.1016/j.maturitas.2016.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022]
|
50
|
Evaluation of in vivo hypoglycemic potential of 4-ethyloxychalcone in alloxan-induced diabetic rats. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2266-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|