1
|
Liu X, Liu X, Dong W, Wang P, Liu L, Liu L, E T, Wang D, Lin Y, Lin H, Ruan X, Xue Y. KHDRBS1 regulates the pentose phosphate pathway and malignancy of GBM through SNORD51-mediated polyadenylation of ZBED6 pre-mRNA. Cell Death Dis 2024; 15:802. [PMID: 39516455 PMCID: PMC11549417 DOI: 10.1038/s41419-024-07163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma is one of the most common and aggressive primary brain tumors. The aberration of metabolism is the important character of GBM cells and is tightly related to the malignancy of GBM. We mainly verified the regulatory effects of KHDRBS1, SNORD51 and ZBED6 on pentose phosphate pathway and malignant biological behavior in glioblastoma cells, such as proliferation, migration and invasion. KHDRBS1 and SNORD51 were upregulated in GBM tissues and cells. But ZBED6 had opposite tendency in GBM tissues and cells. KHDRBS1 may improve the stability of SNORD51 by binding to SNORD51, thus elevating the expression of SNORD51. More importantly, SNORD51 can competitively bind to WDR33 with 3'UTR of ZBED6 pre-mRNA which can inhibit the 3' end processing of ZBED6 pre-mRNA, thereby inhibiting the expression of ZBED6 mRNA. ZBED6 inhibited the transcription of G6PD by binding to the promoter region of G6PD. Therefore, the KHDRBS1/SNORD51/ZBED6 pathway performs an important part in regulating the pentose phosphate pathway to influence malignant biological behavior of GBM cells, providing new insights and potential targets for the treatment of GBM.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Xiaobai Liu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Weiwei Dong
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ping Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Lu Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Tiange E
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Di Wang
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yang Lin
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Hongda Lin
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China.
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China.
| |
Collapse
|
2
|
Zhang Y, Luo C, Huang P, Chen L, Ma Y, Ding H. Effects of chronic exposure to a high fat diet, nutritive or non-nutritive sweeteners on hypothalamic-pituitary-adrenal (HPA) and -gonadal (HPG) axes of male Sprague-Dawley rats. Eur J Nutr 2024; 63:2209-2220. [PMID: 38743096 DOI: 10.1007/s00394-024-03427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE Diet-related factors are of great significance in the regulation of hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonad (HPG) axes. In this study, we aimed to investigate the effects of chronic exposure to a high fat diet (HFD), fructose or sucralose on the endocrine functions. METHODS Male, Sprague-Dawley rats received a normal chow diet, HFD, 10% fructose or 0.02% sucralose for 10 weeks. Behavioral changes were assessed by open field (OFT) and elevated plus-maze (EPM) tests at week 8. H&E staining was used to observe pathological changes in adrenal cortex, testis and perirenal adipose tissue. Serum hormone concentrations were quantified via enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of genes along the HPA and HPG axes were determined using real-time PCR. RESULTS All types of dietary interventions increased body weight and disturbed metabolic homeostasis, with anxiogenic phenotype in behavioral tests and damage to cell morphology of adrenal cortex and testis being observed. Along the HPA axis, significantly increased corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT) concentrations were observed in the HFD or 0.02% sucralose group. For HPG axis, gonadotropin-releasing hormone (GnRH) and estradiol (E2) concentrations were significantly increased in all dietary intervention groups, while decreased concentrations of follicle-stimulating hormone (FSH) and testosterone (T) were also detected. Moreover, transcriptional profiles of genes involved in the synthesis of hormones and corresponding hormone receptors were significantly altered. CONCLUSION Long-term consumption of HFD, fructose or sucralose manifested deleterious effects on endocrine system and resulted in the dysregulation of HPA and HPG axes.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Chunyun Luo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Puxin Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Lu Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Yufang Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
3
|
Chen HW, Ma CP, Chin E, Chen YT, Wang TC, Kuo YP, Su CH, Huang PJ, Tan BCM. Imbalance in Unc80 RNA Editing Disrupts Dynamic Neuronal Activity and Olfactory Perception. Int J Mol Sci 2024; 25:5985. [PMID: 38892173 PMCID: PMC11172567 DOI: 10.3390/ijms25115985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
A-to-I RNA editing, catalyzed by the ADAR protein family, significantly contributes to the diversity and adaptability of mammalian RNA signatures, aligning with developmental and physiological needs. Yet, the functions of many editing sites are still to be defined. The Unc80 gene stands out in this context due to its brain-specific expression and the evolutionary conservation of its codon-altering editing event. The precise biological functions of Unc80 and its editing, however, are still largely undefined. In this study, we first demonstrated that Unc80 editing occurs in an ADAR2-dependent manner and is exclusive to the brain. By employing the CRISPR/Cas9 system to generate Unc80 knock-in mouse models that replicate the natural editing variations, our findings revealed that mice with the "gain-of-editing" variant (Unc80G/G) exhibit heightened basal neuronal activity in critical olfactory regions, compared to the "loss-of-editing" (Unc80S/S) counterparts. Moreover, an increase in glutamate levels was observed in the olfactory bulbs of Unc80G/G mice, indicating altered neurotransmitter dynamics. Behavioral analysis of odor detection revealed distinctive responses to novel odors-both Unc80 deficient (Unc80+/-) and Unc80S/S mice demonstrated prolonged exploration times and heightened dishabituation responses. Further elucidating the olfactory connection of Unc80 editing, transcriptomic analysis of the olfactory bulb identified significant alterations in gene expression that corroborate the behavioral and physiological findings. Collectively, our research advances the understanding of Unc80's neurophysiological functions and the impact of its editing on the olfactory sensory system, shedding light on the intricate molecular underpinnings of olfactory perception and neuronal activity.
Collapse
Affiliation(s)
- Hui-Wen Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chung-Pei Ma
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
| | - En Chin
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yi-Tung Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan;
| | - Teh-Cheng Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yu-Ping Kuo
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Po-Jung Huang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Genomic Medicine Core Laboratory, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Division of Colon and Rectal Surgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
4
|
Yang J, Zou Y, Lv X, Chen J, Cui C, Song J, Yang M, Hu H, Gao J, Xia L, Wang L, Chen L, Hou X. Didymin protects pancreatic beta cells by enhancing mitochondrial function in high-fat diet-induced impaired glucose tolerance. Diabetol Metab Syndr 2024; 16:7. [PMID: 38172956 PMCID: PMC10762818 DOI: 10.1186/s13098-023-01244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE Prolonged exposure to plasma free fatty acids (FFAs) leads to impaired glucose tolerance (IGT) which can progress to type 2 diabetes (T2D) in the absence of timely and effective interventions. High-fat diet (HFD) leads to chronic inflammation and oxidative stress, impairing pancreatic beta cell (PBC) function. While Didymin, a flavonoid glycoside derived from citrus fruits, has beneficial effects on inflammation dysfunction, its specific role in HFD-induced IGT remains yet to be elucidated. Hence, this study aims to investigate the protective effects of Didymin on PBCs. METHODS HFD-induced IGT mice and INS-1 cells were used to explore the effect and mechanism of Didymin in alleviating IGT. Serum glucose and insulin levels were measured during the glucose tolerance and insulin tolerance tests to evaluate PBC function and insulin resistance. Next, RNA-seq analysis was performed to identify the pathways potentially influenced by Didymin in PBCs. Furthermore, we validated the effects of Didymin both in vitro and in vivo. Mitochondrial electron transport inhibitor (Rotenone) was used to further confirm that Didymin exerts its ameliorative effect by enhancing mitochondria function. RESULTS Didymin reduces postprandial glycemia and enhances 30-minute postprandial insulin levels in IGT mice. Moreover, Didymin was found to enhance mitochondria biogenesis and function, regulate insulin secretion, and alleviate inflammation and apoptosis. However, these effects were abrogated with the treatment of Rotenone, indicating that Didymin exerts its ameliorative effect by enhancing mitochondria function. CONCLUSIONS Didymin exhibits therapeutic potential in the treatment of HFD-induced IGT. This beneficial effect is attributed to the amelioration of PBC dysfunction through improved mitochondrial function.
Collapse
Affiliation(s)
- Jingwen Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Ying Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Xiaoyu Lv
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Chen Cui
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Mengmeng Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Huiqing Hu
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Jing Gao
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Longqing Xia
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Liming Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
5
|
Liu H, Pan D, Li P, Wang D, Xia B, Zhang R, Lu J, Xing X, Du J, Zhang X, Jin L, Jiang L, Yao L, Li M, Wu J. Loss of ZBED6 Protects Against Sepsis-Induced Muscle Atrophy by Upregulating DOCK3-Mediated RAC1/PI3K/AKT Signaling Pathway in Pigs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302298. [PMID: 37551034 PMCID: PMC10582467 DOI: 10.1002/advs.202302298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/12/2023] [Indexed: 08/09/2023]
Abstract
Sepsis-induced muscle atrophy often increases morbidity and mortality in intensive care unit (ICU) patients, yet neither therapeutic target nor optimal animal model is available for this disease. Here, by modifying the surgical strategy of cecal ligation and puncture (CLP), a novel sepsis pig model is created that for the first time recapitulates the whole course of sepsis in humans. With this model and sepsis patients, increased levels of the transcription factor zinc finger BED-type containing 6 (ZBED6) in skeletal muscle are shown. Protection against sepsis-induced muscle wasting in ZBED6-deficient pigs is further demonstrated. Mechanistically, integrated analysis of RNA-seq and ChIP-seq reveals dedicator of cytokinesis 3 (DOCK3) as the direct target of ZBED6. In septic ZBED6-deficient pigs, DOCK3 expression is increased in skeletal muscle and myocytes, activating the RAC1/PI3K/AKT pathway and protecting against sepsis-induced muscle wasting. Conversely, opposite gene expression patterns and exacerbated muscle wasting are observed in septic ZBED6-overexpressing myotubes. Notably, sepsis patients show increased ZBED6 expression along with reduced DOCK3 and downregulated RAC1/PI3K/AKT pathway. These findings suggest that ZBED6 is a potential therapeutic target for sepsis-induced muscle atrophy, and the established sepsis pig model is a valuable tool for understanding sepsis pathogenesis and developing its therapeutics.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Dengke Pan
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalChengduSichuan610072China
| | - Pu Li
- Department of Critical Care Medicinethe Second Affiliated Hospital of Air Force Medical UniversityNo.569, Xinsi RoadXi'anShaanxi710038China
| | - Dandan Wang
- Laboratory of Animal (Poultry) Genetics Breeding and ReproductionMinistry of AgricultureInstitute of Animal SciencesChinese Academy of Agricultural Sciences (CAAS)Beijing100193China
| | - Bo Xia
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Ruixin Zhang
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Junfeng Lu
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Xiangyang Xing
- Chengdu Clonorgan Biotechnology Co. LTDChengduSichuan610041China
| | - Jiaxiang Du
- Chengdu Clonorgan Biotechnology Co. LTDChengduSichuan610041China
| | - Xiao Zhang
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Long Jin
- Institute of Animal Genetics and BreedingCollege of Animal Science and TechnologySichuan Agricultural UniversityChengduSichuan611130China
| | - Lin Jiang
- Laboratory of Animal (Poultry) Genetics Breeding and ReproductionMinistry of AgricultureInstitute of Animal SciencesChinese Academy of Agricultural Sciences (CAAS)Beijing100193China
| | - Linong Yao
- Department of Critical Care Medicinethe Second Affiliated Hospital of Air Force Medical UniversityNo.569, Xinsi RoadXi'anShaanxi710038China
| | - Mingzhou Li
- Institute of Animal Genetics and BreedingCollege of Animal Science and TechnologySichuan Agricultural UniversityChengduSichuan611130China
| | - Jiangwei Wu
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
6
|
González‐Moro I, Garcia‐Etxebarria K, Mendoza LM, Fernández‐Jiménez N, Mentxaka J, Olazagoitia‐Garmendia A, Arroyo MN, Sawatani T, Moreno‐Castro C, Vinci C, Op de Beek A, Cnop M, Igoillo‐Esteve M, Santin I. LncRNA ARGI Contributes to Virus-Induced Pancreatic β Cell Inflammation Through Transcriptional Activation of IFN-Stimulated Genes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300063. [PMID: 37382191 PMCID: PMC10477904 DOI: 10.1002/advs.202300063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/30/2023] [Indexed: 06/30/2023]
Abstract
Type 1 diabetes (T1D) is a complex autoimmune disease that develops in genetically susceptible individuals. Most T1D-associated single nucleotide polymorphisms (SNPs) are located in non-coding regions of the human genome. Interestingly, SNPs in long non-coding RNAs (lncRNAs) may result in the disruption of their secondary structure, affecting their function, and in turn, the expression of potentially pathogenic pathways. In the present work, the function of a virus-induced T1D-associated lncRNA named ARGI (Antiviral Response Gene Inducer) is characterized. Upon a viral insult, ARGI is upregulated in the nuclei of pancreatic β cells and binds to CTCF to interact with the promoter and enhancer regions of IFNβ and interferon-stimulated genes, promoting their transcriptional activation in an allele-specific manner. The presence of the T1D risk allele in ARGI induces a change in its secondary structure. Interestingly, the T1D risk genotype induces hyperactivation of type I IFN response in pancreatic β cells, an expression signature that is present in the pancreas of T1D patients. These data shed light on the molecular mechanisms by which T1D-related SNPs in lncRNAs influence pathogenesis at the pancreatic β cell level and opens the door for the development of therapeutic strategies based on lncRNA modulation to delay or avoid pancreatic β cell inflammation in T1D.
Collapse
Affiliation(s)
- Itziar González‐Moro
- Department of Biochemistry and Molecular BiologyUniversity of the Basque CountryLeioa48940Spain
- Biocruces Bizkaia Health Research InstituteBarakaldo48903Spain
| | - Koldo Garcia‐Etxebarria
- Biodonostia Health Research InstituteGastrointestinal Genetics GroupSan Sebastián20014Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Barcelona08036Spain
| | - Luis Manuel Mendoza
- Department of Biochemistry and Molecular BiologyUniversity of the Basque CountryLeioa48940Spain
| | - Nora Fernández‐Jiménez
- Biocruces Bizkaia Health Research InstituteBarakaldo48903Spain
- Department of GeneticsPhysical Anthropology and Animal PhysiologyUniversity of the Basque CountryLeioa48940Spain
| | - Jon Mentxaka
- Department of Biochemistry and Molecular BiologyUniversity of the Basque CountryLeioa48940Spain
- Biocruces Bizkaia Health Research InstituteBarakaldo48903Spain
| | - Ane Olazagoitia‐Garmendia
- Department of Biochemistry and Molecular BiologyUniversity of the Basque CountryLeioa48940Spain
- Biocruces Bizkaia Health Research InstituteBarakaldo48903Spain
| | - María Nicol Arroyo
- ULB Center for Diabetes ResearchUniversité Libre de BruxellesBrussels1070Belgium
| | - Toshiaki Sawatani
- ULB Center for Diabetes ResearchUniversité Libre de BruxellesBrussels1070Belgium
| | | | - Chiara Vinci
- ULB Center for Diabetes ResearchUniversité Libre de BruxellesBrussels1070Belgium
| | - Anne Op de Beek
- ULB Center for Diabetes ResearchUniversité Libre de BruxellesBrussels1070Belgium
| | - Miriam Cnop
- ULB Center for Diabetes ResearchUniversité Libre de BruxellesBrussels1070Belgium
- Division of EndocrinologyErasmus HospitalUniversité Libre de BruxellesBrussels1070Belgium
| | | | - Izortze Santin
- Department of Biochemistry and Molecular BiologyUniversity of the Basque CountryLeioa48940Spain
- Biocruces Bizkaia Health Research InstituteBarakaldo48903Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos IIIMadrid28029Spain
| |
Collapse
|
7
|
Wu P, Wang X. Natural Drugs: A New Direction for the Prevention and Treatment of Diabetes. Molecules 2023; 28:5525. [PMID: 37513397 PMCID: PMC10385698 DOI: 10.3390/molecules28145525] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance, as a common pathological process of many metabolic diseases, including diabetes and obesity, has attracted much attention due to its relevant influencing factors. To date, studies have mainly focused on the shared mechanisms between mitochondrial stress and insulin resistance, and they are now being pursued as a very attractive therapeutic target due to their extensive involvement in many human clinical settings. In view of the complex pathogenesis of diabetes, natural drugs have become new players in diabetes prevention and treatment because of their wide targets and few side effects. In particular, plant phenolics have received attention because of their close relationship with oxidative stress. In this review, we briefly review the mechanisms by which mitochondrial stress leads to insulin resistance. Moreover, we list some cytokines and genes that have recently been found to play roles in mitochondrial stress and insulin resistance. Furthermore, we describe several natural drugs that are currently widely used and give a brief overview of their therapeutic mechanisms. Finally, we suggest possible ideas for future research related to the unique role that natural drugs play in the treatment of insulin resistance through the above targets.
Collapse
Affiliation(s)
- Peishan Wu
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250001, China
| | - Xiaolei Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250001, China
| |
Collapse
|
8
|
Ngamjariyawat A, Cen J, Said R, Incedal C, Idevall-Hagren O, Welsh N. Metabolic stress-induced human beta-cell death is mediated by increased intracellular levels of adenosine. Front Endocrinol (Lausanne) 2023; 14:1060675. [PMID: 36761184 PMCID: PMC9905624 DOI: 10.3389/fendo.2023.1060675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION High intracellular concentrations of adenosine and 2'-deoxyadenosine have been suggested to be an important mediator of cell death. The aim of the present study was to characterize adenosine-induced death in insulin-producing beta-cells, at control and high glucose + palmitate-induced stress conditions. METHODS Human insulin-producing EndoC-betaH1 cells were treated with adenosine, 2'-deoxyadenosine, inosine and high glucose + sodium palmitate, and death rates using flow cytometry were studied. RESULTS We observed that adenosine and the non-receptor-activating analogue 2-deoxyadenosine, but not the adenosine deamination product inosine, promoted beta-cell apoptosis at concentrations exceeding maximal adenosine-receptor stimulating concentrations. Both adenosine and inosine were efficiently taken up by EndoC-betaH1 cells, and inosine counteracted the cell death promoting effect of adenosine by competing with adenosine for uptake. Both adenosine and 2'-deoxyadenosine promptly reduced insulin-stimulated production of plasma membrane PI(3,4,5)P3, an effect that was reversed upon wash out of adenosine. In line with this, adenosine, but not inosine, rapidly diminished Akt phosphorylation. Both pharmacological Bax inhibition and Akt activation blocked adenosine-induced beta-cell apoptosis, indicating that adenosine/2'-deoxyadenosine inhibits the PI3K/Akt/BAD anti-apoptotic pathway. High glucose + palmitate-induced cell death was paralleled by increased intracellular adenosine and inosine levels. Overexpression of adenosine deaminase-1 (ADA1) in EndoC-betaH1 cells, which increased Akt phosphorylation, prevented both adenosine-induced apoptosis and high glucose + palmitate-induced necrosis. ADA2 overexpression not only failed to protect against adenosine and high glucose + palmitate-activated cell death, but instead potentiated the apoptosis-stimulating effect of adenosine. In line with this, ADA1 overexpression increased inosine production from adenosine-exposed cells, whereas ADA2 did not. Knockdown of ADA1 resulted in increased cell death rates in response to both adenosine and high glucose + palmitate. Inhibition of miR-30e-3p binding to the ADA1 mRNA 3'-UTR promoted the opposite effects on cell death rates and reduced intracellular adenosine contents. DISCUSSION It is concluded that intracellular adenosine/2'-deoxyadenosine regulates negatively the PI3K pathway and is therefore an important mediator of beta-cell apoptosis. Adenosine levels are controlled, at least in part, by ADA1, and strategies to upregulate ADA1 activity, during conditions of metabolic stress, could be useful in attempts to preserve beta-cell mass in diabetes.
Collapse
Affiliation(s)
- Anongnad Ngamjariyawat
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Division of Anatomy, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Khlong Luang, Pathumthani, Thailand
| | - Jing Cen
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Romain Said
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Ceren Incedal
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Olof Idevall-Hagren
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Nils Welsh
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- *Correspondence: Nils Welsh,
| |
Collapse
|
9
|
Identification and Validation of Ferroptosis-Related Genes in Sevoflurane-Induced Hippocampal Neurotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4435161. [PMID: 36238640 PMCID: PMC9553355 DOI: 10.1155/2022/4435161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
Background Sevoflurane is one of the most popular inhalational anesthetics during perioperative period but presenting neurotoxicity among pediatric and aged populations. Recent experiments in vivo and in vitro have indicated that ferroptosis may contribute to the neurotoxicity of sevoflurane anesthesia. However, the exact mechanism is still unclear. Methods In current study, we explored the differential expressed genes (DEGs) in HT-22 mouse hippocampal neuronal cells after sevoflurane anesthesia using RNA-seq. Differential expressed ferroptosis-related genes (DEFRGs) were screened and analyzed by Gene Ontology (GO) and pathway enrichment analysis. Protein-to-protein interaction (PPI) network was constructed by the Search Tool for the Retrieval of Interacting Genes (STRING). Significant modules and the hub genes were identified by using Cytoscape. The Connectivity Map (cMAP) was used for screening drug candidates targeting the identified DEFRGs. Potential TF-gene network and drug-gene pairs were established towards the hub genes. In final, we validated these results in experiments. Results A total of 37 ferroptosis-related genes (18 upregulated and 19 downregulated) after sevoflurane exposure in hippocampal neuronal cells were finally identified. These differentially expressed genes were mainly involved into the biological processes of cellular response to oxidative stress. Pathway analysis indicated that these genes were involved in ferroptosis, mTOR signaling pathway, and longevity-regulating pathway. PPI network was constructed. 10 hub genes including Prkaa2, Chac1, Arntl, Tfrc, Slc7a11, Atf4, Mgst1, Lpin1, Atf3, and Sesn2 were found. Top 10 drug candidates, gene-drug networks, and TFs targeting these genes were finally identified. These results were validated in experiments. Conclusion Our results suggested that ferroptosis-related genes play roles in sevoflurane anesthesia-related hippocampal neuron injury and offered the hub genes and potential therapeutic agents for investigating and treatment of this neurotoxicity after sevoflurane exposure. Finally, therapeutic effect of these drug candidates and function of potential ferroptosis targets should be further investigated for treatment and clarifying mechanisms of sevoflurane anesthesia-induced neuron injury in future research.
Collapse
|
10
|
Elksnis A, Cen J, Wikström P, Carlsson PO, Welsh N. Pharmacological Inhibition of NOX4 Improves Mitochondrial Function and Survival in Human Beta-Cells. Biomedicines 2021; 9:biomedicines9121865. [PMID: 34944680 PMCID: PMC8698703 DOI: 10.3390/biomedicines9121865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/31/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Previous studies have reported beneficial effects of NADPH oxidase 4 (NOX4) inhibition on beta-cell survival in vitro and in vivo. The mechanisms by which NOX4 inhibition protects insulin producing cells are, however, not known. The aim of the present study was to investigate the effects of a pharmacological NOX4 inhibitor (GLX7013114) on human islet and EndoC-βH1 cell mitochondrial function, and to correlate such effects with survival in islets of different size, activity, and glucose-stimulated insulin release responsiveness. We found that maximal oxygen consumption rates, but not the rates of acidification and proton leak, were increased in islets after acute NOX4 inhibition. In EndoC-βH1 cells, NOX4 inhibition increased the mitochondrial membrane potential, as estimated by JC-1 fluorescence; mitochondrial reactive oxygen species (ROS) production, as estimated by MitoSOX fluorescence; and the ATP/ADP ratio, as assessed by a bioluminescent assay. Moreover, the insulin release from EndoC-βH1 cells at a high glucose concentration increased with NOX4 inhibition. These findings were paralleled by NOX4 inhibition-induced protection against human islet cell death when challenged with high glucose and sodium palmitate. The NOX4 inhibitor protected equally well islets of different size, activity, and glucose responsiveness. We conclude that pharmacological alleviation of NOX4-induced inhibition of beta-cell mitochondria leads to increased, and not decreased, mitochondrial ROS, and this was associated with protection against cell death occurring in different types of heterogeneous islets. Thus, NOX4 inhibition or modulation may be a therapeutic strategy in type 2 diabetes that targets all types of islets.
Collapse
Affiliation(s)
- Andris Elksnis
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden; (A.E.); (J.C.); (P.-O.C.)
| | - Jing Cen
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden; (A.E.); (J.C.); (P.-O.C.)
| | - Per Wikström
- Glucox Biotech AB, Frälsegårdsvägen 8, SE-179 97 Färentuna, Sweden;
| | - Per-Ola Carlsson
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden; (A.E.); (J.C.); (P.-O.C.)
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Nils Welsh
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden; (A.E.); (J.C.); (P.-O.C.)
- Correspondence: ; Tel.: +46-184-714-212
| |
Collapse
|
11
|
Wang D, Pan D, Xie B, Wang S, Xing X, Liu X, Ma Y, Andersson L, Wu J, Jiang L. Porcine ZBED6 regulates growth of skeletal muscle and internal organs via multiple targets. PLoS Genet 2021; 17:e1009862. [PMID: 34710100 PMCID: PMC8577783 DOI: 10.1371/journal.pgen.1009862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/09/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
ZBED6 (zinc finger BED domain containing protein 6) is a transcription factor unique to placental mammals and its interaction with the IGF2 (insulin-like growth factor 2) locus plays a prominent role in the regulation of postnatal skeletal muscle growth. Here, we generated lean Bama miniature pigs by generating ZBED6-knockout (ZBED6−/−) and investigated the mechanism underlying ZBED6 in growth of muscle and internal organs of placental mammals. ZBED6−/− pigs show markedly higher lean mass, lean mass rate, larger muscle fiber area and heavier internal organs (heart and liver) than wild-type (WT) pigs. The striking phenotypic changes of ZBED6-/- pigs coincided with remarkable upregulation of IGF2 mRNA and protein expression across three tissues (gastrocnemius muscle, longissimus dorsi, heart). Despite a significant increase in liver weight, ZBED6-/- pigs show comparable levels of IGF2 expression to those of WT controls. A mechanistic study revealed that elevated methylation in the liver abrogates ZBED6 binding at the IGF2 locus, explaining the unaltered hepatic IGF2 expression in ZBED6-/- pigs. These results indicate that a ZBED6-IGF2-independent regulatory pathway exists in the liver. Transcriptome analysis and ChIP-PCR revealed new ZBED6 target genes other than IGF2, including cyclin dependent kinase inhibitor 1A (CDKN1A) and tsukushi, small leucine rich proteoglycan (TSKU), that regulates growth of muscle and liver, respectively. The lean meat rate is an important economic trait for the swine industry and it is determined by muscle growth and development. A single base change in intron 3 of the insulin-like growth factor 2 (IGF2) gene increases meat production in pigs by disrupting a binding site for zinc finger BED domain containing protein 6 (ZBED6). Chinese indigenous pig breeds carrying the homozygous IGF2 wild-type allele produce low lean meat. We thus generate a lean pig model in Chinese Bama pig by knocking out ZBED6. In this model, we demonstrate that ZBED6 KO increases muscle and internal organ growth through ZBED6-IGF2 axis and other target genes. These results not only open new strategies for lean meat breeding in Chinese indigenous pigs, but also provide new insights to the global function of ZBED6 in organ growth and development.
Collapse
Affiliation(s)
- Dandan Wang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Dengke Pan
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Baocai Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shengnan Wang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | | | - Xuexue Liu
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuehui Ma
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Jiangwei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (JW); (LJ)
| | - Lin Jiang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- * E-mail: (JW); (LJ)
| |
Collapse
|
12
|
Naboulsi R, Larsson M, Andersson L, Younis S. ZBED6 regulates Igf2 expression partially through its regulation of miR483 expression. Sci Rep 2021; 11:19484. [PMID: 34593874 PMCID: PMC8484269 DOI: 10.1038/s41598-021-98777-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
The expression of Igf2 in mammals shows a complex regulation involving multiple promoters and epigenetic mechanisms. We previously identified a novel regulatory mechanism based on the interaction between the transcriptional factor ZBED6 and Igf2 intron. Disruption of the ZBED6-Igf2 interaction leads to a dramatic up-regulation of IGF2 expression postnatally. In the current study we characterize an additional layer of regulation involving miR483 encoded by another Igf2 intron. We found a highly significant up-regulation of miR483 expression when the ZBED6-Igf2 axis is disrupted in transgenic mice. Furthermore, CRISPR/Cas9 mediated knock-out of miR483 in C2C12 myoblast cells, both wild-type and cells with disrupted ZBED6-Igf2 axis (Igf2dGGCT), resulted in down-regulation of Igf2 expression and a reduced proliferation rate. This was further validated using miR483 mimics and inhibitors. RNA-seq analysis revealed a significant enrichment of genes involved in the PI3K-Akt signaling pathway among genes down-regulated in miR483-/- cells, including Igf2 down-regulation. The opposite pattern was observed in Igf2dGGCT cells, where Igf2 is up-regulated. Our data suggest a positive feedback between miR483 and Igf2 promoter activity, strongly affecting how ZBED6 controls Igf2 expression in various cell types.
Collapse
Affiliation(s)
- Rakan Naboulsi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23, Uppsala, Sweden
| | - Mårten Larsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23, Uppsala, Sweden
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23, Uppsala, Sweden.
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA.
| | - Shady Younis
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23, Uppsala, Sweden.
- Department of Animal Breeding and Genetics, Ain Shams University, Shoubra El-Kheima, Cairo, 11241, Egypt.
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
13
|
Vinaixa M, Canelles S, González-Murillo Á, Ferreira V, Grajales D, Guerra-Cantera S, Campillo-Calatayud A, Ramírez-Orellana M, Yanes Ó, Frago LM, Valverde ÁM, Barrios V. Increased Hypothalamic Anti-Inflammatory Mediators in Non-Diabetic Insulin Receptor Substrate 2-Deficient Mice. Cells 2021; 10:cells10082085. [PMID: 34440853 PMCID: PMC8391514 DOI: 10.3390/cells10082085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Insulin receptor substrate (IRS) 2 is a key mediator of insulin signaling and IRS-2 knockout (IRS2−/−) mice are a preclinical model to study the development of diabetes, as they develop peripheral insulin resistance and beta-cell failure. The differential inflammatory profile and insulin signaling in the hypothalamus of non-diabetic (ND) and diabetic (D) IRS2−/− mice might be implicated in the onset of diabetes. Because the lipid profile is related to changes in inflammation and insulin sensitivity, we analyzed whether ND IRS2−/− mice presented a different hypothalamic fatty acid metabolism and lipid pattern than D IRS2−/− mice and the relationship with inflammation and markers of insulin sensitivity. ND IRS2−/− mice showed elevated hypothalamic anti-inflammatory cytokines, while D IRS2−/− mice displayed a proinflammatory profile. The increased activity of enzymes related to the pentose-phosphate route and lipid anabolism and elevated polyunsaturated fatty acid levels were found in the hypothalamus of ND IRS2−/− mice. Conversely, D IRS2−/− mice have no changes in fatty acid composition, but hypothalamic energy balance and markers related to anti-inflammatory and insulin-sensitizing properties were reduced. The data suggest that the concurrence of an anti-inflammatory profile, increased insulin sensitivity and polyunsaturated fatty acids content in the hypothalamus may slow down or delay the onset of diabetes.
Collapse
Affiliation(s)
- María Vinaixa
- Metabolomics Platform, IISPV, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, E-43002 Tarragona, Spain; (M.V.); (Ó.Y.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, E-28029 Madrid, Spain; (V.F.); (D.G.)
| | - Sandra Canelles
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.C.); (S.G.-C.); (A.C.-C.); (L.M.F.)
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - África González-Murillo
- Unidad de Terapias Avanzadas, Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (Á.G.-M.); (M.R.-O.)
| | - Vítor Ferreira
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, E-28029 Madrid, Spain; (V.F.); (D.G.)
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), E-28029 Madrid, Spain
| | - Diana Grajales
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, E-28029 Madrid, Spain; (V.F.); (D.G.)
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), E-28029 Madrid, Spain
| | - Santiago Guerra-Cantera
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.C.); (S.G.-C.); (A.C.-C.); (L.M.F.)
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Ana Campillo-Calatayud
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.C.); (S.G.-C.); (A.C.-C.); (L.M.F.)
| | - Manuel Ramírez-Orellana
- Unidad de Terapias Avanzadas, Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (Á.G.-M.); (M.R.-O.)
| | - Óscar Yanes
- Metabolomics Platform, IISPV, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, E-43002 Tarragona, Spain; (M.V.); (Ó.Y.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, E-28029 Madrid, Spain; (V.F.); (D.G.)
| | - Laura M. Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.C.); (S.G.-C.); (A.C.-C.); (L.M.F.)
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Ángela M. Valverde
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, E-28029 Madrid, Spain; (V.F.); (D.G.)
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), E-28029 Madrid, Spain
- Correspondence: (Á.M.V.); (V.B.)
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.C.); (S.G.-C.); (A.C.-C.); (L.M.F.)
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Correspondence: (Á.M.V.); (V.B.)
| |
Collapse
|