1
|
Baxter F, Baillie N, Dover A, Stimson RH, Gibb F, Forbes S. A cross-sectional questionnaire study: Impaired awareness of hypoglycaemia remains prevalent in adults with type 1 diabetes and is associated with the risk of severe hypoglycaemia. PLoS One 2024; 19:e0297601. [PMID: 38875308 PMCID: PMC11178233 DOI: 10.1371/journal.pone.0297601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/14/2024] [Indexed: 06/16/2024] Open
Abstract
OBJECTIVE Impaired awareness of hypoglycaemia (IAH) is a risk factor for severe hypoglycaemia (SH) in type 1 diabetes (T1D). Much of the IAH prevalence data comes from older studies where participants did not have the benefit of the latest insulins and technologies. This study surveyed the prevalence of IAH and SH in a tertiary adult clinic population and investigated the associated factors. METHODS Adults (≥18 years) attending a tertiary T1D clinic completed a questionnaire, including a Gold and Clarke score. Background information was collected from health records. RESULTS 189 people (56.1% female) with T1D (median [IQR] disease duration 19.3 [11.5, 29.1] years and age of 41.0 [29.0, 52.0] years) participated. 17.5% had IAH and 16.0% reported ≥1 episode of SH in the previous 12 months. Those with IAH were more likely to report SH (37.5% versus 11.7%, p = 0.001) a greater number of SH episodes per person (median [IQR] 0 [0,2] versus 0 [0,0] P<0.001) and be female (72.7% versus 52.6%, p = 0.036). Socio-economic deprivation was associated with IAH (p = 0.032) and SH (p = 0.005). Use of technology was the same between IAH vs aware groups, however, participants reporting SH were more likely to use multiple daily injections (p = 0.026). Higher detectable C-peptide concentrations were associated with a reduced risk of SH (p = 0.04). CONCLUSION Insulin pump and continuous glucose monitor use was comparable in IAH versus aware groups. Despite this, IAH remains a risk factor for SH and is prevalent in females and in older people. Socioeconomic deprivation was associated with IAH and SH, making this an important population to target for interventions.
Collapse
Affiliation(s)
- Faye Baxter
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicola Baillie
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Dover
- Department of Diabetes and Endocrinology, Outpatient Department 2, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Roland H Stimson
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Diabetes and Endocrinology, Outpatient Department 2, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Fraser Gibb
- Department of Diabetes and Endocrinology, Outpatient Department 2, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Shareen Forbes
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Diabetes and Endocrinology, Outpatient Department 2, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Kumar KK, Aburawi EH, Ljubisavljevic M, Leow MKS, Feng X, Ansari SA, Emerald BS. Exploring histone deacetylases in type 2 diabetes mellitus: pathophysiological insights and therapeutic avenues. Clin Epigenetics 2024; 16:78. [PMID: 38862980 PMCID: PMC11167878 DOI: 10.1186/s13148-024-01692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Diabetes mellitus is a chronic disease that impairs metabolism, and its prevalence has reached an epidemic proportion globally. Most people affected are with type 2 diabetes mellitus (T2DM), which is caused by a decline in the numbers or functioning of pancreatic endocrine islet cells, specifically the β-cells that release insulin in sufficient quantity to overcome any insulin resistance of the metabolic tissues. Genetic and epigenetic factors have been implicated as the main contributors to the T2DM. Epigenetic modifiers, histone deacetylases (HDACs), are enzymes that remove acetyl groups from histones and play an important role in a variety of molecular processes, including pancreatic cell destiny, insulin release, insulin production, insulin signalling, and glucose metabolism. HDACs also govern other regulatory processes related to diabetes, such as oxidative stress, inflammation, apoptosis, and fibrosis, revealed by network and functional analysis. This review explains the current understanding of the function of HDACs in diabetic pathophysiology, the inhibitory role of various HDAC inhibitors (HDACi), and their functional importance as biomarkers and possible therapeutic targets for T2DM. While their role in T2DM is still emerging, a better understanding of the role of HDACi may be relevant in improving insulin sensitivity, protecting β-cells and reducing T2DM-associated complications, among others.
Collapse
Affiliation(s)
- Kukkala Kiran Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Elhadi Husein Aburawi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Program, Singapore, Singapore
| | - Melvin Khee Shing Leow
- LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
- Dept of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Program, Singapore, Singapore
| | - Xu Feng
- Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- ASPIRE Precision Medicine Research Institute, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Zucchini S, Tumini S, Scaramuzza AE, Bonfanti R, Delvecchio M, Franceschi R, Iafusco D, Lenzi L, Mozzillo E, Passanisi S, Piona C, Rabbone I, Rapini N, Rigamonti A, Ripoli C, Salzano G, Savastio S, Schiaffini R, Zanfardino A, Cherubini V. Recommendations for recognizing, risk stratifying, treating, and managing children and adolescents with hypoglycemia. Front Endocrinol (Lausanne) 2024; 15:1387537. [PMID: 38894740 PMCID: PMC11183505 DOI: 10.3389/fendo.2024.1387537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
There has been continuous progress in diabetes management over the last few decades, not least due to the widespread dissemination of continuous glucose monitoring (CGM) and automated insulin delivery systems. These technological advances have radically changed the daily lives of people living with diabetes, improving the quality of life of both children and their families. Despite this, hypoglycemia remains the primary side-effect of insulin therapy. Based on a systematic review of the available scientific evidence, this paper aims to provide evidence-based recommendations for recognizing, risk stratifying, treating, and managing patients with hypoglycemia. The objective of these recommendations is to unify the behavior of pediatric diabetologists with respect to the timely recognition and prevention of hypoglycemic episodes and the correct treatment of hypoglycemia, especially in patients using CGM or advanced hybrid closed-loop systems. All authors have long experience in the specialty and are members of the Italian Society of Pediatric Endocrinology and Diabetology. The goal of treating hypoglycemia is to raise blood glucose above 70 mg/dL (3.9 mmol/L) and to prevent further decreases. Oral glucose at a dose of 0.3 g/kg (0.1 g/kg for children using "smart pumps" or hybrid closed loop systems in automated mode) is the preferred treatment for the conscious individual with blood glucose <70 mg/dL (3.9 mmol/L), although any form of carbohydrate (e.g., sucrose, which consists of glucose and fructose, or honey, sugary soft drinks, or fruit juice) containing glucose may be used. Using automatic insulin delivery systems, the oral glucose dose can be decreased to 0.1 g/kg. Practical flow charts are included to aid clinical decision-making. Although representing the official position of the Italian Society of Pediatric Endocrinology and Diabetology (ISPED), these guidelines are applicable to the global audience and are especially pertinent in the era of CGM and other advanced technologies.
Collapse
Affiliation(s)
- Stefano Zucchini
- Study Group of Diabetology of the Italian Society for Pediatric Endocrinology and Diabetes (I.S.P.E.D.,) University Hospital of Ferrara, Ferrara, Italy
| | - Stefano Tumini
- Department of Maternal and Child Health, UOSD Regional Center of Pediatric Diabetology, Annunziata Hospital, Chieti, Italy
| | - Andrea Enzo Scaramuzza
- Division of Pediatrics, Pediatric Diabetes, Endocrinology and Nutrition, Azienda Socio Sanitaria Territoriale (ASST) Cremona, Cremona, Italy
| | - Riccardo Bonfanti
- UO Pediatric Diabetes Research Institute, Ospedale San Raffaele, Milan, Italy
| | - Maurizio Delvecchio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Roberto Franceschi
- Department of Pediatrics, S. Chiara Hospital of Trento, APSS, Trento, Italy
| | - Dario Iafusco
- Department of Woman, Child and General and Specialistic Surgery, Regional Center of Pediatric Diabetes, University of Campania ‘L. Vanvitelli’, Naples, Italy
| | - Lorenzo Lenzi
- Diabetology Unit, Pediatric Department, Anna Meyer Children’s Hospital, Florence, Italy
| | - Enza Mozzillo
- Section of Pediatrics, Regional Center of Pediatric Diabetes, University Federico II, Naples, Italy
| | - Stefano Passanisi
- Department of Human Pathology of Adulthood and Childhood G. Barresi, University of Messina, Messina, Italy
| | - Claudia Piona
- Pediatric Diabetes and Metabolic Disorders Unit, Regional Center for Pediatric Diabetes, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Ivana Rabbone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Novella Rapini
- Diabetes Unit, Bambino Gesú Childrens’ Hospital, Rome, Italy
| | - Andrea Rigamonti
- UO Pediatric Diabetes Research Institute, Ospedale San Raffaele, Milan, Italy
| | - Carlo Ripoli
- Pediatric Diabetology Unit, Department of Pediatrics, ASL 8 Cagliari, Cagliari, Italy
| | - Giuseppina Salzano
- Department of Human Pathology of Adulthood and Childhood G. Barresi, University of Messina, Messina, Italy
| | - Silvia Savastio
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | | | - Angela Zanfardino
- Department of Woman, Child and General and Specialistic Surgery, Regional Center of Pediatric Diabetes, University of Campania ‘L. Vanvitelli’, Naples, Italy
| | - Valentino Cherubini
- Department of Women’s and Children’s Health, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Ancona, ‘Salesi Hospital’, Ancona, Italy
| |
Collapse
|
4
|
Maritsch M, Föll S, Lehmann V, Styger N, Bérubé C, Kraus M, Feuerriegel S, Kowatsch T, Züger T, Fleisch E, Wortmann F, Stettler C. Smartwatches for non-invasive hypoglycaemia detection during cognitive and psychomotor stress. Diabetes Obes Metab 2024; 26:1133-1136. [PMID: 38086545 DOI: 10.1111/dom.15402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 02/06/2024]
Affiliation(s)
- Martin Maritsch
- Department of Management, Technology and Economics, ETH Zurich, Zurich, Switzerland
| | - Simon Föll
- Department of Management, Technology and Economics, ETH Zurich, Zurich, Switzerland
| | - Vera Lehmann
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern, University Hospital, University of Bern, Bern, Switzerland
| | - Naïma Styger
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern, University Hospital, University of Bern, Bern, Switzerland
| | - Caterina Bérubé
- Department of Management, Technology and Economics, ETH Zurich, Zurich, Switzerland
| | - Mathias Kraus
- School of Business, Economics and Society, Friedrich-Alexander University Erlangen-Nürnberg, Nürnberg, Germany
| | - Stefan Feuerriegel
- Institute of AI in Management, LMU Munich, Munich, Germany
- Munich Center for Machine Learning (MCML), Munich, Germany
| | - Tobias Kowatsch
- Department of Management, Technology and Economics, ETH Zurich, Zurich, Switzerland
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
- School of Medicine, University of St Gallen, St Gallen, Switzerland
| | - Thomas Züger
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern, University Hospital, University of Bern, Bern, Switzerland
- Department of Endocrinology and Metabolic Diseases, Kantonsspital Olten, Olten, Switzerland
| | - Elgar Fleisch
- Department of Management, Technology and Economics, ETH Zurich, Zurich, Switzerland
- Institute of Technology Management, University of St Gallen, St Gallen, Switzerland
| | - Felix Wortmann
- Institute of Technology Management, University of St Gallen, St Gallen, Switzerland
| | - Christoph Stettler
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
D’Souza NC, Aiken JA, Hoffman EG, Atherley SC, Champsi S, Aleali N, Shakeri D, El-Zahed M, Akbarian N, Nejad-Mansouri M, Bavani PZ, Liggins RL, Chan O, Riddell MC. Evaluating the effectiveness of a novel somatostatin receptor 2 antagonist, ZT-01, for hypoglycemia prevention in a rodent model of type 2 diabetes. Front Pharmacol 2024; 15:1302015. [PMID: 38510652 PMCID: PMC10951717 DOI: 10.3389/fphar.2024.1302015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/29/2024] [Indexed: 03/22/2024] Open
Abstract
Background: Elevated levels of somatostatin blunt glucagon counterregulation during hypoglycemia in type 1 diabetes (T1D) and this can be improved using somatostatin receptor 2 (SSTR2) antagonists. Hypoglycemia also occurs in late-stage type 2 diabetes (T2D), particularly when insulin therapy is initiated, but the utility of SSTR2 antagonists in ameliorating hypoglycemia in this disease state is unknown. We examined the efficacy of a single-dose of SSTR2 antagonists in a rodent model of T2D. Methods: High-fat fed (HFF), low dose streptozotocin (STZ, 35 mg/kg)-induced T2D and HFF only, nondiabetic (controls-no STZ) rats were treated with the SSTR2 antagonists ZT-01/PRL-2903 or vehicle (n = 9-11/group) 60 min before an insulin tolerance test (ITT; 2-12 U/kg insulin aspart) or an oral glucose tolerance test (OGTT; 2 g/kg glucose via oral gavage) on separate days. Results: This rodent model of T2D is characterized by higher baseline glucose and HbA1c levels relative to HFF controls. T2D rats also had lower c-peptide levels at baseline and a blunted glucagon counterregulatory response to hypoglycemia when subjected to the ITT. SSTR2 antagonists increased the glucagon response and reduced incidence of hypoglycemia, which was more pronounced with ZT-01 than PRL-2903. ZT-01 treatment in the T2D rats increased glucagon levels above the control response within 60 min of dosing, and values remained elevated during the ITT (glucagon Cmax: 156 ± 50 vs. 77 ± 46 pg/mL, p < 0.01). Hypoglycemia incidence was attenuated with ZT-01 vs. controls (63% vs. 100%) and average time to hypoglycemia onset was also delayed (103.1 ± 24.6 vs. 66.1 ± 23.6 min, p < 0.05). ZT-01 administration at the OGTT onset increased the glucagon response without exacerbating hyperglycemia (2877 ± 806 vs. 2982 ± 781), potentially due to the corresponding increase in c-peptide levels (6251 ± 5463 vs. 14008 ± 5495, p = 0.013). Conclusion: Treatment with SSTR2 antagonists increases glucagon responses in a rat model of T2D and results in less hypoglycemia exposure. Future studies are required to determine the best dosing periods for chronic SSTR2 antagonism treatment in T2D.
Collapse
Affiliation(s)
| | - Julian A. Aiken
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Emily G. Hoffman
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Sara C. Atherley
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Sabrina Champsi
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Nadia Aleali
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Dorsa Shakeri
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Maya El-Zahed
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Nicky Akbarian
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | | | - Parinaz Z. Bavani
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | | | - Owen Chan
- Department of Internal Medicine, Division of Endocrinology, University of Utah, Salt LakeCity, UT, United States
| | - Michael C. Riddell
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
6
|
De Fano M, Porcellati F, Fanelli CG, Corio S, Mazzieri A, Lucidi P, Bolli GB, Bassotti G. The role of gastric emptying in glucose homeostasis and defense against hypoglycemia: Innocent bystander or partner in crime? Diabetes Res Clin Pract 2023; 203:110828. [PMID: 37481116 DOI: 10.1016/j.diabres.2023.110828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Maintenance of plasma glucose (PG) homeostasis is due to a complex network system. Even a minor fall in PG activates multiple neuroendocrine actions promoting hormonal, metabolic and behavioral responses, which prevent and ultimately recover hypoglycemia, primarily neuroglycopenia. Among these responses, gastric emptying (GE) plays an important role by coordinated mechanisms which regulate transit and absorption of nutrients through the small intestine. A bidirectional relationship between GE and glycemia has been established: GE may explain the up to 30-40 % variance in glycemic response following a carbohydrate-rich meal. In addition, acute and chronic hyperglycemia induce deceleration of GE after meals. Hypoglycemia accelerates GE, but its role in counterregulation has been poorly investigated. The role of GE as a counterregulatory mechanism has been confirmed in pathophysiological conditions, such as gastroparesis or following recurrent hypoglycemia. Therefore, it could represent an "ancestral" mechanism, highly conservative and effective in all individuals, conditions and clinical contexts. Recent guidelines recommend GLP-1 receptor agonists (GLP-1RAs) either as the first injectable therapy for type 2 diabetes mellitus or in combination with insulin. Considering the potential impact on GE, it would be important to study subjects on GLP-1 RAs during hypoglycemia, to establish whether a possible deceleration of GE impairs glucose counterregulation.
Collapse
Affiliation(s)
- Michelantonio De Fano
- Endocrine and Metabolic Sciences Section, Endoscopy Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesca Porcellati
- Endocrine and Metabolic Sciences Section, Endoscopy Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| | - Carmine G Fanelli
- Endocrine and Metabolic Sciences Section, Endoscopy Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Sofia Corio
- Endocrine and Metabolic Sciences Section, Endoscopy Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alessio Mazzieri
- Endocrine and Metabolic Sciences Section, Endoscopy Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Paola Lucidi
- Endocrine and Metabolic Sciences Section, Endoscopy Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Geremia B Bolli
- Endocrine and Metabolic Sciences Section, Endoscopy Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Gabrio Bassotti
- Gastroenterology, Hepatology and Digestive Endoscopy Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
7
|
Abrahamian H, Salamon B, Lahnsteiner A, Schelkshorn C, Bräuer A, Stechemesser L, Köhler G, Clodi M. [Diabetes mellitus and road traffic-a position paper of the Austrian Diabetes Association (update 2023)]. Wien Klin Wochenschr 2023; 135:319-330. [PMID: 37101052 PMCID: PMC10133049 DOI: 10.1007/s00508-023-02193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 04/28/2023]
Abstract
Public safety (prevention of accidents) is the primary objective in assessing fitness to drive a motor vehicle. However, general access to mobility should not be restricted if there is no particular risk to public safety. For people with diabetes mellitus, the Führerscheingesetz (Driving Licence Legislation) and the Führerscheingesetz-Gesundheitsverordnung (Driving Licence Legislation Health enactment) regulate important aspects of driving safety in connection with acute and chronic complications of the disease. Critical complications that may be relevant to road safety include severe hypoglycemia, pronounced hyperglycemia and hypoglycemia perception disorder as well as severe retinopathy and neuropathy, endstage renal disease and certain cardiovascular manifestations. If there is a suspicion of the presence of one of these complications, a detailed evaluation is required.In addition, the individual antihyperglycemic medication should be checked for existing potential for hypoglycemia. Sulfonylureas, glinides and insulin belong to this group and are therefore associated with the requirement of a 5-year limitation of the driver's license. Other antihyperglycemic drugs without potential for hypoglycemia such as Metformin, SGLT‑2 inhibitors (Sodium-dependent-glucose-transporter‑2 inhibitors, gliflozins), DPP-4-inhibitors (Dipeptidyl-Peptidase inhibitors, gliptins), and GLP‑1 analogues (GLP‑1 rezeptor agonists) are not associated with such a time limitation.The relevant laws which regulate driving safety give room for interpretation, so that specific topics on driving safety for people with diabetes mellitus are elaborated from a medical and traffic-relevant point of view. This position paper is intended to support people involved in this challenging matter.
Collapse
Affiliation(s)
- Heidemarie Abrahamian
- Wissenschaftliches Institut gemäß BundesstatistikG 2008 ÖNACE-CODE: 72.19-0, Privates Institut für Medizin & NLP, Wien, Österreich
| | - Birgit Salamon
- KFV (Kuratorium für Verkehrssicherheit), Wien, Österreich
| | - Angelika Lahnsteiner
- Fachbereich für Biowissenschaften und Medizinische Biologie, Universität Salzburg, Salzburg, Österreich
| | - Christian Schelkshorn
- Erste medizinische Abteilung, Schwerpunkt Stoffwechselmedizin, Landesklinikum Korneuburg/Stockerau, Stockerau, Österreich
| | - Alexander Bräuer
- Klinik Ottakring, Fünfte Medizinische Abteilung mit Endokrinologie, Rheumatologie und Akutgeriatrie, Wiener Gesundheitsverbund, Wien, Österreich
| | - Lars Stechemesser
- Landeskrankenhaus, Universitätsklinik für Innere Medizin 1 der PMU, Uniklinikum Salzburg, Salzburg, Österreich
| | - Gerd Köhler
- Klinische Abteilung für Endokrinologie und Diabetologie, Medizinische Universität Graz und Rehabilitation für Stoffwechselerkrankungen Aflenz, Graz, Aflenz, Österreich
| | - Martin Clodi
- Krankenhaus der Barmherzigen Brüder Linz und Institut for Cardiovascular and Metabolic Research JKU (ICMR), Johannes Kepler Universität Linz (JKU Linz), Altenberger Straße 69, 4040, Linz, Österreich.
| |
Collapse
|