1
|
Xie M, Bao Y, Xie X, Ying Z, Ye G, Li C, Guo Q, Zhang W, Luo Z. Integrated transcriptomics and metabolomics reveal the toxic mechanisms of mercury exposure to an endangered species Tachypleus tridentatus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104345. [PMID: 38103811 DOI: 10.1016/j.etap.2023.104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Mercury (Hg) pollution is threatening the health of endangered Tachypleus tridentatus whereas the toxic mechanism is still unclear. This study combined transcriptomic and metabolomics technology to reveal the toxic mechanisms of mercury (Hg 2+, 0.025 mg/L) exposing to T. tridentatus larvae for 15 days. Mercury induced cellular toxicity and cardiovascular dysfunction by dysregulating the genes related to endocrine system, such as polyubiquitin-A, cathepsin B, atrial natriuretic peptide, etc. Mercury induced lipid metabolic disorder with the abnormal increase of lysoPC, leukotriene D4, and prostaglandin E2. Cytochrome P450 pathway was activated to produce anti-inflammatory substances to reconstruct the homeostasis. Mercury also inhibited arginine generation, which may affect the development of T. tridentatus by disrupting the crucial signaling pathway. The mercury methylation caused enhancement of S-adenosylmethionine to meet the need of methyl donor. The mechanisms described in present study provide new insight into the risk assessment of mercury exposure to T. tridentatus.
Collapse
Affiliation(s)
- Mujiao Xie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Yuyuan Bao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Center for Marine Development Research, Guangzhou 510322, China
| | - Xiaoyong Xie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Ziwei Ying
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China
| | - Guoling Ye
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China
| | - Chunhou Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Qingyang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China
| | - Wanling Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China
| | - Zimeng Luo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China
| |
Collapse
|
2
|
von Hellfeld R, Gade C, Vargesson N, Hastings A. Considerations for future quantitative structure-activity relationship (QSAR) modelling for heavy metals - A case study of mercury. Toxicology 2023; 499:153661. [PMID: 37924932 DOI: 10.1016/j.tox.2023.153661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
With increasing annual chemical development and production, safety testing demands and requirements have also increased. In addition to traditional animal testing, quantitative structure-activity relationship (QSAR) modelling can be used to predict the biological effect of a chemical structure, based on the analysis of quantitative characteristics of structure features. Whilst suitable for e.g., pharmaceuticals, other compounds can be more challenging to model. The naturally occurring heavy metal mercury speciates in the environment, with some toxic species accumulating in aquatic organisms. Although this is well known, only little data is available from (eco)toxicological studies, none of which account for this speciation behaviour. The present work highlights the current toxicity data for mercury in aquatic animals and gaps in our understanding and data for future QSAR modelling. All publicly available ecotoxicology data was obtained from databases and literature. Only few studies could be determined that assessed mercury toxicity in aquatic species. Of these, likely speciation products were determined using PHREEQc. This highlighted that the mercury exposure species was not always the predominant species in the medium. Finally, the descriptors for the modelled species were obtained from ChemDes, highlighting the limited availability of such details. Additional testing is required, accounting for speciation and biological interactions, to successfully determine the toxicity profile of different mercury species in aquatic environments. In the present work, insufficient mercury-species specific data was obtained, to conduct QSAR modelling successfully. This highlights a significant lack of data, for a heavy metal with potentially fatal repercussions.
Collapse
Affiliation(s)
- Rebecca von Hellfeld
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom; National Decommissioning Centre, Aberdeen, Scotland, United Kingdom.
| | - Christoph Gade
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom; National Decommissioning Centre, Aberdeen, Scotland, United Kingdom
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Astley Hastings
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom; National Decommissioning Centre, Aberdeen, Scotland, United Kingdom
| |
Collapse
|
3
|
Pinto EP, Paredes E, Bellas J. Influence of microplastics on the toxicity of chlorpyrifos and mercury on the marine microalgae Rhodomonas lens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159605. [PMID: 36273570 DOI: 10.1016/j.scitotenv.2022.159605] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The growing use of plastics, including microplastics (MPs), has enhanced their potential release into aquatic environments, where microalgae represent the basis of food webs. Due to their physicochemical properties, MPs may act as carriers of organic and inorganic pollutants. The present study aimed to determine the toxicity of polyethylene MPs (plain and oxidized) and the model pollutants chlorpyrifos (CPF) and mercury (Hg) on the red microalgae Rhodomonas lens, to contribute to the understanding of the effects of MPs and associated pollutants on marine ecosystems, including the role of MPs as vectors of potentially harmful pollutants to marine food webs. R. lens cultures were exposed to MPs (1-1000 μg/L; 25-24,750 particles/mL), CPF (1-4900 μg/L), Hg (1-500 μg/L), and to CPF- and Hg-loaded MPs, for 96 h. Average specific growth rate (ASGR, day-1), cellular viability and pigment concentration (chlorophyll a, c2 and carotenoids) were measured at 48 and 96 h. No significant effects were observed on the growth pattern of the microalgae after 96-h exposure to plain and oxidized MPs. However, a significant increase in cell concentration was detected after 48-h exposure to plain MPs. A decrease of the ASGR was noticed after exposure to CPF, Hg and to CPF/Hg-loaded MPs, whereas viability was affected by exposure to MPs, CPF and Hg, alone and in combination. Chlorophyll a and c2 significantly decreased when microalgae were exposed to plain MPs and CPF, while both pigments significantly increased when exposed to CPF-loaded MPs. Similarly, chlorophyll and carotenoids content significantly decreased after exposure to Hg, whereas a significant increase in chlorophyll a was observed after 48-h exposure to Hg-loaded MPs, at the higher tested concentration. Overall, the presence of MPs modulates the toxicity of Hg and CPF to these microalgae, decreasing the toxic effects on R. lens, probably due to a lower bioavailability of the contaminants.
Collapse
Affiliation(s)
- Estefanía P Pinto
- Centro de investigación Mariña (CIM), Departamento de Ecoloxía e Bioloxía Animal, Laboratorio de Ecoloxía Costeira (ECOCOST), Universidade de Vigo, Spain.
| | - Estefanía Paredes
- Centro de investigación Mariña (CIM), Departamento de Ecoloxía e Bioloxía Animal, Laboratorio de Ecoloxía Costeira (ECOCOST), Universidade de Vigo, Spain
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain
| |
Collapse
|
4
|
Rebolloso Hernández CA, Vallejo Pérez MR, Razo Soto I, Díaz-Barriga Martínez F, Yáñez LC. Mercury entomotoxicology. CHEMOSPHERE 2023; 311:136965. [PMID: 36280115 DOI: 10.1016/j.chemosphere.2022.136965] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/03/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Mercury is an industrial pollutant of global concern. Currently entomofauna is disappearing and chemical pollution is one cause, however, it is unknown whether mercury is an additional threat. Therefore, it is necessary to know the entomotoxicology of mercury. The aim of the present work was to perform a comprehensive literature review on the entomotoxicology of mercury. The toxicokinetics and toxicity of mercury in insects, the participation of insects in the mercury cycle and the fact that this element is a threat to entomofauna are characterized. Insects can be exposed to mercury through ingestion, tracheal respiration, and gill respiration. Organic forms of mercury are better absorbed, bioaccumulated and distributed than inorganic forms. In addition, insects can biotransform mercury, for example, by methylating it. Metal elimination occurs through feces, eggs and exuvia. Toxicity molecular mechanisms include oxidative stress, enzymatic disruptions, alterations in the metabolism of neurotransmitters and proteins, genotoxicity, cell death and unbalances in the energetic state. Moreover, mercury affects lipid, germ, and gut cells, causes deformations, disturbs development, reproduction, behavior, and locomotion, besides to alters insect populations and communities. In terrestrial ecosystems, entomofauna participate in the mercury cycle by bioaccumulating mercury from soil and air, predating, being predated and decomposing organic matter. In aquatic ecosystems insects participate by accumulating mercury from water and sediment, predating, being predated and transporting it to terrestrial ecosystems when they emerge as winged adults. There are still information gaps that need to be addressed.
Collapse
Affiliation(s)
- Carlos Alberto Rebolloso Hernández
- Programa Multidisciplinario de Posgrado en Ciencias Ambientales, Universidad Autónoma de San Luis Potosí, Avenida Manuel Nava No. 201, CP 78210, Zona Universitaria, San Luis Potosí, SLP, Mexico.
| | - Moisés Roberto Vallejo Pérez
- CONACYT, Coordinación para la Innovación y Aplicación de la Ciencia y Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico
| | - Israel Razo Soto
- Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Avenida Manuel Nava No. 304, CP 78210, Zona Universitaria, San Luis Potosí, SLP, Mexico
| | - Fernando Díaz-Barriga Martínez
- Facultad de Medicina-Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico
| | - Leticia Carrizales Yáñez
- Facultad de Medicina-Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico
| |
Collapse
|
5
|
Pouil S, Stevenson LM, Goñez-Rodríguez L, Mathews TJ. Stannous chloride as a tool for mercury stripping in contaminated streams: Experimental assessment of toxicity in an invertebrate model species. CHEMOSPHERE 2022; 296:133762. [PMID: 35093417 DOI: 10.1016/j.chemosphere.2022.133762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/05/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The chronic toxicity of an innovative Hg water treatment system using tin (Sn) (II) chloride (SnCl2) followed by air stripping was assessed through measurements of survival, growth, and reproduction rate in the freshwater cladoceran Ceriodaphnia dubia, a model species for toxicity testing. We first calculated the concentrations of Hg causing 25% reduction in survival and reproduction (Lethal or Inhibition Concentrations, or LC25 and IC25, for survival and reproduction, respectively) through exposure to aqueous Hg at concentrations ranging from 0 to 25,000 ng L-1. Then, we treated media (DMW and natural stream water) contaminated with Hg at LC25 and IC25 concentrations with SnCl2 at a Sn:Hg stoichiometric ratio of 8:1 and air stripping and exposed C. dubia to this Sn-amended media. Our results showed that Hg significantly affected survival, reproduction rates and impaired growth. SnCl2-treatment removed 100% of the Hg from the media at all concentrations tested with no deleterious effects on survival, growth and reproduction. Our results confirmed the efficacy of SnCl2 in removing aqueous Hg from stream water and showed that the added Sn did not impact C. dubia at the concentrations tested, supporting the suitability of SnCl2-based treatments in appropriate Hg-contaminated environments.
Collapse
Affiliation(s)
- Simon Pouil
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Louise M Stevenson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Leroy Goñez-Rodríguez
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Teresa J Mathews
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
| |
Collapse
|
6
|
Rashid S, Shah IA, Supe Tulcan RX, Rashid W, Sillanpaa M. Contamination, exposure, and health risk assessment of Hg in Pakistan: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:118995. [PMID: 35189298 DOI: 10.1016/j.envpol.2022.118995] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Mercury is a highly toxic and highly mobile heavy metal. It has been regarded as more toxic than other nonessential and toxic nonradioactive heavy metals. Moreover, it has a high tendency of bioaccumulation and biomagnification in the ecosystem. This study aimed to assess the environmental and health risks related to Hg. Seventy studies related to Hg in environmental media, aquatic biota, and food stuffs across Pakistan were reviewed, and their concentrations were used for ecological and human health risk assessments. High concentrations of Hg were reported in the environment, with maximum concentrations of 72 mg L-1, 144 mg kg-1, 887 mg kg-1, and 49,807 ng m-3 in surface water, surface soil, surface sediments, and urban atmosphere, respectively. The possible non-carcinogenic health risk (hazard quotient) of Hg was assessed in soil, water, and fish. High risks were calculated for seafood and vegetable consumption, while low risks were estimated for soils and groundwater ingestion and exposure. Overall, children showed higher risks than adults. Last, the risk quotient analysis (RQ) revealed significant risks for aquatic species. RQs showed that multiple species, especially those with smaller resilience, could face long-term detrimental impacts. High, medium, and low risks were calculated from 66.66, 16.17, and 16.17% of the reported Hg concentrations.
Collapse
Affiliation(s)
- Sajid Rashid
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Izaz Ali Shah
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Roberto Xavier Supe Tulcan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wajid Rashid
- Department of Environmental and Conservation Sciences, University of Swat, 19130, Pakistan.
| | - Mika Sillanpaa
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability, Shoolini University, Solan, 173212, Himachal Pradesh, India
| |
Collapse
|
7
|
Cui L, Fan M, Belanger S, Li J, Wang X, Fan B, Li W, Gao X, Chen J, Liu Z. Oryzias sinensis, a new model organism in the application of eco-toxicity and water quality criteria (WQC). CHEMOSPHERE 2020; 261:127813. [PMID: 32768750 DOI: 10.1016/j.chemosphere.2020.127813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Fish play an important role as a primary eco-toxicity test organism in environmental hazard assessment. Toxicity data of native species are often sought for use in the derivation of water quality criteria (WQC). The Chinese medaka, Oryzias sinensis, is an endemic species of China. The acute toxicity of 6 chemicals on O. sinensis was tested in this work, and toxicity effect of 10 chemicals to O. sinensis was compared with 4 commonly used species globally. A total of 9 robust interspecies correlation estimation (ICE) models using O. sinensis as the surrogate species were constructed and used to derive predicted no effect concentration and hazardous concentrations of 5% species (HC5) values based on species sensitivity distribution. Results showed that the 96 h median lethal concentration of Hg2+, Cr6+, linear alkylbenzene sulfonates, triclosan, 3,4-dchloroaniline, sodium chloride to O. sinensis were 0.29, 50, 6.0, 0.63, 9.2 and 14,400 mg/L, respectively. The sensitivity of O. sinensis and other 4 testing organisms were statistically indistinguishable (P > 0.05). No significant difference among HC5-ICE, HC5-measured and HC5 from published literatures was identified. All results indicated the O. sinensis is a potential model organism in the application of eco-toxicity and WQC in China and other Asian countries.
Collapse
Affiliation(s)
- Liang Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ming Fan
- Global Product Stewardship, The Procter and Gamble Company, 8700 Mason Montgomery Road, Mason, OH, 45040, United States
| | - Scott Belanger
- Global Product Stewardship, The Procter and Gamble Company, 8700 Mason Montgomery Road, Mason, OH, 45040, United States
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Bo Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenwen Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xiangyun Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jin Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
8
|
Parisi MG, Pirrera J, La Corte C, Dara M, Parrinello D, Cammarata M. Effects of organic mercury on Mytilus galloprovincialis hemocyte function and morphology. J Comp Physiol B 2020; 191:143-158. [PMID: 32979067 PMCID: PMC7819951 DOI: 10.1007/s00360-020-01306-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/26/2020] [Accepted: 09/09/2020] [Indexed: 01/01/2023]
Abstract
Abstract Filter-feeding organisms accumulate xenobiotics and other substances in their tissues. They can be useful as sentinel organisms in biomonitoring of the marine compartment. Bivalve cellular immunity is ensured by phagocytosis and cytotoxic reactions carried out by hemocytes in a network with humoral responses. These can be affected by chemical contaminants in water that can be immunosuppressors also at a low concentration increasing the sensibility to pathogens. This work is an attempt to individuate cellular markers for pollution detection, investigating the effect of methylmercury (CH3HgCl) at different concentrations on the activity and hemocyte morphology of the Mediterranean mussel, Mytilus galloprovincialis. We assessed the effect of three sub-lethal concentrations of the organometal on the cellular morphology, the efficacy of phagocytosis toward yeast cells, the alteration of the lysosomal membrane and the ability to release cytotoxic molecules. The results provide information on the alteration of hemocyte viability, modification of the morphological and cytoskeletal features and besides the cellular spreading, intrinsic ability of motile cells was used as a complementary investigation method. Exposure to the contaminant affected the percentage of phagocytosis and the phagocytosis index. Moreover, morphological and cytoskeleton alteration, caused by the pollutant, leads to reduced ability to incorporate the target and adhere to the substrate and the low ability of cells to retain neutral red could depend on the effects of methylmercury on membrane permeability. These results reinforce the use of the Mediterranean mussel as model for the evaluation of environmental quality in aquatic ecosystems integrating the novel information about hemocyte functions and morphology sensibility to organic mercury. Graphic abstract ![]()
Collapse
Affiliation(s)
- Maria Giovanna Parisi
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Edificio 16, 90128, Palermo, Italy.
| | - Jessica Pirrera
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Edificio 16, 90128, Palermo, Italy
| | - Claudia La Corte
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Edificio 16, 90128, Palermo, Italy
| | - Mariano Dara
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Edificio 16, 90128, Palermo, Italy
| | - Daniela Parrinello
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Edificio 16, 90128, Palermo, Italy
| | - Matteo Cammarata
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Edificio 16, 90128, Palermo, Italy
| |
Collapse
|
9
|
Heavy Metal Extraction under Environmentally Relevant Conditions Using 3-Hydroxy-2-Naphthoate- Based Ionic Liquids: Extraction Capabilities vs. Acute Algal Toxicity. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigated the applicability of three task-specific ionic liquids (ILs) as heavy metal extracting agents by contrasting extraction capabilities with algal toxicity. The compounds tested were trihexyltetradecylphosphonium-, methyltrioctylphosphonium- and methyltrioctylammonium 3-hydroxy-2-naphthoates. Experiments were performed to assess if these ILs can provide environmentally safe residual concentrations of the target metals after extraction. Both pure water and natural mineral water samples were spiked with 20 µg L−1 of Cu, Ag, Cd, Hg and Pb, respectively. Quantitative extraction (> 99%) of Hg and Ag was achieved. Cu and Hg were below the respective no-observed-effect-concentrations (NOECs) after extraction and Ag below 0.03 µg L−1. Acute toxicity assays were conducted using two freshwater green algae Raphidocelis subcapitata and Tetradesmus obliquus. Growth inhibition and maximum photochemical quantum yield of photosystem II after 72 h were assessed. ILs were less toxic than similar compounds, but still must be classified as acute toxicants for algae. An inhibiting effect on both growth and chlorophyll fluorescence was observed. The leaching of the ILs into the samples remains a limitation regarding their environmental-friendly applicability. Nonetheless, the extremely efficient removal of Cu, Ag and Hg under environmentally relevant conditions calls for further research, which should focus on the immobilization of the ILs.
Collapse
|
10
|
Lu BQ, Liu SS, Wang ZJ, Xu YQ. Conlecs: A novel procedure for deriving the concentration limits of chemicals outside the criteria of human drinking water using existing criteria and species sensitivity distribution based on quantitative structure-activity relationship prediction. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121380. [PMID: 31614281 DOI: 10.1016/j.jhazmat.2019.121380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/15/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Water quality criteria (WQC) for an increasing number of emerging chemicals need to be developed to protect human health and biological safety. Existing species sensitivity distribution (SSD) methods can only be used to help establish WQC for ecological protection, and cannot be extended to the protection of human beings from various hazards. In this study, a novel procedure called Conlecs is proposed to derive the concentration limits (ConLs) of pesticides outside the criteria for human drinking water (CHDW) using the existing criteria of pesticides and SSD integrated with the toxicity prediction achieved through robust QSAR models. Optimal SSD models of four pesticides (within the CHDW) and two pesticides (outside the CHDW) on 12 species were first constructed, and the existing ConLs of four pesticides within the CHDW were then utilized to select the most suitable species for the optimal proportions to avoid human hazards (PHH), allowing the ConLs of two pesticides outside the CHDW to be derived.
Collapse
Affiliation(s)
- Bing-Qing Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shu-Shen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Ze-Jun Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ya-Qian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
11
|
Ajitha V, Sreevidya CP, Kim JH, Bright Singh IS, Mohandas A, Lee JS, Puthumana J. Effect of metals of treated electroplating industrial effluents on antioxidant defense system in the microalga Chlorella vulgaris. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105317. [PMID: 31670168 DOI: 10.1016/j.aquatox.2019.105317] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
The microalga Chlorella vulgaris is one of the prominent and most widely distributed green microalgae found in aquatic environments, often used in toxicity tests due to its sensitivity to various pollutants. To examine the toxicity of metals found in the effluent discharges from an electroplating industry, physicochemical parameters in the microalga C. vulgaris were measured. pH, turbidity, total dissolved solids, color, and the concentrations of metals such as chromium (1.97 mg/L), mercury (104.2 mg/L), and zinc (167.25 mg/L) were found exceeding the permissible limits. Several endpoints such as total protein content, reactive oxygen species (ROS) production, photosynthetic pigment contents, and antioxidant enzymatic activities, including those of superoxide dismutase (SOD) and catalase (CAT), were measured in C. vulgaris in response to treated electroplating industrial effluent (TEPIE). In addition, concentration-dependent morphological changes were also observed in response to TEPIE. Under both acute and chronic TEPIE exposure, increase in the ROS level was observed indicating increased production of ROS in C. vulgaris cells. The total protein and chlorophyll contents were found to be gradually decreasing in an effluent concentration-dependent manner. Moreover, lower concentrations of effluent stimulated the antioxidant enzyme systems. A concentration-dependent increase was observed in both SOD and CAT enzymatic activities. The results indicated toxic impairments by the effluent on the function of C. vulgaris in response to both acute and chronic exposure, indicating an urgent need of proper treatment processes/modification of the existing one of TEPIE, with continuous monitoring of the discharge of the pollutants into the aquatic ecosystems using biological assays.
Collapse
Affiliation(s)
- Vayampully Ajitha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin-16, Kerala, India; School of Environmental Studies, Cochin University of Science and Technology, Cochin-22, Kerala, India
| | - C P Sreevidya
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin-16, Kerala, India
| | - Jeong Ha Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin-16, Kerala, India
| | - A Mohandas
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin-16, Kerala, India
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin-16, Kerala, India.
| |
Collapse
|
12
|
Lee BY, Choi BS, Kim MS, Park JC, Jeong CB, Han J, Lee JS. The genome of the freshwater water flea Daphnia magna: A potential use for freshwater molecular ecotoxicology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:69-84. [PMID: 30826642 DOI: 10.1016/j.aquatox.2019.02.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
The water flea Daphnia magna is a small planktonic cladoceran. D. magna has been used as a model species for ecotoxicology, as it is sensitive to environmental stressors and environmental changes. Since Daphnia is affected by culture environment and each population/strain has its own ecological and genetic characteristics, its population/strain-based genome information is useful for environmental genomic studies. In this study, we assembled and characterized the genome of D. magna. Using a high-density genetic map of D. magna xinb3, the draft genome was integrated to 10 linkage groups (LGs). The total length of the integrated genome was about 123 Mb with N50 = 10.1 Mb, and the number of scaffolds was 4193 including 10 LGs. A total of 15,721 genes were annotated after manual curation. Orthologous genes were characterized in the genome and compared with other genomes of Daphnia. In addition, we identified defense related genes such as cytochrome P450 (CYP) genes, glutathione S-transferase (GST) genes, and ATP-binding cassette (ABC) genes from the assembled D. magna genome for its potential use in molecular ecotoxicological studies in the freshwater environment. This genomic resource will be helpful to study for a better understanding on molecular mechanism in response to various pollutants.
Collapse
Affiliation(s)
- Bo-Young Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Min-Sub Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
13
|
Mahbub KR, Bahar MM, Megharaj M, Labbate M. Are the existing guideline values adequate to protect soil health from inorganic mercury contamination? ENVIRONMENT INTERNATIONAL 2018; 117:10-15. [PMID: 29704752 DOI: 10.1016/j.envint.2018.04.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Currently, data that guide safe concentration ranges for inorganic mercury in the soil are lacking and subsequently, threaten soil health. In the present study, a species sensitivity distribution (SSD) approach was applied to estimate critical mercury concentration that has little (HC5) or no effect (PNEC) on soil biota. Recently published terrestrial toxicity data were incorporated in the approach. Considering total mercury content in soils, the estimated HC5 was 0.6 mg/kg, and the PNEC was 0.12-0.6 mg/kg. Whereas, when only water-soluble mercury fractions were considered, these values were 0.04 mg/kg and 0.008-0.04 mg/kg, respectively.
Collapse
Affiliation(s)
| | - Md Mezbaul Bahar
- Global Center for Environmental Remediation, Research and Innovation Division, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Mallavarapu Megharaj
- Global Center for Environmental Remediation, Research and Innovation Division, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Maurizio Labbate
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
14
|
Liu Y, Li C, Anderson B, Zhang S, Shi X, Zhao S. A modified QWASI model for fate and transport modeling of mercury between the water-ice-sediment in Lake Ulansuhai. CHEMOSPHERE 2017; 176:117-124. [PMID: 28260652 DOI: 10.1016/j.chemosphere.2017.02.111] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
Mercury contamination from industrial and agricultural drainage into lakes and rivers is a growing concern in Northern China. Lake Ulansuhai, located in Hetao irrigation district in Inner Mongolia, is the only sink for the all industrial and agricultural drainage and sole outlet for this district to the Yellow River, which is one of the main source of drinking water for the numerous cities and towns downstream. Because Ulansuahi is ice-covered during winter, the QWASI model was modified by adding an ice equation to get a more accurate understanding of the fate and transport of mercury within the lake. Both laboratory and field tests were carried out during the ice growth period. The aquivalence and mass balance approaches were used to develop the modified QWASI + ice model. The margins of error between the modelled and the measured average concentrations of Hg in ice, water, and sediment were 30%, 26.2%, and 19.8% respectively. These results suggest that the new QWASI + ice model could be used to more accurately represent the fate and transport of mercury in the seasonally ice-covered lakes, during the ice growth period.
Collapse
Affiliation(s)
- Yu Liu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Changyou Li
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Bruce Anderson
- Civil Engineering, Queen's University, Kingston, K7L3N6, Canada
| | - Sheng Zhang
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xiaohong Shi
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Shengnan Zhao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China
| |
Collapse
|
15
|
Mahbub KR, Krishnan K, Naidu R, Megharaj M. Mercury toxicity to Eisenia fetida in three different soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1261-1269. [PMID: 27770329 DOI: 10.1007/s11356-016-7869-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
Three different soils were spiked with 12 different concentrations of inorganic mercury (Hg). Sub-chronic Hg toxicity tests were carried out with Eisenia fetida in spiked soils by exposing the worms for 28 days following standard procedures. The toxicity studies revealed that Hg exerted less lethal effect on earthworms in acidic soil with higher organic carbon (S-3 soil) where water soluble Hg recovery was very low compared to the water soluble Hg fractions in soils with less organic carbon and higher pH (S-1 and S-2 soils). The concentrations of total Hg that caused 50 % lethality to E. fetida (LC50) after 28 days of exposure in S-1, S-2 and S-3 soils were 152, 294 and 367 mg kg-1, respectively. The average weight loss of E. fetida in three soils ranged from 5 to 65 %. The worms showed less weight loss in the organic carbon-rich soil (S-3) compared to less organic carbon containing soils (S-1 and S-2). The bioconcentration of Hg in E. fetida increased with increased Hg concentrations. The highest bioaccumulation took place in the acidic soil with higher organic carbon contents with estimated bioaccumulation factors ranging from 2 to 7.7. The findings of this study will be highly useful for deriving a more robust soil ecological guideline value for Hg.
Collapse
Affiliation(s)
- Khandaker Rayhan Mahbub
- Global Centre for Environmental Remediation, ATC Building, Level 1, Faculty of Science and Information Technology, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), Mawson Lakes, Adelaide, SA, 5095, Australia.
| | - Kannan Krishnan
- Global Centre for Environmental Remediation, ATC Building, Level 1, Faculty of Science and Information Technology, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), Mawson Lakes, Adelaide, SA, 5095, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, ATC Building, Level 1, Faculty of Science and Information Technology, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), Mawson Lakes, Adelaide, SA, 5095, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, ATC Building, Level 1, Faculty of Science and Information Technology, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), Mawson Lakes, Adelaide, SA, 5095, Australia
| |
Collapse
|
16
|
Le Faucheur S, Vasiliu D, Catianis I, Zazu M, Dranguet P, Beauvais-Flück R, Loizeau JL, Cosio C, Ungureanu C, Ungureanu VG, Slaveykova VI. Environmental quality assessment of reservoirs impacted by Hg from chlor-alkali technologies: case study of a recovery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22542-22553. [PMID: 27557957 DOI: 10.1007/s11356-016-7405-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Mercury (Hg) pollution legacy of chlor-alkali plants will be an important issue in the next decades with the planned phase out of Hg-based electrodes by 2025 within the Minamata convention. In such a context, the present study aimed to examine the extent of Hg contamination in the reservoirs surrounding the Oltchim plant and to evaluate the possible improvement of the environmental quality since the closure of its chlor-alkali unit. This plant is the largest chlor-alkali plant in Romania, which partly switched to Hg-free technology in 1999 and definitely stopped the use of Hg electrolysis in May 2012. Total Hg (THg) and methylmercury (CH3Hg) concentrations were found to decrease in the surface waters and sediments of the reservoirs receiving the effluents of the chlor-alkali platform since the closure of Hg units. Hence, calculated risk quotients (RQ) indicated no adverse effect of Hg for aquatic organisms from the ambient water exposure. RQ of Hg in sediments were mostly all higher than 1, showing important risks for benthic organisms. However, ecotoxicity testing of water and sediments suggest possible impact of other contaminants and their mixtures. Hg hotspots were found in soils around the platform with RQ values much higher than 1. Finally, THg and CH3Hg concentrations in fish were below the food safety limit set by the WHO, which contrasts with previous measurements made in 2007 revealing that 92 % of the studied fish were of high risk of consumption. Discontinuing the use of Hg electrodes greatly improved the surrounding environment of chlor-alkali plants within the following years and led to the decrease environmental exposure to Hg through fish consumption. However, sediment and soil still remained highly contaminated and problematic for the river reservoir management. The results of this ecological risk assessment study have important implications for the evaluation of the benefits as well as limits of the Minamata Convention implementation.
Collapse
Affiliation(s)
- Séverine Le Faucheur
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Institute F.-A. Forel, Environmental Biogeochemistry and Ecotoxicology, Uni Carl Vogt, 66 Bvd Carl-Vogt, 1211, Geneva 4, Switzerland.
| | - Dan Vasiliu
- National Institute for Research and Development of Marine Geology and Geoecology (GeoEcoMar), 23-25 Dimitrie Onciul Street, 024053, Bucharest, Romania
| | - Irina Catianis
- National Institute for Research and Development of Marine Geology and Geoecology (GeoEcoMar), 23-25 Dimitrie Onciul Street, 024053, Bucharest, Romania
| | - Mariana Zazu
- National Institute for Research and Development of Marine Geology and Geoecology (GeoEcoMar), 23-25 Dimitrie Onciul Street, 024053, Bucharest, Romania
| | - Perrine Dranguet
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Institute F.-A. Forel, Environmental Biogeochemistry and Ecotoxicology, Uni Carl Vogt, 66 Bvd Carl-Vogt, 1211, Geneva 4, Switzerland
| | - Rebecca Beauvais-Flück
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Institute F.-A. Forel, Environmental Biogeochemistry and Ecotoxicology, Uni Carl Vogt, 66 Bvd Carl-Vogt, 1211, Geneva 4, Switzerland
| | - Jean-Luc Loizeau
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Institute F.-A. Forel, Environmental Biogeochemistry and Ecotoxicology, Uni Carl Vogt, 66 Bvd Carl-Vogt, 1211, Geneva 4, Switzerland
| | - Claudia Cosio
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Institute F.-A. Forel, Environmental Biogeochemistry and Ecotoxicology, Uni Carl Vogt, 66 Bvd Carl-Vogt, 1211, Geneva 4, Switzerland
| | - Costin Ungureanu
- National Institute for Research and Development of Marine Geology and Geoecology (GeoEcoMar), 23-25 Dimitrie Onciul Street, 024053, Bucharest, Romania
| | - Viorel Gheorghe Ungureanu
- National Institute for Research and Development of Marine Geology and Geoecology (GeoEcoMar), 23-25 Dimitrie Onciul Street, 024053, Bucharest, Romania
| | - Vera I Slaveykova
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Institute F.-A. Forel, Environmental Biogeochemistry and Ecotoxicology, Uni Carl Vogt, 66 Bvd Carl-Vogt, 1211, Geneva 4, Switzerland.
| |
Collapse
|
17
|
Cavalheiro J, Sola C, Baldanza J, Tessier E, Lestremau F, Botta F, Preud'homme H, Monperrus M, Amouroux D. Assessment of background concentrations of organometallic compounds (methylmercury, ethyllead and butyl- and phenyltin) in French aquatic environments. WATER RESEARCH 2016; 94:32-41. [PMID: 26921711 DOI: 10.1016/j.watres.2016.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/18/2015] [Accepted: 02/07/2016] [Indexed: 06/05/2023]
Abstract
The aim of this work is to estimate background concentrations of organometallic compounds, such as tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPhT), diphenyltin (DPhT), monophenyltin (MPhT), methylmercury (MeHg), inorganic mercury (iHg) and diethyllead (Et2Pb) in the aquatic environment at the French national scale. Both water and sediment samples were collected all over the country, resulting in 152 water samples and 123 sediment samples collected at 181 sampling points. Three types of surface water bodies were investigated: rivers (140 sites), lakes (19 sites) and coastal water (42 sites), spread along the 11 French river basins. The choice of sites was made on the basis of previous investigation results and the following target criteria: reference, urban sites, agricultural and industrial areas. The analytical method was properly validated for both matrices prior to analysis, resulting in low limits of quantification (LOQ), good precision and linearity in agreement with the Water Framework Directive demands. The results were first evaluated as a function of their river basins, type of surrounding pressure and water bodies. Later, background concentrations at the French national scale were established for both water and sediment matrices, as well as their threshold, i.e., the concentration that distinguishes background from anomalies or contaminations. Background concentrations in water are ranging between <0.04-0.14 ng Hg. L(-1) for MeHg, <0.14-2.10 ng Hg. L(-1) for iHg, <1.0-8.43 ng Pb. L(-1) for Et2Pb and 0.49-151 ng Sn. L(-1), <0.08-3.04 ng Sn. L(-1) and <0.08-0.25 ng Sn. L(-1) for MBT, DBT and TBT, respectively. For sediments, background concentrations were set as <0.09-1.11 ng Hg. g(-1) for MeHg, <0.06-24.3 ng Pb. g(-1) for Et2Pb and <1.4-13.4 ng Sn. g(-1), <0.82-8.54 ng Sn. g(-1), <0.25-1.16 ng Sn. g(-1) and <0.08-0.61 ng Sn. g(-1) for MBT, DBT, TBT and DPhT, respectively. TBT occurs in higher concentrations than the available environmental protection values in 24 and 38 sampling sites for both water and sediment samples, respectively. Other phenyltins (MPhT and TPhT) did not occur above their LOQ and therefore no background was possible to establish. Throughout this work, which is the first assessment of background concentrations for organometallic compounds at the French national level ever being published, it was possible to conclude that over the last 10-20 years organotin concentrations in French river basins have decreased while MeHg concentration remained stable.
Collapse
Affiliation(s)
- Joana Cavalheiro
- CNRS UMR 5254, Université de Pau et des Pays de l'Adour, Hélioparc Pau Pyrénées, 2, av. P. Angot, 9, France
| | - Cristina Sola
- CNRS UMR 5254, Université de Pau et des Pays de l'Adour, Hélioparc Pau Pyrénées, 2, av. P. Angot, 9, France; Departamento de Quimica y Edafologia, Faculdad de Ciencias, Universidad de Navarra, Pamplona, Spain
| | - Julie Baldanza
- CNRS UMR 5254, Université de Pau et des Pays de l'Adour, Hélioparc Pau Pyrénées, 2, av. P. Angot, 9, France
| | - Emmanuel Tessier
- CNRS UMR 5254, Université de Pau et des Pays de l'Adour, Hélioparc Pau Pyrénées, 2, av. P. Angot, 9, France
| | - François Lestremau
- Institut National de l'Environnement Industriel et des Risques (INERIS); Parc Technologique ALATA, BP 2, 60550, Verneuil-en-Halatte, France
| | - Fabrizio Botta
- Institut National de l'Environnement Industriel et des Risques (INERIS); Parc Technologique ALATA, BP 2, 60550, Verneuil-en-Halatte, France
| | - Hugues Preud'homme
- CNRS UMR 5254, Université de Pau et des Pays de l'Adour, Hélioparc Pau Pyrénées, 2, av. P. Angot, 9, France
| | - Mathilde Monperrus
- CNRS UMR 5254, Université de Pau et des Pays de l'Adour, Hélioparc Pau Pyrénées, 2, av. P. Angot, 9, France
| | - David Amouroux
- CNRS UMR 5254, Université de Pau et des Pays de l'Adour, Hélioparc Pau Pyrénées, 2, av. P. Angot, 9, France.
| |
Collapse
|
18
|
Val J, Muñiz S, Gomà J, Navarro E. Influence of global change-related impacts on the mercury toxicity of freshwater algal communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 540:53-62. [PMID: 26024757 DOI: 10.1016/j.scitotenv.2015.05.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 06/04/2023]
Abstract
The climatic-change related increase of temperatures, are expected to alter the distribution and survival of freshwater species, ecosystem functions, and also the effects of toxicants to aquatic biota. This study has thus assessed, as a first time, the modulating effect of climate-change drivers on the mercury (Hg) toxicity of freshwater algal photosynthesis. Natural benthic algal communities (periphyton) have been exposed to Hg under present and future temperature scenarios (rise of 5 °C). The modulating effect of other factors (also altered by global change), as the quality and amount of suspended and dissolved materials in the rivers, has been also assessed, exposing algae to Hg in natural river water or a synthetic medium. The EC50 values ranged from the 0.15-0.74 ppm for the most sensitive communities, to the 24-40 ppm for the most tolerant. The higher tolerance shown by communities exposed to higher Hg concentrations, as Jabarrella was in agreement with the Pollution Induced Community Tolerance concept. In other cases, the dominance of the invasive diatom Didymosphenia geminata explained the tolerance or sensitivity of the community to the Hg toxicity. Results shown that while increases in the suspended solids reduced Hg bioavailability, changes in the dissolved materials - such as organic carbon - may increase it and thus its toxic effects on biota. The impacts of the increase of temperatures on the toxicological behaviour of periphyton (combining both changes at species composition and physiological acclimation) would be certainly modulated by other effects at the land level (i.e., alterations in the amount and quality of dissolved and particulate substances arriving to the rivers).
Collapse
Affiliation(s)
- Jonatan Val
- Pyrenean Institute of Ecology, CSIC, Av. Montañana 1005, Zaragoza 50059, Spain; Research Institute for Environment and Sustainability of San Jorge University, Villanueva de Gállego, 50830, Zaragoza, Spain; FACOPS Foundation, Calle Pineta 17, 50410 Cuarte de Huerva, Zaragoza, Spain
| | - Selene Muñiz
- Pyrenean Institute of Ecology, CSIC, Av. Montañana 1005, Zaragoza 50059, Spain
| | - Joan Gomà
- Dept. of Ecology, University of Barcelona, Av. Diagonal 645, Barcelona 08026, Spain
| | - Enrique Navarro
- Pyrenean Institute of Ecology, CSIC, Av. Montañana 1005, Zaragoza 50059, Spain
| |
Collapse
|
19
|
Garner KL, Suh S, Lenihan HS, Keller AA. Species sensitivity distributions for engineered nanomaterials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5753-5759. [PMID: 25875138 DOI: 10.1021/acs.est.5b00081] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Engineered nanomaterials (ENMs) are a relatively new strain of materials for which little is understood about their impacts. A species sensitivity distribution (SSDs) is a cumulative probability distribution of a chemical's toxicity measurements obtained from single-species bioassays of various species that can be used to estimate the ecotoxicological impacts of a chemical. The recent increase in the availability of acute toxicity data for ENMs enabled the construction of 10 ENM-specific SSDs, with which we analyzed (1) the range of toxic concentrations, (2) whether ENMs cause greater hazard to an ecosystem than the ionic or bulk form, and (3) the key parameters that affect variability in toxicity. The resulting estimates for hazardous concentrations at which 5% of species will be harmed ranged from <1 ug/L for PVP-coated n-Ag to >3.5 mg/L for CNTs. The results indicated that size, formulation, and the presence of a coating can alter toxicity, and thereby corresponding SSDs. Few statistical differences were observed between SSDs of an ENM and its ionic counterpart. However, we did find a significant correlation between the solubility of ENMs and corresponding SSD. Uncertainty in SSD values can be reduced through greater consideration of ENM characteristics and physiochemical transformations in the environment.
Collapse
Affiliation(s)
- Kendra L Garner
- UC Center on the Environmental Implications of Nanotechnology and Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
| | - Sangwon Suh
- UC Center on the Environmental Implications of Nanotechnology and Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
| | - Hunter S Lenihan
- UC Center on the Environmental Implications of Nanotechnology and Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
| | - Arturo A Keller
- UC Center on the Environmental Implications of Nanotechnology and Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
20
|
Du M, Wei D, Tan Z, Lin A, Du Y. Predicted no-effect concentrations for mercury species and ecological risk assessment for mercury pollution in aquatic environment. J Environ Sci (China) 2015; 28:74-80. [PMID: 25662241 DOI: 10.1016/j.jes.2014.06.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 06/04/2023]
Abstract
Mercury (Hg) exists in different chemical forms presenting varied toxic potentials. It is necessary to explore an ecological risk assessment method for different mercury species in aquatic environment. The predicted no-effect concentrations (PNECs) for Hg(II) and methyl mercury (MeHg) in the aqueous phase, calculated using the species sensitivity distribution method and the assessment factor method, were 0.39 and 6.5×10(-3)μg/L, respectively. The partition theory of Hg between sediment and aqueous phases was considered, along with PNECs for the aqueous phase to conduct an ecological risk assessment for Hg in the sediment phase. Two case studies, one in China and one in the Western Black Sea, were conducted using these PNECs. The toxicity of mercury is heavily dependent on their forms, and their potential ecological risk should be respectively evaluated on the basis of mercury species.
Collapse
Affiliation(s)
- Meng Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Water Quality Monitoring Center of Beijing Waterworks Group Company Limited, Beijing 100192, China.
| | - Dongbin Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zhuowei Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aiwu Lin
- Water Quality Monitoring Center of Beijing Waterworks Group Company Limited, Beijing 100192, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|