1
|
Zainab R, Hasnain M, Ali F, Dias DA, El-Keblawy A, Abideen Z. Exploring the bioremediation capability of petroleum-contaminated soils for enhanced environmental sustainability and minimization of ecotoxicological concerns. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104933-104957. [PMID: 37718363 DOI: 10.1007/s11356-023-29801-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
The bioremediation of soils contaminated with petroleum hydrocarbons (PHCs) has emerged as a promising approach, with its effectiveness contingent upon various types of PHCs, i.e., crude oil, diesel, gasoline, and other petroleum products. Strategies like genetically modified microorganisms, nanotechnology, and bioaugmentation hold potential for enhancing remediation of polycyclic aromatic hydrocarbon (PAH) contamination. The effectiveness of bioremediation relies on factors such as metabolite toxicity, microbial competition, and environmental conditions. Aerobic degradation involves enzymatic oxidative reactions, while bacterial anaerobic degradation employs reductive reactions with alternative electron acceptors. Algae employ monooxygenase and dioxygenase enzymes, breaking down PAHs through biodegradation and bioaccumulation, yielding hydroxylated and dihydroxylated intermediates. Fungi contribute via mycoremediation, using co-metabolism and monooxygenase enzymes to produce CO2 and oxidized products. Ligninolytic fungi transform PAHs into water-soluble compounds, while non-ligninolytic fungi oxidize PAHs into arene oxides and phenols. Certain fungi produce biosurfactants enhancing degradation of less soluble, high molecular-weight PAHs. Successful bioremediation offers sustainable solutions to mitigate petroleum spills and environmental impacts. Monitoring and assessing strategy effectiveness are vital for optimizing biodegradation in petroleum-contaminated soils. This review presents insights and challenges in bioremediation, focusing on arable land safety and ecotoxicological concerns.
Collapse
Affiliation(s)
- Rida Zainab
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Faraz Ali
- School of Engineering and Technology, Central Queensland University, Sydney, Australia
| | - Daniel Anthony Dias
- CASS Food Research Centre, School of Exercise and Nutrition Sciences Deakin University, Melbourne, VIC, 3125, Australia
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, UAE
| | - Zainul Abideen
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, UAE.
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
2
|
Liu Y, Wei L, Wu Q, Luo D, Xiao T, Wu Q, Huang X, Liu J, Wang J, Zhang P. Impact of acid mine drainage on groundwater hydrogeochemistry at a pyrite mine (South China): a study using stable isotopes and multivariate statistical analyses. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:771-785. [PMID: 35312930 DOI: 10.1007/s10653-022-01242-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Combining environmental isotope analysis with principal component analysis can be an effective method to discriminate the inflows and sources of contamination in mining-affected watersheds. This paper presents a field-scale study conducted at an acid mine drainage (AMD)-contaminated site adjacent to a pyrite mine in South China. Samples of surface water and groundwater were collected to investigate transport in the vadose zone using stable isotopes of oxygen (δ18O) and hydrogen (δD) as environmental tracers. Principal component analysis of hydrogeochemical data was used to identify the probable sources of heavy metals in the AMD. The heavy metal pollution index (HPI) was applied to evaluate the pollution status of heavy metals in the groundwater. The groundwater associated with the Datai reservoir was recharged by atmospheric precipitation and surface water. On the side near the AMD pond, the groundwater was significantly affected by the soluble metals produced by pyrite oxidation. The concentrations of some metals (Al, Mn, and Pb) in all of the samples exceed the desirable limits prescribed by the World Health Organization (Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva, 2011). Among them, the concentration of Al is more than 30,000 times higher than the desirable limits prescribed by the World Health Organization (2011), and the concentration of Mn is more than 3000 times higher. The HPI values based on these heavy metal concentrations were found to be 10-1000 times higher than the critical pollution index value of 100. These findings provide a reference and guidance for research on the migration and evolution of heavy metals in vadose zone water in AMD-contaminated areas.
Collapse
Affiliation(s)
- Yu Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Linkoping University-Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Lezhang Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Linkoping University-Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Qinghua Wu
- Changjiang River Scientific Research Institute, Wuhan, 430010, China
| | - Dinggui Luo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Qihang Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Xuexia Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Ping Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
3
|
Liu T, Tian L, Yang L, Yan D, Huang Q, Lu G, Liu Z, Huang Z. Emissions of BTEXs, NMHC, PAHs, and PCDD/Fs from Co-processing of Oil-based Drilling Cuttings in Brick Kilns. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114170. [PMID: 34864419 DOI: 10.1016/j.jenvman.2021.114170] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Oil-based drilling cuttings (OBDC) produced from shale gas development is a hazardous waste that have high calorific values and should be disposed of properly. Burning bricks with OBDC is a promising co-disposal method; however, organic pollutants emitted during this process have not received sufficient attention. In this study, the composition and combustion characteristics of OBDC were determined, and the emissions of typical organic pollutants when burning bricks with the addition of OBDC were investigated; these included benzene series compounds (BTEXs), non-methane total hydrocarbons (NMHC), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). The results showed that OBDC comprised large amounts of alkanes and aromatic hydrocarbons, and combusted mainly in the temperature range of 145-450 °C with an ignition temperature of 145 °C. The co-processing 10% OBDC increased the concentrations of toluene, NMHC, and PAHs in the flue gases by ∼1000%, ∼500%, and 200%, respectively, compared to the control experiment; however, their emission concentrations were within the limits set by the Integrated emission standards of air pollutants of Chongqing. It is worth noting that 26.443 ng/Nm3 PCDD/Fs with a total toxicity of 0.709 ng I-TEQ/Nm3 was generated from the co-processing 10% OBDC, which was ascribed to the high content of chlorine and aromatic hydrocarbons in the OBDC-promoted PCDD/Fs formed during the burning and cooling processes. Though PCDD/Fs in flue gas exceeded the 0.5 ng I-TEQ/Nm3 limit prescribed in the Pollution control standard for hazardous wastes incineration of China, the realistic emission of PCDD/Fs is expected to meet with this emission limit after desulfurization treatment as PCDD/Fs can be absorbed by gypsum. It is recommended that a lower amount of OBDC is added to reduce PCDD/F formation at the source and to take more efficient air pollution control system in order to reach a stricter emission limit of 0.1 ng I-TEQ/Nm3 in EU and USA. Cycling flue gas may also be an effective method to reduce other organic pollutants. Under these conditions, co-processing OBDC in brick kilns can be achieved without serious environmental pollution, making it a potential method for disposal and utilization.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lifeng Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technology Institution Physical and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liuyang Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Dahai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Guilan Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zewei Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zechun Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
4
|
Kujawska J, Pawłowska M. Effect of drill cuttings addition on physicochemical and chemical properties of soil and red clover (Trifolium pretense L.) growth. PLoS One 2020; 15:e0242081. [PMID: 33180857 PMCID: PMC7660460 DOI: 10.1371/journal.pone.0242081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/27/2020] [Indexed: 11/19/2022] Open
Abstract
The most economical method of drill cuttings disposal may be their application in land reclamation which allows for the wastes recovery. However, the wastes application into the soil should ensure that the quality of the environment would not be deteriorated. These investigations were aimed at identifying the effect of drill cuttings, which were the mixture of different types of drilling wastes, on the physicochemical properties of acidic soil and growth of red clover (Trifolium pratense L.). The experimental design comprised 5 treatments, which differed in a dose of the drill cuttings: 0% (control), 2.5%, 5%, 10% and 15% of dry weight. A six-week pot experiment was conducted to determine the influence of the wastes on the plant growth. The results showed that the drill cuttings addition significantly changed the chemical and physicochemical properties of the soil, such as: electrical conductivity (EC), pH, base saturation, content of carbonate, alkaline cations (Ca2+, Na+, K+, Mg2+), organic matter, total organic carbon (TOC), and available phosphorus form. However, the most important factors that influenced the growth of red clover were pH, base saturation, content of Mg2+ and plant available phosphorus. The red clover biomass was increased from 1.5 to 2.5 times depending on the dose of wastes. We concluded that the examined wastes can be used for reclamation of the acid and unfertile degraded soils, but the amount of wastes should not exceed 5% of the soil, because the highest total clover biomass was observed just at this dose.
Collapse
Affiliation(s)
- Justyna Kujawska
- Faculty of Environmental Engineering, Lublin University of Technology, Lublin, Poland
- * E-mail:
| | - Małgorzata Pawłowska
- Faculty of Environmental Engineering, Lublin University of Technology, Lublin, Poland
| |
Collapse
|
5
|
Mikos-Szymańska M, Rusek P, Borowik K, Rolewicz M, Bogusz P, Gluzińska J. Characterization of drilling waste from shale gas exploration in Central and Eastern Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35990-36001. [PMID: 29808401 PMCID: PMC6290700 DOI: 10.1007/s11356-018-2365-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/22/2018] [Indexed: 05/17/2023]
Abstract
The purpose of this research was to determine and evaluate the chemical properties of drilling waste from five well sites in Central and Eastern Poland. It was found that spent drilling fluids can contain high values of nickel and mercury (270 and 8.77 mg kg-1, respectively) and can exceed the maximum permissible limits recommended by the EC regulations for safety of soils (75 mg kg-1 for nickel and 1.5 mg kg-1 for mercury). The heavy metal concentrations in the studied drill cuttings did not exceed the maximum permissible limits recommended by the EC regulation. Drilling wastes contain macroelements (e.g., calcium, magnesium, and potassium) as well as trace elements (e.g., copper, iron, zinc, and manganese) that are essential for the plant growth. It was stated that water extracts of drilling fluids and drill cuttings, according to anions presence, had not any specific constituents of concern based on FAO irrigation guidelines, the USEPA WQC, and toxicity values. X-ray diffraction analysis was used to understand the structure and texture of waste drilling fluid solids and drill cuttings. Analysis of the mineralogical character of drilling fluid solids revealed that they contained calcite, quartz, muscovite, sylvite, barite, dolomite, and orthoclase. Drill cuttings contained calcite quartz, muscovite, barite, dolomite, and barium chloride.
Collapse
Affiliation(s)
- Marzena Mikos-Szymańska
- Fertilizer Department, New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110, Puławy, Poland.
| | - Piotr Rusek
- Fertilizer Department, New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110, Puławy, Poland
| | - Krzysztof Borowik
- Fertilizer Department, New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110, Puławy, Poland
| | - Maciej Rolewicz
- Fertilizer Department, New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110, Puławy, Poland
| | - Paulina Bogusz
- Fertilizer Department, New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110, Puławy, Poland
| | - Joanna Gluzińska
- New Chemical Syntheses Institute, Inorganic Chemistry Division "IChN" in Gliwice, Ul. Sowińskiego 11,, 44-101, Gliwice, Poland
| |
Collapse
|
6
|
do Amaral Sobrinho NMB, Ceddia MB, Zonta E, Magalhães MOL, de Freitas FC, Lima ESA. Spatial variability and solubility of barium in a petroleum well-drilling waste disposal area. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:228. [PMID: 29550879 DOI: 10.1007/s10661-018-6566-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
The petroleum industry generates a range of wastes which is often are disposed in soil close to the well location, negatively affecting soil and water quality. The objective of this study was to evaluate the solubility and map the spatial variability of barium in a potentially contaminated area. The study area consisted of a petroleum well-drilling waste disposal site located in the municipality of Mato Rico-PR. A large georeferenced sampling grid was organized. Soil samples were collected at depths of 30, 60, 90, and 120 cm for determination of the "pseudo-total" concentrations and geochemical fractionation of barium. The barium concentrations showed spatial dependence, which permitted the use of geostatistical interpolators. Regarding depth, the depth of 0-30 cm showed the largest contaminated area; however, higher concentrations of barium were found at the depth of 60-90 cm. The results of geochemical fractionation showed that the analyzed samples contained percentages higher than 99% in the non-labile fraction (residual). These results indicate clearly that the barium was in a condition of low solubility, even for samples that had the highest concentrations, presenting low-environmental risk.
Collapse
Affiliation(s)
| | - Marcos Bacis Ceddia
- Federal Rural University of Rio de Janeiro (Universidade Federal Rural do Rio de Janeiro - UFRRJ), Seropédica, RJ, Brazil
| | - Everaldo Zonta
- Federal Rural University of Rio de Janeiro (Universidade Federal Rural do Rio de Janeiro - UFRRJ), Seropédica, RJ, Brazil
| | | | - Fábio Cardoso de Freitas
- Mato Grosso State University (Universidade do Estado de Mato Grosso), Tangará da Serra, MT, Brazil
- Federal University of Rio de Janeiro (UFRRJ), Campus Três Rios, RJ, Brazil
| | - Erica Souto Abreu Lima
- Federal Rural University of Rio de Janeiro (Universidade Federal Rural do Rio de Janeiro - UFRRJ), Seropédica, RJ, Brazil.
| |
Collapse
|