1
|
Li S, Wang Z, Gao N, Niu X, Zhu B, Xu L, Xue W. Assessment of toxic effects of thallium on the earthworm Eisenia fetida using the biomarker response index. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1405-1416. [PMID: 38979770 DOI: 10.1039/d4em00253a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Thallium (Tl), though not essential for biological systems, is widely used in industrial activities, resulting in soil pollution and adverse effects on soil biota. Systematic toxicological studies on Tl, especially concerning soil organisms, are relatively rare. This research evaluates the toxic effects of Tl on earthworms by measuring oxidative stress biomarkers, such as superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), malondialdehyde (MDA), and 8-hydroxydeoxyguanosine (8-OHdG), and by assessing the expression of functional genes, such as heat shock protein 70 (Hsp70), metallothionein (MT), and annetocin (ANN). Additionally, this study employs the Biomarker Response Index (BRI) and two-way ANOVA to comprehensively assess the cumulative toxicity of Tl in earthworms. The findings indicate that Tl exposure significantly exacerbates oxidative stress and cellular damage in earthworms, particularly under conditions of high concentration and prolonged exposure. BRI results demonstrate a continuous decline in the physiological state of earthworms with increasing Tl concentration and exposure duration. Two-way ANOVA reveals significant dose-responsive increases in SOD and CAT activities, as well as in ANN gene expression. Apart from GST activity, other biomarkers significantly increased over time, and the changes in biomarkers such as SOD, CAT, MDA, and 8-OHdG were significantly influenced by dose and time. LSD post hoc tests show significant effects of dose, time, and their interactions on all biomarkers except for GST. These findings are valuable for gaining a deeper understanding of the ecological risks of Tl in soil environments and its potential threats to soil biota, aiding in the management of ecological risks associated with Tl-contaminated soils.
Collapse
Affiliation(s)
- Shuai Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan 250101, China.
| | - Zhifeng Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan 250101, China.
| | - Nan Gao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan 250101, China.
| | - Xiaoyu Niu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan 250101, China.
| | - Benteng Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan 250101, China.
| | - Lusheng Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan 250101, China.
| | - Weina Xue
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan 250101, China.
| |
Collapse
|
2
|
Chang HF, Tseng SC, Tang MT, Hsiao SSY, Lee DC, Wang SL, Yeh KC. Physiology and molecular basis of thallium toxicity and accumulation in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116290. [PMID: 38599154 DOI: 10.1016/j.ecoenv.2024.116290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Thallium (Tl) is a non-essential metal mobilized through industrial processes which can lead to it entering the environment and exerting toxic effects. Plants are fundamental components of all ecosystems. Therefore, understanding the impact of Tl on plant growth and development is of great importance for assessing the potential environmental risks of Tl. Here, the responses of Arabidopsis thaliana to Tl were elucidated using physiological, genetic, and transcriptome analyses. Thallium can be absorbed by plant roots and translocated to the aerial parts, accumulating at comparable concentrations throughout plant parts. Genetic evidence supported the regulation of Tl uptake and movement by different molecular compartments within plants. Thallium primarily caused growth inhibition, oxidative stress, leaf chlorosis, and the impairment of K homeostasis. The disturbance of redox balance toward oxidative stress was supported by significant differences in the expression of genes involved in oxidative stress and antioxidant defense under Tl exposure. Reduced GSH levels in cad2-1 mutant rendered plants highly sensitive to Tl, suggesting that GSH has a prominent role in alleviating Tl-triggered oxidative responses. Thallium down-regulation of the expression of LCHII-related genes is believed to be responsible for leaf chlorosis. These findings illuminate some of the mechanisms underlying Tl toxicity at the physiological and molecular levels in plants with an eye toward the future environment management of this heavy metal.
Collapse
Affiliation(s)
- Hsin-Fang Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Shao-Chin Tseng
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, Republic of China
| | - Mau-Tsu Tang
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, Republic of China
| | - Silver Sung-Yun Hsiao
- Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Der-Chuen Lee
- Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China; Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan, Republic of China.
| |
Collapse
|
3
|
Xiao X, Zhou W, Guo Z, Peng C, Xu R, Zhang Y, Yang Y. Thallium content in vegetables and derivation of threshold for safe food production in soil: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168845. [PMID: 38029999 DOI: 10.1016/j.scitotenv.2023.168845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Soil thallium (Tl) pollution is a serious environmental problem, and vegetables are the primary pathway for human exposure to Tl. Therefore, it is important to investigate the characteristics of soil Tl uptake by vegetables. In this study, the meta-analysis approach was first applied to explore the relationship between Tl content in vegetables and soil environment, as well as key factors influencing soil physical-chemical properties, and to derive soil thresholds for Tl. The results indicated that various types of vegetables have different capabilities for Tl accumulation. Vegetables from contaminated areas showed high Tl accumulation, and the geomean Tl content in different types of vegetables was in the following order: leafy > root-stalk > solanaceous vegetables. Taro and kale had significantly higher capability to accumulate soil Tl among the 35 species studied, with Tl bioconcentration factor values of 0.060 and 0.133, respectively. Pearson correlation analysis and meta-analysis revealed that the Tl content in vegetables was significantly correlated with soil pH and Tl content in soil. The linear predictive model for Tl accumulation in vegetables based on soil Tl content described the data well, and the fitting coefficient R2 increased with soil pH value. According to potential dietary toxicity, the derived soil Tl thresholds for all, leafy and root-stalk vegetables increased with an increase in soil pH, and were in the range of 1.46-6.72, 1.74-5.26 and 0.92-6.06 mg/kg, respectively. The soil Tl thresholds for kale, lettuce and carrot were in the range of 0.24-4.89, 2.94-3.32 and 3.77-14.43 mg/kg, respectively. Ingestion of kale, beet, sweet potato, potato, taro, pepper, turnip, Chinese cabbage, eggplant and carrot poses potential health risks. The study provides scientific guidance for vegetable production in Tl-contaminated areas and can help with the selection of vegetable species suitable for avoiding the absorption of Tl from contaminated soil.
Collapse
Affiliation(s)
- Xiyuan Xiao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Wenqiang Zhou
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhaohui Guo
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chi Peng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Rui Xu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yunxia Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yunyun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
4
|
Wang J, Huang Y, Beiyuan J, Wei X, Qi J, Wang L, Fang F, Liu J, Cao J, Xiao T. Thallium and potentially toxic elements distribution in pine needles, tree rings and soils around a pyrite mine and indication for environmental pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154346. [PMID: 35259386 DOI: 10.1016/j.scitotenv.2022.154346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
In this study, the distributions of thallium (Tl), and other potential toxic elements, such as Cd, Co, Cu, Pb, Sr, As, Cr, Ni, Zn, and Mn in needles, tree rings and soils of pine trees in one of the largest pyrite mining areas in the world, i.e., Yunfu, China were investigated. The results showed that pseudo-total Tl concentration of the tree rings ranged from 0.41 to 2.03 mg/kg (average: 1.12 mg/kg) during the year of 1998 to 2011. This indicates an overall obvious enrichment of Tl. Further investigation of element level variations in the pine needles showed a negative correlation between Tl content and the distance from the mining area. The results of Principal Component Analysis additionally demonstrated that Tl in the tree rings was most likely derived from the pine needles. Notably, Tl contents in the tree rings exhibited generally similar distribution pattern to the annual production intensity of Yunfu pyrite mining activities. The findings suggest that metal(loid)s in particular of Tl in pine tree rings can be used as alternative proxies to approximatively reconstruct the chronological change of atmospheric environmental pollution induced by pyrite associated mining/smelting activities.
Collapse
Affiliation(s)
- Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China.
| | - Yeliang Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Xudong Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jianying Qi
- South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655, China
| | - Lulu Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Fa Fang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Jielong Cao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| |
Collapse
|
5
|
Liu J, Ouyang Q, Wang L, Wang J, Zhang Q, Wei X, Lin Y, Zhou Y, Yuan W, Xiao T. Quantification of smelter-derived contributions to thallium contamination in river sediments: Novel insights from thallium isotope evidence. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127594. [PMID: 34763928 DOI: 10.1016/j.jhazmat.2021.127594] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Thallium(Tl), an extremely toxic metal, is posing great hazards to water safety through anthropogenic activities (e.g., Pb-Zn smelter) and natural weathering in riverine systems. However, the relative contribution from each source remains obscure. This study investigated enrichment pattern of Tl and its isotopic compositions in sediment profiles from a recipient river, which was continuously collecting various Tl-bearing wastes discharged from a large Pb-Zn smelter in South China. Results show that high Tl content and ultra-fine particles (~ μm) of Tl-bearing mineral assemblages, probably derived from Pb-Zn smelting wastes, were ubiquitously observed in both of the depth profiles. In addition, the sediments generally yielded intermediate ε205Tl values of -3.76 to 1.01, which resembled those found in smelting wastes. A ternary mixing model was for the first time proposed for quantifying relative Tl contributions from each possible source. The calculation suggests that the smelter wastes are the major contributors, contributing approximately 80% of Tl contamination. All these results indicate that Tl isotope can be used as powerful proxies for quantitatively identifying potential different contributors in the environment. This is of critical importance to further implementation of pollution control and remediation strategy for the riverine systems in the near future.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
| | - Qi'en Ouyang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Lulu Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Qiong Zhang
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Xudong Wei
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yuyang Lin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yuting Zhou
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Wenhuan Yuan
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| |
Collapse
|
6
|
Kim YH, Ra WJ, Cho S, Choi S, Soh B, Joo Y, Lee KW. Method Validation for Determination of Thallium by Inductively Coupled Plasma Mass Spectrometry and Monitoring of Various Foods in South Korea. Molecules 2021; 26:6729. [PMID: 34771138 PMCID: PMC8588170 DOI: 10.3390/molecules26216729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/20/2022] Open
Abstract
Thallium (Tl) is a rare element and one of the most harmful metals. This study validated an analytical method for determining Tl in foods by inductively coupled plasma mass spectrometry (ICP-MS) based on food matrices and calories. For six representative foods, the method's correlation coefficient (R2) was above 0.999, and the method limit of detection (MLOD) was 0.0070-0.0498 μg kg-1, with accuracy ranging from 82.06% to 119.81% and precision within 10%. We investigated 304 various foods in the South Korean market, including agricultural, fishery, livestock, and processed foods. Tl above the MLOD level was detected in 148 samples and was less than 10 μg kg-1 in 98% of the samples. Comparing the Tl concentrations among food groups revealed that fisheries and animal products had higher Tl contents than cereals and vegetables. Tl exposure via food intake did not exceed the health guidance level.
Collapse
Affiliation(s)
- Yeon-Hee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Wook-Jin Ra
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Solyi Cho
- Advanced Food Safety Research Group, School of Food Science and Technology, Chung-Ang University, Anseong-si 17546, Korea
| | | | - Bokyung Soh
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Yongsung Joo
- Department of Statistics, Dongguk University-Seoul, Seoul 04620, Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
7
|
Wei X, Wang J, She J, Sun J, Liu J, Wang Y, Yang X, Ouyang Q, Lin Y, Xiao T, Tsang DCW. Thallium geochemical fractionation and migration in Tl-As rich soils: The key controls. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:146995. [PMID: 33905923 DOI: 10.1016/j.scitotenv.2021.146995] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/13/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Thallium (Tl) pollution caused by mining and processing of Tl-enriched ores has become an increasing concern. This study explored the geochemical fractionation and vertical transfer of Tl in a soil profile (200 cm) from a representative Tl-As mineralized area, Southwest China. The results showed that the soils were heavily enriched by Tl and As, with concentration ranging from 3.91-17.3 and 1830-8840 mg/kg (6.79 and 2973 mg/kg in average), respectively. Approximately 50% of Tl occurred in geochemically mobile fractions in the topsoil, wherein the reducible fraction was the most enriched fraction. Further characterization using LA-ICP-MS and TEM revealed that enriched Tl and As in soils were mainly inherited from the weathering of mine tailing piles upstream. XPS characterization indicated that Fe oxides herein may play a critical role in the oxidation of Tl(I) to Tl(III) which provoked further adsorption of Tl onto Fe oxides, thereby facilitating Tl enrichment in the reducible fraction. The findings highlight that the pivotal role of Fe oxides from mineralized area in the co-mobility and migration of Tl and As in the depth profile.
Collapse
Affiliation(s)
- Xudong Wei
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padua, Agripolis Campus, Viale dell'Università, 16, 35020 Legnaro, PD, Italy
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jingye She
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Yuxuan Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi''en Ouyang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yuyang Lin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
8
|
Tereshatov EE, Mazan V, Boltoeva M, Folden CM. Effect of hydrophobic ionic liquids aqueous solubility on metal extraction from hydrochloric acid media: Mathematical modelling and trivalent thallium behavior. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Tereshatov EE, Boltoeva M, Mazan V, Baley C, Folden CM. Hydrophobic polymerized ionic liquids for trace metal solid phase extraction: thallium transfer from hydrochloric acid media. NEW J CHEM 2019. [DOI: 10.1039/c9nj00689c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To our knowledge, there are a few articles on the application of polymerized ionic liquids for metal extraction from aqueous solutions.
Collapse
Affiliation(s)
| | - Maria Boltoeva
- Université de Strasbourg
- CNRS
- IPHC
- UMR 7178
- F-67000 Strasbourg
| | - Valérie Mazan
- Université de Strasbourg
- CNRS
- IPHC
- UMR 7178
- F-67000 Strasbourg
| | - Colton Baley
- Cyclotron Institute
- Texas A&M University
- College Station
- USA
- Department of Nuclear Engineering
| | - Charles M. Folden
- Cyclotron Institute
- Texas A&M University
- College Station
- USA
- Department of Chemistry
| |
Collapse
|
10
|
Huang X, Li N, Wu Q, Long J, Luo D, Zhang P, Yao Y, Huang X, Li D, Lu Y, Liang J. Risk assessment and vertical distribution of thallium in paddy soils and uptake in rice plants irrigated with acid mine drainage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:24912-24921. [PMID: 27662859 DOI: 10.1007/s11356-016-7679-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
The objective of this paper is to assess the influence of irritating paddy fields with acid mine drainage containing thallium (Tl) to rice plant-soil system and potential health risks for local residents. Vertical distribution of Tl, pH, organic matter (OM), and cation exchange capacity (CEC) in 24 paddy soil profiles around Yunfu pyrite mine area was investigated. Rice plant samples were collected from the corresponding soil sampling site. The results showed that Tl concentrations in paddy soils at 0-60 cm depth range from 3.07 to 9.42 mg kg-1, with a mean of 5.74 mg kg-1, which were significantly higher than the background value of soil in China (0.58 mg kg-1). On the whole, Tl contents in paddy soil profiles increased quickly with soil depth from 0 to 30 cm and decreased slowly with soil depth from 30 to 60 cm. The soil Tl content was significant negatively correlated with soil pH. The mean content of Tl in the root, stem, leaf, and rice was 4.36, 1.83, 2.74, and 1.42 mg kg-1, respectively, which exceeded the proposed permissible limits for foods and feedstuffs in Germany. The Tl content in various tissues of the rice plants followed the order root > leaf > stem (rice), which suggested that most Tl taken up by rice plants retained in the root, and a little migrated to the leaf, stem, and rice. Correlation analysis showed that Tl content in root was significant positively correlated with Tl content in leaf and rice. The ranges of hazard quotient (HQ) values were 4.08∼24.50 and 3.84∼22.38 for males and females, respectively. Males have higher health risk than females in the same age group. In childhood age groups (2 to <21 years) and adult age groups (21 to <70 years), the highest health risk level was observed in the 11 to 16 age group and 21 to 50 age group, respectively. The findings indicated that regular irrigation with Tl-bearing acid mine drainage led to considerable contamination of Tl in paddy soil and rice plant. Local government should take various measures to treat Tl contamination, especially the tailings.
Collapse
Affiliation(s)
- Xuexia Huang
- School of Environmental Science and Engineering, Guangzhou University, Waihuan Xi Road 230, Panyu District, Guangzhou, 510006, China.
- Key Laboratory of Water Quality Safety and Protection in Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, China.
| | - Ning Li
- Guangxi Zhuang Autonomous Region Environmental Monitoring Station, Nanning, China
| | - Qihang Wu
- Key Laboratory of Water Quality Safety and Protection in Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, China
| | - Jianyou Long
- School of Environmental Science and Engineering, Guangzhou University, Waihuan Xi Road 230, Panyu District, Guangzhou, 510006, China
- Key Laboratory of Water Quality Safety and Protection in Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, China
| | - Dinggui Luo
- School of Environmental Science and Engineering, Guangzhou University, Waihuan Xi Road 230, Panyu District, Guangzhou, 510006, China
- Key Laboratory of Water Quality Safety and Protection in Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, China
| | - Ping Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Yan Yao
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xiaowu Huang
- School of Environmental Science and Engineering, Guangzhou University, Waihuan Xi Road 230, Panyu District, Guangzhou, 510006, China
| | - Dongmei Li
- School of Environmental Science and Engineering, Guangzhou University, Waihuan Xi Road 230, Panyu District, Guangzhou, 510006, China
| | - Yayin Lu
- School of Environmental Science and Engineering, Guangzhou University, Waihuan Xi Road 230, Panyu District, Guangzhou, 510006, China
| | - Jianfeng Liang
- School of Environmental Science and Engineering, Guangzhou University, Waihuan Xi Road 230, Panyu District, Guangzhou, 510006, China
| |
Collapse
|
11
|
Karbowska B. Presence of thallium in the environment: sources of contaminations, distribution and monitoring methods. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:640. [PMID: 27783348 PMCID: PMC5080298 DOI: 10.1007/s10661-016-5647-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 10/14/2016] [Indexed: 05/17/2023]
Abstract
Thallium is released into the biosphere from both natural and anthropogenic sources. It is generally present in the environment at low levels; however, human activity has greatly increased its content. Atmospheric emission and deposition from industrial sources have resulted in increased concentrations of thallium in the vicinity of mineral smelters and coal-burning facilities. Increased levels of thallium are found in vegetables, fruit and farm animals. Thallium is toxic even at very low concentrations and tends to accumulate in the environment once it enters the food chain. Thallium and thallium-based compounds exhibit higher water solubility compared to other heavy metals. They are therefore also more mobile (e.g. in soil), generally more bioavailable and tend to bioaccumulate in living organisms. The main aim of this review was to summarize the recent data regarding the actual level of thallium content in environmental niches and to elucidate the most significant sources of thallium in the environment. The review also includes an overview of analytical methods, which are commonly applied for determination of thallium in fly ash originating from industrial combustion of coal, in surface and underground waters, in soils and sediments (including soil derived from different parent materials), in plant and animal tissues as well as in human organisms.
Collapse
Affiliation(s)
- Bozena Karbowska
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, ul. Berdychowo 4, 61-138, Poznan, Poland.
| |
Collapse
|
12
|
Tereshatov EE, Boltoeva MY, Mazan V, Volia MF, Folden CM. Thallium Transfer from Hydrochloric Acid Media into Pure Ionic Liquids. J Phys Chem B 2016; 120:2311-22. [PMID: 26769597 DOI: 10.1021/acs.jpcb.5b08924] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pure hydrophobic ionic liquids are known to extract metallic species from aqueous solutions. In this work we have systematically investigated thallium (Tl) extraction from aqueous hydrochloric acid (HCl) solutions into six pure fluorinated ionic liquids, namely imidazolium- and pyrrolidinium-based ionic liquids with bis(trifluoromethanesulfonyl)imide and bis(fluorosulfonyl)-imide anions. The dependence of the Tl extraction efficiency on the structure and composition of the ionic liquid ions, metal oxidation state, and initial metal and aqueous acid concentrations have been studied. Tl concentrations were on the order of picomolar (analyzed using radioactive tracers) and millimolar (analyzed using inductively coupled plasma mass spectrometry). The extraction of the cationic thallium species Tl(+) is higher for ionic liquids with more hydrophilic cations, while for the TlX(z)(3-z) anionic species (where X = Cl(-) and/or Br(-)), the extraction efficiency is greater for ionic liquids with more hydrophobic cations. The highest distribution value of Tl(III) was approximately 2000. An improved mathematical model based on ion exchange and ion pair formation mechanisms has been developed to describe the coextraction of two different anionic species, and the relative contributions of each mechanism have been determined.
Collapse
Affiliation(s)
- Evgeny E Tereshatov
- Cyclotron Institute, Texas A&M University , College Station, Texas 77843 United States
| | - Maria Yu Boltoeva
- IPHC, Université de Strasbourg , Strasbourg, 67037 France
- CNRS , Strasbourg, 67037 France
| | - Valerie Mazan
- IPHC, Université de Strasbourg , Strasbourg, 67037 France
- CNRS , Strasbourg, 67037 France
| | - Merinda F Volia
- Cyclotron Institute, Texas A&M University , College Station, Texas 77843 United States
- Department of Nuclear Engineering, Texas A&M University , College Station, Texas 77843 United States
| | - Charles M Folden
- Cyclotron Institute, Texas A&M University , College Station, Texas 77843 United States
| |
Collapse
|