1
|
Greendyk R, Abrams D, Agerstrand C, Parekh M, Brodie D. Extracorporeal Support for Acute Respiratory Distress Syndrome. Clin Chest Med 2024; 45:905-916. [PMID: 39443007 DOI: 10.1016/j.ccm.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Extracorporeal life support (ECLS) has a long history in the management of the acute respiratory distress syndrome (ARDS). The objectives of this review are to summarize the rationale and evidence for ECLS in ARDS including its role in reducing ventilator-induced lung injury (VILI), suggest best practice management strategies during ECLS, and identify areas that require additional research to better inform patient care.
Collapse
Affiliation(s)
- Richard Greendyk
- Division of Pulmonary, Allergy and Critical Care, Columbia University College of Physicians and Surgeons, 622 W168th Street, PH 8E, 101, New York, NY 10032, USA
| | - Darryl Abrams
- Division of Pulmonary, Allergy and Critical Care, Columbia University College of Physicians and Surgeons, 622 W168th Street, PH 8E, 101, New York, NY 10032, USA.
| | - Cara Agerstrand
- Division of Pulmonary, Allergy and Critical Care, Columbia University College of Physicians and Surgeons, 622 W168th Street, PH 8E, 101, New York, NY 10032, USA
| | - Madhavi Parekh
- Division of Pulmonary, Allergy and Critical Care, Columbia University College of Physicians and Surgeons, 622 W168th Street, PH 8E, 101, New York, NY 10032, USA
| | - Daniel Brodie
- Division of Pulmonary & Critical Care Medicine, The Johns Hopkins University School of Medicine, 1830 East Monument Street, Suite 5000, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Braunsteiner J, Castro L, Wiessner C, Grensemann J, Schroeder M, Burdelski C, Sensen B, Kluge S, Fischer M. Association Between Dyscapnia, Ventilatory Variables, and Mortality in Patients With Acute Respiratory Distress Syndrome-A Retrospective Cohort Study. J Intensive Care Med 2024; 39:1099-1108. [PMID: 38847047 DOI: 10.1177/08850666241252741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background: This study aimed to investigate the associations between dyscapnia, ventilatory variables, and mortality. We hypothesized that the association between mechanical power or ventilatory ratio and survival is mediated by dyscapnia. Methods: Patients with moderate or severe acute respiratory distress syndrome (ARDS), who received mechanical ventilation within the first 48 h after admission to the intensive care unit for at least 48 h, were included in this retrospective single-center study. Values of arterial carbon dioxide (PaCO2) were categorized into "hypercapnia" (PaCO2 ≥ 50 mm Hg), "normocapnia" (PaCO2 36-49 mmHg), and "hypocapnia" (PaCO2 ≤ 35 mm Hg). We used path analyses to assess the associations between ventilatory variables (mechanical power and ventilatory ratio) and mortality, where hypocapnia or hypercapnia were included as mediating variables. Results: Between December 2017 and April 2021, 435 patients were included. While there was a significant association between mechanical power and hypercapnia (BEM = 0.24 [95% CI: 0.15; 0.34], P < .01), there was no significant association between mechanical power or hypercapnia and ICU mortality. The association between mechanical power and intensive care unit (ICU) mortality was fully mediated by hypocapnia (BEM = -0.10 [95% CI: -0.19; 0.00], P = .05; BMO = 0.38 [95% CI: 0.13; 0.63], P < .01). Ventilatory ratio was significantly associated with hypercapnia (B = 0.23 [95% CI: 0.14; 0.32], P < .01). There was no significant association between ventilatory ratio, hypercapnia, and mortality. There was a significant effect of ventilatory ratio on mortality, which was fully mediated by hypocapnia (BEM = -0.14 [95% CI: -0.24; -0.05], P < .01; BMO = 0.37 [95% CI: 0.12; 0.62], P < .01). Conclusion: In mechanically ventilated patients with moderate or severe ARDS, the association between mechanical power and mortality was fully mediated by hypocapnia. Likewise, there was a mediating effect of hypocapnia on the association between ventilatory ratio and ICU mortality. Our results indicate that the debate on dyscapnia and outcome after ARDS should consider the impact of ventilatory variables.
Collapse
Affiliation(s)
- Josephine Braunsteiner
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Liesa Castro
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Wiessner
- Institute of Medical Biometry and Epidemiology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Jörn Grensemann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Schroeder
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Burdelski
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barbara Sensen
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlene Fischer
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Chen T, Asher S, Apruzzese P, Owusu-Dapaah H, Gonzalez G, Maslow A. Hypercapnia during transcatheter aortic valve replacement under monitored anaesthesia care: a retrospective cohort study. Open Heart 2024; 11:e002801. [PMID: 39214537 PMCID: PMC11367353 DOI: 10.1136/openhrt-2024-002801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Acute intraoperative hypercapnia and respiratory acidosis, which can occur during monitored anaesthesia care (MAC), pose significant cardiopulmonary risks for patients with aortic stenosis undergoing transcatheter aortic valve replacement (TAVR). The goal of the present study is to assess the incidence, risk factors and impact of intraoperative hypercapnia during MAC for patients undergoing transfemoral TAVR. METHODS Data was collected retrospectively from the electronic medical record of 201 consecutive patients with available intraoperative arterial blood gas (ABG) data who underwent percutaneous transfemoral TAVR with MAC using propofol and dexmedetomidine. ABGs (pH, arterial partial pressure of carbon dioxide (PaCO2) and arterial partial pressure of oxygen) were performed at the start of each case (baseline), immediately prior to valve deployment (ValveDepl), and on arrival to the postanaesthesia care unit. Data was analysed using Fisher's exact test, unpaired Student's t-test, Wilcoxon rank sum or univariate linear regression as appropriate based on PaCO2 and pH during ValveDepl (PaCO2-ValveDepl, pH-ValveDepl) and change in PaCO2 and pH from baseline to ValveDepl (PaCO2-%increase, pH-%decrease) to determine their association with preoperative demographic data, intraoperative anaesthetic and vasoactive medications and postoperative outcomes. RESULTS PaCO2 increased by a mean of 28.4% and was higher than baseline in 91% of patients. Younger age, male sex, increased weight and increased propofol dose contributed to higher PaCO2-ValveDepl and greater PaCO2-%increase. Patients with PaCO2-ValveDepl>60 mm Hg, pH≤7.2 and greater pH-%decrease were more likely to receive vasoactive medications, but perioperative PaCO2 and pH were not associated with adverse postoperative outcomes. CONCLUSIONS Transient significant hypercapnia commonly occurs during transfemoral TAVR with deep sedation using propofol and dexmedetomidine. Although the incidence of postoperative outcomes does not appear to be affected by hypercapnia, the need for vasopressors and inotropes is increased. If deep sedation is required for TAVR, hypercapnia and the need for haemodynamic and ventilatory support should be anticipated.
Collapse
Affiliation(s)
- Tzonghuei Chen
- Department of Anesthesiology, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Shyamal Asher
- Department of Anesthesiology, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Patricia Apruzzese
- Department of Anesthesiology, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Harry Owusu-Dapaah
- Department of Anesthesiology, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Gustavo Gonzalez
- Department of Anesthesiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Andrew Maslow
- Department of Anesthesiology, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
4
|
Akpoviroro O, Sauers NK, Uwandu Q, Castagne M, Akpoviroro OP, Humayun S, Mirza W, Woodard J. Severe COVID-19 infection: An institutional review and literature overview. PLoS One 2024; 19:e0304960. [PMID: 39163410 PMCID: PMC11335168 DOI: 10.1371/journal.pone.0304960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/21/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Our study aimed to describe the group of severe COVID-19 patients at an institutional level, and determine factors associated with different outcomes. METHODS A retrospective chart review of patients admitted with severe acute hypoxic respiratory failure due to COVID-19 infection. Based on outcomes, we categorized 3 groups of severe COVID-19: (1) Favorable outcome: progressive care unit admission and discharge (2) Intermediate outcome: ICU care (3) Poor outcome: in-hospital mortality. RESULTS Eighty-nine patients met our inclusion criteria; 42.7% were female. The average age was 59.7 (standard deviation (SD):13.7). Most of the population were Caucasian (95.5%) and non-Hispanic (91.0%). Age, sex, race, and ethnicity were similar between outcome groups. Medicare and Medicaid patients accounted for 62.9%. The average BMI was 33.5 (SD:8.2). Moderate comorbidity was observed, with an average Charlson Comorbidity index (CCI) of 3.8 (SD:2.6). There were no differences in the average CCI between groups(p = 0.291). Many patients (67.4%) had hypertension, diabetes (42.7%) and chronic lung disease (32.6%). A statistical difference was found when chronic lung disease was evaluated; p = 0.002. The prevalence of chronic lung disease was 19.6%, 27.8%, and 40% in the favorable, intermediate, and poor outcome groups, respectively. Smoking history was associated with poor outcomes (p = 0.04). Only 7.9% were fully vaccinated. Almost half (46.1%) were intubated and mechanically ventilated. Patients spent an average of 12.1 days ventilated (SD:8.5), with an average of 6.0 days from admission to ventilation (SD:5.1). The intermediate group had a shorter average interval from admission to ventilator (77.2 hours, SD:67.6), than the poor group (212.8 hours, SD:126.8); (p = 0.001). The presence of bacterial pneumonia was greatest in the intermediate group (72.2%), compared to the favorable group (17.4%), and the poor group (56%); this was significant (p<0.0001). In-hospital mortality was seen in 28.1%. CONCLUSION Most patients were male, obese, had moderate-level comorbidity, a history of tobacco abuse, and government-funded insurance. Nearly 50% required mechanical ventilation, and about 28% died during hospitalization. Bacterial pneumonia was most prevalent in intubated groups. Patients who were intubated with a good outcome were intubated earlier during their hospital course, with an average difference of 135.6 hours. A history of cigarette smoking and chronic lung disease were associated with poor outcomes.
Collapse
Affiliation(s)
- Ogheneyoma Akpoviroro
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Nathan Kyle Sauers
- Department of Engineering, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Queeneth Uwandu
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Myriam Castagne
- Clinical & Translational Science Institute, Boston University, Boston, Massachusetts, United States of America
| | | | - Sara Humayun
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Wasique Mirza
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Jameson Woodard
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| |
Collapse
|
5
|
Rixecker TM, Ast V, Rodriguez E, Mazuru V, Wagenpfeil G, Mang S, Muellenbach RM, Nobile L, Ajouri J, Bals R, Seiler F, Taccone FS, Lepper PM. Carbon Dioxide Targets in Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome. ASAIO J 2024:00002480-990000000-00509. [PMID: 38905594 DOI: 10.1097/mat.0000000000002255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024] Open
Abstract
Target values for arterial carbon dioxide tension (PaCO2) in extracorporeal membrane oxygenation (ECMO) for acute respiratory distress syndrome (ARDS) are unknown. We hypothesized that lower PaCO2 values on ECMO would be associated with lighter sedation. We used data from two independent patient cohorts with ARDS spending 1,177 days (discovery cohort, 69 patients) and 516 days (validation cohort, 70 patients) on ECMO and evaluated the associations between daily PaCO2, pH, and bicarbonate (HCO3) with sedation. Median PaCO2 was 41 (interquartile range [IQR] = 37-46) mm Hg and 41 (IQR = 37-45) mm Hg in the discovery and the validation cohort, respectively. Lower PaCO2 and higher pH but not bicarbonate (HCO3) served as significant predictors for reaching a Richmond Agitation Sedation Scale (RASS) target range of -2 to +1 (lightly sedated to restless). After multivariable adjustment for mortality, tracheostomy, prone positioning, vasoactive inotropic score, Simplified Acute Physiology Score (SAPS) II or Sequential Organ Failure Assessment (SOFA) Score and day on ECMO, only PaCO2 remained significantly associated with the RASS target range (adjusted odds ratio 1.1 [95% confidence interval (CI) = 1.01-1.21], p = 0.032 and 1.29 [95% CI = 1.1-1.51], p = 0.001 per mm Hg decrease in PaCO2 for the discovery and the validation cohort, respectively). A PaCO2 ≤40 mm Hg, as determined by the concordance probability method, was associated with a significantly increased probability of a sedation level within the RASS target range in both patient cohorts (adjusted odds ratio = 2.92 [95% CI = 1.17-7.24], p = 0.021 and 6.82 [95% CI = 1.50-31.0], p = 0.013 for the discovery and the validation cohort, respectively).
Collapse
Affiliation(s)
- Torben M Rixecker
- From the Department of Internal Medicine V (Pneumology, Allergology and Intensive Care Medicine), University Medical Center and Saarland University, Germany
| | - Vanessa Ast
- From the Department of Internal Medicine V (Pneumology, Allergology and Intensive Care Medicine), University Medical Center and Saarland University, Germany
| | - Elianna Rodriguez
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Vitalie Mazuru
- From the Department of Internal Medicine V (Pneumology, Allergology and Intensive Care Medicine), University Medical Center and Saarland University, Germany
| | - Gudrun Wagenpfeil
- Department of Medical Biometry, Epidemiology and Medical Informatics, Saarland University, Homburg, Germany
| | - Sebastian Mang
- From the Department of Internal Medicine V (Pneumology, Allergology and Intensive Care Medicine), University Medical Center and Saarland University, Germany
| | - Ralf M Muellenbach
- Department of Anesthesiology and Critical Care Medicine, Campus Kassel of the University of Southampton, Kassel, Germany
| | - Leda Nobile
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jonas Ajouri
- Department of Anesthesiology and Critical Care Medicine, Campus Kassel of the University of Southampton, Kassel, Germany
| | - Robert Bals
- From the Department of Internal Medicine V (Pneumology, Allergology and Intensive Care Medicine), University Medical Center and Saarland University, Germany
| | - Frederik Seiler
- From the Department of Internal Medicine V (Pneumology, Allergology and Intensive Care Medicine), University Medical Center and Saarland University, Germany
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Philipp M Lepper
- From the Department of Internal Medicine V (Pneumology, Allergology and Intensive Care Medicine), University Medical Center and Saarland University, Germany
| |
Collapse
|
6
|
Cammarota G, Vaschetto R, Vetrugno L, Maggiore SM. Monitoring lung recruitment. Curr Opin Crit Care 2024; 30:268-274. [PMID: 38690956 DOI: 10.1097/mcc.0000000000001157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
PURPOSE OF REVIEW This review explores lung recruitment monitoring, covering techniques, challenges, and future perspectives. RECENT FINDINGS Various methodologies, including respiratory system mechanics evaluation, arterial bold gases (ABGs) analysis, lung imaging, and esophageal pressure (Pes) measurement are employed to assess lung recruitment. In support to ABGs analysis, the assessment of respiratory mechanics with hysteresis and recruitment-to-inflation ratio has the potential to evaluate lung recruitment and enhance mechanical ventilation setting. Lung imaging tools, such as computed tomography scanning, lung ultrasound, and electrical impedance tomography (EIT) confirm their utility in following lung recruitment with the advantage of radiation-free and repeatable application at the bedside for sonography and EIT. Pes enables the assessment of dorsal lung tendency to collapse through end-expiratory transpulmonary pressure. Despite their value, these methodologies may require an elevated expertise in their application and data interpretation. However, the information obtained by these methods may be conveyed to build machine learning and artificial intelligence algorithms aimed at improving the clinical decision-making process. SUMMARY Monitoring lung recruitment is a crucial component of managing patients with severe lung conditions, within the framework of a personalized ventilatory strategy. Although challenges persist, emerging technologies offer promise for a personalized approach to care in the future.
Collapse
Affiliation(s)
- Gianmaria Cammarota
- Department of Translational Medicine, Università del Piemonte Orientale, Novara
| | - Rosanna Vaschetto
- Department of Translational Medicine, Università del Piemonte Orientale, Novara
| | - Luigi Vetrugno
- Department of Medical, Oral and Biotechnological Sciences
| | - Salvatore M Maggiore
- Department of Anesthesiology and Intensive Care, Ospedale SS Annunziata & Department of Innovative Technologies in Medicine and Odonto-stomatology, Università Gabriele D'Annunzio di Chieti-Pescara, Chieti, Italy
| |
Collapse
|
7
|
McCormick G, Mohr NM, Ablordeppey E, Stephens RJ, Fuller BM, Roberts BW. Partial pressure of carbon dioxide/pH interaction and its association with mortality among patients mechanically ventilated in the emergency department. Am J Emerg Med 2024; 79:105-110. [PMID: 38417220 DOI: 10.1016/j.ajem.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/29/2024] [Accepted: 02/18/2024] [Indexed: 03/01/2024] Open
Abstract
OBJECTIVES There is currently conflicting data as to the effects of hypercapnia on clinical outcomes among mechanically ventilated patients in the emergency department (ED). These conflicting results may be explained by the degree of acidosis. We sought to test the hypothesis that hypercapnia is associated with increased in-hospital mortality and decreased ventilator-free days at lower pH, but associated with decreased in-hospital mortality and increased ventilator-free days at higher pH, among patients requiring mechanical ventilation in the emergency department (ED). METHODS Secondary analysis of patient level data from prior clinical trials and cohort studies that enrolled adult patients who required mechanical ventilation in the ED. Patients who had a documented blood gas while on mechanical ventilation in the ED were included in these analyses. The primary outcome was in-hospital mortality, and secondary outcome was ventilator-free days. Mixed-effects logistic, linear, and survival-time regression models were used to test if pH modified the association between partial pressure of carbon dioxide (pCO2) and outcome measures. RESULTS Of the 2348 subjects included, the median [interquartile range (IQR)] pCO2 was 43 (35-54) and pH was 7.31 (7.22-7.39). Overall, in-hospital mortality was 27%. We found pH modified the association between pCO2 and outcomes, with higher pCO2 associated with increased probability of in-hospital mortality when pH is below 7.00, and decreased probability of in-hospital mortality when pH is above 7.10. These results remained consistent across multiple sensitivity and subgroup analyses. A similar relationship was found with ventilator-free days. CONCLUSIONS Higher pCO2 is associated with decreased mortality and greater ventilator-free days when pH is >7.10; however, it is associated with increased mortality and fewer ventilator-free days when the pH is below 7.00. Targeting pCO2 based on pH in the ED may be a potential intervention target for future clinical trials to improve clinical outcomes.
Collapse
Affiliation(s)
- Gregory McCormick
- The Department of Emergency Medicine, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ, United States of America
| | - Nicholas M Mohr
- Departments of Emergency Medicine and Anesthesia, Division of Critical Care Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Enyo Ablordeppey
- Departments of Emergency Medicine and Anesthesia, Division of Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Robert J Stephens
- Department of Medicine, Division of Critical Care, University of Maryland School of Medicine, United States of America
| | - Brian M Fuller
- Departments of Emergency Medicine and Anesthesia, Division of Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Brian W Roberts
- The Department of Emergency Medicine, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ, United States of America.
| |
Collapse
|
8
|
Phelan DE, Reddan B, Shigemura M, Sznajder JI, Crean D, Cummins EP. Orphan Nuclear Receptor Family 4A (NR4A) Members NR4A2 and NR4A3 Selectively Modulate Elements of the Monocyte Response to Buffered Hypercapnia. Int J Mol Sci 2024; 25:2852. [PMID: 38474099 PMCID: PMC10931687 DOI: 10.3390/ijms25052852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Hypercapnia occurs when the partial pressure of carbon dioxide (CO2) in the blood exceeds 45 mmHg. Hypercapnia is associated with several lung pathologies and is transcriptionally linked to suppression of immune and inflammatory signalling through poorly understood mechanisms. Here we propose Orphan Nuclear Receptor Family 4A (NR4A) family members NR4A2 and NR4A3 as potential transcriptional regulators of the cellular response to hypercapnia in monocytes. Using a THP-1 monocyte model, we investigated the sensitivity of NR4A family members to CO2 and the impact of depleting NR4A2 and NR4A3 on the monocyte response to buffered hypercapnia (10% CO2) using RNA-sequencing. We observed that NR4A2 and NR4A3 are CO2-sensitive transcription factors and that depletion of NR4A2 and NR4A3 led to reduced CO2-sensitivity of mitochondrial and heat shock protein (Hsp)-related genes, respectively. Several CO2-sensitive genes were, however, refractory to depletion of NR4A2 and NR4A3, indicating that NR4As regulate certain elements of the cellular response to buffered hypercapnia but that other transcription factors also contribute. Bioinformatic analysis of conserved CO2-sensitive genes implicated several novel putative CO2-sensitive transcription factors, of which the ETS Proto-Oncogene 1 Transcription Factor (ETS-1) was validated to show increased nuclear expression in buffered hypercapnia. These data give significant insights into the understanding of immune responses in patients experiencing hypercapnia.
Collapse
Affiliation(s)
- David E. Phelan
- School of Medicine, University College Dublin, Dublin 4, Ireland (B.R.)
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Ben Reddan
- School of Medicine, University College Dublin, Dublin 4, Ireland (B.R.)
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Masahiko Shigemura
- Division of Thoracic Surgery, Northwestern University, Chicago, IL 60611, USA;
| | - Jacob I. Sznajder
- Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Daniel Crean
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Eoin P. Cummins
- School of Medicine, University College Dublin, Dublin 4, Ireland (B.R.)
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
9
|
Dinh K, Akkanti B, Patel M, Hussain R, Basra S, Gregoric ID, Kar B. Use of Subclavian Extracorporeal Carbon Dioxide Removal for COVID-19 Acute Respiratory Distress Syndrome as a Bridge to Lung Transplantation. ASAIO J 2024; 70:e9-e12. [PMID: 37603812 DOI: 10.1097/mat.0000000000002018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
Severe acute hypercapnia is independently associated with increased adverse effects and intensive care unit mortality in mechanically ventilated patients. During the severe acute respiratory syndrome coronavirus 2 (COVID-19) pandemic, some patients were placed on extracorporeal carbon dioxide removal support when extracorporeal membrane oxygenation (ECMO) support was at capacity or not offered. We present a patient with severe acute respiratory distress syndrome caused by COVID-19 pneumonia, who was supported with Hemolung Respiratory Assist System (ALung Technologies, Inc., LivaNova, Pittsburgh, PA) via the right subclavian vein as a bridge to lung transplantation after venovenous ECMO support. The patient survived and was discharged home.
Collapse
Affiliation(s)
- Kha Dinh
- From the University of Texas Health Science Center at Houston, Houston, TX
| | | | | | | | | | | | | |
Collapse
|
10
|
Yu J, Zhang N, Zhang Z, Fu Y, Gao J, Chen C, Wen Z. Intraoperative partial pressure of arterial carbon dioxide levels and adverse outcomes in patients undergoing lung transplantation. Asian J Surg 2024; 47:380-388. [PMID: 37726182 DOI: 10.1016/j.asjsur.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/11/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVE Patients undergoing lung transplantation (LTx) often experience abnormal hypercapnia or hypocapnia. This study aimed to investigate the association between intraoperative PaCO2 and postoperative adverse outcomes in patients undergoing LTx. METHODS We retrospectively reviewed the medical records of 151 patients undergoing LTx. Patients' demographics, perioperative clinical factors, and pre- and intraoperative PaCO2 data after reperfusion were collected and analyzed. Based on the PaCO2 levels, patients were classified into three groups: hypocapnia (≤35 mmHg), normocapnia (35.1-55 mmHg), and hypercapnia (>55 mmHg). Univariate and multivariable logistic regressions were used to identify independent risk factors for postoperative composite adverse events and in-hospital mortality. RESULTS Intraoperative hypercapnia occurred in 69 (45.7%) patients, and hypocapnia in 17 (11.2%). Patients with intraoperative PaCO2 of 35.1-45 mmHg showed a lower incidence of composite adverse events (53.3%) and mortality (6.2%) (P < 0.001). There was no significant difference in composite adverse events and mortality among preoperative PaCO2 groups (P > 0.05). Compared with intraoperative PaCO2 at 35.1-45 mmHg, the risk of composite adverse events in hypercapnia group increased: the adjusted OR was 3.07 (95% confidence interval [CI]: 1.36-6.94; P = 0.007). The risk of death was significantly higher in hypocapnia group than normocapnia group, the adjusted OR was 7.69 (95% CI: 1.68-35.24; P = 0.009). Over ascending ranges of PaCO2, PaCO2 at 55.1-65 mmHg had the strongest association with composite adverse events, the adjusted OR was 6.40 (95% CI: 1.18-34.65; P = 0.031). CONCLUSION These results demonstrate that intraoperative hypercapnia independently predicts postoperative adverse outcomes in patients undergoing LTx. Intraoperative hypocapnia shows predictive value for postoperative in-hospital mortality in LTx.
Collapse
Affiliation(s)
- Jing Yu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Nan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Zhiyuan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yu Fu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Jiameng Gao
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
11
|
Yang D, An J, Qiu W, Gao Y, Zhang J, Pan W, Zhao P, Liu Y. Self-calibrating dual-sensing electrochemical sensors for accurate detection of carbon dioxide in blood. Mikrochim Acta 2023; 191:22. [PMID: 38091089 DOI: 10.1007/s00604-023-06101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
A paper-based electrochemical dual-function biosensor capable of determining pH and TCO2 was synthesized for the first time using an iridium oxide pH electrode and an all-solid-state ion electrode (ASIE). In the study, to obtain highly reliable results, the biosensor was equipped with a real-time pH correction function before TCO2 measurements. Compared to traditional liquid-filling carbon dioxide detection sensors, the utilization of ferrocene endows our novel sensor with abundant positive sites, and thus greatly improves its performance. Conversely, the introduction of MXene with conductivity close to that of metals reduces electrode resistance, which is beneficial for accelerating the electrochemical reaction of the sensor and reducing LOD. After optimization, the detection range of TCO2 is 0.095 nM-0.66 M, with a detection limit of as low as 0.023 nM. In addition, the sensor was used in real serum sample-spiked recovery experiments and comparison experiments with existing clinical blood gas analyzers, which confirmed the effectiveness of its clinical application. This study provides a method for the rational design of paper-based electrochemical biosensors and a new approach for the clinical detection of blood carbon dioxide.
Collapse
Affiliation(s)
- Da Yang
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing, 400044, China
| | - Jia An
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Wu Qiu
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 400015, China
| | - Yuhan Gao
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing, 400044, China
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiajing Zhang
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing, 400044, China
- Center for Intelligent Sensing Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Wencai Pan
- Department of Medical Engineering, Xinqiao Hospital, 183 Xinqiao Main Street, Chongqing, 400037, China
| | - Peng Zhao
- National Innovation Center for Advanced Medical Devices, 40F, Huide Tower, Shenzhen, 518126, China
| | - Yufei Liu
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing, 400044, China.
- Center for Intelligent Sensing Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China.
- Faculty of Science and Engineering, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
12
|
Chen F, Matsuda A, Budinger GRS, Sporn PHS, Casalino-Matsuda SM. Hypercapnia increases ACE2 expression and pseudo-SARS-CoV-2 entry in bronchial epithelial cells by augmenting cellular cholesterol. Front Immunol 2023; 14:1251120. [PMID: 37901225 PMCID: PMC10600497 DOI: 10.3389/fimmu.2023.1251120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Patients with chronic lung disease, obesity, and other co-morbid conditions are at increased risk of severe illness and death when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hypercapnia, the elevation of CO2 in blood and tissue, commonly occurs in patients with severe acute and chronic lung disease, including those with pulmonary infections, and is also associated with high mortality risk. We previously reported that hypercapnia increases viral replication and mortality of influenza A virus infection in mice. We have also shown that culture in elevated CO2 upregulates expression of cholesterol synthesis genes in primary human bronchial epithelial cells. Interestingly, factors that increase the cholesterol content of lipid rafts and lipid droplets, platforms for viral entry and assembly, enhance SARS-CoV-2 infection. In the current study, we investigated the effects of hypercapnia on ACE2 expression and entry of SARS-CoV-2 pseudovirus (p-SARS-CoV-2) into airway epithelial cells. We found that hypercapnia increased ACE2 expression and p-SARS-CoV-2 uptake by airway epithelium in mice, and in cultured VERO and human bronchial epithelial cells. Hypercapnia also increased total cellular and lipid raft-associated cholesterol in epithelial cells. Moreover, reducing cholesterol synthesis with inhibitors of sterol regulatory element binding protein 2 (SREBP2) or statins, and depletion of cellular cholesterol, each blocked the hypercapnia-induced increases in ACE2 expression and p-SARS-CoV-2 entry into epithelial cells. Cigarette smoke extract (CSE) also increased ACE2 expression, p-SARS-CoV-2 entry and cholesterol accumulation in epithelial cells, an effect not additive to that of hypercapnia, but also inhibited by statins. These findings reveal a mechanism that may account, in part, for poor clinical outcomes of SARS-CoV-2 infection in patients with advanced lung disease and hypercapnia, and in those who smoke cigarettes. Further, our results suggest the possibility that cholesterol-lowering therapies may be of particular benefit in patients with hypercapnia when exposed to or infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Fei Chen
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Aiko Matsuda
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - G. R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Research Service, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Peter H. S. Sporn
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Research Service, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - S. Marina Casalino-Matsuda
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
13
|
Gałgańska H, Jarmuszkiewicz W, Gałgański Ł. Carbon dioxide and MAPK signalling: towards therapy for inflammation. Cell Commun Signal 2023; 21:280. [PMID: 37817178 PMCID: PMC10566067 DOI: 10.1186/s12964-023-01306-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
Inflammation, although necessary to fight infections, becomes a threat when it exceeds the capability of the immune system to control it. In addition, inflammation is a cause and/or symptom of many different disorders, including metabolic, neurodegenerative, autoimmune and cardiovascular diseases. Comorbidities and advanced age are typical predictors of more severe cases of seasonal viral infection, with COVID-19 a clear example. The primary importance of mitogen-activated protein kinases (MAPKs) in the course of COVID-19 is evident in the mechanisms by which cells are infected with SARS-CoV-2; the cytokine storm that profoundly worsens a patient's condition; the pathogenesis of diseases, such as diabetes, obesity, and hypertension, that contribute to a worsened prognosis; and post-COVID-19 complications, such as brain fog and thrombosis. An increasing number of reports have revealed that MAPKs are regulated by carbon dioxide (CO2); hence, we reviewed the literature to identify associations between CO2 and MAPKs and possible therapeutic benefits resulting from the elevation of CO2 levels. CO2 regulates key processes leading to and resulting from inflammation, and the therapeutic effects of CO2 (or bicarbonate, HCO3-) have been documented in all of the abovementioned comorbidities and complications of COVID-19 in which MAPKs play roles. The overlapping MAPK and CO2 signalling pathways in the contexts of allergy, apoptosis and cell survival, pulmonary oedema (alveolar fluid resorption), and mechanical ventilation-induced responses in lungs and related to mitochondria are also discussed. Video Abstract.
Collapse
Affiliation(s)
- Hanna Gałgańska
- Faculty of Biology, Molecular Biology Techniques Laboratory, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Wieslawa Jarmuszkiewicz
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Łukasz Gałgański
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
14
|
Tiruvoipati R, Ludski J, Gupta S, Subramaniam A, Ponnapa Reddy M, Paul E, Haji K. Evaluation of the safety and efficacy of extracorporeal carbon dioxide removal in the critically ill using the PrismaLung+ device. Eur J Med Res 2023; 28:291. [PMID: 37596670 PMCID: PMC10436516 DOI: 10.1186/s40001-023-01269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/05/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Several extracorporeal carbon dioxide removal (ECCO2R) devices are currently in use with variable efficacy and safety profiles. PrismaLung+ is an ECCO2R device that was recently introduced into clinical practice. It is a minimally invasive, low flow device that provides partial respiratory support with or without renal replacement therapy. Our aim was to describe the clinical characteristics, efficacy, and safety of PrismaLung+ in patients with acute hypercapnic respiratory failure. METHODS All adult patients who required ECCO2R with PrismaLung+ for hypercapnic respiratory failure in our intensive care unit (ICU) during a 6-month period between March and September 2022 were included. RESULTS Ten patients were included. The median age was 55.5 (IQR 41-68) years, with 8 (80%) male patients. Six patients had acute respiratory distress syndrome (ARDS), and two patients each had exacerbations of asthma and chronic obstructive pulmonary disease (COPD). All patients were receiving invasive mechanical ventilation at the time of initiation of ECCO2R. The median duration of ECCO2R was 71 h (IQR 57-219). A significant improvement in pH and PaCO2 was noted within 30 min of initiation of ECCO2R. Nine patients (90%) survived to weaning of ECCO2R, eight (80%) survived to ICU discharge and seven (70%) survived to hospital discharge. The median duration of ICU and hospital stays were 14.5 (IQR 8-30) and 17 (IQR 11-38) days, respectively. There were no patient-related complications with the use of ECCO2R. A total of 18 circuits were used in ten patients (median 2 per patient; IQR 1-2). Circuit thrombosis was noted in five circuits (28%) prior to reaching the expected circuit life with no adverse clinical consequences. CONCLUSION(S) PrismaLung+ rapidly improved PaCO2 and pH with a good clinical safety profile. Circuit thrombosis was the only complication. This data provides insight into the safety and efficacy of PrismaLung+ that could be useful for centres aspiring to introduce ECCO2R into their clinical practice.
Collapse
Affiliation(s)
- Ravindranath Tiruvoipati
- Department of Intensive Care Medicine, Frankston Hospital, Peninsula Health, Frankston, VIC, 3199, Australia.
- Division of Medicine, Peninsula Clinical School, Monash University, Frankston, VIC, Australia.
- ANZIC-RC, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia.
| | - Jarryd Ludski
- Department of Intensive Care Medicine, Frankston Hospital, Peninsula Health, Frankston, VIC, 3199, Australia
| | - Sachin Gupta
- Department of Intensive Care Medicine, Frankston Hospital, Peninsula Health, Frankston, VIC, 3199, Australia
- Division of Medicine, Peninsula Clinical School, Monash University, Frankston, VIC, Australia
| | - Ashwin Subramaniam
- Department of Intensive Care Medicine, Frankston Hospital, Peninsula Health, Frankston, VIC, 3199, Australia
- Division of Medicine, Peninsula Clinical School, Monash University, Frankston, VIC, Australia
- ANZIC-RC, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
- Department of Intensive Care Medicine, Dandenong Hospital, Dandenong, Australia
| | - Mallikarjuna Ponnapa Reddy
- Department of Intensive Care Medicine, Frankston Hospital, Peninsula Health, Frankston, VIC, 3199, Australia
- Division of Medicine, Peninsula Clinical School, Monash University, Frankston, VIC, Australia
- Department of Intensive Care, Calvary Hospital, Canberra, ACT, Australia
| | - Eldho Paul
- ANZIC-RC, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
- Alfred Hospital, Melbourne, VIC, Australia
| | - Kavi Haji
- Department of Intensive Care Medicine, Frankston Hospital, Peninsula Health, Frankston, VIC, 3199, Australia
- Division of Medicine, Peninsula Clinical School, Monash University, Frankston, VIC, Australia
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Phelan DE, Mota C, Strowitzki MJ, Shigemura M, Sznajder JI, Crowe L, Masterson JC, Hayes SE, Reddan B, Yin X, Brennan L, Crean D, Cummins EP. Hypercapnia alters mitochondrial gene expression and acylcarnitine production in monocytes. Immunol Cell Biol 2023; 101:556-577. [PMID: 36967673 PMCID: PMC10330468 DOI: 10.1111/imcb.12642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/03/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023]
Abstract
CO2 is produced during aerobic respiration. Normally, levels of CO2 in the blood are tightly regulated but pCO2 can rise (hypercapnia, pCO2 > 45 mmHg) in patients with lung diseases, for example, chronic obstructive pulmonary disease (COPD). Hypercapnia is a risk factor in COPD but may be of benefit in the context of destructive inflammation. The effects of CO2 per se, on transcription, independent of pH change are poorly understood and warrant further investigation. Here we elucidate the influence of hypercapnia on monocytes and macrophages through integration of state-of-the-art RNA-sequencing, metabolic and metabolomic approaches. THP-1 monocytes and interleukin 4-polarized primary murine macrophages were exposed to 5% CO2 versus 10% CO2 for up to 24 h in pH-buffered conditions. In hypercapnia, we identified around 370 differentially expressed genes (DEGs) under basal and about 1889 DEGs under lipopolysaccharide-stimulated conditions in monocytes. Transcripts relating to both mitochondrial and nuclear-encoded gene expression were enhanced in hypercapnia in basal and lipopolysaccharide-stimulated cells. Mitochondrial DNA content was not enhanced, but acylcarnitine species and genes associated with fatty acid metabolism were increased in hypercapnia. Primary macrophages exposed to hypercapnia also increased activation of genes associated with fatty acid metabolism and reduced activation of genes associated with glycolysis. Thus, hypercapnia elicits metabolic shifts in lipid metabolism in monocytes and macrophages under pH-buffered conditions. These data indicate that CO2 is an important modulator of monocyte transcription that can influence immunometabolic signaling in immune cells in hypercapnia. These immunometabolic insights may be of benefit in the treatment of patients experiencing hypercapnia.
Collapse
Affiliation(s)
- David E Phelan
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Catarina Mota
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Moritz J Strowitzki
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Masahiko Shigemura
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Louise Crowe
- Allergy, Inflammation & Remodeling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Joanne C Masterson
- Allergy, Inflammation & Remodeling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Sophie E Hayes
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Ben Reddan
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Xiaofei Yin
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Lorraine Brennan
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Daniel Crean
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Eoin P Cummins
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Tiruvoipati R, Akkanti B, Dinh K, Barrett N, May A, Kimmel J, Conrad SA. Extracorporeal Carbon Dioxide Removal With the Hemolung in Patients With Acute Respiratory Failure: A Multicenter Retrospective Cohort Study. Crit Care Med 2023; 51:892-902. [PMID: 36942957 PMCID: PMC10262985 DOI: 10.1097/ccm.0000000000005845] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
OBJECTIVES Extracorporeal carbon dioxide removal (ECCO 2 R) devices are effective in reducing hypercapnia and mechanical ventilation support but have not been shown to reduce mortality. This may be due to case selection, device performance, familiarity, or the management. The objective of this study is to investigate the effectiveness and safety of a single ECCO 2 R device (Hemolung) in patients with acute respiratory failure and identify variables associated with survival that could help case selection in clinical practice as well as future research. DESIGN Multicenter, multinational, retrospective review. SETTING Data from the Hemolung Registry between April 2013 and June 2021, where 57 ICUs contributed deidentified data. PATIENTS Patients with acute respiratory failure treated with the Hemolung. The characteristics of patients who survived to ICU discharge were compared with those who died. Multivariable logistical regression analysis was used to identify variables associated with ICU survival. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Of the 159 patients included, 65 (41%) survived to ICU discharge. The survival was highest in status asthmaticus (86%), followed by acute respiratory distress syndrome (ARDS) (52%) and COVID-19 ARDS (31%). All patients had a significant reduction in Pa co2 and improvement in pH with reduction in mechanical ventilation support. Patients who died were older, had a lower Pa o2 :F io2 (P/F) and higher use of adjunctive therapies. There was no difference in the complications between patients who survived to those who died. Multivariable regression analysis showed non-COVID-19 ARDS, age less than 65 years, and P/F at initiation of ECCO 2 R to be independently associated with survival to ICU discharge (P/F 100-200 vs <100: odds ratio, 6.57; 95% CI, 2.03-21.33). CONCLUSIONS Significant improvement in hypercapnic acidosis along with reduction in ventilation supports was noted within 4 hours of initiating ECCO 2 R. Non-COVID-19 ARDS, age, and P/F at commencement of ECCO 2 R were independently associated with survival.
Collapse
Affiliation(s)
| | - Bindu Akkanti
- Department of Medicine, Division of Critical Care, Pulmonary and Sleep, University of Texas McGovern Medical School, Houston, TX
- Advanced Cardiopulmonary Therapeutics and Transplantation, University of Texas Health-Houston, Houston, TX
| | - Kha Dinh
- Department of Medicine, Division of Critical Care, Pulmonary and Sleep, University of Texas McGovern Medical School, Houston, TX
- Advanced Cardiopulmonary Therapeutics and Transplantation, University of Texas Health-Houston, Houston, TX
| | - Nicholas Barrett
- Department of Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Centre for Human & Applied Physiological Sciences (CHAPS), School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | | | | | - Steven A Conrad
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA
| |
Collapse
|
17
|
Pippalapalli J, Lumb A. The respiratory system and acid-base disorders. BJA Educ 2023; 23:221-228. [PMID: 37223696 PMCID: PMC10201398 DOI: 10.1016/j.bjae.2023.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/01/2023] [Indexed: 05/25/2023] Open
|
18
|
Maamar A, Delamaire F, Reizine F, Lesouhaitier M, Painvin B, Quelven Q, Coirier V, Guillot P, Tulzo YL, Tadié JM, Gacouin A. Impact of Arterial CO 2 Retention in Patients With Moderate or Severe ARDS. Respir Care 2023; 68:582-591. [PMID: 36977590 PMCID: PMC10171350 DOI: 10.4187/respcare.10507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
BACKGROUND Lung-protective ventilation (reduced tidal volume and limited plateau pressure) may lead to CO2 retention. Data about the impact of hypercapnia in patients with ARDS are scarce and conflicting. METHODS We performed a non-interventional cohort study with subjects with ARDS admitted from 2006 to 2021 and with PaO2 /FIO2 ≤ 150 mm Hg. We examined the association between severe hypercapnia (PaCO2 ≥ 50 mm Hg) on the first 5 days after the diagnosis of ARDS and death in ICU for 930 subjects. All the subjects received lung-protective ventilation. RESULTS Severe hypercapnia was noted in 552 subjects (59%) on the first day of ARDS (day 1); 323/930 (34.7%) died in the ICU. Severe hypercapnia on day 1 was associated with mortality in the unadjusted (odds ratio 1.54, 95% CI 1.16-1.63; P = .003) and adjusted (odds ratio 1.47, 95% CI 1.08-2.43; P = .004) models. In the Bayesian analysis, the posterior probability that severe hypercapnia was associated with ICU death was > 90% in 4 different priors, including a septic prior for this association. Sustained severe hypercapnia on day 5, defined as severe hypercapnia present from day 1 to day 5, was noted in 93 subjects (12%). After propensity score matching, severe hypercapnia on day 5 remained associated with ICU mortality (odds ratio 1.73, 95% CI 1.02-2.97; P = .047). CONCLUSIONS Severe hypercapnia was associated with mortality in subjects with ARDS who received lung-protective ventilation. Our results deserve further evaluation of the strategies and treatments that aim to control CO2 retention.
Collapse
Affiliation(s)
- Adel Maamar
- Centre Hospitalier Universitaire Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
- Université Rennes1, Faculté de Médecine, Biosit, Rennes, France
| | - Flora Delamaire
- Centre Hospitalier Universitaire Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
- Université Rennes1, Faculté de Médecine, Biosit, Rennes, France
| | - Florian Reizine
- Centre Hospitalier Universitaire Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
- Université Rennes1, Faculté de Médecine, Biosit, Rennes, France
- Inserm-CIC-1414, Faculté de Médecine, Université Rennes I, Rennes, France
| | - Mathieu Lesouhaitier
- Centre Hospitalier Universitaire Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
- Université Rennes1, Faculté de Médecine, Biosit, Rennes, France
- Inserm-CIC-1414, Faculté de Médecine, Université Rennes I, Rennes, France
| | - Benoit Painvin
- Centre Hospitalier Universitaire Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
- Université Rennes1, Faculté de Médecine, Biosit, Rennes, France
| | - Quentin Quelven
- Centre Hospitalier Universitaire Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
- Université Rennes1, Faculté de Médecine, Biosit, Rennes, France
| | - Valentin Coirier
- Centre Hospitalier Universitaire Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
- Université Rennes1, Faculté de Médecine, Biosit, Rennes, France
| | - Pauline Guillot
- Centre Hospitalier Universitaire Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
- Université Rennes1, Faculté de Médecine, Biosit, Rennes, France
| | - Yves Le Tulzo
- Centre Hospitalier Universitaire Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
- Université Rennes1, Faculté de Médecine, Biosit, Rennes, France
- Inserm-CIC-1414, Faculté de Médecine, Université Rennes I, Rennes, France
| | - Jean Marc Tadié
- Centre Hospitalier Universitaire Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
- Université Rennes1, Faculté de Médecine, Biosit, Rennes, France
- Inserm-CIC-1414, Faculté de Médecine, Université Rennes I, Rennes, France
| | - Arnaud Gacouin
- Centre Hospitalier Universitaire Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France.
- Université Rennes1, Faculté de Médecine, Biosit, Rennes, France
- Inserm-CIC-1414, Faculté de Médecine, Université Rennes I, Rennes, France
| |
Collapse
|
19
|
Zhang R, Chen H, Teng R, Li Z, Yang Y, Qiu H, Liu L. Association between the time-varying arterial carbon dioxide pressure and 28-day mortality in mechanically ventilated patients with acute respiratory distress syndrome. BMC Pulm Med 2023; 23:129. [PMID: 37076846 PMCID: PMC10113995 DOI: 10.1186/s12890-023-02431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/13/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Recent studies have shown an association between baseline arterial carbon dioxide pressure (PaCO2) and outcomes in patients with acute respiratory distress syndrome (ARDS). However, PaCO2 probably varies throughout the disease, and few studies have assessed the effect of longitudinal PaCO2 on prognosis. We thus aimed to investigate the association between time-varying PaCO2 and 28-day mortality in mechanically ventilated ARDS patients. METHODS In this retrospective study, we included all adult (≥ 18 years) patients diagnosed with ARDS who received mechanical ventilation for at least 24 h at a tertiary teaching hospital between January 2014 and March 2021. Patients were excluded if they received extracorporeal membrane oxygenation (ECMO). Demographic data, respiratory variables, and daily PaCO2 were extracted. The primary outcome was 28-day mortality. Time-varying Cox models were used to estimate the association between longitudinal PaCO2 measurements and 28-day mortality. RESULTS A total of 709 patients were eligible for inclusion in the final cohort, with an average age of 65 years, of whom 70.7% were male, and the overall 28-day mortality was 35.5%. After adjustment for baseline confounders, including age and severity of disease, a significant increase in the hazard of death was found to be associated with both time-varying PaCO2 (HR 1.07, 95% CI 1.03-1.11, p<0.001) and the time-varying coefficient of variation for PaCO2 (HR 1.24 per 10% increase, 95% CI 1.10-1.40, p<0.001) during the first five days of invasive mechanical ventilation. The cumulative proportion of exposure to normal PaCO2 (HR 0.72 per 10% increase, 95% CI 0.58-0.89, p = 0.002) was associated with 28-day mortality. CONCLUSION PaCO2 should be closely monitored in mechanically ventilated ARDS patients. The association between PaCO2 and 28-day mortality persisted over time. Increased cumulative exposure to normal PaCO2 was associated with a decreased risk of death.
Collapse
Affiliation(s)
- Rui Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Hui Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Ran Teng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Zuxian Li
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
20
|
Jose D, Parameswaran N. Advances in Management of Respiratory Failure in Children. Indian J Pediatr 2023; 90:470-480. [PMID: 37010692 DOI: 10.1007/s12098-023-04559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/07/2023] [Indexed: 04/04/2023]
Abstract
Providing the right respiratory support is an essential skill, vital for anyone treating sick children. Recent advances in respiratory support include developments in both non-invasive and invasive ventilatory strategies. In non-invasive ventilation, newer modalities are being developed, in an attempt to decrease the need for invasive ventilation. This include newer techniques like Heated humidified high-flow nasal cannula (HHHFNC) and improvements in existing modes. The success of Continuous positive airway pressure (CPAP) and other non-invasive modes depend to a large extent on choosing and maintaining a suitable interface. When it comes to invasive ventilation, recent advances are focussing on increasing automation, improving patient comfort and minimising lung injury. Concepts like mechanical power are attempts at understanding the mechanisms of unintended injuries resulting from respiratory support and newer monitoring methods like transpulmonary pressure, thoracic impedance tomography are attempts at measuring potential markers of lung injury. Using the vast arrays of available ventilatory options judiciously, considering their advantages and drawbacks in every individual case will be the prime responsibility of clinicians in the future. Simultaneously, efforts have been made to identify potential drugs that can favourably modify the pathophysiology of acute respiratory distress syndrome (ARDS). Unfortunately, though eagerly awaited, most pharmaceutical agents tried in pediatric ARDS have not shown definite benefit. Pulmonary local drug and gene therapy using liquid ventilation strategies may revolutionize our future understanding and management of lung diseases.
Collapse
Affiliation(s)
- Divakar Jose
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Narayanan Parameswaran
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India.
| |
Collapse
|
21
|
Zhou D, Lv Y, Lin Q, Wang C, Fei S, He W. Association between rate of change in PaCO 2 and functional outcome for patients with hypercapnia after out-of-hospital cardiac arrest: Secondary analysis of a randomized clinical trial. Am J Emerg Med 2023; 65:139-145. [PMID: 36634567 DOI: 10.1016/j.ajem.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/10/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Normocapnia is suggested for post resuscitation care. For patients with hypercapnia after cardiac arrest, the relationship between rate of change in partial pressure of carbon dioxide (PaCO2) and functional outcome was unknown. METHODS This was the secondary analysis of Resuscitation Outcomes Consortium (ROC) amiodarone, lidocaine, and placebo (ALPS) trial. Patients with at least 2 PaCO2 recorded and the first indicating hypercapnia (PaCO2 > 45 mmHg) after return of spontaneous circulation (ROSC) were included. The rate of change in PaCO2 was calculated as the ratio of the difference between the second and first PaCO2 to the time interval. The primary outcome was modified Rankin Score (mRS), dichotomized to good (mRS 0-3) and poor (mRS 4-6) outcomes at hospital discharge. The independent relationship between rate of change in PaCO2 and outcome was investigated with multivariable logistic regression model. RESULTS A total of 746 patients with hypercapnia were included for analysis, of which 264 (35.4%) patients had good functional outcome. The median rate of change in PaCO2 was 4.7 (interquartile range [IQR] 1.7-12) mmHg per hour. After adjusting for confounders, the rate of change in PaCO2 (odds ratio [OR] 0.994, confidence interval [CI] 0.985-1.004, p = 0.230) was not associated the functional outcome. However, rate of change in PaCO2 (OR 1.010, CI 1.001-1.019, p = 0.029) was independently associated with hospital mortality. CONCLUSIONS For OHCA patients with hypercapnia on admission, the rate of change in PaCO2 was not independently associated with functional outcome; however, there was a significant trend that higher decreased rate was associated with increased hospital mortality.
Collapse
Affiliation(s)
- Dawei Zhou
- Department of Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Yi Lv
- Department of Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qing Lin
- Department of Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chao Wang
- Department of Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shuyang Fei
- Department of Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei He
- Department of Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Unger K, Martin LG. Noncardiogenic pulmonary edema in small animals. J Vet Emerg Crit Care (San Antonio) 2023; 33:156-172. [PMID: 36815753 DOI: 10.1111/vec.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/24/2023]
Abstract
OBJECTIVE To review various types of noncardiogenic pulmonary edema (NCPE) in cats and dogs. ETIOLOGY NCPE is an abnormal fluid accumulation in the lung interstitium or alveoli that is not caused by cardiogenic causes or fluid overload. It can be due to changes in vascular permeability, hydrostatic pressure in the pulmonary vasculature, or a combination thereof. Possible causes include inflammatory states within the lung or in remote tissues (acute respiratory distress syndrome [ARDS]), airway obstruction (post-obstructive pulmonary edema), neurologic disease such as head trauma or seizures (neurogenic pulmonary edema), electrocution, after re-expansion of a collapsed lung or after drowning. DIAGNOSIS Diagnosis of NCPE is generally based on history, physical examination, and diagnostic imaging. Radiographic findings suggestive of NCPE are interstitial to alveolar pulmonary opacities in the absence of signs of left-sided congestive heart failure or fluid overload such as cardiomegaly or congested pulmonary veins. Computed tomography and edema fluid analysis may aid in the diagnosis, while some forms of NCPE require additional findings to reach a diagnosis. THERAPY The goal of therapy for all types of NCPE is to preserve tissue oxygenation and reduce the work of breathing. This may be achieved by removing the inciting cause (eg, airway obstruction) and cage rest in mild cases and supplemental oxygen in moderate cases and may require mechanical ventilation in severe cases. PROGNOSIS Prognosis is generally good for most causes of veterinary NCPE except for ARDS, although data are scarce for some etiologies of NCPE.
Collapse
Affiliation(s)
- Karin Unger
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, USA
| | - Linda G Martin
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
23
|
Wang XX, Guo Y. [Recent research on extracorporeal carbon dioxide removal]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:205-209. [PMID: 36854699 DOI: 10.7499/j.issn.1008-8830.2208187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Extracorporeal carbon dioxide removal is an artificial lung auxiliary technique based on extrapulmonary gas exchange and can effectively remove carbon dioxide and provide oxygenation to a certain extent, and it is one of the effective treatment techniques for hypercapnia developed after mechanical ventilation and extracorporeal membrane oxygenation in recent years and has wide application prospect. This article elaborates on the development, working principle, advantages, classification, complications, and clinical application of extracorporeal carbon dioxide removal, so as to provide a new choice for extracorporeal carbon dioxide removal in clinical practice.
Collapse
Affiliation(s)
- Xiao-Xin Wang
- Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yan Guo
- Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| |
Collapse
|
24
|
Geyer-Roberts E, Lacatusu DA, Kester J, Foster-Moumoutjis G, Sidiqi M. Preventative Management of Sepsis-Induced Acute Respiratory Distress Syndrome in the Geriatric Population. Cureus 2023; 15:e34680. [PMID: 36909040 PMCID: PMC9994455 DOI: 10.7759/cureus.34680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/05/2023] [Indexed: 02/08/2023] Open
Abstract
Sepsis and its treatment are the most common etiologies of acute respiratory distress syndrome (ARDS), which has a disturbing mortality rate. Sepsis management relies heavily on the introduction of resuscitative fluids. However, when fluids are paired with the circulating inflammatory mediators of sepsis, patients are prone to lung damage. Survivors of sepsis-induced ARDS become plagued with functional and/or psychological sequelae such as impaired memory, difficulty in concentrating, and decreased mental processing speed. Specific techniques can be implemented when diagnosing and treating elderly patients with sepsis to prevent the onset of ARDS, including bed elevation and early antibiotics. Additionally, albumin infusion may be beneficial; however, more research must be conducted. Finally, inflammatory mediators, including serum mannose biomarkers and extracellular histone therapy, show a promising avenue for future treatment. Although there is limited research on osteopathic manipulative medicine (OMT) on ARDS or sepsis-induced ARDS, OMT that focuses on alleviating rib and thoracic somatic dysfunctions has been used as an adjunct therapy to treat other respiratory diseases, such as pneumonia and chronic obstructive pulmonary disease (COPD). The results of these studies may garner interest in whether the use of OMT as an adjunct therapy may be beneficial for patients with ARDS or sepsis-induced ARDS. This paper is intended to review the current guidelines for sepsis and ARDS management in elderly patients to identify measures to prevent sepsis-induced ARDS.
Collapse
Affiliation(s)
- Elizabeth Geyer-Roberts
- Department of Medicine, Nova Southeastern University (NSU) Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Diana A Lacatusu
- Department of Medicine, Nova Southeastern University (NSU) Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Jessica Kester
- Department of Medicine, Nova Southeastern University (NSU) Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Gina Foster-Moumoutjis
- Department of Family Medicine, Nova Southeastern University (NSU) Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Mojda Sidiqi
- Department of Family Medicine, Nova Southeastern University (NSU) Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| |
Collapse
|
25
|
Bhattacharya D, Bhakta P, O'Brien B, Karim HMR, Esquinas AM. Letter to the editor: "Clinical characteristics, physiological features, and outcomes associated with hypercapnia in patients with acute hypoxemic respiratory failure due to COVID-19---insights from the PRoVENT-COVID study". J Crit Care 2023; 73:154177. [PMID: 36307309 PMCID: PMC9744706 DOI: 10.1016/j.jcrc.2022.154177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/10/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Dipasri Bhattacharya
- Department of Anaesthesiology, Pain Medicine, and Critical Care, R. G. Kar Medical College, Kolkata, West Bengal, India
| | - Pradipta Bhakta
- Department of Anaesthesiology and Intensive Care, Hull University Teaching Hospital NHS Trust, Hull, East Yorkshire, United Kingdom.
| | - Brian O'Brien
- Department of Anaesthesiology and Intensive Care, Cork University Hospital, Cork, Ireland
| | - Habib Md Reazaul Karim
- Department of Anaesthesiology and Critical Care, All India Institute of Medical Sciences, Raipur, India
| | - Antonio M. Esquinas
- Critical Care Specialist and Staff Physician, Intensive Care Unit, Hospital Morales, Meseguer, Murcia, Spain
| |
Collapse
|
26
|
Deng Q, Zhang B, Li W, Liang H, Jiang Z, Zhang J, Xu Y, He W, Liu X, Sang L, Zeng H, Xu Y. Changes of blood gas analysis in moderate-to-severe acute respiratory distress syndrome patients during long-term prone position ventilation: a retrospective cohort study. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:86. [PMID: 36819546 PMCID: PMC9929834 DOI: 10.21037/atm-22-5907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023]
Abstract
Background Prone position ventilation (PPV) has been recommended for patients with acute respiratory distress syndrome (ARDS) to improve oxygenation. However, whether prolonged prone ventilation will aggravate hyperoxia and whether abdominal compression will aggravate permissive hypercapnia acidosis are topics of concern. We carried out a retrospective analysis to investigate the issues above. Methods Clinical data were collected from 97 moderate-to-severe ARDS patients who received PPV as part of their treatment in the intensive care unit (ICU) of the First Affiliated Hospital of Guangzhou Medical University from November 2015 to May 2021. We collected arterial blood gas of patients according to the 3 periods: supine position ventilation (SPV), PPV early stage (within 4 hours), and PPV middle and late stage (6 hours or later). We established a linear mixed-effects models with "body position changes, times of PPV, gender, age, baseline SOFA, and baseline APACHE II" as fixed effects, and individual and the number of prone positions as random intercept and random slope to investigate the effect of body position changes on blood gas analysis. Results Among the 97 patients received PPV included, 51 were ICU survivors. Arterial partial pressure of oxygen (PaO2) and PaO2/fraction of inspired oxygen (FiO2) ratio were significantly higher at the early, middle and late stages of PPV than those in SPV [PFR (mmHg): 158 (118.00, 203.00) vs. 161 (129.00, 202.75) vs. 123 (91.75, 163.00), P<0.05]. Despite the synchronized reduction of FiO2, the incidence of hyperoxia in the prone position was still significantly higher than that in the supine position [hyperoxia (%):33.33 vs. 33.56 vs. 12.42, P<0.05]; there was no significant change in arterial carbon dioxide partial pressure (PaCO2) at each stage of PPV, but there was a significant increase in PH at PPV middle and late stages than those at early stage [PH: 7.39 (7.34, 7.42) vs. 7.37 (7.31, 7.41), P<0.05]. Conclusions Although PPV improves the patients' oxygenation, the associated incidence of hyperoxia exceeds 33%. Down-regulate FiO2 more sharply after PPV is necessary, if oxygenation conditions permit. PPV may alleviate the acidosis associated with permissive hypercapnia in ARDS patients treated with lung protective ventilation strategy (LPVS).
Collapse
Affiliation(s)
- Qiuxue Deng
- Department of Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Baozhu Zhang
- Department of Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjing Li
- Department of Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hanwen Liang
- Department of Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenjie Jiang
- Department of Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiesen Zhang
- Department of Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yonghao Xu
- Department of Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiqun He
- Department of Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoqing Liu
- Department of Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Sang
- Department of Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huiqing Zeng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Yuanda Xu
- Department of Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
27
|
Extracorporeal Carbon Dioxide Removal: From Pathophysiology to Clinical Applications; Focus on Combined Continuous Renal Replacement Therapy. Biomedicines 2023; 11:biomedicines11010142. [PMID: 36672649 PMCID: PMC9855411 DOI: 10.3390/biomedicines11010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/08/2023] Open
Abstract
Lung-protective ventilation (LPV) with low tidal volumes can significantly increase the survival of patients with acute respiratory distress syndrome (ARDS) by limiting ventilator-induced lung injuries. However, one of the main concerns regarding the use of LPV is the risk of developing hypercapnia and respiratory acidosis, which may limit the clinical application of this strategy. This is the reason why different extracorporeal CO2 removal (ECCO2R) techniques and devices have been developed. They include low-flow or high-flow systems that may be performed with dedicated platforms or, alternatively, combined with continuous renal replacement therapy (CRRT). ECCO2R has demonstrated effectiveness in controlling PaCO2 levels, thus allowing LPV in patients with ARDS from different causes, including those affected by Coronavirus disease 2019 (COVID-19). Similarly, the suitability and safety of combined ECCO2R and CRRT (ECCO2R-CRRT), which provides CO2 removal and kidney support simultaneously, have been reported in both retrospective and prospective studies. However, due to the complexity of ARDS patients and the limitations of current evidence, the actual impact of ECCO2R on patient outcome still remains to be defined. In this review, we discuss the main principles of ECCO2R and its clinical application in ARDS patients, in particular looking at clinical experiences of combined ECCO2R-CRRT treatments.
Collapse
|
28
|
de Pablo R, Blandino Ortiz A. How and when should a CO 2 removal device be used? Med Intensiva 2023; 47:45-47. [PMID: 36319533 DOI: 10.1016/j.medine.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/07/2022]
Affiliation(s)
- R de Pablo
- Servicio de Medicina Intensiva, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
| | - A Blandino Ortiz
- Servicio de Medicina Intensiva, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
29
|
de Pablo R, Blandino Ortiz A. ¿Cómo y cuándo emplear un dispositivo para eliminación de CO2? Med Intensiva 2022. [DOI: 10.1016/j.medin.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Buchholz KJ, Neumueller SE, Burgraff NJ, Hodges MR, Pan L, Forster HV. Chronic moderate hypercapnia suppresses ventilatory responses to acute CO<sub>2</sub> challenges. J Appl Physiol (1985) 2022; 133:1106-1118. [PMID: 36135953 PMCID: PMC9621709 DOI: 10.1152/japplphysiol.00407.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic hypercapnia (CH) is a hallmark of chronic lung disease, and CH increases the risk for acute-on-chronic exacerbations leading to greater hypoxemia/hypercapnia and poor health outcomes. However, the role of hypercapnia per se (duration and severity) in determining an individual's ability to tolerate further hypercapnic exacerbations is unknown. Our primary objective herein was to test the hypothesis that mild-to-moderate CH (arterial [Formula: see text] ∼50-70 mmHg) increases susceptibility to pathophysiological responses to severe acute CO<sub>2</sub> challenges. Three groups (GR) of adult female goats were studied during 14 days of exposure to room air (<i>GR 1</i>; control) or 6% inspired CO<sub>2</sub> (<i>GR 2</i>; mild CH), or 7 days of 6% inspired CO<sub>2</sub> followed by 7 days of 8% inspired CO<sub>2</sub> (<i>GR 3</i>; moderate CH). Consistent with previous reports, there were no changes in physiological parameters in <i>GR 1</i> (RA control), but mild CH (<i>GR 2</i>) increased steady-state ventilation and transiently suppressed CO<sub>2</sub>/[H<sup>+</sup>] chemosensitivity. Further increasing InCO<sub>2</sub> from 6% to 8% (<i>GR 3</i>) transiently increased ventilation and arterial [H<sup>+</sup>]. Similar to mild CH, moderate CH increased ventilation to levels greater than predicted. However, in contrast to mild CH, acute ventilatory chemosensitivity was suppressed throughout the duration of moderate CH, and the arterial - mixed expired CO<sub>2</sub> gradient became negative. These data suggest that moderate CH limits physiological responses to acute severe exacerbations and provide evidence of recruitment of extrapulmonary systems (i.e., gastric CO<sub>2</sub> elimination) during times of moderate-severe hypercapnia.<b>NEW & NOTEWORTHY</b> Moderate levels of chronic hypercapnia (CH; ∼70 mmHg) in healthy adult female goats elicited similar steady-state physiological adaptations compared with mild CH (∼55 mmHg). However, unlike mild CH, moderate CH chronically suppressed acute CO<sub>2</sub>/[H<sup>+</sup>] chemosensitivity and reversed the arterial to mixed expired CO<sub>2</sub> gradient. These findings suggest that moderate CH suppresses vital mechanisms of ventilatory control and recruits additional physiological systems (i.e., gastric CO<sub>2</sub> release) to help buffer excess CO<sub>2</sub>.
Collapse
Affiliation(s)
- Kirstyn J Buchholz
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Nicholas J Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lawrence Pan
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin
| | - Hubert V Forster
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
31
|
Profound Effect of Pulmonary Surfactant on the Treatment of Preterm Infants with Respiratory Distress Syndrome. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:4166994. [PMID: 36262981 PMCID: PMC9550487 DOI: 10.1155/2022/4166994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 01/26/2023]
Abstract
Inherited diseases caused by dysfunction of pulmonary surfactant metabolism or surfactant dysfunction have recently been considered the underlying causes of neonatal and pediatric respiratory diseases. Respiratory distress syndrome in premature infants is a common respiratory disease in pediatrics. It is caused by underdeveloped lungs in infants and a lack of active substances on the surface of the alveoli, which leads to insufficiency of lung function, which can lead to difficulty breathing, increased heart rate, facial bruising, and more. Neonatal Respiratory Distress Syndrome is a very dangerous disease with a high mortality rate and a great threat to children's lives and health. Therefore, enough attention and treatment should be caused in clinical practice. Natural pulmonary surfactant (PS) has achieved positive effects in the treatment of neonatal respiratory distress syndrome (RDS), reducing neonatal mortality, the application of mechanical ventilation, and the occurrence of late complications. To further explore the role of pulmonary surfactants in the treatment of neonatal respiratory distress syndrome, to analyze the best time to use PS to prevent RDS, this paper has selected premature infants with RDS received by the neonatal department of a hospital in a province from March 2019 to October 2020 to compare the efficacy of pulmonary surfactant (PS) in preterm infants with respiratory distress syndrome (RDS). The experiment has found that the average mechanical ventilation time (5.1 d) and oxygen therapy time (7.3 d) in the early group are shorter than the average mechanical ventilation time (6.4 d) and oxygen therapy time (10.6 d) in the late group. It has been demonstrated that early administration of pulmonary surfactant (PS) therapy is of great help in improving respiratory distress syndrome in premature infants.
Collapse
|
32
|
Yang Y, Chi Y, Yuan S, Zhang Q, Su L, Long Y, He H. The relationship between ventilatory ratio (VR) and 28-day hospital mortality by restricted cubic splines (RCS) in 14,328 mechanically ventilated ICU patients. BMC Pulm Med 2022; 22:229. [PMID: 35698114 PMCID: PMC9191763 DOI: 10.1186/s12890-022-02019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022] Open
Abstract
Background Previous studies found that high levels of ventilatory ratio (VR) were associated with a poor prognosis due to worse ventilatory efficiency in acute respiratory distress syndrome patients. However, relatively few large studies have assessed the association between VR and intensive care unit (ICU) mortality in the general adult ventilated population. Methods The present study is a retrospective cohort study. Patients mechanically ventilated for more than 12 h were included. VR was calculated based on a previously reported formula. Restricted cubic spline models were used to fit the relationship between VR and mortality risks. Results A total of 14,328 mechanically ventilated ICU patients were included in the study, of which 1311 died within 28 days. The results of the study are as follows: (1) In the general adult ventilated population, VR was positively associated with 28-day mortality when VR ≥ 1.3 (increase of 0.1 per VR; HR 1.05, p < 0.001). The same tendency was also observed in the populations of severe hypoxemia with a PaO2/FiO2 (P/F) ratio < 200 mmHg. (2) However, in the population with a P/F ratio ≥ 200, a J-shaped dose–response association between VR and the risk of mortality was observed, with the risk of death positively associated with VR when VR ≥ 0.9 (10% increase in HR for every 0.1 increase in VR, p = 0.000) but negatively associated with VR when VR < 0.9 (10% decrease in HR for every 0.1 increase in VR, p = 0.034). In the population of P/F ratio ≥ 200 with VR less than 0.9, compared to the survival group, the nonsurvival group had a lower level PCO2 (33 mmHg [29.1, 37.9] vs. 34.4 mmHg [30.6, 38.5]), rather than a significant level of measured minute ventilation or P/F ratio. Conclusions VR was positively associated with the risk of death in the general ICU population; however, VR was inversely associated with 28-day mortality in the population with a P/F ratio ≥ 200 and low VR . Further research should investigate this relationship, and VR should be interpreted with caution in clinical practice.
Collapse
Affiliation(s)
- Yingying Yang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Yi Chi
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Siyi Yuan
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Qing Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Longxiang Su
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Yun Long
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Huaiwu He
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
33
|
Algarin-Lara H, Osorio-Rodríguez E, Patiño-Patiño J, Solano-Ropero J, Rodado-Villa R. Hipercapnia refractaria en paciente con síndrome de obesidad-hipoventilación maligno y COVID-19. Reporte de caso y propuesta de manejo. ACTA COLOMBIANA DE CUIDADO INTENSIVO 2022. [PMCID: PMC8692066 DOI: 10.1016/j.acci.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
El síndrome de obesidad-hipoventilación asociado a la COVID-19 conduce rápidamente a la insuficiencia respiratoria aguda severa con la necesidad de ventilación mecánica invasiva, convirtiéndose en un reto terapéutico hacia el personal del cuidado intensivo debido a la ausencia de estrategias ventilatorias. A continuación se expone el caso de un paciente masculino de 51 años con antecedentes de síndrome de Pickwick que presentó neumonía grave por SARS-CoV-2, el cual progresa tempranamente a un síndrome de dificultad respiratoria aguda grave requiriendo soporte mecánico ventilatorio invasivo con presión positiva y la necesidad de soporte vasoactivo, cursando además con un síndrome de obesidad-hipoventilación de fenotipo maligno. En base a lo anterior se realiza una propuesta de manejo clínico institucional basado en la literatura científica actual del síndrome de obesidad-hipoventilación y neumonía grave secundario a SARS-CoV-2. A pesar de la alta mortalidad relacionada con la COVID-19 y la dificultad presentada durante la ventilación mecánica invasiva, el desenlace final del paciente fue favorable.
Collapse
|
34
|
Affiliation(s)
- Philip Fortuna
- Centro Hospitalar Universitário de Lisboa Central EPE, Lisbon, Portugal.
| | - Simão Rodeia
- Centro Hospitalar Universitário de Lisboa Central EPE, Lisbon, Portugal
| | - Rui Morais
- Centro Hospitalar de Lisboa Ocidental EPE, Lisbon, Portugal
| |
Collapse
|
35
|
Tsonas AM, Botta M, Horn J, Morales-Quinteros L, Artigas A, Schultz MJ, Paulus F, Neto AS. Clinical characteristics, physiological features, and outcomes associated with hypercapnia in patients with acute hypoxemic respiratory failure due to COVID-19---insights from the PRoVENT-COVID study. J Crit Care 2022; 69:154022. [PMID: 35339900 PMCID: PMC8947815 DOI: 10.1016/j.jcrc.2022.154022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/24/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE We determined the incidence of hypercapnia and associations with outcome in invasively ventilated COVID-19 patients. METHODS Posthoc analysis of a national, multicenter, observational study in 22 ICUs. Patients were classified as 'hypercapnic' or 'normocapnic' in the first three days of invasive ventilation. Primary endpoint was prevalence of hypercapnia. Secondary endpoints were ventilator parameters, length of stay (LOS) in ICU and hospital, and mortality in ICU, hospital, at day 28 and 90. RESULTS Of 824 patients, 485 (58.9%) were hypercapnic. Hypercapnic patients had a higher BMI and had COPD, severe ARDS and venous thromboembolic events more often. Hypercapnic patients were ventilated with lower tidal volumes, higher respiratory rates, higher driving pressures, and with more mechanical power of ventilation. Hypercapnic patients had comparable minute volumes but higher ventilatory ratios than normocapnic patients. In hypercapnic patients, ventilation and LOS in ICU and hospital was longer, but mortality was comparable to normocapnic patients. CONCLUSION Hypercapnia occurs often in invasively ventilated COVID-19 patients. Main differences between hypercapnic and normocapnic patients are severity of ARDS, occurrence of venous thromboembolic events, and a higher ventilation ratio. Hypercapnia has an association with duration of ventilation and LOS in ICU and hospital, but not with mortality.
Collapse
Affiliation(s)
- Anissa M. Tsonas
- Department of Intensive Care, Amsterdam UMC, location ‘AMC’, Amsterdam, the Netherlands,Corresponding author at: Department of Intensive Care, G3–228, Amsterdam UMC, location ‘AMC’, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Michela Botta
- Department of Intensive Care, Amsterdam UMC, location ‘AMC’, Amsterdam, the Netherlands
| | - Janneke Horn
- Department of Intensive Care, Amsterdam UMC, location ‘AMC’, Amsterdam, the Netherlands,Amsterdam Neuroscience, Amsterdam UMC, location ‘AMC’, Amsterdam, the Netherlands
| | - Luis Morales-Quinteros
- Intensive Care Unit, University General Hospital of Catalonia, Barcelona, Spain,Servei de Medicina Intensive, Hospital Universitari Sant Pau, Barcelona, Spain,The Autonomous University of Barcelona, Barcelona, Spain,The Parc Taulí Research and Innovation Institute (I3PT), Sabadell, Spain
| | - Antonio Artigas
- The Autonomous University of Barcelona, Barcelona, Spain,The Parc Taulí Research and Innovation Institute (I3PT), Sabadell, Spain,Critical Care Center, University Hospital Parc Tauli, Sabadell, Spain,CIBER Enfermedades Respiratorias (ISCiii), Madrid, Spain
| | - Marcus J. Schultz
- Department of Intensive Care, Amsterdam UMC, location ‘AMC’, Amsterdam, the Netherlands,Mahidol–Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand,Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Frederique Paulus
- Department of Intensive Care, Amsterdam UMC, location ‘AMC’, Amsterdam, the Netherlands,ACHIEVE, Centre of Applied Research, Amsterdam University of Applied Sciences, Faculty of Health, Amsterdam, the Netherlands
| | - Ary Serpa Neto
- Department of Intensive Care, Amsterdam UMC, location ‘AMC’, Amsterdam, the Netherlands,Department of Critical Care Medicine, Hospital Israelita Albert Einstein, Sao Paulo, Brazil,Department of Critical Care Medicine, Australian and New Zealand Intensive Care Research Centre (ANZIC–RC), Monash University, Melbourne, Australia,Data Analytics Research and Evaluation (DARE) Centre, Austin Hospital, Melbourne, Australia,Department of Critical Care, Melbourne Medical School, Austin Hospital and University of Melbourne, Melbourne, Australia
| | | |
Collapse
|
36
|
Spinelli E, Pesenti A, Lopez G, Damia A, Damarco F, Garbelli E, Dal Santo G, Caccioppola A, Giudici G, Figgiaconi V, Biancolilli O, Battistin M, Lonati C, Vaira V, Rosso L, Ferrero S, Gatti S, Mauri T. Inhaled CO2 vs. Hypercapnia Obtained by Low Tidal Volume or Instrumental Dead Space in Unilateral Pulmonary Artery Ligation: Any Difference for Lung Protection? Front Med (Lausanne) 2022; 9:901809. [PMID: 35669918 PMCID: PMC9163369 DOI: 10.3389/fmed.2022.901809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
Background Unilateral ligation of the pulmonary artery (UPAL) induces bilateral lung injury in pigs undergoing controlled mechanical ventilation. Possible mechanisms include redistribution of ventilation toward the non-ligated lung and hypoperfusion of the ligated lung. The addition of 5% CO2 to the inspiratory gas (FiCO2) prevents the injury, but it is not clear whether lung protection is a direct effect of CO2 inhalation or it is mediated by plasmatic hypercapnia. This study aims to compare the effects and mechanisms of FiCO2vs. hypercapnia induced by low tidal volume ventilation or instrumental dead space. Methods Healthy pigs underwent left UPAL and were allocated for 48 h to the following: Volume-controlled ventilation (VCV) with VT 10 ml/kg (injury, n = 6); VCV plus 5% FiCO2 (FiCO2, n = 7); VCV with VT 6 ml/kg (low VT, n = 6); VCV plus additional circuit dead space (instrumental VD, n = 6). Histological score, regional compliance, wet-to-dry ratio, and inflammatory infiltrate were assessed to evaluate lung injury at the end of the study. To investigate the mechanisms of protection, we quantified the redistribution of ventilation to the non-ligated lung, as the ratio between the percentage of tidal volume to the right and to the left lung (VTRIGHT/LEFT), and the hypoperfusion of the ligated lung as the percentage of blood flow reaching the left lung (PerfusionLEFT). Results In the left ligated lung, injury was prevented only in the FiCO2 group, as indicated by lower histological score, higher regional compliance, lower wet-to-dry ratio and lower density of inflammatory cells compared to other groups. For the right lung, the histological score was lower both in the FiCO2 and in the low VT groups, but the other measures of injury showed lower intensity only in the FiCO2 group. VTRIGHT/LEFT was lower and PerfusionLEFT was higher in the FiCO2 group compared to other groups. Conclusion In a model of UPAL, inhaled CO2 but not hypercapnia grants bilateral lung protection. Mechanisms of protection include reduced overdistension of the non-ligated and increased perfusion of the ligated lung.
Collapse
Affiliation(s)
- Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Pesenti
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gianluca Lopez
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Anna Damia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Francesco Damarco
- Division of Thoracic Surgery and Lung Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erica Garbelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gaia Dal Santo
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alessio Caccioppola
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giorgio Giudici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Virginia Figgiaconi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Osvaldo Biancolilli
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michele Battistin
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Vaira
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Rosso
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Thoracic Surgery and Lung Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Ferrero
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Milan, Italy
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Gatti
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- *Correspondence: Tommaso Mauri
| |
Collapse
|
37
|
Cummins EP, Bharat A, Sznajder JI, Vadász I. Editorial: Elevated Carbon Dioxide Sensing and Physiologic Effects. Front Physiol 2022; 13:894222. [PMID: 35574468 PMCID: PMC9092065 DOI: 10.3389/fphys.2022.894222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Eoin P Cummins
- School of Medicine and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Ankit Bharat
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - István Vadász
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,The Cardio-Pulmonary Institute (CPI), Giessen, Germany.,Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
38
|
Gendreau S, Geri G, Pham T, Vieillard-Baron A, Mekontso Dessap A. The role of acute hypercapnia on mortality and short-term physiology in patients mechanically ventilated for ARDS: a systematic review and meta-analysis. Intensive Care Med 2022; 48:517-534. [PMID: 35294565 PMCID: PMC8924945 DOI: 10.1007/s00134-022-06640-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/03/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE Hypercapnia is frequent during mechanical ventilation for acute respiratory distress syndrome (ARDS), but its effects on morbidity and mortality are still controversial. We conducted a systematic review and meta-analysis to explore clinical consequences of acute hypercapnia in adult patients ventilated for ARDS. METHODS We searched Medline, Embase, and the Cochrane Library via the OVID platform for studies published from 1946 to 2021. "Permissive hypercapnia" defined hypercapnia in studies where the group with hypercapnia was ventilated with a protective ventilation (PV) strategy (lower VT targeting 6 ml/kg predicted body weight) while the group without hypercapnia was managed with a non-protective ventilation (NPV); "imposed hypercapnia" defined hypercapnia in studies where hypercapnic and non-hypercapnic patients were managed with a similar ventilation strategy. RESULTS Twenty-nine studies (10,101 patients) were included. Permissive hypercapnia, imposed hypercapnia under PV, and imposed hypercapnia under NPV were reported in 8, 21 and 1 study, respectively. Studies testing permissive hypercapnia reported lower mortality in hypercapnic patients receiving PV as compared to non-hypercapnic patients receiving NPV: OR = 0.26, 95% CI [0.07-0.89]. By contrast, studies reporting imposed hypercapnia under PV reported increased mortality in hypercapnic patients receiving PV as compared to non-hypercapnic patients also receiving PV: OR = 1.54, 95% CI [1.15-2.07]. There was a significant interaction between the mechanism of hypercapnia and the effect on mortality. CONCLUSIONS Clinical effects of hypercapnia are conflicting depending on its mechanism. Permissive hypercapnia was associated with improved mortality contrary to imposed hypercapnia under PV, suggesting a major role of PV strategy on the outcome.
Collapse
Affiliation(s)
- Ségolène Gendreau
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Service de Médecine Intensive-Réanimation, 94010, Créteil, France
- Université Paris Est Créteil, CARMAS, 94010, Créteil, France
- Université Paris Est Créteil, INSERM, IMRB, 94010, Créteil, France
| | - Guillaume Geri
- AP-HP, Hôpital Universitaire Ambroise-Paré, Service de Médecine Intensive Réanimation, 92100, Boulogne-Billancourt, France
- Université de Paris Saclay, INSERM UMR 1018, Clinical Epidemiology Team, CESP, Villejuif, France
| | - Tai Pham
- AP-HP, Hôpital de Bicêtre, DMU CORREVE, Service de Médecine Intensive-Réanimation, Université Paris-Saclay, Inserm UMR S_999, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Le Kremlin-Bicêtre, France
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm U1018, Equipe d'Epidémiologie respiratoire intégrative, CESP, 94807, Villejuif, France
| | - Antoine Vieillard-Baron
- AP-HP, Hôpital Universitaire Ambroise-Paré, Service de Médecine Intensive Réanimation, 92100, Boulogne-Billancourt, France
- Université de Paris Saclay, INSERM UMR 1018, Clinical Epidemiology Team, CESP, Villejuif, France
| | - Armand Mekontso Dessap
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Service de Médecine Intensive-Réanimation, 94010, Créteil, France.
- Université Paris Est Créteil, CARMAS, 94010, Créteil, France.
- Université Paris Est Créteil, INSERM, IMRB, 94010, Créteil, France.
| |
Collapse
|
39
|
Melamed R, Paz F, Jepsen S, Smith C, Saavedra R, Mulder M, Masood A, Huelster J, Kirkland L, Guenther A, Boland L. Prognostic factors and outcomes in COVID-19 patients requiring prolonged mechanical ventilation: a retrospective cohort study. Ther Adv Respir Dis 2022; 16:17534666221086415. [PMID: 35311403 PMCID: PMC8935584 DOI: 10.1177/17534666221086415] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: Mechanical ventilation (MV) in coronavirus disease 2019 (COVID-19) patients is associated with high mortality and extensive resource utilization. The aim of this study was to investigate prognostic factors and outcomes associated with prolonged mechanical ventilation (PMV) in COVID-19 patients. Methods: This was a retrospective cohort study of COVID-19 patients requiring invasive MV who were hospitalized between 1 March 2020 and 30 June 2021 in the intensive care units (ICUs) of three referral hospitals belonging to a single health system. Data were extracted from electronic health records. PMV was defined as > 17 days of MV. Results: Of 355 patients studied, 86 (24%) required PMV. PMV patients had lower PaO2/FiO2 ratio, higher PCO2, and higher plateau and driving pressures during the first 2 weeks of MV than their short MV (SMV; ⩽ 17 days) counterparts. PMV patients received more proning, neuromuscular blockade, and tracheostomy, had longer ICU and hospital length of stay (LOS), and required discharge to an inpatient rehabilitation facility more frequently (all p < 0.001). Overall 30-day mortality was 43.9%, with no statistically significant difference between PMV and SMV groups. In PMV patients, smoking, Charlson comorbidity index > 6, and week 2 PaO2/FiO2 ratio < 150 and plateau pressure ⩾ 30 were positively associated with 30-day mortality. In a multivariate model, results were directionally consistent with the univariate analysis but did not reach statistical significance. Conclusion: PMV is commonly required in COVID-19 patients with respiratory failure. Despite the higher need for critical care interventions and LOS, more than half of the PMV cohort survived to hospital discharge. Higher PaO2/FiO2 ratio, lower plateau pressure, and fewer comorbidities appear to be associated with survival in this group.
Collapse
Affiliation(s)
- Roman Melamed
- Abbott Northwestern Hospital, Minneapolis, MN 55407-3799, USA
| | | | - Stacy Jepsen
- Abbott Northwestern Hospital, Minneapolis, MN, USA
| | | | | | | | - Adnan Masood
- Abbott Northwestern Hospital, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Tiruvoipati R, Serpa Neto A, Young M, Marhoon N, Wilson J, Gupta S, Pilcher D, Bailey M, Bellomo R. An Exploratory Analysis of the Association between Hypercapnia and Hospital Mortality in Critically Ill Patients with Sepsis. Ann Am Thorac Soc 2022; 19:245-254. [PMID: 34380007 DOI: 10.1513/annalsats.202102-104oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rationale: Hypercapnia may affect the outcome of sepsis. Very few clinical studies conducted in noncritically ill patients have investigated the effects of hypercapnia and hypercapnic acidemia in the context of sepsis. The effect of hypercapnia in critically ill patients with sepsis remains inadequately studied. Objectives: To investigate the association of hypercapnia with hospital mortality in critically ill patients with sepsis. Methods: This is a retrospective study conducted in three tertiary public hospitals. Critically ill patients with sepsis from three intensive care units between January 2011 and May 2019 were included. Five cohorts (exposure of at least 24, 48, 72, 120, and 168 hours) were created to account for immortal time bias and informative censoring. The association between hypercapnia exposure and hospital mortality was assessed with multivariable models. Subgroup analyses compared ventilated versus nonventilated and pulmonary versus nonpulmonary sepsis patients. Results: We analyzed 84,819 arterial carbon dioxide pressure measurements in 3,153 patients (57.6% male; median age was 62.5 years). After adjustment for key confounders, both in mechanically ventilated and nonventilated patients and in patients with pulmonary or nonpulmonary sepsis, there was no independent association of hypercapnia with hospital mortality. In contrast, in ventilated patients, the presence of prolonged exposure to both hypercapnia and acidemia was associated with increased mortality (highest odds ratio of 16.5 for ⩾120 hours of potential exposure; P = 0.007). Conclusions: After adjustment, isolated hypercapnia was not associated with increased mortality in patients with sepsis, whereas prolonged hypercapnic acidemia was associated with increased risk of mortality. These hypothesis-generating observations suggest that as hypercapnia is not an independent risk factor for mortality, trials of permissive hypercapnia avoiding or minimizing acidemia in sepsis may be safe.
Collapse
Affiliation(s)
- Ravindranath Tiruvoipati
- Department of Intensive Care Medicine, Peninsula Health, Melbourne, Victoria, Australia
- Australian and New Zealand Intensive Care Research Centre, Peninsula Clinical School, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Ary Serpa Neto
- Australian and New Zealand Intensive Care Research Centre, Peninsula Clinical School, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Marcus Young
- Department of Intensive Care, Austin Health, Heidelberg, Victoria, Australia
| | - Nada Marhoon
- Department of Intensive Care, Austin Health, Heidelberg, Victoria, Australia
| | - John Wilson
- Peninsula Health Informatics, Frankston Hospital, Melbourne, Victoria, Australia
| | - Sachin Gupta
- Department of Intensive Care Medicine, Peninsula Health, Melbourne, Victoria, Australia
- Australian and New Zealand Intensive Care Research Centre, Peninsula Clinical School, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - David Pilcher
- Australian and New Zealand Intensive Care Research Centre, Peninsula Clinical School, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Intensive Care Medicine, The Alfred Hospital, Melbourne, Victoria, Australia; and
| | - Michael Bailey
- Australian and New Zealand Intensive Care Research Centre, Peninsula Clinical School, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Data Analytics Research and Evaluation, the University of Melbourne and Austin Hospital, Melbourne, Victoria, Australia
| | - Rinaldo Bellomo
- Australian and New Zealand Intensive Care Research Centre, Peninsula Clinical School, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Intensive Care, Austin Health, Heidelberg, Victoria, Australia
- Data Analytics Research and Evaluation, the University of Melbourne and Austin Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
42
|
Abrams D, Agerstrand C, Beitler JR, Karagiannidis C, Madahar P, Yip NH, Pesenti A, Slutsky AS, Brochard L, Brodie D. Risks and Benefits of Ultra-Lung-Protective Invasive Mechanical Ventilation Strategies with a Focus on Extracorporeal Support. Am J Respir Crit Care Med 2022; 205:873-882. [PMID: 35044901 DOI: 10.1164/rccm.202110-2252cp] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lung-protective ventilation strategies are the current standard of care for patients with acute respiratory distress syndrome (ARDS) in an effort to provide adequate ventilatory requirements while minimizing ventilator-induced lung injury. Some patients may benefit from ultra-lung-protective ventilation, a strategy that achieves lower airway pressures and tidal volumes than the current standard. Specific physiological parameters beyond severity of hypoxemia, such as driving pressure and respiratory system elastance, may be predictive of those most likely to benefit. Since application of ultra-lung-protective ventilation is often limited by respiratory acidosis, extracorporeal membrane oxygenation (ECMO) or extracorporeal carbon dioxide removal (ECCO2R), which remove carbon dioxide from blood, are attractive options. These strategies are associated with hematological complications, especially when applied at low blood flow rates with devices designed for higher blood flows, and a recent large randomized, controlled trial failed to show a benefit from an ECCO2R-facilitated ultra-lung-protective ventilation strategy. Only in patients with very severe forms of ARDS has the use of an ultra-lung-protective ventilation strategy - accomplished with ECMO - been suggested to have a favorable risk-to-benefit profile. In this Critical Care Perspective, we address key areas of controversy related to ultra-lung-protective ventilation, including the trade-offs between minimizing ventilator-induced lung injury and the risks from strategies to achieve this added protection. In addition, we suggest which patients might benefit most from an ultra-lung-protective strategy and propose areas of future research.
Collapse
Affiliation(s)
- Darryl Abrams
- Columbia University Medical Center, Medicine, Division of Pulmonary, Allergy, & Critical Care, New York, New York, United States
| | - Cara Agerstrand
- Columbia University Medical Center, Medicine, Division of Pulmonary, Allergy, & Critical Care, New York, New York, United States
| | - Jeremy R Beitler
- Columbia University College of Physicians and Surgeons, 12294, Center for Acute Respiratory Failure and Division of Pulmonary, Allergy, and Critical Care Medicine, New York, New York, United States.,NewYork-Presbyterian Hospital, 25065, New York, New York, United States
| | - Christian Karagiannidis
- Hospital Cologne-Merheim, 61060, Department of Pneumology and Critical Care Medicine, Koln, Germany.,Witten/Herdecke University, 12263, Cologne, Germany
| | - Purnema Madahar
- Columbia University Medical Center, Medicine, Division of Pulmonary, Allergy, & Critical Care, New York, New York, United States
| | - Natalie H Yip
- Columbia University Medical Center, Dept of Medicine Pulmonary, New York City, New York, United States
| | - Antonio Pesenti
- Universita degli Studi di Milano, 9304, Department of Pathophysiology and Transplantation, Milano, Italy
| | | | - Laurent Brochard
- St Michael's Hospital in Toronto, Li Ka Shing Knowledge Institute, Keenan Research Centre, Toronto, Ontario, Canada.,University of Toronto, 7938, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada
| | - Daniel Brodie
- Columbia, Critical Care, New York, New York, United States;
| |
Collapse
|
43
|
Almanza-Hurtado A, Polanco Guerra C, Martínez-Ávila MC, Borré-Naranjo D, Rodríguez-Yanez T, Dueñas-Castell C. Hypercapnia from Physiology to Practice. Int J Clin Pract 2022; 2022:2635616. [PMID: 36225533 PMCID: PMC9525762 DOI: 10.1155/2022/2635616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/28/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
Acute hypercapnic ventilatory failure is becoming more frequent in critically ill patients. Hypercapnia is the elevation in the partial pressure of carbon dioxide (PaCO2) above 45 mmHg in the bloodstream. The pathophysiological mechanisms of hypercapnia include the decrease in minute volume, an increase in dead space, or an increase in carbon dioxide (CO2) production per sec. They generate a compromise at the cardiovascular, cerebral, metabolic, and respiratory levels with a high burden of morbidity and mortality. It is essential to know the triggers to provide therapy directed at the primary cause and avoid possible complications.
Collapse
|
44
|
Carbon dioxide levels in neonates: what are safe parameters? Pediatr Res 2022; 91:1049-1056. [PMID: 34230621 PMCID: PMC9122818 DOI: 10.1038/s41390-021-01473-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/01/2023]
Abstract
There is no consensus on the optimal pCO2 levels in the newborn. We reviewed the effects of hypercapnia and hypocapnia and existing carbon dioxide thresholds in neonates. A systematic review was conducted in accordance with the PRISMA statement and MOOSE guidelines. Two hundred and ninety-nine studies were screened and 37 studies included. Covidence online software was employed to streamline relevant articles. Hypocapnia was associated with predominantly neurological side effects while hypercapnia was linked with neurological, respiratory and gastrointestinal outcomes and Retinpathy of prematurity (ROP). Permissive hypercapnia did not decrease periventricular leukomalacia (PVL), ROP, hydrocephalus or air leaks. As safe pCO2 ranges were not explicitly concluded in the studies chosen, it was indirectly extrapolated with reference to pCO2 levels that were found to increase the risk of neonatal disease. Although PaCO2 ranges were reported from 2.6 to 8.7 kPa (19.5-64.3 mmHg) in both term and preterm infants, there are little data on the safety of these ranges. For permissive hypercapnia, parameters described for bronchopulmonary dysplasia (BPD; PaCO2 6.0-7.3 kPa: 45.0-54.8 mmHg) and congenital diaphragmatic hernia (CDH; PaCO2 ≤ 8.7 kPa: ≤65.3 mmHg) were identified. Contradictory findings on the effectiveness of permissive hypercapnia highlight the need for further data on appropriate CO2 parameters and correlation with outcomes. IMPACT: There is no consensus on the optimal pCO2 levels in the newborn. There is no consensus on the effectiveness of permissive hypercapnia in neonates. A safe range of pCO2 of 5-7 kPa was inferred following systematic review.
Collapse
|
45
|
Terzi N, Guérin C. Optimizing Mechanical Ventilation in Refractory ARDS. ENCYCLOPEDIA OF RESPIRATORY MEDICINE 2022. [PMCID: PMC8740657 DOI: 10.1016/b978-0-12-801238-3.11480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mechanical ventilation in patients with refractory acute respiratory distress syndrome (ARDS) must provide lung protection. This is achieved by limiting tidal volume (VT) and plateau pressure (Pplat). With the current evidence available VT should be initially set around 6 mL per kg predicted body weight and PPlat maintained below 30 cmH2O and monitored. Positive end-expiratory pressure (PEEP), which also contributes to lung protection, should be set > 12 cmH2O, provided oxygenation gets improved, with same Pplat target. Recruitment maneuvers should be used with caution avoiding higher PEEP. Neuromuscular blockade should be started and prone position performed for sessions longer than 16 h. High frequency oscillation ventilation should be used in expert centers only if previous management failed to improve oxygenation.
Collapse
|
46
|
Kryvenko V, Vadász I. Mechanisms of Hypercapnia-Induced Endoplasmic Reticulum Dysfunction. Front Physiol 2021; 12:735580. [PMID: 34867444 PMCID: PMC8640499 DOI: 10.3389/fphys.2021.735580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/27/2021] [Indexed: 01/16/2023] Open
Abstract
Protein transcription, translation, and folding occur continuously in every living cell and are essential for physiological functions. About one-third of all proteins of the cellular proteome interacts with the endoplasmic reticulum (ER). The ER is a large, dynamic cellular organelle that orchestrates synthesis, folding, and structural maturation of proteins, regulation of lipid metabolism and additionally functions as a calcium store. Recent evidence suggests that both acute and chronic hypercapnia (elevated levels of CO2) impair ER function by different mechanisms, leading to adaptive and maladaptive regulation of protein folding and maturation. In order to cope with ER stress, cells activate unfolded protein response (UPR) pathways. Initially, during the adaptive phase of ER stress, the UPR mainly functions to restore ER protein-folding homeostasis by decreasing protein synthesis and translation and by activation of ER-associated degradation (ERAD) and autophagy. However, if the initial UPR attempts for alleviating ER stress fail, a maladaptive response is triggered. In this review, we discuss the distinct mechanisms by which elevated CO2 levels affect these molecular pathways in the setting of acute and chronic pulmonary diseases associated with hypercapnia.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,The Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,The Cardio-Pulmonary Institute (CPI), Giessen, Germany.,Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
47
|
Fabre M, Fehlmann CA, Boczar KE, Gartner B, Zimmermann-Ivol CG, Sarasin F, Suppan L. Association between prehospital arterial hypercapnia and mortality in acute heart failure: a retrospective cohort study. BMC Emerg Med 2021; 21:130. [PMID: 34742243 PMCID: PMC8571671 DOI: 10.1186/s12873-021-00527-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Acute Heart Failure (AHF) is a potentially lethal pathology and is often encountered in the prehospital setting. Although an association between prehospital arterial hypercapnia in AHF patients and admission in high-dependency and intensive care units has been previously described, there is little data to support an association between prehospital arterial hypercapnia and mortality in this population. METHODS This was a retrospective study based on electronically recorded prehospital medical files. All adult patients with AHF were included. Records lacking arterial blood gas data were excluded. Other exclusion criteria included the presence of a potentially confounding diagnosis, prehospital cardiac arrest, and inter-hospital transfers. Hypercapnia was defined as a PaCO2 higher than 6.0 kPa. The primary outcome was in-hospital mortality, and secondary outcomes were 7-day mortality and emergency room length of stay (ER LOS). Univariable and multivariable logistic regression models were used. RESULTS We included 225 patients in the analysis. Prehospital hypercapnia was found in 132 (58.7%) patients. In-hospital mortality was higher in patients with hypercapnia (17.4% [23/132] versus 6.5% [6/93], p = 0.016), with a crude odds-ratio of 3.06 (95%CI 1.19-7.85). After adjustment for pre-specified covariates, the adjusted OR was 3.18 (95%CI 1.22-8.26). The overall 7-day mortality was also higher in hypercapnic patients (13.6% versus 5.5%, p = 0.044), and ER LOS was shorter in this population (5.6 h versus 7.1 h, p = 0.018). CONCLUSION Prehospital hypercapnia is associated with an increase in in-hospital and 7-day mortality in patient with AHF.
Collapse
Affiliation(s)
- Mathias Fabre
- Division of Emergency, Department of Anaesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine University of Geneva, Geneva, Switzerland.
| | - Christophe A Fehlmann
- Division of Emergency, Department of Anaesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine University of Geneva, Geneva, Switzerland
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, K1G 5Z3, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, ON K1Y 4E9, Canada
| | - Kevin E Boczar
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, K1G 5Z3, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, ON K1Y 4E9, Canada
| | - Birgit Gartner
- Division of Emergency, Department of Anaesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine University of Geneva, Geneva, Switzerland
| | - Catherine G Zimmermann-Ivol
- Division of Medicine Laboratory, Department of Diagnostics, Geneva University Hospitals and Faculty of Medicine University of Geneva, Geneva, Switzerland
| | - François Sarasin
- Division of Emergency, Department of Anaesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine University of Geneva, Geneva, Switzerland
| | - Laurent Suppan
- Division of Emergency, Department of Anaesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine University of Geneva, Geneva, Switzerland
| |
Collapse
|
48
|
Linthwaite VL, Pawloski W, Pegg HB, Townsend PD, Thomas MJ, So VKH, Brown AP, Hodgson DRW, Lorimer GH, Fushman D, Cann MJ. Ubiquitin is a carbon dioxide-binding protein. SCIENCE ADVANCES 2021; 7:eabi5507. [PMID: 34559559 PMCID: PMC8462908 DOI: 10.1126/sciadv.abi5507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The identification of CO2-binding proteins is crucial to understanding CO2-regulated molecular processes. CO2 can form a reversible posttranslational modification through carbamylation of neutral N-terminal α-amino or lysine ε-amino groups. We have previously developed triethyloxonium (TEO) ion as a chemical proteomics tool for covalent trapping of carbamates, and here, we deploy TEO to identify ubiquitin as a mammalian CO2-binding protein. We use 13C-NMR spectroscopy to demonstrate that CO2 forms carbamates on the ubiquitin N terminus and ε-amino groups of lysines 6, 33, 48, and 63. We demonstrate that biologically relevant pCO2 levels reduce ubiquitin conjugation at lysine-48 and down-regulate ubiquitin-dependent NF-κB pathway activation. Our results show that ubiquitin is a CO2-binding protein and demonstrates carbamylation as a viable mechanism by which mammalian cells can respond to fluctuating pCO2.
Collapse
Affiliation(s)
| | - Wes Pawloski
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Hamish B. Pegg
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | | | | - Victor K. H. So
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Adrian P. Brown
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - David R. W. Hodgson
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, UK
| | - George H. Lorimer
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Martin J. Cann
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
49
|
Shimoda T, Sekino M, Higashijima U, Matsumoto S, Sato S, Yano R, Egashira T, Araki H, Naoya I, Miki S, Koyanagi R, Hayashi M, Kurihara S, Hara T. Removal of a catheter mount and heat-and-moisture exchanger improves hypercapnia in patients with acute respiratory distress syndrome: A retrospective observational study. Medicine (Baltimore) 2021; 100:e27199. [PMID: 34516524 PMCID: PMC8428744 DOI: 10.1097/md.0000000000027199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/29/2021] [Accepted: 08/24/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT To avoid ventilator-associated lung injury in acute respiratory distress syndrome (ARDS) treatment, respiratory management should be performed at a low tidal volume of 6 to 8 mL/kg and plateau pressure of ≤30 cmH2O. However, such lung-protective ventilation often results in hypercapnia, which is a risk factor for poor outcomes. The purpose of this study was to retrospectively evaluate the effectiveness and safety of the removal of a catheter mount (CM) and using heated humidifiers (HH) instead of a heat-and-moisture exchanger (HME) for reducing the mechanical dead space created by the CM and HME, which may improve hypercapnia in patients with ARDS.This retrospective observational study included adult patients with ARDS, who developed hypercapnia (PaCO2 > 45 mm Hg) during mechanical ventilation, with target tidal volumes between 6 and 8 mL/kg and a plateau pressure of ≤30 cmH2O, and underwent stepwise removal of CM and HME (replaced with HH). The PaCO2 values were measured at 3 points: ventilator circuit with CM and HME (CM + HME) use, with HME (HME), and with HH (HH), and the overall number of accidental extubations was evaluated. Ventilator values (tidal volume, respiratory rate, minutes volume) were evaluated at the same points.A total of 21 patients with mild-to-moderate ARDS who were treated under deep sedation were included. The values of PaCO2 at HME (52.7 ± 7.4 mm Hg, P < .0001) and HH (46.3 ± 6.8 mm Hg, P < .0001) were significantly lower than those at CM + HME (55.9 ± 7.9 mm Hg). Measured ventilator values were similar at CM + HME, HME, and HH. There were no cases of reintubation due to accidental extubation after the removal of CM.The removal of CM and HME reduced PaCO2 values without changing the ventilator settings in deeply sedated patients with mild-to-moderate ARDS on lung-protective ventilation. Caution should be exercised, as the removal of a CM may result in circuit disconnection or accidental extubation. Nevertheless, this intervention may improve hypercapnia and promote lung-protective ventilation.
Collapse
Affiliation(s)
- Takaya Shimoda
- Medical Engineering Equipment Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Motohiro Sekino
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ushio Higashijima
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Sojiro Matsumoto
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shuntaro Sato
- Clinical Research Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Rintaro Yano
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Egashira
- Department of Intensive Care, Nagasaki Harbor Medical Center, Nagasaki, Japan
| | - Hiroshi Araki
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Iwasaki Naoya
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Suzumura Miki
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ryo Koyanagi
- Medical Engineering Equipment Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Makoto Hayashi
- Medical Engineering Equipment Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Shintaro Kurihara
- Medical Engineering Equipment Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Tetsuya Hara
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
50
|
Leligdowicz A, Matthay MA. Carbonic Anhydrase IX: Scaring Away the Grim Reaper in Acute Lung Injury? Am J Respir Cell Mol Biol 2021; 65:573-575. [PMID: 34375573 PMCID: PMC8641805 DOI: 10.1165/rcmb.2021-0310ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Michael A Matthay
- Cardiovascular Research Institute (CVRI), University of San Francisco, Medicine and Anesthesia, San Francisco, California, United States;
| |
Collapse
|