1
|
Maraveas C, Kyrtopoulos IV, Arvanitis KG. Evaluation of the Viability of 3D Printing in Recycling Polymers. Polymers (Basel) 2024; 16:1104. [PMID: 38675022 PMCID: PMC11054724 DOI: 10.3390/polym16081104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The increased use of plastics in industrial and agricultural applications has led to high levels of pollution worldwide and is a significant challenge. To address this plastic pollution, conventional methods such as landfills and incineration are used, leading to further challenges such as the generation of greenhouse gas emissions. Therefore, increasing interest has been directed to identifying alternative methods to dispose of plastic waste from agriculture. The novelty of the current research arose from the lack of critical reviews on how 3-Dimensional (3D) printing was adopted for recycling plastics, its application in the production of agricultural plastics, and its specific benefits, disadvantages, and limitations in recycling plastics. The review paper offers novel insights regarding the application of 3D printing methods including Fused Particle Fabrication (FPF), Hot Melt Extrusion (HME), and Fused Deposition Modelling (FDM) to make filaments from plastics. However, the methods were adopted in local recycling setups where only small quantities of the raw materials were considered. Data was collected using a systematic review involving 39 studies. Findings showed that the application of the 3D printing methods led to the generation of agricultural plastics such as Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS), Polyethylene Terephthalate (PET), and High-Density Polyethylene (HDPE), which were found to have properties comparable to those of virgin plastic, suggesting the viability of 3D printing in managing plastic pollution. However, limitations were also associated with the 3D printing methods; 3D-printed plastics deteriorated rapidly under Ultraviolet (UV) light and are non-biodegradable, posing further risks of plastic pollution. However, UV stabilization helps reduce plastic deterioration, thus increasing longevity and reducing disposal. Future directions emphasize identifying methods to reduce the deterioration of 3D-printed agricultural plastics and increasing their longevity in addition to UV stability.
Collapse
Affiliation(s)
- Chrysanthos Maraveas
- Department of Natural Resources Development and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece; (I.V.K.); (K.G.A.)
| | | | | |
Collapse
|
2
|
Pemas S, Xanthopoulou E, Terzopoulou Z, Konstantopoulos G, Bikiaris DN, Kottaridi C, Tzovaras D, Pechlivani EM. Exploration of Methodologies for Developing Antimicrobial Fused Filament Fabrication Parts. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6937. [PMID: 37959534 PMCID: PMC10649695 DOI: 10.3390/ma16216937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Composite 3D printing filaments integrating antimicrobial nanoparticles offer inherent microbial resistance, mitigating contamination and infections. Developing antimicrobial 3D-printed plastics is crucial for tailoring medical solutions, such as implants, and cutting costs when compared with metal options. Furthermore, hospital sustainability can be enhanced via on-demand 3D printing of medical tools. A PLA-based filament incorporating 5% TiO2 nanoparticles and 2% Joncryl as a chain extender was formulated to offer antimicrobial properties. Comparative analysis encompassed PLA 2% Joncryl filament and a TiO2 coating for 3D-printed specimens, evaluating mechanical and thermal properties, as well as wettability and antimicrobial characteristics. The antibacterial capability of the filaments was explored after 3D printing against Gram-positive Staphylococcus aureus (S. aureus, ATCC 25923), as well as Gram-negative Escherichia coli (E. coli, ATCC 25922), and the filaments with 5 wt.% embedded TiO2 were found to reduce the viability of both bacteria. This research aims to provide the optimal approach for antimicrobial and medical 3D printing outcomes.
Collapse
Affiliation(s)
- Sotirios Pemas
- Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (S.P.); (D.T.)
| | - Eleftheria Xanthopoulou
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.X.); (D.N.B.)
| | - Zoi Terzopoulou
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.X.); (D.N.B.)
| | - Georgios Konstantopoulos
- Laboratory of General Microbiology, Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (C.K.)
| | - Dimitrios N. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.X.); (D.N.B.)
| | - Christine Kottaridi
- Laboratory of General Microbiology, Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (C.K.)
| | - Dimitrios Tzovaras
- Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (S.P.); (D.T.)
| | - Eleftheria Maria Pechlivani
- Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (S.P.); (D.T.)
| |
Collapse
|
3
|
Vidakis N, Petousis M, Mountakis N, Papadakis V, Moutsopoulou A. Mechanical strength predictability of full factorial, Taguchi, and Box Behnken designs: Optimization of thermal settings and Cellulose Nanofibers content in PA12 for MEX AM. J Mech Behav Biomed Mater 2023; 142:105846. [PMID: 37084490 DOI: 10.1016/j.jmbbm.2023.105846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/23/2023]
Abstract
Optimization of reinforced nanocomposites for MEX 3D-printing remain strong industrial claims. Herein, the efficacy of three modeling methods, i.e., full factorial (FFD), Taguchi (TD), and Box-Behnken (BBD), on the performance of MEX 3D printed nanocomposites was investigated, aiming to reduce the experimental effort. Filaments of medical-grade Polyamide 12 (PA12) reinforced with Cellulose NanoFibers (CNF) were evolved. Besides the CNF loading, 3D printing settings such as Nozzle (NT) and Bed (BΤ) Temperatures were optimization goals aiming to maximize the mechanical response. Three parameters and three levels of FFD were compliant with the ASTM-D638 standard (27 runs, five repetitions). An L9 orthogonal TD and a 15 runs BBD were compiled. In FFD, wt.3%CNF, 270 °C NT, and 80 °C BΤ led to 24% higher tensile strength compared to pure PA12. TGA, RAMAN, and SEM analyses interpreted the reinforcement mechanisms. TD and BBD exhibited fair approximations, requiring 7.4% and 11.8% of the FFD experimental effort.
Collapse
Affiliation(s)
- Nectarios Vidakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, Heraklion, 71410, Greece.
| | - Markos Petousis
- Department of Mechanical Engineering, Hellenic Mediterranean University, Heraklion, 71410, Greece.
| | - Nikolaos Mountakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, Heraklion, 71410, Greece.
| | - Vassilis Papadakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, GR-70013, Heraklion, Greece.
| | - Amalia Moutsopoulou
- Department of Mechanical Engineering, Hellenic Mediterranean University, Heraklion, 71410, Greece.
| |
Collapse
|
4
|
Petousis M, Vidakis N, Mountakis N, Karapidakis E, Moutsopoulou A. Functionality Versus Sustainability for PLA in MEX 3D Printing: The Impact of Generic Process Control Factors on Flexural Response and Energy Efficiency. Polymers (Basel) 2023; 15:polym15051232. [PMID: 36904469 PMCID: PMC10007265 DOI: 10.3390/polym15051232] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Process sustainability vs. mechanical strength is a strong market-driven claim in Material Extrusion (MEX) Additive Manufacturing (AM). Especially for the most popular polymer, Polylactic Acid (PLA), the concurrent achievement of these opposing goals may become a puzzle, especially since MEX 3D-printing offers a variety of process parameters. Herein, multi-objective optimization of material deployment, 3D printing flexural response, and energy consumption in MEX AM with PLA is introduced. To evaluate the impact of the most important generic and device-independent control parameters on these responses, the Robust Design theory was employed. Raster Deposition Angle (RDA), Layer Thickness (LT), Infill Density (ID), Nozzle Temperature (NT), Bed Temperature (BT), and Printing Speed (PS) were selected to compile a five-level orthogonal array. A total of 25 experimental runs with five specimen replicas each accumulated 135 experiments. Analysis of variances and reduced quadratic regression models (RQRM) were used to decompose the impact of each parameter on the responses. The ID, RDA, and LT were ranked first in impact on printing time, material weight, flexural strength, and energy consumption, respectively. The RQRM predictive models were experimentally validated and hold significant technological merit, for the proper adjustment of process control parameters per the MEX 3D-printing case.
Collapse
Affiliation(s)
- Markos Petousis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Nectarios Vidakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
- Correspondence: ; Tel.: +30-281-037-9227
| | - Nikolaos Mountakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Emmanuel Karapidakis
- Electrical and Computer Engineering Department, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Amalia Moutsopoulou
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| |
Collapse
|
5
|
Vidakis N, Petousis M, Mountakis N, Moutsopoulou A, Karapidakis E. Energy Consumption vs. Tensile Strength of Poly[methyl methacrylate] in Material Extrusion 3D Printing: The Impact of Six Control Settings. Polymers (Basel) 2023; 15:845. [PMID: 36850131 PMCID: PMC9966017 DOI: 10.3390/polym15040845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The energy efficiency of material extrusion additive manufacturing has a significant impact on the economics and environmental footprint of the process. Control parameters that ensure 3D-printed functional products of premium quality and mechanical strength are an established market-driven requirement. To accomplish multiple objectives is challenging, especially for multi-purpose industrial polymers, such as the Poly[methyl methacrylate]. The current paper explores the contribution of six generic control factors (infill density, raster deposition angle, nozzle temperature, print speed, layer thickness, and bed temperature) to the energy performance of Poly[methyl methacrylate] over its mechanical performance. A five-level L25 Taguchi orthogonal array was composed, with five replicas, involving 135 experiments. The 3D printing time and the electrical consumption were documented with the stopwatch approach. The tensile strength, modulus, and toughness were experimentally obtained. The raster deposition angle and the printing speed were the first and second most influential control parameters on tensile strength. Layer thickness and printing speed were the corresponding ones for the energy consumption. Quadratic regression model equations for each response metric over the six control parameters were compiled and validated. Thus, the best compromise between energy efficiency and mechanical strength is achievable, and a tool creates significant value for engineering applications.
Collapse
Affiliation(s)
- Nectarios Vidakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Markos Petousis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Nikolaos Mountakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Amalia Moutsopoulou
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Emmanuel Karapidakis
- Electrical and Computer Engineering Department, Hellenic Mediterranean University, 71410 Heraklion, Greece
| |
Collapse
|
6
|
Vidakis N, Mangelis P, Petousis M, Mountakis N, Papadakis V, Moutsopoulou A, Tsikritzis D. Mechanical Reinforcement of ABS with Optimized Nano Titanium Nitride Content for Material Extrusion 3D Printing. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:669. [PMID: 36839037 PMCID: PMC9963375 DOI: 10.3390/nano13040669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 06/01/2023]
Abstract
Acrylonitrile Butadiene Styrene (ABS) nanocomposites were developed using Material Extrusion (MEX) Additive Manufacturing (AM) and Fused Filament Fabrication (FFF) methods. A range of mechanical tests was conducted on the produced 3D-printed structures to investigate the effect of Titanium Nitride (TiN) nanoparticles on the mechanical response of thermoplastic polymers. Detailed morphological characterization of the produced filaments and 3D-printed specimens was carried out using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). High-magnification images revealed a direct impact of the TiN concentration on the surface characteristics of the nanocomposites, indicating a strong correlation with their mechanical performance. The chemical compositions of the raw and nanocomposite materials were thoroughly investigated by conducting Raman and Energy Dispersive Spectroscopy (EDS) measurements. Most of the mechanical properties were improved with the inclusion of TiN nanoparticles with a content of 6 wt. % to reach the optimum mechanical response overall. ABS/TiN 6 wt. % exhibits remarkable increases in flexural modulus of elasticity (42.3%) and toughness (54.0%) in comparison with pure ABS. The development of ABS/TiN nanocomposites with reinforced mechanical properties is a successful example that validates the feasibility and powerful abilities of MEX 3D printing in AM.
Collapse
Affiliation(s)
- Nectarios Vidakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Panagiotis Mangelis
- Department of Electronic Engineering, Hellenic Mediterranean University, 73133 Chania, Greece
| | - Markos Petousis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Nikolaos Mountakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Vassilis Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, 71110 Heraklion, Greece
| | - Amalia Moutsopoulou
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Dimitris Tsikritzis
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| |
Collapse
|
7
|
Vidakis N, Petousis M, Papadakis VM, Mountakis N. Multifunctional Medical Grade Resin with Enhanced Mechanical and Antibacterial Properties: The Effect of Copper Nano-Inclusions in Vat Polymerization (VPP) Additive Manufacturing. J Funct Biomater 2022; 13:jfb13040258. [PMID: 36412900 PMCID: PMC9680439 DOI: 10.3390/jfb13040258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Vat photopolymerization (VPP) is an additive manufacturing process commonly used in medical applications. This work aims, for the first time in the literature, to extend and enhance the performance of a commercial medical-grade resin for the VPP process, with the development of nanocomposites, using Copper (Cu) nanoparticles as the additive at two different concentrations. The addition of the Cu nanoparticles was expected to enhance the mechanical properties of the resin and to enable biocidal properties on the nanocomposites since Cu is known for its antibacterial performance. The effect of the Cu concentration was investigated. The nanocomposites were prepared with high-shear stirring. Specimens were 3D printed following international standards for mechanical testing. Their thermal and spectroscopic response was also investigated. The morphological characteristics were examined. The antibacterial performance was evaluated with an agar well diffusion screening process. The experimental results were analyzed with statistical modeling tools with two control parameters (three levels each) and eleven response parameters. Cu enhanced the mechanical properties in all cases studied. 0.5 wt.% Cu nanocomposite showed the highest improvement (approximately 11% in tensile and 10% in flexural strength). The antibacterial performance was sufficient against S. aureus and marginal against E. coli.
Collapse
Affiliation(s)
- Nectarios Vidakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
- Correspondence: ; Tel.: +30-2810379227
| | - Markos Petousis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Vassilis M. Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, 71110 Heraklion, Greece
| | - Nikolaos Mountakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| |
Collapse
|
8
|
Petousis M, Vidakis N, Mountakis N, Grammatikos S, Papadakis V, David CN, Moutsopoulou A, Das SC. Silicon Carbide Nanoparticles as a Mechanical Boosting Agent in Material Extrusion 3D-Printed Polycarbonate. Polymers (Basel) 2022; 14:3492. [PMID: 36080567 PMCID: PMC9459990 DOI: 10.3390/polym14173492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
In this work, the effect of silicon carbide (carborundum, SiC), as a boosting agent of the mechanical response of the polycarbonate (PC) polymer, was investigated. The work aimed to fabricate nanocomposites with an improved mechanical performance and to further expand the utilization of 3D printing in fields requiring an enhanced material response. The nanocomposites were produced by a thermomechanical process in various SiC concentrations in order to evaluate the filler loading in the mechanical enhancement. The samples were 3D printed with the material extrusion (MEX) method. Their mechanical performance was characterized, following international standards, by using dynamic mechanical analysis (DMA) and tensile, flexural, and Charpy's impact tests. The microhardness of the samples was also measured. The morphological characteristics were examined, and Raman spectra revealed their structure. It was found that SiC can improve the mechanical performance of the PC thermoplastic. A 19.5% increase in the tensile strength was found for the 2 wt.% loading nanocomposite, while the 3 wt.% nanocomposite showed a 16% increase in the flexural strength and a 35.9% higher impact strength when compared to the unfilled PC. No processability issues were faced for the filler loadings that have been studied here.
Collapse
Affiliation(s)
- Markos Petousis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Nectarios Vidakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Nikolaos Mountakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Sotirios Grammatikos
- Laboratory for Advanced and Sustainable Engineering Materials (ASEMlab), Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology, 2815 Gjovik, Norway
| | - Vassilis Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, 71110 Heraklion, Greece
| | - Constantine N. David
- Manufacturing Technology & Production Systems Laboratory, School of Engineering, International Hellenic University, Serres Campus, 62124 Serres, Greece
| | - Amalia Moutsopoulou
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Subrata C. Das
- Laboratory for Advanced and Sustainable Engineering Materials (ASEMlab), Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology, 2815 Gjovik, Norway
| |
Collapse
|
9
|
Vidakis N, Petousis M, Mountakis N, Korlos A, Papadakis V, Moutsopoulou A. Trilateral Multi-Functional Polyamide 12 Nanocomposites with Binary Inclusions for Medical Grade Material Extrusion 3D Printing: The Effect of Titanium Nitride in Mechanical Reinforcement and Copper/Cuprous Oxide as Antibacterial Agents. J Funct Biomater 2022; 13:115. [PMID: 35997453 PMCID: PMC9397053 DOI: 10.3390/jfb13030115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
In this work, for the first time, polyamide 12 (PA12) nanocomposites with binary inclusions in material extrusion (MEX) 3D printing were developed. The aim was to achieve an enhanced mechanical response with the addition of titanium nitride (TiN) and antibacterial performance with the addition of copper (Cu) or cuprous oxide (Cu2O), towards the development of multi-functional nanocomposite materials, exploiting the 3D printing process benefits. The prepared nanocomposites were fully characterized for their mechanical properties. The thermal properties were also investigated. Morphological characterization was performed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). The antibacterial performance was investigated with an agar-well diffusion screening process. Overall, the introduction of these nanofillers induced antibacterial performance in the PA12 matrix materials, while at the same time, the mechanical performance was significantly increased. The results of the study show high potential for expanding the areas in which 3D printing can be used.
Collapse
Affiliation(s)
- Nectarios Vidakis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
| | - Markos Petousis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
| | - Nikolaos Mountakis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
| | - Apostolos Korlos
- Department of Industrial Engineering and Management, International Hellenic University, 14th km, Thessaloniki-N. Moudania, Thermi, 57001 Thessaloniki, Greece
| | - Vassilis Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, 71110 Heraklion, Greece
| | - Amalia Moutsopoulou
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
| |
Collapse
|