1
|
Psachna S, Chondrogianni ME, Stathopoulos K, Polymeris A, Chatzigeorgiou A, Chronopoulos E, Tournis S, Kassi E. The effect of antidiabetic drugs on bone metabolism: a concise review. Endocrine 2025; 87:907-919. [PMID: 39402366 DOI: 10.1007/s12020-024-04070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/06/2024] [Indexed: 01/06/2025]
Abstract
Diabetes mellitus (DM) is a complex metabolic disorder characterized by chronic hyperglycemia, which derives from either insufficient insulin production [type 1 diabetes mellitus (T1DM)] or both impaired insulin sensitivity along with inadequate insulin production [type 2 diabetes mellitus (T2DM)] and affects millions of people worldwide. In addition to the adverse effects of DM on classical target organs and tissues, skeletal health can also be adversely affected. There is considerable evidence linking DM with osteoporosis. The fracture risk in patients with DM differs upon the type of diabetes, and it appears to be related to the type of anti-diabetic treatment. Antidiabetic drugs may have various effects on bone health. Most of them have neutral or even favorable effects on bone metabolism with the exception of thiazolidinediones (TZDs). Some studies suggest that TZDs may have negative impact on bone health by decreasing bone formation and increasing the fracture risk. There are also limited studies linking the use of canagliflozin, a Sodium-glucose contransporter-2 inhibitor (SGLT2i), with increased fracture risk. On the other hand, therapies that are based on incretin effect, like Dipeptidyl peptidase-4 inhibitors (DPP-4i) and Glucagon-like peptide-1 receptor agonizts (GLP-1RAs) might have positive effects on bone health by promoting bone formation. Herein we review the impact of antidiabetic drugs on bone health, highlighting the potential benefits and risks associated with these medications in an attempt to contribute to the development of personalized treatment strategies for individuals with DM.
Collapse
Affiliation(s)
- Stavroula Psachna
- Laboratory for Research of the Musculoskeletal System, KAT Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Endocrinology, Metabolism and Diabetes Mellitus, Attica General Hospital "Sismanoglio-Amalia Fleming", Athens, Greece
| | - Maria Eleni Chondrogianni
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, Medical Scool, National and Kapodistrian University of Athens, Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stathopoulos
- Laboratory for Research of the Musculoskeletal System, KAT Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonis Polymeris
- Department of Endocrinology, Metabolism and Diabetes Mellitus, Attica General Hospital "Sismanoglio-Amalia Fleming", Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Chronopoulos
- Laboratory for Research of the Musculoskeletal System, KAT Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Symeon Tournis
- Laboratory for Research of the Musculoskeletal System, KAT Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- Laboratory for Research of the Musculoskeletal System, KAT Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, Medical Scool, National and Kapodistrian University of Athens, Athens, Greece.
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
2
|
Nassar M, Nassar O, Abosheaishaa H, Misra A. Comparative outcomes of systemic diseases in people with type 2 diabetes, or obesity alone treated with and without GLP-1 receptor agonists: a retrospective cohort study from the Global Collaborative Network : Author list. J Endocrinol Invest 2025; 48:483-497. [PMID: 39302577 DOI: 10.1007/s40618-024-02466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are increasingly used to manage type 2 diabetes (T2D) and obesity. Despite their recognized benefits in glycemic control and weight management, their impact on broader systemic has been less explored. OBJECTIVE This study aimed to evaluate the impact of GLP-1RAs on a variety of systemic diseases in people with T2D or obesity. METHODS We conducted a retrospective cohort study using data from the Global Collaborative Network, accessed through the TriNetX analytics platform. The study comprised two primary groups: individuals with T2D and those with obesity. Each group was further divided into subgroups based on whether they received GLP-1RA treatment or not. Data were analyzed over more than a 5-year follow-up period, comparing incidences of systemic diseases; systemic lupus erythematosus (SLE), systemic sclerosis (SS), rheumatoid arthritis (RA), ulcerative colitis (UC), crohn's disease (CD), alzheimer's disease (AD), parkinson's disease (PD), dementia, bronchial asthma (BA), osteoporosis, and several cancers. RESULTS In the T2D cohorts, GLP-1RA treatment was associated with significantly lower incidences of several systemic and metabolic conditions as compared to those without GLP-1RA, specifically, dementia (Risk Difference (RD): -0.010, p < 0.001), AD (RD: -0.003, p < 0.001), PD (RD: -0.002, p < 0.001), and pancreatic cancer (RD: -0.003, p < 0.001). SLE and SS also saw statistically significant reductions, though the differences were minor in magnitude (RD: -0.001 and - 0.000 respectively, p < 0.001 for both). Conversely, BA a showed a slight increase in risk (RD: 0.002, p < 0.001). CONCLUSIONS GLP-1RAs demonstrate potential benefits in reducing the risk of several systemic conditions in people with T2D or obesity. Further prospective studies are needed to confirm these effects fully and understand the mechanisms.
Collapse
Affiliation(s)
- Mahmoud Nassar
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Omar Nassar
- Williamsville East High School, Buffalo, NY, USA
| | - Hazem Abosheaishaa
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anoop Misra
- Fortis-C-DOC Centre of Excellence for Diabetes, Metabolic Diseases and Endocrinology, New Delhi, India
- National Diabetes, Obesity and Cholesterol Foundation (N-DOC), New Delhi, India
- Diabetes Foundation (India) (DFI) India, New Delhi, India
| |
Collapse
|
3
|
Lu C, Xu C, Yang J. The Beneficial Effects of GLP-1 Receptor Agonists Other than Their Anti-Diabetic and Anti-Obesity Properties. MEDICINA (KAUNAS, LITHUANIA) 2024; 61:17. [PMID: 39858999 PMCID: PMC11767243 DOI: 10.3390/medicina61010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
As an incretin hormone, Glucagon-like peptide-1 (GLP-1) has obvious effects on blood glucose regulation and weight loss. GLP-1 receptor (GLP-1R) agonists are synthetic products that have similar effects to GLP-1 but are less prone to degradation, and they are widely used in the treatment of type 2 diabetes and obesity. In recent years, different beneficial effects of GLP-1R agonists were discovered, such as reducing ischemia-reperfusion injury, improving the function of various organs, alleviating substance use disorder, affecting tumorigenesis, regulating bone metabolism, changing gut microbiota composition, and prolonging graft survival. Therefore, GLP-1R agonists have great potential for clinical application in various diseases. Here, we briefly summarized the beneficial effects of GLP-1R agonists other than the anti-diabetic and anti-obesity effects.
Collapse
Affiliation(s)
- Chenqi Lu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China;
| | - Cong Xu
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China;
| |
Collapse
|
4
|
Khashayar P, Rad FF, Tabatabaei-Malazy O, Golabchi SM, Khashayar P, Mohammadi M, Ebrahimpour S, Larijani B. Hypoglycemic agents and bone health; an umbrella systematic review of the clinical trials' meta-analysis studies. Diabetol Metab Syndr 2024; 16:310. [PMID: 39716250 DOI: 10.1186/s13098-024-01518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/09/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND No clear consensus exists regarding the safest anti-diabetic drugs with the least adverse events on bone health. This umbrella systematic review therefore aims to assess the published meta-analysis studies of randomized controlled trials (RCTs) conducted in this field. METHODS All relevant meta-analysis studies of RCTs assessing the effects of anti-diabetic agents on bone health in patients with diabetes mellitus (DM) were collected in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). English articles published until 15 March 2023 were collected through the search of Cochrane Library, Scopus, ISI Web of Sciences, PubMed, and Embase using the terms "Diabetes mellitus", "anti-diabetic drugs", "Bone biomarker", "Bone fracture, "Bone mineral density" and their equivalents. The methodological and evidence quality assessments were performed for all included studies. RESULTS From among 2220 potentially eligible studies, 71 meta-analyses on diabetic patients were included. Sodium-glucose cotransporter-2 inhibitors (SGLT-is) showed no or equivalent effect on the risk of fracture. Dipeptidyl peptidase-4 inhibitors (DPP-4is) and Glucagon-like peptide-1 receptor agonists (GLP-1Ras) were reported to have controversial effects on bone fracture, with some RCTs pointing out the bone protective effects of certain members of these two medication classes. Thiazolidinediones (TZDs) were linked with increased fracture risk as well as higher concentrations of C-terminal telopeptide of type I collagen (CTx), a bone resorption marker. CONCLUSION The present systematic umbrella review observed varied results on the association between the use of anti-diabetic drugs and DM-related fracture risk. The clinical efficacy of various anti-diabetic drugs, therefore, should be weighed against their risks and benefits in each patient.
Collapse
Affiliation(s)
- Pouria Khashayar
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Farid Farahani Rad
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sara MohammadHosseinzadeh Golabchi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Patricia Khashayar
- Department of Chemistry, Ghent University, Krijgslaan 281-S12, 9000, Gent, Belgium.
| | - Mehdi Mohammadi
- Department of Clinical Pharmacy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Sholeh Ebrahimpour
- Department of Clinical Pharmacy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Stefanakis K, Kokkorakis M, Mantzoros CS. The impact of weight loss on fat-free mass, muscle, bone and hematopoiesis health: Implications for emerging pharmacotherapies aiming at fat reduction and lean mass preservation. Metabolism 2024; 161:156057. [PMID: 39481534 DOI: 10.1016/j.metabol.2024.156057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Similar to bariatric surgery, incretin receptor agonists have revolutionized the treatment of obesity, achieving up to 15-25 % weight loss in many patients, i.e., at a rate approaching that achieved with bariatric surgery. However, over 25 % of total weight lost from both surgery and pharmacotherapy typically comes from fat-free mass, including skeletal muscle mass, which is often overlooked and can impair metabolic health and increase the risk of subsequent sarcopenic obesity. Loss of muscle and bone as well as anemia can compromise physical function, metabolic rate, and overall health, especially in older adults. The myostatin-activin-follistatin-inhibin system, originally implicated in reproductive function and subsequently muscle regulation, appears to be crucial for muscle and bone maintenance during weight loss. Activins and myostatin promote muscle degradation, while follistatins inhibit their activity in states of negative energy balance, thereby preserving lean mass. Novel compounds in the pipeline, such as Bimagrumab, Trevogrumab, and Garetosmab-which inhibit activin and myostatin signaling-have demonstrated promise in preventing muscle loss while promoting fat loss. Either alone or combined with incretin receptor agonists, these medications may enhance fat loss while preserving or even increasing muscle and bone mass, offering a potential solution for improving body composition and metabolic health during significant weight loss. Since this dual therapeutic approach could help address the challenges of muscle and bone loss during weight loss, well-designed studies are needed to optimize these strategies and assess long-term benefits. For the time being, considerations like advanced age and prefrailty may affect the choice of suitable candidates in clinical practice for current and emerging anti-obesity medications due to the associated risk of sarcopenia.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Xiao Y, Zhou M, Xiao W. Fracture events associated with GLP-1 receptor agonists in FDA adverse events reporting system. Acta Diabetol 2024:10.1007/s00592-024-02415-w. [PMID: 39556224 DOI: 10.1007/s00592-024-02415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
AIMS Diabetes patients are at a higher risk of fractures, and glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been suggested to positively impact on bone metabolism. We aim to provide a comprehensive assessment of fracture events associated with GLP-1RAs based on pharmacovigilance data. METHODS In this study, fracture-related adverse events (AEs) associated with GLP-1RAs and other commonly used glucose-lowering drugs were identified from Food and Drug Administration Adverse Event Reporting System (FAERS) database (2004-2022). The reporting odds ratio (ROR) and adjusted ROR (adj. ROR) were used to compare the reporting of fracture-related AEs associated with insulin, GLP-1RAs, and Non GLP-1RAs, in patients with diabetes through two scenarios. This involved separately comparing each glucose-lowering drug to all other medications used in diabetic patients and reiterating after excluding insulin cases. RESULTS A total of 490,107 AE reports for patients with diabetes were identified and 98, 625 of them were for GLP-1RAs. Among all diabetes drugs, GLP-1RAs had the lowest reporting of any fracture-related AEs [adj. ROR = 0.44 (0.40-0.47)], consistent across osteoporotic fracture [adj. ROR = 0.39 (0.34-0.45)] and hip fracture [adj. ROR = 0.34 (0.28-0.41)]. Among GLP-1RA agents, albiglutide was associated with the lowest adj. ROR [0.11 (0.05-0.21)] for any fracture-related AEs. After excluded all insulin reports, GLP-1RAs retained a significantly lower adj. ROR towards any fracture [adj. ROR = 0.45 (0.40-0.50)], osteoporotic fracture [adj. ROR = 0.44 (0.37-0.52)], and hip fracture [adj. ROR = 0.43 (0.33-0.54)]. CONCLUSION In a real-world pharmacovigilance setting, GLP-1RAs were associated with lower reporting of fracture-related AEs, indicating the protective effect of GLP-1RAs against fractures.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, China.
| |
Collapse
|
7
|
Paccou J, Compston JE. Bone health in adults with obesity before and after interventions to promote weight loss. Lancet Diabetes Endocrinol 2024; 12:748-760. [PMID: 39053479 DOI: 10.1016/s2213-8587(24)00163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024]
Abstract
Obesity and its associated comorbidities constitute a serious and growing public health burden. Fractures affect a substantial proportion of people with obesity and result from reduced bone strength relative to increased mechanical loading, together with an increased risk of falls. Factors contributing to fractures in people with obesity include adverse effects of adipose tissue on bone and muscle and, in many people, the coexistence of type 2 diabetes. Strategies to reduce weight include calorie-restricted diets, exercise, bariatric surgery, and pharmacological interventions with GLP-1 receptor agonists. However, although weight loss in people with obesity has many health benefits, it can also have adverse skeletal effects, with increased bone loss and fracture risk. Priorities for future research include the development of effective approaches to reduce fracture risk in people with obesity and the investigation of the effects of GLP-1 receptor agonists on bone loss resulting from weight reduction.
Collapse
Affiliation(s)
- Julien Paccou
- Department of Rheumatology, Université de Lille, Centre Hospitalier Universitaire de Lille, Lille, France
| | | |
Collapse
|
8
|
Li X, Li Y, Lei C. Effects of Glucagon-Like Peptide-1 Receptor Agonists on Bone Metabolism in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Int J Endocrinol 2024; 2024:1785321. [PMID: 39309475 PMCID: PMC11416174 DOI: 10.1155/2024/1785321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Background Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are an intriguing class of antihyperglycemic drugs for type 2 diabetes mellitus (T2DM). Such drugs not only play a primary role in regulating blood glucose levels but also exhibit additional pleiotropic effects, including potential impacts on bone metabolism and fracture risk. However, the mechanism of such drugs is unclear. The purpose of this study was to evaluate the effect of GLP-1 RAs on bone metabolism in T2DM. Methods From database inception to May 1, 2023, the searches were conducted on multiple databases such as Web of Science, Embase, PubMed, CNKI, the Cochrane Library, Wanfang, and VIP. We systematically collected all randomized controlled trials of bone metabolism in patients with T2DM treated with GLP-1 RAs. The quality evaluation was performed according to the Cochrane Handbook for Systematic Reviews of Interventions. Data extraction was analyzed using Review Manager 5.4 software, and funnel plots were drawn to evaluate publication bias. Results Twenty-six randomized controlled trials that met the inclusion criteria were included, involving a total of 2268 participants. In this study, compared to other antidiabetic drugs or placebo, GLP-1 RAs were found to significantly increase serum calcium (mean difference (MD) = 0.05, 95% confidence interval (CI) (0.01, 0.09), P = 0.002], bone alkaline phosphatase [standardized MD (SMD) = 0.76, 95% CI (0.29, 1.24), and P = 0.001), and osteocalcin (SMD = 2.04, 95% CI (0.99, 3.08), and P = 0.0001) in T2DM. Specifically, liraglutide increased procollagen type 1 N-terminal propeptide (SMD = 0.45, 95% CI (0.01, 0.89), and P = 0.04). GLP-1 RAs were also associated with a reduction in cross-linked C-terminal telopeptides of type I collagen (SMD = -0.36, 95% CI (-0.70, -0.03), and P = 0.03). In additionally, GLP-1 RAs increased lumbar spine bone mineral density (BMD) (SMD = 1.04, 95% CI (0.60, 1.48), and P < 0.00001) and femoral neck BMD (SMD = 1.29, 95% CI (0.36, 2.23), and P = 0.007). Conclusions GLP-1 RAs can not only improve BMD in the lumbar spine and femoral neck of patients with T2DM but also protect bone health by inhibiting bone resorption and promoting bone formation. Systematic Review Registration. PROSPERO, identifier CRD42023418166.
Collapse
Affiliation(s)
- Xin Li
- Department of NutritionGeneral Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yang Li
- Department of Geriatrics and Special NeedsGeneral Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Chen Lei
- Department of Geriatrics and Special NeedsGeneral Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| |
Collapse
|
9
|
Wang DH, Mo YX, Tan X, Xie JY, Wang H, Wen F. A comprehensive meta-analysis on the association of SGLT2is and GLP-1RAs with vascular diseases, digestive diseases and fractures. Acta Diabetol 2024; 61:1097-1105. [PMID: 38714558 DOI: 10.1007/s00592-024-02289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/14/2024] [Indexed: 05/10/2024]
Abstract
AIM Sodium-glucose cotransporter-2 inhibitors (SGLT2is) and glucagon-like peptide 1 receptor agonists (GLP-1RAs) are two new classes of antidiabetic agents. We aimed to evaluate the association between these two drug classes and risk of various vascular diseases, digestive diseases and fractures. METHODS Large randomized trials of SGLT2is and GLP-1RAs were included. Outcomes of interest were the various serious adverse events related to vascular diseases, digestive diseases and fractures. We performed meta-analyses using synthesize risk ratio (RR) and 95% confidence interval (CI) as effect size. RESULTS We included 27 large trials. SGLT2is had significant association with less hypertension (RR 0.70, 95% CI 0.54-0.91), hypertensive crisis (RR 0.63, 95% CI 0.47-0.84), varicose vein (RR 0.34, 95% CI 0.13-0.92), and vomiting (RR 0.55, 95% CI 0.31-0.97); but more spinal compression fracture (RR 1.73, 95% CI 1.02-2.92) and tibia fracture. GLP-1RAs had significant association with more deep vein thrombosis (RR 1.92, 95% CI 1.23-3.00), pancreatitis (RR 1.54, 95% CI 1.07-2.22), and cholecystitis acute (RR 1.51, 95% CI 1.08-2.09); but less rib fracture (RR 0.59, 95% CI 0.35-0.97). Sensitivity analyses suggested that our findings were robust. CONCLUSIONS SGLT2is may have protective effects against specific vascular and digestive diseases, whereas they may increase the incidence of site-specific fractures (e.g., spinal compression fracture). GLP-1RAs may have protective effects against site-specific fractures (i.e., rib fracture), whereas they may increase the incidence of specific vascular and digestive diseases. These findings may help to make a choice between SGLT2is and GLP-1RAs in clinical practice.
Collapse
Affiliation(s)
- De-Hua Wang
- Department of Orthopedics, The People's Hospital of Rongchang District, Chongqing, 402460, China
| | - Yu-Xia Mo
- Medical Department, The People's Hospital of Rongchang District, Chongqing, 402460, China
| | - Xiang Tan
- Department of Orthopedics, The People's Hospital of Rongchang District, Chongqing, 402460, China
| | - Ji-Yong Xie
- Department of Orthopedics, The People's Hospital of Rongchang District, Chongqing, 402460, China
| | - Huan Wang
- Department of Orthopedics, The People's Hospital of Rongchang District, Chongqing, 402460, China.
| | - Fei Wen
- Department of Orthopedics, The People's Hospital of Rongchang District, Chongqing, 402460, China.
| |
Collapse
|
10
|
Bouvard B, Mabilleau G. Gut hormones and bone homeostasis: potential therapeutic implications. Nat Rev Endocrinol 2024:10.1038/s41574-024-01000-z. [PMID: 38858581 DOI: 10.1038/s41574-024-01000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/12/2024]
Abstract
Bone resorption follows a circadian rhythm, with a marked reduction in circulating markers of resorption (such as carboxy-terminal telopeptide region of collagen type I in serum) in the postprandial period. Several gut hormones, including glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP1) and GLP2, have been linked to this effect in humans and rodent models. These hormones are secreted from enteroendocrine cells in the gastrointestinal tract in response to a variety of stimuli and effect a wide range of physiological processes within and outside the gut. Single GLP1, dual GLP1-GIP or GLP1-glucagon and triple GLP1-GIP-glucagon receptor agonists have been developed for the treatment of type 2 diabetes mellitus and obesity. In addition, single GIP, GLP1 and GLP2 analogues have been investigated in preclinical studies as novel therapeutics to improve bone strength in bone fragility disorders. Dual GIP-GLP2 analogues have been developed that show therapeutic promise for bone fragility in preclinical studies and seem to exert considerable activity at the bone material level. This Review summarizes the evidence of the action of gut hormones on bone homeostasis and physiology.
Collapse
Affiliation(s)
- Béatrice Bouvard
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France
- CHU Angers, Service de Rhumatologie, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France.
- CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France.
| |
Collapse
|
11
|
Jensen SBK, Sørensen V, Sandsdal RM, Lehmann EW, Lundgren JR, Juhl CR, Janus C, Ternhamar T, Stallknecht BM, Holst JJ, Jørgensen NR, Jensen JEB, Madsbad S, Torekov SS. Bone Health After Exercise Alone, GLP-1 Receptor Agonist Treatment, or Combination Treatment: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2416775. [PMID: 38916894 PMCID: PMC11200146 DOI: 10.1001/jamanetworkopen.2024.16775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/15/2024] [Indexed: 06/26/2024] Open
Abstract
Importance A major concern with weight loss is concomitant bone loss. Exercise and glucagon-like peptide-1 receptor agonists (GLP-1RAs) represent weight loss strategies that may protect bone mass despite weight loss. Objective To investigate bone health at clinically relevant sites (hip, spine, and forearm) after diet-induced weight loss followed by a 1-year intervention with exercise, liraglutide, or both combined. Design, Setting, and Participants This study was a predefined secondary analysis of a randomized clinical trial conducted between August 2016 and November 2019 at the University of Copenhagen and Hvidovre Hospital in Denmark. Eligible participants included adults aged 18 to 65 years with obesity (body mass index of 32-43) and without diabetes. Data analysis was conducted from March to April 2023, with additional analysis in February 2024 during revision. Interventions After an 8-week low-calorie diet (800 kcal/day), participants were randomized to 1 of 4 groups for 52 weeks: a moderate- to vigorous-intensity exercise program (exercise alone), 3.0 mg daily of the GLP-1 RA liraglutide (liraglutide alone), the combination, or placebo. Main Outcomes and Measures The primary outcome was change in site-specific bone mineral density (BMD) at the hip, lumbar spine, and distal forearm from before the low-calorie diet to the end of treatment, measured by dual-energy x-ray absorptiometry in the intention-to-treat population. Results In total, 195 participants (mean [SD] age, 42.84 [11.87] years; 124 female [64%] and 71 male [36%]; mean [SD] BMI, 37.00 [2.92]) were randomized, with 48 participants in the exercise group, 49 participants in the liraglutide group, 49 participants in the combination group, and 49 participants in the placebo group. The total estimated mean change in weight losses during the study was 7.03 kg (95% CI, 4.25-9.80 kg) in the placebo group, 11.19 kg (95% CI, 8.40-13.99 kg) in the exercise group, 13.74 kg (95% CI, 11.04-16.44 kg) in the liraglutide group, and 16.88 kg (95% CI, 14.23-19.54 kg) in the combination group. In the combination group, BMD was unchanged compared with the placebo group at the hip (mean change, -0.006 g/cm2; 95% CI, -0.017 to 0.004 g/cm2; P = .24) and lumbar spine (-0.010 g/cm2; 95% CI, -0.025 to 0.005 g/cm2; P = .20). Compared with the exercise group, BMD decreased for the liraglutide group at the hip (mean change, -0.013 g/cm2; 95% CI, -0.024 to -0.001 g/cm2; P = .03) and spine (mean change, -0.016 g/cm2; 95% CI, -0.032 to -0.001 g/cm2; P = .04). Conclusions and Relevance In this randomized clinical trial, the combination of exercise and GLP-1RA (liraglutide) was the most effective weight loss strategy while preserving bone health. Liraglutide treatment alone reduced BMD at clinically relevant sites more than exercise alone despite similar weight loss. Trial Registration EudraCT: 2015-005585-32.
Collapse
Affiliation(s)
- Simon Birk Kjær Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Victor Sørensen
- Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Rasmus Michael Sandsdal
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eva Winning Lehmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julie Rehné Lundgren
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Rimer Juhl
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Janus
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tummas Ternhamar
- Department of Endocrinology, Hvidovre University Hospital, Copenhagen, Denmark
| | - Bente Merete Stallknecht
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jens-Erik Beck Jensen
- Department of Endocrinology, Hvidovre University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre University Hospital, Copenhagen, Denmark
| | - Signe Sørensen Torekov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Forner P, Sheu A. Bone Health in Patients With Type 2 Diabetes. J Endocr Soc 2024; 8:bvae112. [PMID: 38887632 PMCID: PMC11181004 DOI: 10.1210/jendso/bvae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Indexed: 06/20/2024] Open
Abstract
The association between type 2 diabetes mellitus (T2DM) and skeletal fragility is complex, with effects on bone at the cellular, molecular, and biomechanical levels. As a result, people with T2DM, compared to those without, are at increased risk of fracture, despite often having preserved bone mineral density (BMD) on dual-energy x-ray absorptiometry (DXA). Maladaptive skeletal loading and changes in bone architecture (particularly cortical porosity and low cortical volumes, the hallmark of diabetic osteopathy) are not apparent on routine DXA. Alternative imaging modalities, including quantitative computed tomography and trabecular bone score, allow for noninvasive visualization of cortical and trabecular compartments and may be useful in identifying those at risk for fractures. Current fracture risk calculators underestimate fracture risk in T2DM, partly due to their reliance on BMD. As a result, individuals with T2DM, who are at high risk of fracture, may be overlooked for commencement of osteoporosis therapy. Rather, management of skeletal health in T2DM should include consideration of treatment initiation at lower BMD thresholds, the use of adjusted fracture risk calculators, and consideration of metabolic and nonskeletal risk factors. Antidiabetic medications have differing effects on the skeleton and treatment choice should consider the bone impacts in those at risk for fracture. T2DM poses a unique challenge when it comes to assessing bone health and fracture risk. This article discusses the clinical burden and presentation of skeletal disease in T2DM. Two clinical cases are presented to illustrate a clinical approach in assessing and managing fracture risk in these patients.
Collapse
Affiliation(s)
- Patrice Forner
- Clinical School, Faculty of Medicine, St Vincent's Hospital, University of New South Wales Sydney, Sydney, NSW 2010, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, NSW 2010, Australia
| | - Angela Sheu
- Clinical School, Faculty of Medicine, St Vincent's Hospital, University of New South Wales Sydney, Sydney, NSW 2010, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, NSW 2010, Australia
- Skeletal Diseases Program, Garvan Institute of Medical Research, Darlinghurst, NSW 2035, Australia
| |
Collapse
|
13
|
He Z, Li H, Zhang Y, Gao S, Liang K, Su Y, Du Y, Wang D, Xing D, Yang Z, Lin J. Enhanced bone regeneration via endochondral ossification using Exendin-4-modified mesenchymal stem cells. Bioact Mater 2024; 34:98-111. [PMID: 38186959 PMCID: PMC10770633 DOI: 10.1016/j.bioactmat.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Nonunions and delayed unions pose significant challenges in orthopedic treatment, with current therapies often proving inadequate. Bone tissue engineering (BTE), particularly through endochondral ossification (ECO), emerges as a promising strategy for addressing critical bone defects. This study introduces mesenchymal stem cells overexpressing Exendin-4 (MSC-E4), designed to modulate bone remodeling via their autocrine and paracrine functions. We established a type I collagen (Col-I) sponge-based in vitro model that effectively recapitulates the ECO pathway. MSC-E4 demonstrated superior chondrogenic and hypertrophic differentiation and enhanced the ECO cell fate in single-cell sequencing analysis. Furthermore, MSC-E4 encapsulated in microscaffold, effectively facilitated bone regeneration in a rat calvarial defect model, underscoring its potential as a therapeutic agent for bone regeneration. Our findings advocate for MSC-E4 within a BTE framework as a novel and potent approach for treating significant bone defects, leveraging the intrinsic ECO process.
Collapse
Affiliation(s)
- Zihao He
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Hui Li
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Yuanyuan Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Shuang Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yiqi Su
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Du Wang
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Dan Xing
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Zhen Yang
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Jianhao Lin
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| |
Collapse
|
14
|
Chen S, Wang X, Jin Y, Chen X, Song Q, Wei G, Li L. Assessment of Changes in Body Composition After 3 Months of Dulaglutide Treatment. Diabetes Metab Syndr Obes 2024; 17:1301-1308. [PMID: 38505539 PMCID: PMC10949166 DOI: 10.2147/dmso.s443631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/29/2024] [Indexed: 03/21/2024] Open
Abstract
Background Changes in body composition accompanied by glucagon-like peptide 1 receptor agonist (GLP-1RA) induced weight loss have drawn much attention. However, fewer studies have reported body composition changes in patients receiving dulaglutide therapy in Chinese population. Methods A total of 70 overweight/obese type 2 diabetes mellitus (T2DM) patients who received dulaglutide therapy were included. Clinical data were collected. Visceral fat area (VFA) and body composition were also measured. Changes in clinical indicators and body composition of patients before and after intervention were also analyzed. Correlation analysis and multiple linear regression model were used to evaluate the association between hemoglobin A1C (HbA1c) and body composition. Results The results showed that body weight (BW), VFA, body fat (BF), lean body mass (LBM), skeletal muscle mass (SMM) and water content were reduced after 3 months dulaglutide intervention. The lean body mass percentage (LBMP) and skeletal muscle mass percentage (SMMP) significantly increased. Moreover, there was no significant difference in bone mineral quality (BMQ) after the intervention. The multiple linear regression model revealed that the % change in BF was independently associated with % change in HbA1c (β = 0.449, t = 3.148, p=0.002). Conclusion These results indicate that dulaglutide intervention does not cause muscle and bone mass loss while inducing weight loss, and % change in BF was independently associated with improved glucose control during dulaglutide therapy. This study offers some positive results to support the clinical application of dulaglutide.
Collapse
Affiliation(s)
- Shuqin Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Xuepeng Wang
- Department of Infectious Disease, The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Yong Jin
- Department of Internal Medicine, Ningbo Yinzhou No.2 Hospital, Ningbo, People’s Republic of China
| | - Xueqin Chen
- Department of Traditional Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Qifa Song
- Medical Data Center, The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Gang Wei
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Li Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| |
Collapse
|
15
|
Herrou J, Mabilleau G, Lecerf JM, Thomas T, Biver E, Paccou J. Narrative Review of Effects of Glucagon-Like Peptide-1 Receptor Agonists on Bone Health in People Living with Obesity. Calcif Tissue Int 2024; 114:86-97. [PMID: 37999750 DOI: 10.1007/s00223-023-01150-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/14/2023] [Indexed: 11/25/2023]
Abstract
Glucagon-like peptide-1 Receptor agonists (GLP-1Ras) such as liraglutide and semaglutide have been recently approved as medications for chronic weight management in people living with obesity (PwO); GLP-1 may enhance bone metabolism and improve bone quality. However, the effects of GLP-1Ras on skeletal health remain to be determined and that's the purpose of this narrative review. Nevertheless, bone consequences of intentional weight loss interventions in PwO are well known: (i) significant weight loss induced by caloric restriction and bariatric surgery results in accelerated bone turnover and bone loss, and (ii) unlike caloric restriction interventions, PwO experience a substantial deterioration in bone microarchitecture and strength associated with an increased risk of fracture after bariatric surgery especially malabsorptive procedures. Liraglutide seems to have a positive effect on bone material properties despite significant weight loss in several rodent models. However, most of positive effects on bone mineral density and microarchitecture were observed at concentration much higher than approved for obesity care in humans. No data have been reported in preclinical models with semaglutide. The current evidence of the effects of GLP-1Ra on bone health in PwO is limited. Indeed, studies on the use of GLP-1Ra mostly included patients with diabetes who were administered a dose used in this condition, did not have adequate bone parameters as primary endpoints, and had short follow-up periods. Further studies are needed to investigate the bone impact of GLP-1Ra, dual- and triple-receptor agonists for GLP-1, glucose-dependent insulin releasing polypeptide (GIP), and glucagon in PwO.
Collapse
Affiliation(s)
- Julia Herrou
- Service de Rhumatologie, Inserm U 1153, AP-HP Centre, Hôpital Cochin, Université de Paris, Paris, France
| | - Guillaume Mabilleau
- ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Univ Angers, Nantes Université, Angers, France
| | - Jean-Michel Lecerf
- Department of Nutrition and Physical Activity, Institut Pasteur de Lille, Lille, France
| | - Thierry Thomas
- Department of Rheumatology, Hôpital Nord, Centre Hospitalier Universitaire (CHU) Saint-Etienne, Inserm U1059, Lyon University, Saint-Etienne, France
| | - Emmanuel Biver
- Service of Bone Diseases, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Julien Paccou
- Department of Rheumatology, CHU Lille, MABlab ULR 4490, Univ. Lille, 59000, Lille, France.
| |
Collapse
|
16
|
Nasser MI, Kvist AV, Vestergaard P, Eastell R, Burden AM, Frost M. Sex- and Age Group-Specific Fracture Incidence Rates Trends for Type 1 and 2 Diabetes Mellitus. JBMR Plus 2023; 7:e10836. [PMID: 38025040 PMCID: PMC10652176 DOI: 10.1002/jbm4.10836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/14/2023] [Accepted: 10/01/2023] [Indexed: 12/01/2023] Open
Abstract
The incidence of major osteoporotic fractures has declined in men and women in Western countries over the last two decades. Although fracture risk is higher in persons with diabetes mellitus, trends of fractures remain unknown in men and women with diabetes. We investigated the trends in fracture incidence rates (IRs) in men and women with type 1 diabetes mellitus (T1D) and type 2 diabetes mellitus (T2D) in Denmark between 1997 and 2017. We identified men and women aged 18+ years who sustained a fracture (excluding skull and facial fractures) between 1997 and 2017 using the Danish National Patient Registry. We calculated sex-specific IRs of fractures per 10,000 person-years separately in persons with T1D, T2D, or without diabetes. Furthermore, we compared median IRs of the first 5 years (1997-2002) to the median IRs of the last 5 years (2012-2017). We identified 1,235,628 persons with fractures including 4863 (43.6% women) with T1D, 65,366 (57.5% women) with T2D, and 1,165,399 (54.1% women) without diabetes. The median IRs of fractures declined 20.2%, 19.9%, and 7.8% in men with T1D, T2D, and without diabetes, respectively (p-trend <0.05). The median IRs decreased 6.4% in women with T1D (p-trend = 0.35) and 25.6% in women with T2D (p-trend <0.05) but increased 2.3% in women without diabetes (p-trend = 0.08). Fracture IRs decreased in men with both diabetes types and only in women with T2D, highlighting the need for further attention behind the stable trend observed in women with T1D. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mohamad I Nasser
- Department of Endocrinology and Metabolism, Molecular Endocrinology Stem Cell Research Unit (KMEB)Odense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Steno Diabetes Center OdenseOdense University HospitalOdenseDenmark
| | - Annika Vestergaard Kvist
- Department of Endocrinology and Metabolism, Molecular Endocrinology Stem Cell Research Unit (KMEB)Odense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Pharmacoepidemiology Group, Institute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
- Steno Diabetes Center North DenmarkAalborg University HospitalAalborgDenmark
| | - Peter Vestergaard
- Steno Diabetes Center North DenmarkAalborg University HospitalAalborgDenmark
- Department of EndocrinologyAalborg University HospitalAalborgDenmark
- Department of Clinical MedicineAalborg University HospitalAalborgDenmark
| | - Richard Eastell
- Academic Unit of Bone MetabolismUniversity of SheffieldSheffieldUK
- Mellanby Centre for Musculoskeletal ResearchUniversity of SheffieldSheffieldUK
| | - Andrea M Burden
- Pharmacoepidemiology Group, Institute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
- Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoCanada
| | - Morten Frost
- Department of Endocrinology and Metabolism, Molecular Endocrinology Stem Cell Research Unit (KMEB)Odense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Steno Diabetes Center OdenseOdense University HospitalOdenseDenmark
| |
Collapse
|
17
|
Viggers R, Rasmussen NH, Vestergaard P. Effects of Incretin Therapy on Skeletal Health in Type 2 Diabetes-A Systematic Review. JBMR Plus 2023; 7:e10817. [PMID: 38025038 PMCID: PMC10652182 DOI: 10.1002/jbm4.10817] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetes poses a significant risk to bone health, with Type 1 diabetes (T1D) having a more detrimental impact than Type 2 diabetes (T2D). The group of hormones known as incretins, which includes gastric inhibitory peptide (GIP) and glucagon-like peptide 1 (GLP-1), play a role in regulating bowel function and insulin secretion during feeding. GLP-1 receptor agonists (GLP-1 RAs) are emerging as the primary treatment choice in T2D, particularly when atherosclerotic cardiovascular disease is present. Dipeptidyl peptidase 4 inhibitors (DPP-4is), although less potent than GLP-1 RAs, can also be used. Additionally, GLP-1 RAs, either alone or in combination with GIP, may be employed to address overweight and obesity. Since feeding influences bone turnover, a relationship has been established between incretins and bone health. To explore this relationship, we conducted a systematic literature review following the PRISMA guidelines. While some studies on cells and animals have suggested positive effects of incretins on bone cells, turnover, and bone density, human studies have yielded either no or limited and conflicting results regarding their impact on bone mineral density (BMD) and fracture risk. The effect on fracture risk may vary depending on the choice of comparison drug and the duration of follow-up, which was often limited in several studies. Nevertheless, GLP-1 RAs may hold promise for people with T2D who have multiple fracture risk factors and poor metabolic control. Furthermore, a potential new area of interest is the use of GLP-1 RAs in fracture prevention among overweight and obese people. Based on this systematic review, existing evidence remains insufficient to support a positive or a superior effect on bone health to reduce fracture risk in people with T2D. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Rikke Viggers
- Steno Diabetes Center North DenmarkAalborgDenmark
- Department of EndocrinologyAalborg University HospitalAalborgDenmark
| | | | - Peter Vestergaard
- Steno Diabetes Center North DenmarkAalborgDenmark
- Department of EndocrinologyAalborg University HospitalAalborgDenmark
| |
Collapse
|
18
|
Xing B, Yu J, Zhang H, Li Y. RANKL inhibition: a new target of treating diabetes mellitus? Ther Adv Endocrinol Metab 2023; 14:20420188231170754. [PMID: 37223831 PMCID: PMC10201162 DOI: 10.1177/20420188231170754] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/03/2023] [Indexed: 05/25/2023] Open
Abstract
Accumulating evidence demonstrates the link between glucose and bone metabolism. The receptor activator of nuclear factor-kB ligand (RANKL)/the receptor activator of NF-κB (RANK)/osteoprotegerin (OPG) axis is an essential signaling axis maintaining the balance between bone resorption and bone formation. In recent years, it has been found that RANKL and RANK are distributed not only in bone but also in the liver, muscle, adipose tissue, pancreas, and other tissues that may influence glucose metabolism. Some scholars have suggested that the blockage of the RANKL signaling may protect islet β-cell function and prevent diabetes; simultaneously, there also exist different views that RANKL can improve insulin resistance through inducing the beige adipocyte differentiation and increase energy expenditure. Currently, the results of the regulatory effect on glucose metabolism of RANKL remain conflicting. Denosumab (Dmab), a fully human monoclonal antibody that can bind to RANKL and prevent osteoclast formation, is a commonly used antiosteoporosis drug. Recent basic studies have found that Dmab seems to regulate glucose homeostasis and β-cell function in humanized mice or in vitro human β-cell models. Besides, some clinical data have also reported the glucometabolic effects of Dmab, however, with limited and inconsistent results. This review mainly describes the impact of the RANKL signaling pathway on glucose metabolism and summarizes clinical evidence that links Dmab and DM to seek a new therapeutic strategy for diabetes.
Collapse
Affiliation(s)
- Baodi Xing
- Department of Endocrinology, Key Laboratory of
Endocrinology of National Health Commission, Translation Medicine Center,
Peking Union Medical College Hospital, Chinese Academy of Medical Sciences
and Peking Union Medical College, Beijing, China
| | - Jie Yu
- Department of Endocrinology, Key Laboratory of
Endocrinology of National Health Commission, Translation Medicine Center,
Peking Union Medical College Hospital, Chinese Academy of Medical Sciences
and Peking Union Medical College, Beijing, China
| | - Huabing Zhang
- Department of Endocrinology, NHC Key Laboratory
of Endocrinology, Peking Union Medical College Hospital (Dongdan campus),
Chinese Academy of Medical Sciences and Peking Union Medical College, No.1
Shuaifuyuan, Wangfujing Dongcheng District, Beijing 100730, China
| | - Yuxiu Li
- Department of Endocrinology, NHC Key Laboratory
of Endocrinology, Peking Union Medical College Hospital (Dongdan campus),
Chinese Academy of Medical Sciences and Peking Union Medical College, No.1
Shuaifuyuan, Wangfujing Dongcheng District, Beijing 100730, China
| |
Collapse
|
19
|
Lopez N, Cohen SM, Emanuele M. Type 2 Diabetes and Bone Disease. Clin Rev Bone Miner Metab 2023; 21:21-31. [DOI: 10.1007/s12018-023-09288-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 01/05/2025]
|
20
|
Lei WS, Rodrick EB, Belcher SL, Kelly A, Kindler JM. Bone resorption and incretin hormones following glucose ingestion in healthy emerging adults. J Clin Transl Endocrinol 2023; 31:100314. [PMID: 36845829 PMCID: PMC9950953 DOI: 10.1016/j.jcte.2023.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Background Studies in adults indicate that macronutrient ingestion yields an acute anti-resorptive effect on bone, reflected by decreases in C-terminal telopeptide (CTX), a biomarker of bone resorption, and that gut-derived incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), facilitate this response. There remain knowledge gaps relating to other biomarkers of bone turnover, and whether gut-bone cross-talk is operative during the years surrounding peak bone strength attainment. This study first, describes changes in bone resorption during oral glucose tolerance testing (OGTT), and second, tests relationships between changes in incretins and bone biomarkers during OGTT and bone micro-structure. Methods We conducted a cross-sectional study in 10 healthy emerging adults ages 18-25 years. During a multi-sample 2-hour 75 g OGTT, glucose, insulin, GIP, GLP-1, CTX, bone-specific alkaline phosphatase (BSAP), osteocalcin, osteoprotegerin (OPG), receptor activator of nuclear factor kappa-β ligand (RANKL), sclerostin, and parathyroid hormone (PTH) were assayed at mins 0, 30, 60, and 120. Incremental areas under the curve (iAUC) were computed from mins 0-30 and mins 0-120. Tibia bone micro-structure was assessed using second generation high resolution peripheral quantitative computed tomography. Results During OGTT, glucose, insulin, GIP, and GLP-1 increased significantly. CTX at min 30, 60, and 120 was significantly lower than min 0, with a maximum decrease of about 53 % by min 120. Glucose-iAUC0-30 inversely correlated with CTX-iAUC0-120 (rho = -0.91, P < 0.001), and GLP-1-iAUC0-30 positively correlated with BSAP-iAUC0-120 (rho = 0.83, P = 0.005), RANKL-iAUC0-120 (rho = 0.86, P = 0.007), and cortical volumetric bone mineral density (rho = 0.93, P < 0.001). Conclusions Glucose ingestion yields an anti-resorptive effect on bone metabolism during the years surrounding peak bone strength. Cross-talk between the gut and bone during this pivotal life stage requires further attention.
Collapse
Affiliation(s)
- Wang Shin Lei
- Department of Nutritional Sciences, The University of Georgia, Athens, GA, USA
| | - Eugene B. Rodrick
- Department of Nutritional Sciences, The University of Georgia, Athens, GA, USA
| | - Staci L. Belcher
- Department of Nutritional Sciences, The University of Georgia, Athens, GA, USA
| | - Andrea Kelly
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA,Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph M. Kindler
- Department of Nutritional Sciences, The University of Georgia, Athens, GA, USA,Corresponding author.
| |
Collapse
|
21
|
Sass MR, Danielsen AA, Köhler-Forsberg O, Storgaard H, Knop FK, Nielsen MØ, Sjödin AM, Mors O, Correll CU, Ekstrøm C, Vinberg M, Nielsen J, Vilsbøll T, Fink-Jensen A. Effect of the GLP-1 receptor agonist semaglutide on metabolic disturbances in clozapine-treated or olanzapine-treated patients with a schizophrenia spectrum disorder: study protocol of a placebo-controlled, randomised clinical trial (SemaPsychiatry). BMJ Open 2023; 13:e068652. [PMID: 36720576 PMCID: PMC9890830 DOI: 10.1136/bmjopen-2022-068652] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Clozapine and olanzapine are some of the most effective antipsychotics, but both are associated with weight gain and relevant metabolic disturbances, including pre-diabetes and diabetes. Non-pharmacological/behavioural interventions have had limited effects counteracting these adverse effects. Semaglutide, a glucagon-like peptide 1 receptor agonist, is approved for the treatment of type 2 diabetes and obesity. We will investigate the long-term effects of add-on treatment with semaglutide once a week versus placebo once a week on the metabolic status in pre-diabetic (glycated haemoglobin A1c (HbA1c) 35-47 mmol/mol (5.4%-6.4%) and diabetic (HbA1c 48-57 mmol/mol (6.5%-7.4%)) patients diagnosed with a schizophrenia spectrum disorder who initiated clozapine or olanzapine treatment within the last 60 months. METHODS AND ANALYSIS This is a 26-week, double-blinded, randomised, placebo-controlled trial. Altogether, 104 patients diagnosed with a schizophrenia spectrum disorder, aged 18-65 years, with pre-diabetes or diabetes will be randomised to injections of 1.0 mg semaglutide once a week or placebo for 26 weeks. The primary endpoint is change from baseline in HbA1c. Secondary endpoints include changes in body weight, hip and waist circumference and plasma levels of insulin, glucagon, glucose, and C-peptide, insulin sensitivity, beta cell function, hepatic function, fibrosis-4 score, lipid profile, incretin hormones, bone markers, body composition, bone density, proteomic analyses and oxidative stress markers. Together with alcohol, tobacco and drug use, potential effects on the reward value of a sweet-fat stimulus, psychopathology, level of activity and quality of life will also be assessed. ETHICS AND DISSEMINATION This study is approved by the Danish Medicines Agency and the regional scientific ethics committee of the Capital Region of Denmark (committee C, #H-20019008) and will be carried out in accordance with International Council for Harmonisation Good Clinical Practice guidelines and the Helsinki Declaration. The results will be disseminated through peer-review publications and conference presentations. TRIAL REGISTRATION NUMBER NCT04892199.
Collapse
Affiliation(s)
- Marie Reeberg Sass
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Capital Region of Denmark Mental Health Services, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Aalkjær Danielsen
- Psychiatry, Psychosis Research Unit, Aarhus University Hospital Skejby, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ole Köhler-Forsberg
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Psychiatry, Psychosis Research Unit, Aarhus Universitetshospital Skejby, Aarhus, Denmark
| | - Heidi Storgaard
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Mette Ødegaard Nielsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Mental Health Centre Glostrup, Copenhagen University Hospital, Capital Region of Denmark Mental Health Services, Glostrup, Denmark
| | - Anders Mikael Sjödin
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ole Mors
- Psychiatry, Psychosis Research Unit, Aarhus University Hospital Skejby, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoph U Correll
- Department of Psychiatry and Molecular Medicine, Hofstra Northwell School of Medicine at Hofstra University, Hempstead, New York, USA
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Claus Ekstrøm
- Department of Biostatistics, University of Copenhagen Department of Public Health, Copenhagen, Denmark
| | - Maj Vinberg
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Psychiatric Center North Zeeland, Copenhagen University Hospital, Capital Region of Denmark Mental Health Services, Hillerød, Denmark
| | - Jimmi Nielsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Mental Health Centre Glostrup, Copenhagen University Hospital, Capital Region of Denmark Mental Health Services, Glostrup, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Anders Fink-Jensen
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Capital Region of Denmark Mental Health Services, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Wu B, Fu Z, Wang X, Zhou P, Yang Q, Jiang Y, Zhu D. A narrative review of diabetic bone disease: Characteristics, pathogenesis, and treatment. Front Endocrinol (Lausanne) 2022; 13:1052592. [PMID: 36589835 PMCID: PMC9794857 DOI: 10.3389/fendo.2022.1052592] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Recently, the increasing prevalence of diabetes mellitus has made it a major chronic illness which poses a substantial threat to human health. The prevalence of osteoporosis among patients with diabetes mellitus has grown considerably. Diabetic bone disease is a secondary osteoporosis induced by diabetes mellitus. Patients with diabetic bone disease exhibit variable degrees of bone loss, low bone mineral density, bone microarchitecture degradation, and increased bone fragility with continued diabetes mellitus, increasing their risk of fracture and impairing their ability to heal after fractures. At present, there is extensive research interest in diabetic bone disease and many significant outcomes have been reported. However, there are no comprehensive review is reported. This review elaborates on diabetic bone disease in the aspects of characteristics, pathogenesis, and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dong Zhu
- Department of Orthopaedic Trauma, Center of Orthopaedics and Traumatology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Tsai WH, Kong SK, Lin CL, Cheng KH, Cheng YT, Chien MN, Lee CC, Tsai MC. Risk of fracture caused by anti-diabetic drugs in individuals with type 2 diabetes: A network meta-analysis. Diabetes Res Clin Pract 2022; 192:110082. [PMID: 36122867 DOI: 10.1016/j.diabres.2022.110082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/28/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022]
Abstract
AIMS Diabetes is associated with increased risk of fracture. This study aims to evaluate the correlation between anti-diabetic agents and fracture risk in patients with type 2 diabetes. METHODS Literature research was conducted using PubMed, Embase, and ClinicalTrials.gov. Search-term included "type 2 diabetes," "fracture," "randomized controlled trial," and seven kinds of anti-diabetic agents. Random-effect models established fractures in the follow-up period as the primary outcome. A network meta-analysis was performed to compare available treatments within a single Bayesian analytical framework. RESULTS A total of 191,361 patients were included in 161 studies, with 2916 fractures. DPP-4i (risk ratio [RR] 1.76 [95 % confidence interval (CI) 1.21-2.55]), SGLT-2i (RR 1.5 [95 % CI 1.05-2.16]) and placebo (RR 1.44 [95 % CI 1.04-1.98]) increased fracture risk when compared to GLP1-RA. GLP1-RA (RR 0.5 [95 % CI 0.31-0.79]) and SU (RR 0.56 [95 % CI 0.41-0.77]) provided greater protection against fracture than TZD. DPP-4i increased fracture risk when compared to SU (RR 1.55 [95 % CI 1.08-2.22]), and was comparable in effect to TZD. CONCLUSIONS GLP1-RA offered better protection against fracture than placebo. Insulin and SU had effects comparable with GLP1-RA. SU offered greater protection against fractures than TZD and DPP-4i. SGLT-2i increased risk of fracture when compared to GLP1-RA.
Collapse
Affiliation(s)
- Wen-Hsuan Tsai
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan, ROC
| | - Siang-Ke Kong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan, ROC
| | - Chu-Lin Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, ROC
| | - Kai-Hsuan Cheng
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, ROC
| | - Yi-Ting Cheng
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, ROC
| | - Ming-Nan Chien
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan, ROC; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, ROC
| | - Chun-Chuan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan, ROC; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, ROC
| | - Ming-Chieh Tsai
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan, ROC; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, ROC; Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Bone fragility is a complication of type 2 diabetes (T2D), and insulin resistance is suspected to contribute to diabetes-related bone deficits. This article provides an overview of emerging clinical research involving insulin resistance and bone health by summarizing recent publications, identifying existing knowledge gaps, and suggesting 'next steps' for this evolving field of research. RECENT FINDINGS Clinical studies in children and adults report greater bone density in people with increased insulin resistance, but these associations are often attenuated when adjusting for body size. Advancements in bone imaging methods allow for assessment of nuanced characteristics of bone quality and strength that extend beyond standard bone mineral density assessment methods. For example, several recent studies focusing on lumbar spine trabecular bone score, a relatively new measure of trabecular bone quality from dual-energy X-ray absorptiometry, have reported generally consistent inverse associations with insulin resistance. Longitudinal studies using advanced imaging methods capable of evaluating trabecular bone microstructure and strength, such as high-resolution peripheral quantitative computed tomography, are lacking. Studies in younger individuals are sparse, but emerging data suggest that peak bone mass attainment might be threatened by diabetes progression, and increased visceral fat, suppressed muscle-bone unit, advanced glycation end-products, sedentary lifestyle, and poor diet quality might contribute to diabetes effects on bone. Prospective studies during the transition from adolescence to young adulthood are required. SUMMARY Insulin resistance is a main feature of T2D, which is suspected to contribute to subclinical diabetes-related threats to bone health. Future clinical studies should focus on the critical years surrounding peak bone mass and peak bone strength attainment using contemporary imaging techniques.
Collapse
Affiliation(s)
- Wang Shin Lei
- Department of Nutritional Sciences, The University of Georgia, Athens, GA, USA
| | | |
Collapse
|
25
|
Hu X, Gong H, Hou A, Wu X, Shi P, Zhang Y. Effects of continuous subcutaneous insulin infusion on the microstructures, mechanical properties and bone mineral compositions of lumbar spines in type 2 diabetic rats. BMC Musculoskelet Disord 2022; 23:511. [PMID: 35637472 PMCID: PMC9150354 DOI: 10.1186/s12891-022-05452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Continuous subcutaneous insulin infusion (CSII) for the treatment of type 2 diabetes (T2D) can improve the structure and strength of femur of rats, but the effect of CSII treatment on the lumbar spine of T2D rats is unknown. The purpose of this study is to investigate the effects of CSII on the microstructure, multi-scale mechanical properties and bone mineral composition of the lumbar spine in T2D rats. METHODS Seventy 6-week-old male Sprague-Dawley (SD) rats were divided into two batches, each including Control, T2D, CSII and Placebo groups, and the duration of insulin treatment was 4-week and 8-week, respectively. At the end of the experiment, the rats were sacrificed to take their lumbar spine. Microstructure, bone mineral composition and nanoscopic-mesoscopic-apparentand-macroscopic mechanical properties were evaluated through micro-computed tomography (micro-CT), Raman spectroscopy, nanoindentation test, nonlinear finite element analysis and compression test. RESULTS It was found that 4 weeks later, T2D significantly decreased trabecular thickness (Tb.Th), nanoscopic-apparent and partial mesoscopic mechanical parameters of lumbar spine (P < 0.05), and significantly increased bone mineral composition parameters of cortical bone (P < 0.05). It was shown that CSII significantly improved nanoscopic-apparent mechanical parameters (P < 0.05). In addition, 8 weeks later, T2D significantly decreased bone mineral density (BMD), bone volume fraction (BV/TV) and macroscopic mechanical parameters (P < 0.05), and significantly increased bone mineral composition parameters of cancellous bone (P < 0.05). CSII treatment significantly improved partial mesoscopic-macroscopic mechanical parameters and some cortical bone mineral composition parameters (P < 0.05). CONCLUSIONS CSII treatment can significantly improve the nanoscopic-mesoscopic-apparent-macroscopic mechanical properties of the lumbar spine in T2D rats, as well as the bone structure and bone mineral composition of the lumbar vertebrae, but it will take longer treatment time to restore the normal level. In addition, T2D and CSII treatment affected bone mineral composition of cortical bone earlier than cancellous bone of lumbar spine in rat. Our study can provide evidence for clinical prevention and treatment of T2D-related bone diseases.
Collapse
Affiliation(s)
- Xiaorong Hu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - He Gong
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Aiqi Hou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaodan Wu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Peipei Shi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yingying Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China.
| |
Collapse
|
26
|
Sheu A, Greenfield JR, White CP, Center JR. Assessment and treatment of osteoporosis and fractures in type 2 diabetes. Trends Endocrinol Metab 2022; 33:333-344. [PMID: 35307247 DOI: 10.1016/j.tem.2022.02.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 01/10/2023]
Abstract
There is substantial, and growing, evidence that type 2 diabetes (T2D) is associated with skeletal fragility, despite often preserved bone mineral density. As post-fracture outcomes, including mortality, are worse in people with T2D, bone management should be carefully considered in this highly vulnerable group. However, current fracture risk calculators inadequately predict fracture risk in T2D, and dedicated randomised controlled trials identifying optimal management in patients with T2D are lacking, raising questions about the ideal assessment and treatment of bone health in these people. We synthesise the current literature on evaluating bone measurements in T2D and summarise the evidence for safety and efficacy of both T2D and anti-osteoporosis medications in relation to bone health in these patients.
Collapse
Affiliation(s)
- Angela Sheu
- Bone Biology Division, Garvan Institute of Medical Research, Sydney, Australia; Clinical School, St Vincent's Hospital, Faculty of Medicine, University of New South Wales Sydney, Sydney, Australia; Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, Australia.
| | - Jerry R Greenfield
- Clinical School, St Vincent's Hospital, Faculty of Medicine, University of New South Wales Sydney, Sydney, Australia; Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, Australia; Diabetes and Metabolism, Garvan Institute of Medical Research, Sydney, Australia
| | - Christopher P White
- Clinical School, Prince of Wales Hospital, Faculty of Medicine, University of New South Wales Sydney, Sydney, Australia; Department of Endocrinology and Metabolism, Prince of Wales Hospital, Sydney, Australia
| | - Jacqueline R Center
- Bone Biology Division, Garvan Institute of Medical Research, Sydney, Australia; Clinical School, St Vincent's Hospital, Faculty of Medicine, University of New South Wales Sydney, Sydney, Australia; Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, Australia
| |
Collapse
|
27
|
Wang B, Wang Z, Poundarik AA, Zaki MJ, Bockman RS, Glicksberg BS, Nadkarni GN, Vashishth D. Unmasking Fracture Risk in Type 2 Diabetes: The Association of Longitudinal Glycemic Hemoglobin Level and Medications. J Clin Endocrinol Metab 2022; 107:e1390-e1401. [PMID: 34888676 PMCID: PMC8947783 DOI: 10.1210/clinem/dgab882] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Fracture risk is underestimated in people with type 2 diabetes (T2D). OBJECTIVE To investigate the longitudinal relationship of glycated hemoglobin (HbA1c) and common medications on fracture risk in people with T2D. METHODS This retrospective population-based cohort study was conducted using de-identified claims and electronic health record data obtained from the OptumLabs Data Warehouse for the period January 1, 2007, to September 30, 2015. For each individual, the study was conducted within a 2-year HbA1c observation period and a 2-year fracture follow-up period. A cohort of 157 439 individuals with T2D [age ≥ 55 years with mean HbA1c value ≥ 6%] were selected from 4 018 250 US Medicare Advantage/Commercial enrollees with a T2D diagnosis. All fractures and fragility fractures were measured. RESULTS With covariates adjusted, poor glycemic control in T2D individuals was associated with an 29% increase of all fracture risk, compared with T2D individuals who had adequate glycemic control (HR: 1.29; 95% CI, 1.22-1.36). Treatment with metformin (HR: 0.88; 95% CI, 0.85-0.92) and DPP4 inhibitors (HR: 0.93; 95% CI, 0.88-0.98) was associated with a reduced all fracture risk, while insulin (HR: 1.26; 95% CI, 1.21-1.32), thiazolidinediones (HR: 1.23; 95% CI, 1.18-1.29), and meglitinides (HR: 1.12; 95% CI, 1.00-1.26) were associated with an increased all fracture risk (All P value < 0.05). Bisphosphonates were associated similarly with increased fracture risk in the T2D and nondiabetic groups. CONCLUSION Longitudinal 2-year HbA1c is independently associated with elevated all fracture risk in T2D individuals during a 2-year follow-up period. Metformin and DPP4 inhibitors can be used for management of T2D fracture risk.
Collapse
Affiliation(s)
- Bowen Wang
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- OptumLabs Visiting Fellow, Eden Prairie, MN 55344, USA
| | - Zehai Wang
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Atharva A Poundarik
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Mohammed J Zaki
- Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Richard S Bockman
- Division of Endocrinology and Metabolic Bone Disease, Hospital for Special Surgery, New York, NY 10021, USA
| | - Benjamin S Glicksberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Girish N Nadkarni
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deepak Vashishth
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- OptumLabs Visiting Fellow, Eden Prairie, MN 55344, USA
- Correspondence: Deepak Vashishth, PhD, Center for Biotechnology & Interdisciplinary Studies, Professor of Biomedical Engineering, 110 8th Street, BT 2213, Troy NY, USA 12180-3590.
| |
Collapse
|
28
|
Ebeling PR, Nguyen HH, Aleksova J, Vincent AJ, Wong P, Milat F. Secondary Osteoporosis. Endocr Rev 2022; 43:240-313. [PMID: 34476488 DOI: 10.1210/endrev/bnab028] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a global public health problem, with fractures contributing to significant morbidity and mortality. Although postmenopausal osteoporosis is most common, up to 30% of postmenopausal women, > 50% of premenopausal women, and between 50% and 80% of men have secondary osteoporosis. Exclusion of secondary causes is important, as treatment of such patients often commences by treating the underlying condition. These are varied but often neglected, ranging from endocrine to chronic inflammatory and genetic conditions. General screening is recommended for all patients with osteoporosis, with advanced investigations reserved for premenopausal women and men aged < 50 years, for older patients in whom classical risk factors for osteoporosis are absent, and for all patients with the lowest bone mass (Z-score ≤ -2). The response of secondary osteoporosis to conventional anti-osteoporosis therapy may be inadequate if the underlying condition is unrecognized and untreated. Bone densitometry, using dual-energy x-ray absorptiometry, may underestimate fracture risk in some chronic diseases, including glucocorticoid-induced osteoporosis, type 2 diabetes, and obesity, and may overestimate fracture risk in others (eg, Turner syndrome). FRAX and trabecular bone score may provide additional information regarding fracture risk in secondary osteoporosis, but their use is limited to adults aged ≥ 40 years and ≥ 50 years, respectively. In addition, FRAX requires adjustment in some chronic conditions, such as glucocorticoid use, type 2 diabetes, and HIV. In most conditions, evidence for antiresorptive or anabolic therapy is limited to increases in bone mass. Current osteoporosis management guidelines also neglect secondary osteoporosis and these existing evidence gaps are discussed.
Collapse
Affiliation(s)
- Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia
| | - Hanh H Nguyen
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Department of Endocrinology and Diabetes, Western Health, Victoria 3011, Australia
| | - Jasna Aleksova
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Amanda J Vincent
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Monash Centre for Health Research and Implementation, School of Public Health and Preventative Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Phillip Wong
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Frances Milat
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| |
Collapse
|
29
|
The Impact of GLP1 Agonists on Bone Metabolism: A Systematic Review. Medicina (B Aires) 2022; 58:medicina58020224. [PMID: 35208548 PMCID: PMC8878541 DOI: 10.3390/medicina58020224] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Objectives: The association between diabetes mellitus and increased risk of bone fractures has led to the investigation of the impact of antidiabetic drugs on bone metabolism. Glucagon-like peptide-1 receptor agonists (GLP1RAs) are a relatively novel and promising class of anti-hyperglycemic drugs. In addition to their blood glucose lowering action, GLP1RAs seem to have additional pleiotropic properties such as a beneficial skeletal effect; although the underlying mechanisms are not completely understood. The present systematic review summarizes current evidence about GLP1RAs and their effects on bone metabolism and fracture. Methods: An extensive literature search was conducted based on electronic databases namely, PubMed, Google Scholar and Cochrane Central Register of Controlled Trials (CENTRAL) through October 2019 to January 2020 for articles related to bone mineral density, diabetes mellitus and GLP1RAs. We included articles published in English. Finally, we included four randomized controlled trials, three meta-analyses, a case-control study and a population-based cohort analysis. Results: Based on the articles included, the animal studies indicated the salutary skeletal effects of GLP1RAs in opposition to what has been commonly observed in human studies, showing that these agents have no impact on bone mineral density (BMD) and the turnover markers. Moreover, it was demonstrated that GLP1 was not associated with fracture risk as compared to other anti-hyperglycemic drugs. Conclusions: Findings from this systematic review have demonstrated the neutral impact of GLP1RAs on BMD. Moreover, further double-blind randomized controlled trials are needed to draw more meaningful and significant conclusions on the efficacy of GLP1RAs on BMD.
Collapse
|
30
|
Abildgaard J, Johansen MY, Skov-Jeppesen K, Andersen LB, Karstoft K, Hansen KB, Hartmann B, Holst JJ, Pedersen BK, Ried-Larsen M. Effects of a Lifestyle Intervention on Bone Turnover in Persons with Type 2 Diabetes: A Post Hoc Analysis of the U-TURN Trial. Med Sci Sports Exerc 2022; 54:38-46. [PMID: 34431828 DOI: 10.1249/mss.0000000000002776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION/PURPOSE The increased risk of fractures with type 2 diabetes (T2D) is suggested to be caused by decreased bone turnover. Current international guidelines recommend lifestyle modifications, including exercise, as first-line treatment for T2D. The aim of this study was to investigate the effects of an exercise-based lifestyle intervention on bone turnover and bone mineral density (BMD) in persons with T2D. METHODS Persons with T2D were randomized to either a 12-month lifestyle intervention (n = 64) or standard care (n = 34). The lifestyle intervention included five to six weekly aerobic training sessions, half of them combined with resistance training. Serum markers of bone turnover (osteocalcin, N-terminal propeptide of type-I procollagen, reflecting bone formation, and carboxyterminal collagen I crosslinks, reflecting bone resorption) and BMD (by DXA) were measured before the intervention and at follow-up. RESULTS From baseline to follow-up, s-propeptide of type-I procollagen increased by 34% (95% confidence interval [CI], 17%-50%), serum-carboxyterminal collagen I crosslink by 36% (95% CI, 1%-71%), and s-osteocalcin by 31% (95% CI, 11-51%) more in the lifestyle intervention group compared with standard care. Loss of weight and fat mass were the strongest mediators of the increased bone turnover. Bone mineral density was unaffected by the intervention (ΔBMD, 0.1%; 95% CI, -1.1% to 1.2%). CONCLUSIONS A 12-month intensive exercise-based lifestyle intervention led to a substantial but balanced increase in bone turnover in persons with T2D. The increased bone turnover combined with a preserved BMD, despite a considerable weight loss, is likely to reflect improved bone health and warrants further studies addressing the impact of exercise on risk of fractures in persons with T2D.
Collapse
Affiliation(s)
| | - Mette Yun Johansen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, DENMARK
| | | | - Lars Bo Andersen
- Department of Sport, Food and Natural Sciences, Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, Campus Sogndal, Sogndal, NORWAY
| | | | | | | | | | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, DENMARK
| | - Mathias Ried-Larsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, DENMARK
| |
Collapse
|
31
|
Van Hulten V, Rasmussen N, Driessen JHM, Burden AM, Kvist A, van den Bergh JP. Fracture Patterns in Type 1 and Type 2 Diabetes Mellitus: A Narrative Review of Recent Literature. Curr Osteoporos Rep 2021; 19:644-655. [PMID: 34931295 PMCID: PMC8716348 DOI: 10.1007/s11914-021-00715-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW In this narrative review, we have summarized the literature on fracture risk in T1DM and T2DM with a special focus on fracture site, time patterns, glucose-lowering drugs, and micro- and macrovascular complications. RECENT FINDINGS T1DM and T2DM were associated with an overall increased fracture risk, with preferent locations at the hip, vertebrae, humerus, and ankle in T1DM and at the hip, vertebrae, and likely humerus, distal forearm, and foot in T2DM. Fracture risk was higher with longer diabetes duration and the presence of micro- and macrovascular complications. In T2DM, fracture risk was higher with use of insulin, sulfonylurea, and thiazolidinediones and lower with metformin use. The increased fracture risk in T1DM and T2DM concerns specific fracture sites, and is higher in subjects with longer diabetes duration, vascular complications, and in T2DM with the use of specific glucose-lowering medication.
Collapse
Affiliation(s)
- V Van Hulten
- Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | | | - J H M Driessen
- Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - A M Burden
- Department of Chemistry and Applied Biosciences, Institute for Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - A Kvist
- Steno Diabetes Center North Denmark, Aalborg, Denmark
- Department of Chemistry and Applied Biosciences, Institute for Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB), Odense University Hospital, Odense, Denmark
| | - J P van den Bergh
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
- Department of Internal Medicine, Division of Rheumatology, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands.
- Department of Internal Medicine, Subdivision of Endocrinology, VieCuri Medical Center, Venlo, The Netherlands.
| |
Collapse
|
32
|
Kreitman A, Schneider SH, Hao L, Schlussel Y, Bello NT, Shapses SA. Reduced postprandial bone resorption and greater rise in GLP-1 in overweight and obese individuals after an α-glucosidase inhibitor: a double-blinded randomized crossover trial. Osteoporos Int 2021; 32:1379-1386. [PMID: 33432459 DOI: 10.1007/s00198-020-05791-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
UNLABELLED When taken with a meal, α-glucosidase inhibitors (α-GI) reduce the rise in postprandial glucose and increase glucagon-like peptide-1 (GLP-1), and this may lower bone turnover. In this study, a salacinol-type α-GI increased GLP-1 and markedly reduced postprandial bone resorption compared to placebo, suggesting it could have implications for bone health. INTRODUCTION Animal and clinical trials indicate that α-glucosidase inhibitors attenuate postprandial glycemic indices and increase secretion of GLP-1. In addition, GLP-1 acts on bone by inhibiting resorption. The goal in this study was to determine if a salacinol α-GI alters postprandial bone turnover and can be explained by changes in serum GLP-1. METHODS In this double-blind, placebo-controlled crossover study, healthy overweight/obese adults (body mass index 29.0 ± 3.8 kg/m2; 21-59 years; n = 21) received a fixed breakfast and, in random order, were administered Salacia chinensis (SC; 500 mg) or placebo. A fasting blood sample was taken before and at regular intervals for 3 h after the meal. Serum was measured for bone turnover markers, C-terminal telopeptide of type I collagen (CTX) and osteocalcin, and for glycemic indices and gut peptides. RESULTS Compared to placebo, SC attenuated the bone resorption marker, CTX, at 60, 90, and 120 min (p < 0.05) after the meal, and decreased osteocalcin, at 180 min (p < 0.05). As expected, SC attenuated the postprandial rise in glucose compared with placebo, whereas GLP-1 was increased at 60 min (p < 0.05) with SC. Serum GLP-1 explained 41% of the variance for change in postprandial CTX (p < 0.05). CONCLUSION This study indicates that attenuating postprandial glycemic indices, with an α-GI, markedly decreases postprandial bone resorption and can be explained by the rise in GLP-1. Future studies should determine whether longer term α-GI use benefits bone health.
Collapse
Affiliation(s)
- A Kreitman
- Department of Nutritional Sciences, Rutgers University, 59 Dudley RD, New Brunswick, NJ, 08901, USA
| | - S H Schneider
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Rutgers-Robert Wood Johnson University Hospital, New Brunswick, NJ, 08901, USA
- NJ-Institute of Food, Nutrition and Health, New Brunswick, NJ, 08901, USA
| | - L Hao
- Department of Nutritional Sciences, Rutgers University, 59 Dudley RD, New Brunswick, NJ, 08901, USA
- NJ-Institute of Food, Nutrition and Health, New Brunswick, NJ, 08901, USA
| | - Y Schlussel
- Department of Nutritional Sciences, Rutgers University, 59 Dudley RD, New Brunswick, NJ, 08901, USA
| | - N T Bello
- NJ-Institute of Food, Nutrition and Health, New Brunswick, NJ, 08901, USA
- Department of Animal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - S A Shapses
- Department of Nutritional Sciences, Rutgers University, 59 Dudley RD, New Brunswick, NJ, 08901, USA.
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Rutgers-Robert Wood Johnson University Hospital, New Brunswick, NJ, 08901, USA.
- NJ-Institute of Food, Nutrition and Health, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
33
|
Palui R, Pramanik S, Mondal S, Ray S. Critical review of bone health, fracture risk and management of bone fragility in diabetes mellitus. World J Diabetes 2021; 12:706-729. [PMID: 34168723 PMCID: PMC8192255 DOI: 10.4239/wjd.v12.i6.706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/08/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
The risk of fracture is increased in both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). However, in contrast to the former, patients with T2DM usually possess higher bone mineral density. Thus, there is a considerable difference in the pathophysiological basis of poor bone health between the two types of diabetes. Impaired bone strength due to poor bone microarchitecture and low bone turnover along with increased risk of fall are among the major factors behind elevated fracture risk. Moreover, some antidiabetic medications further enhance the fragility of the bone. On the other hand, antiosteoporosis medications can affect the glucose homeostasis in these patients. It is also difficult to predict the fracture risk in these patients because conventional tools such as bone mineral density and Fracture Risk Assessment Tool score assessment can underestimate the risk. Evidence-based recommendations for risk evaluation and management of poor bone health in diabetes are sparse in the literature. With the advancement in imaging technology, newer modalities are available to evaluate the bone quality and risk assessment in patients with diabetes. The purpose of this review is to explore the pathophysiology behind poor bone health in diabetic patients. Approach to the fracture risk evaluation in both T1DM and T2DM as well as the pragmatic use and efficacy of the available treatment options have been discussed in depth.
Collapse
Affiliation(s)
- Rajan Palui
- Department of Endocrinology, The Mission Hospital, Durgapur 713212, West Bengal, India
| | - Subhodip Pramanik
- Department of Endocrinology, Neotia Getwel Healthcare Centre, Siliguri 734010, West Bengal, India
| | - Sunetra Mondal
- Department of Endocrinology, Institute of Post Graduate Medical Education and Research (IPGMER), Kolkata 700020, West Bengal, India
| | - Sayantan Ray
- Department of Endocrinology, Medica Superspeciality Hospital and Medica Clinic, Kolkata 700099, West Bengal, India
- Department of Endocrinology, Jagannath Gupta Institute of Medical Sciences and Hospital, Kolkata 700137, West Bengal, India
| |
Collapse
|
34
|
Xie B, Chen S, Xu Y, Han W, Hu R, Chen M, Zhang Y, Ding S. The Impact of Glucagon-Like Peptide 1 Receptor Agonists on Bone Metabolism and Its Possible Mechanisms in Osteoporosis Treatment. Front Pharmacol 2021; 12:697442. [PMID: 34220521 PMCID: PMC8243369 DOI: 10.3389/fphar.2021.697442] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus and osteoporosis are closely related and have complex influencing factors. The impact of anti-diabetic drugs on bone metabolism has received more and more attention. Type 2 diabetes mellitus (T2DM) would lead to bone fragility, high risk of fracture, poor bone repair and other bone-related diseases. Furthermore, hypoglycemic drugs used to treat T2DM may have notable detrimental effects on bones. Thus, the clinically therapeutic strategy for T2DM should not only effectively control the patient's glucose levels, but also minimize the complications of bone metabolism diseases. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are novel and promising drug for the treatment of T2DM. Some studies have found that GLP-1RAs may play an anti-osteoporotic effect by controlling blood sugar levels, promoting bone formation and inhibiting bone resorption. However, in clinical practice, the specific effects of GLP-1RA on fracture risk and osteoporosis have not been clearly defined and evidenced. This review summarizes the current research findings by which GLP-1RAs treatment of diabetic osteoporosis, postmenopausal osteoporosis and glucocorticoid-induced osteoporosis and describes possible mechanisms, such as GLP-1R/MAPK signaling pathway, GLP-1R/PI3K/AKT signaling pathway and Wnt/β-catenin pathway, that are associated with GLP-1RAs and osteoporosis. The specific role and related mechanisms of GLP-1RAs in the bone metabolism of patients with different types of osteoporosis need to be further explored and clarified.
Collapse
Affiliation(s)
- Baocheng Xie
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Shichun Chen
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Yongxiang Xu
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Weichao Han
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Runkai Hu
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Minyi Chen
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Yusheng Zhang
- Department of Pharmacy, The First People's Hospital of Foshan (The Affiliated Foshan Hospital of Sun Yat-Sen University), Foshan, China
| | - Shaobo Ding
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| |
Collapse
|
35
|
Farooqui KJ, Mithal A, Kerwen AK, Chandran M. Type 2 diabetes and bone fragility- An under-recognized association. Diabetes Metab Syndr 2021; 15:927-935. [PMID: 33932745 DOI: 10.1016/j.dsx.2021.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Diabetes and osteoporosis are common chronic disorders with growing prevalence in the aging population. Skeletal fragility secondary to diabetes increases the risk of fractures and is underestimated by currently available diagnostic tools like fracture risk assessment (FRAX) and dual-energy X-ray absorptiometry (DXA). In this narrative review we describe the relationship and pathophysiology of skeletal fragility and fractures in Type 2 diabetes (T2DM), effect of glucose lowering medications on bone metabolism and the approach to diagnosing and managing osteoporosis and bone fragility in people with diabetes (PWD). METHODS A literature search was conducted on PubMed for articles in English that focused on T2DM and osteoporosis or bone/skeletal fragility. Articles considered to be of direct clinical relevance to physicians practicing diabetes were included. RESULTS T2DM is associated with skeletal fragility secondary to compromised bone remodeling and bone turnover. Long duration, poor glycemic control, presence of chronic complications, impaired muscle function, and anti-diabetic medications like thiazolidinediones (TZD) are risk factors for fractures among PWD. Conventional diagnostic tools like DXA and FRAX tool underestimate fracture risk in diabetes. Presence of diabetes does not alter response to anti-osteoporotic treatment in post-menopausal women. CONCLUSION Estimation of fragility fracture risk should be included in standard of care for T2DM along with screening for traditional complications. Physicians should proactively screen for and manage osteoporosis in people with diabetes. It is important to consider effects on bone health when selecting glucose lowering agents in people at risk for fragility fractures.
Collapse
Affiliation(s)
- Khalid J Farooqui
- Max Institute of Endocrinology and Diabetes, Max Super Speciality Hospital, Saket, Delhi, India.
| | - Ambrish Mithal
- Max Institute of Endocrinology and Diabetes, Max Super Speciality Hospital, Saket, Delhi, India
| | - Ann Kwee Kerwen
- Osteoporosis and Bone Metabolism Unit Department of Endocrinology, Singapore General Hospital, Singapore
| | - Manju Chandran
- Osteoporosis and Bone Metabolism Unit Department of Endocrinology, Singapore General Hospital, Singapore
| |
Collapse
|
36
|
Shi S, Ding F, Liu X, Wang L, Wang X, Zhang S, Zhao G, Song Y. Clinical and radiographic variables related to implants with simultaneous grafts among type 2 diabetic patients treated with different hypoglycemic medications: a retrospective study. BMC Oral Health 2021; 21:214. [PMID: 33906655 PMCID: PMC8080327 DOI: 10.1186/s12903-021-01583-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background The influence of different hypoglycemic agents on peri-implant variables among type 2 diabetes mellitus patients is still unclear. Therefore, the aim of this study was to assess the radiographic marginal bone loss and clinical parameters around implants in patients using different hypoglycemic agents. Methods In this retrospective cohort study, the dental implant records of type 2 diabetes mellitus patients who met the inclusion criteria were collected. The patients using only single medication as follows: insulin, metformin, or glucagon-like peptide-1 (GLP-1) drugs, were grouped according to their medication. These patients received implant placement with the same initial status, and all the prosthesis restorations were cement-retained ceramic crowns. The peri-implant marginal bone levels were evaluated by periapical radiographs immediately after implant placement and at 1 and 2-year follow-up visits. The baseline characteristics were compared among groups. The peri-implant radiographic marginal bone loss and clinical parameters were preliminarily compared using the Kruskal–Wallis test, and then the covariates were controlled by covariance analysis. Bonferroni post hoc adjustment test was performed for the multiple comparisons. Results After a review of more than 7000 medical records, a total of 150 patients with 308 implants at 1-year follow-up were assessed. The peri-implant marginal bone loss in the GLP-1 drug group was significantly smaller than the insulin group and metformin group (P < 0.01). The radiographic bone loss in the metformin group was higher than the insulin group (P < 0.05). Some of these included patients were lost to follow-up. Only 74 patients with 129 implants completed the 2-year follow-up. The radiographic bone loss in the metformin group was still higher than the insulin group (P < 0.05) and GLP-1 group (P < 0.01). There was no significant difference in the BOP (+) and the mean PD among groups (P > 0.05). Conclusions The radiographic variables were not exactly the same among the patients with different hypoglycemic agents at both the 1 and 2-year follow-ups. After ensuring consistency in baseline characteristics, the positive effect of GLP-1 drugs on peri-implant bone remodeling may be no less than insulin or metformin. More studies are needed to verify the direct effect of these drugs on peri-implant bone. Clinical trial registration number ChiCTR2000034211 (retrospectively registered).
Collapse
Affiliation(s)
- Shaojie Shi
- State key Laboratory of military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Feng Ding
- State key Laboratory of military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xiangdong Liu
- State key Laboratory of military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Lei Wang
- State key Laboratory of military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xingxing Wang
- State key Laboratory of military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Sijia Zhang
- State key Laboratory of military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Guoqiang Zhao
- State key Laboratory of military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yingliang Song
- State key Laboratory of military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
37
|
Abildgaard J, Ploug T, Pedersen AT, Eiken P, Pedersen BK, Holst JJ, Hartmann B, Lindegaard B. Preserved postprandial suppression of bone turnover markers, despite increased fasting levels, in postmenopausal women. Bone 2021; 143:115612. [PMID: 32853851 DOI: 10.1016/j.bone.2020.115612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/12/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Menopause leads to an increased bone turnover associated with a high risk of fractures. Bone turnover is inhibited by meal intake, to some extent mediated by gut hormones, and interventions based on these endocrine changes may have potential in future prevention of osteoporosis. OBJECTIVE To investigate whether postmenopausal women exhibit postprandial suppression of bone turnover markers to the same extent as premenopausal women, despite higher fasting levels. Furthermore, to assess whether menopausal differences in bone turnover markers are related to postmenopausal changes in plasma gut hormone levels. METHODS A cross-sectional study of 21 premenopausal, 9 perimenopausal, and 24 postmenopausal women between 45 and 60 years of age. Serum/plasma levels of bone turnover markers and gut hormones were investigated during a 120 min oral glucose tolerance test. Bone turnover markers included N-terminal propeptide of type-I procollagen (PINP, bone formation marker) and carboxyterminal collagen I crosslinks (CTX-I, bone resorption marker). Gut hormone secretion was evaluated from responses of glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2) and glucose-dependent insulinotropic polypeptide (GIP). RESULTS Fasting levels of s-CTX-I were increased in peri- and postmenopausal women compared to premenopausal women (p = 0.001). Despite higher fasting levels, the relative postprandial s-CTX-I suppression was comparable across menopausal status (p = 0.14). Fasting levels of s-PINP were also increased in postmenopausal women compared to premenopausal women (p < 0.001) with comparable and modest s-PINP suppression over menopause (p = 0.13). Postprandial plasma GLP-1 (p = 0.006) and GLP-2 (p = 0.01) were significantly increased in postmenopausal women compared to premenopausal women while GIP responses were slightly increased in the perimenopausal group (p = 0.02) but comparable between pre- and postmenopausal women. None of the postprandial gut hormone increases predicted postprandial bone turnover suppression in these women. CONCLUSIONS Glucose-induced suppression of bone turnover markers is preserved in postmenopausal women, despite significantly higher fasting values, indicating that CTX-I lowering treatments based on these postprandial mechanisms might be a feasible strategy to prevent postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Julie Abildgaard
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark; Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Denmark.
| | - Thorkil Ploug
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Anette Tønnes Pedersen
- Department of Gynaecology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pia Eiken
- Department of Nephrology and Endocrinology, Nordsjællands Hospital, Hillerød, Denmark
| | - Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Birgitte Lindegaard
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark; Department of Pulmonary and Infectious Diseases, Nordsjællands Hospital, Hillerød, Denmark.
| |
Collapse
|
38
|
Shen WR, Kitaura H, Qi J, Ogawa S, Ohori F, Noguchi T, Marahleh A, Nara Y, Adya P, Mizoguchi I. Local administration of high-dose diabetes medicine exendin-4 inhibits orthodontic tooth movement in mice. Angle Orthod 2021; 91:111-118. [PMID: 33289799 DOI: 10.2319/021320-103.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To investigate the effects of exendin-4 on orthodontic tooth movement distance, root resorption, and expression levels of osteoclast-related cytokines in a mouse model. MATERIALS AND METHODS A 10-g NiTi coil spring was placed between the anterior alveolar bone and upper left first molar of 8-week-old male C57BL/6 mice. Twenty microliters of exendin-4 solution (containing 0.2 μg, 4 μg, or 20 μg exendin-4) or phosphate-buffered saline (PBS) were injected on the buccal side of the upper left first molar at 2-day intervals (4 mice per group). Mice were sacrificed on day 12; silicone impressions were taken to record tooth movement distance. The left maxillae of the PBS and 20 μg exendin-4 groups were also excised for histological analysis and quantitative reverse transcription polymerase chain reaction analysis. RESULTS Orthodontic tooth movement distance was smaller in the 20 μg exendin-4 group than in the PBS group (P < .01). Compared with the PBS group, the 20 μg exendin-4 group showed lower osteoclast number (P < .05), odontoclast number (P < .05), and root resorption surface percentage (P < .05). Relative to maxillae with PBS injections, maxillae with 20 μg exendin-4 injections had lower receptor activator of nuclear factor kappa-B ligand (RANKL) mRNA expression (P < .05), TNF-α mRNA expression (P < .05), and RANKL/osteoprotegerin (OPG) ratio (P < .01). There were no differences in the expression of OPG mRNA. CONCLUSIONS Exendin-4 inhibits orthodontic tooth movement. Therefore, additional attention is needed for orthodontic patients who receive exendin-4 for diabetes treatment. GLP-1 receptor may be a treatment target for patients with severe root resorption.
Collapse
|
39
|
Yu J, Shi YC, Ping F, Li W, Zhang HB, He SL, Zhao Y, Xu LL, Li YX. Liraglutide Inhibits Osteoclastogenesis and Improves Bone Loss by Downregulating Trem2 in Female Type 1 Diabetic Mice: Findings From Transcriptomics. Front Endocrinol (Lausanne) 2021; 12:763646. [PMID: 34975749 PMCID: PMC8715718 DOI: 10.3389/fendo.2021.763646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The mechanisms of bone fragility in type 1 diabetes (T1D) are not fully understood. Whether glucagon-like peptide-1 receptor (GLP-1R) agonists could improve bone quality in T1D context also remains elusive. AIMS We aimed to explore the possible mechanisms of bone loss in T1D and clarify whether liraglutide has effects on bone quality of T1D mice using transcriptomics. METHODS Female streptozotocin-induced diabetic C57BL/6J mice were randomly divided into four groups and received the following treatments daily for 8 weeks: saline as controls, insulin, liraglutide, and liraglutide combined with insulin. These groups were also compared with non-STZ-treated normal glucose tolerance (NGT) group. Trunk blood and bone tissues were collected for analysis. Three tibia from each of the NGT, saline-treated, and liraglutide-treated groups were randomly selected for transcriptomics. RESULTS Compared with NGT mice, saline-treated T1D mice manifested markedly hyperglycemia and weight loss, and micro-CT revealed significantly lower bone mineral density (BMD) and deficient microarchitectures in tibias. Eight weeks of treatment with liraglutide alone or combined with insulin rescued the decreased BMD and partly corrected the compromised trabecular microarchitectures. Transcriptomics analysis showed there were 789 differentially expressed genes mainly mapped to osteoclastogenesis and inflammation pathways. The RT-qPCR verified that the gene expression of Trem2, Nfatc1, Trap, and Ctsk were significantly increased in the tibia of T1D compared with those in the NGT group. Liraglutide treatment alone or combined with insulin could effectively suppress osteoclastogenesis by downregulating the gene expression of Trem2, Nfatc1, Ctsk, and Trap. CONCLUSIONS Taken together, increased osteoclastogenesis with upregulated expression of Trem2 played an important role in bone loss of T1D mice. Liraglutide provided protective effects on bone loss in T1D mice by suppressing osteoclastogenesis.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan-Chuan Shi
- Group of Neuroendocrinology, Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- Faculty of Medicine, UNSW, Sydney, NSW, Australia
| | - Fan Ping
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Li
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hua-Bing Zhang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shu-Li He
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuan Zhao
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ling-Ling Xu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Ling-Ling Xu, ; Yu-Xiu Li,
| | - Yu-Xiu Li
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Ling-Ling Xu, ; Yu-Xiu Li,
| |
Collapse
|
40
|
Zhang YS, Zheng YD, Yuan Y, Chen SC, Xie BC. Effects of Anti-Diabetic Drugs on Fracture Risk: A Systematic Review and Network Meta-Analysis. Front Endocrinol (Lausanne) 2021; 12:735824. [PMID: 34721294 PMCID: PMC8553257 DOI: 10.3389/fendo.2021.735824] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/22/2021] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Available data on the effects of anti-diabetic drugs on fracture risk are contradictory. Therefore, our study aimed to analyze all available data on the effects of anti-diabetic drugs on fracture risk in type 2 diabetes mellitus (T2DM) patients. METHODS Embase, Medline, ClinicalTrials.gov, and Cochrane CENTRAL were searched for relevant trials. All data analyses were performed with STATA (12.0) and R language (3.6.0). Risk ratio (RR) with its 95% confidence interval (CI) was calculated by combining data for the fracture effects of anti-diabetic drugs, including sodium-glucose co-transporter 2 (SGLT2) inhibitors, dipeptidyl peptidase-4 (DPP-4) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, meglitinides, α-glucosidase inhibitors, thiazolidinediones, biguanides, insulin, and sulfonylureas. RESULTS One hundred seventeen eligible randomized controlled trials (RCTs) with 221,364 participants were included in this study. Compared with placebo, trelagliptin (RR 3.51; 1.58-13.70) increased the risk of fracture, whereas albiglutide (RR 0.29; 0.04-0.93) and voglibose (RR 0.03; 0-0.11) decreased the risk of fracture. Other medications were comparable in terms of their effects on fracture risk, and no statistical significance was observed. In terms of fractures, voglibose (0.01%) may be the safest option, and trelagliptin (13.64%) may be the worst. Sensitivity analysis results were consistent with those of the main analysis. No statistically significant differences were observed in the regression coefficients of age (1.03; 0.32-2.1), follow-up duration (0.79; 0.27-1.64), and sex distribution (0.63; 0.15-1.56). CONCLUSIONS We found varied results on the association between the use of anti-diabetic drugs and fracture risk. Specifically, trelagliptin raised the risk of fracture, whereas voglibose and albiglutide showed benefit with statistical difference. Other drugs were comparable in terms of their effects on fracture risk. Some drugs (omarigliptin, sitagliptin, vildagliptin, saxagliptin, empagliflozin, ertugliflozin, rosiglitazone, pioglitazone, and nateglinide) may increase the risk of fracture, while others (such as dulaglutide, exenatide, liraglutide, semaglutide, lixisenatide, linagliptin, alogliptin, canagliflozin, dapagliflozin, glipizide, gliclazide, glibenclamide, glimepiride, metformin, and insulin) may show benefits. The risk of fracture was independent of age, sex distribution, and the duration of exposure to anti-diabetic drugs. When developing individualized treatment strategies, the clinical efficacy of anti-diabetic drugs must be weighed against their benefits and risks brought about by individual differences of patients. SYSTEMATIC REVIEW REGISTRATION This Systematic Review was prospectively registered on the PROSPERO (https://www.crd.york.ac.uk/PROSPERO/, registration number CRD42020189464).
Collapse
Affiliation(s)
- Yu-Sheng Zhang
- Department of Pharmacy, The First People’s Hospital of Foshan, Foshan, China
| | - Yan-Dan Zheng
- Department of Clinical Laboratory, The First People’s Hospital of Foshan, Foshan, China
| | - Yan Yuan
- Department of Pharmacy, The First People’s Hospital of Foshan, Foshan, China
| | - Shi-Chun Chen
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, China
- *Correspondence: Shi-Chun Chen, ; Bao-Cheng Xie,
| | - Bao-Cheng Xie
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, China
- *Correspondence: Shi-Chun Chen, ; Bao-Cheng Xie,
| |
Collapse
|
41
|
Qian BB, Chen Q, Li L, Yan CF. Association between combined treatment with SGLT2 inhibitors and metformin for type 2 diabetes mellitus on fracture risk: a meta-analysis of randomized controlled trials. Osteoporos Int 2020; 31:2313-2320. [PMID: 32780153 DOI: 10.1007/s00198-020-05590-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
UNLABELLED This study analyzed the effects of combination therapy with sodium-glucose transporter-2 inhibitors (SGLT2is) and metformin on fracture risk. Summarizing available randomized controlled trials, we found that SGLT2is combined with metformin therapy did not influence fracture risk compared with metformin monotherapy or other comparators in patients with T2DM. INTRODUCTION No study is available evaluating the association between sodium-glucose transporter-2 inhibitors (SGLT2is) in combination with metformin use and fracture risk. Our study aimed to investigate the fracture risk of combination therapy with SGLT2is and metformin in patients with type 2 diabetes mellitus (T2DM). METHODS PubMed, Embase, ClinicalTrials.gov site, and the Cochrane Library databases were scrutinized for all eligible randomized controlled trials (RCTs). The summarized odds ratios (ORs) and their 95% confidence intervals (CI) were calculated using Review Manager 5.3 software. RESULTS A total of 25 RCTs involving 19,500 participants with T2DM were included in our studies. There were 88 fracture cases in the SGLT2is in combination with metformin therapy group and 79 in the control group. SGLT2is combined with metformin use did not influence fracture risk compared with metformin monotherapy or other comparators in patients with T2DM (OR = 0.97, 95% CI 0.71-1.32). After stratification by drug type, follow-up time, control regimen, and type of fracture, the upshots were still stable. CONCLUSION SGLT2is and metformin combination therapy did not influence fracture risk compared with metformin monotherapy or other comparators in patients with T2DM. PROSPERO REGISTRATION NUMBER CRD42020168435.
Collapse
Affiliation(s)
- B-B Qian
- Department of Endocrinology, Northern Jiangsu People's Hospital, The Second Clinical College of Dalian Medical University, Yangzhou, 225001, Jiangsu, China
| | - Q Chen
- Department of Endocrinology, Northern Jiangsu People's Hospital, The Second Clinical College of Dalian Medical University, Yangzhou, 225001, Jiangsu, China
| | - L Li
- Department of Endocrinology, Northern Jiangsu People's Hospital, The Second Clinical College of Dalian Medical University, Yangzhou, 225001, Jiangsu, China
| | - C-F Yan
- Department of Endocrinology, Northern Jiangsu People's Hospital, The Second Clinical College of Dalian Medical University, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
42
|
Lee HS, Hwang JS. Impact of Type 2 Diabetes Mellitus and Antidiabetic Medications on Bone Metabolism. Curr Diab Rep 2020; 20:78. [PMID: 33247351 DOI: 10.1007/s11892-020-01361-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW This review focuses on the complex interactions between hyperglycemia and bone fragility and the effects of antidiabetic medications on bone metabolism. RECENT FINDINGS Type 2 diabetes (T2D) is associated with increased risk of bone fracture even in those with increased or normal bone mineral density (BMD). The pathophysiology of diabetic bone disease is not completely understood, but it is thought to be multifactorial and associated with complex cross talk among factors such as AGEs, IGF-1, enteric hormones, and pro-inflammatory cytokines. Treatment for T2D may have an impact on bone metabolism. Diabetic bone disease should be considered a serious complication of long-standing T2D.
Collapse
Affiliation(s)
- Hae Sang Lee
- Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Ajou University Hospital, San 5, Wonchon-dong, Yeongtong-gu, Suwon, 443-721, Korea
| | - Jin Soon Hwang
- Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Ajou University Hospital, San 5, Wonchon-dong, Yeongtong-gu, Suwon, 443-721, Korea.
| |
Collapse
|
43
|
Abstract
INTRODUCTION Preclinical, clinical, and population-based studies have provided evidence that anti-diabetic drugs affect bone metabolism and may affect the risk of fracture in diabetic patients. AREAS COVERED An overview of the skeletal effects of anti-diabetic drugs used in type 2 diabetes is provided. Searches on AdisInsight, PubMed, and Medline databases were conducted up to 1st July 2020. The latest evidence from randomized clinical trials and population-based studies on the skeletal safety of the most recent drugs (DPP-4i, GLP-1RA, and SGLT-2i) is provided. EXPERT OPINION Diabetic patients present with a higher risk of fracture for a given bone mineral density suggesting a role of bone quality in the etiology of diabetic fracture. Bone quality is difficult to assess in human clinical practice and the use of preclinical models provides valuable information on diabetic bone alterations. As several links have been established between bone and energy homeostasis, it is interesting to study the safety of anti-diabetic drugs on the skeleton. So far, evidence for the newest molecules suggests a neutral fracture risk, but further studies, especially in different types of patient populations (patients at risk or with history of cardiovascular disease, renal impairment, neuropathy) are required to fully appreciate this matter.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- Groupe Etude Remodelage Osseux et biomatériaux, GEROM, UPRES EA 4658, UNIV Angers, SFR ICAT 4208, Institut de Biologie en Santé , Angers, France
- Service Commun d'Imagerie et Analyses Microscopiques, SCIAM, UNIV Angers, SFR ICAT 4208, Institut de Biologie en Santé , Angers, France
- Bone pathology unit, Angers University hospital , Angers Cedex, France
| | - Béatrice Bouvard
- Groupe Etude Remodelage Osseux et biomatériaux, GEROM, UPRES EA 4658, UNIV Angers, SFR ICAT 4208, Institut de Biologie en Santé , Angers, France
- Rheumatology department, Angers University Hospital , Angers Cedex, France
| |
Collapse
|
44
|
Affiliation(s)
- Rajesh Peter
- Department of Diabetes and Endocrinology, Neath Port Talbot Hospital, Swansea Bay University Health Board, Swansea, UK
- Department of Diabetes and Endocrinology, Singleton Hospital, Swansea Bay University Health Board, Swansea, UK
| | - Steve C. Bain
- Department of Diabetes and Endocrinology, Singleton Hospital, Swansea Bay University Health Board, Swansea, UK
- Diabetes Research Group, Swansea University Medical School, Swansea, UK
| |
Collapse
|
45
|
Ding LL, Wen F, Wang H, Wang DH, Liu Q, Mo YX, Tan X, Qiu M, Hu JX. Osteoporosis drugs for prevention of clinical fracture in white postmenopausal women: a network meta-analysis of survival data. Osteoporos Int 2020; 31:961-971. [PMID: 32002571 DOI: 10.1007/s00198-019-05183-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/27/2019] [Indexed: 01/22/2023]
Abstract
By Bayesian random effects network meta-analysis stratified by prevalent vertebral fracture (PVF), we conclude that different effective drugs should be used to prevent fragility fractures according to postmenopausal women with or without PVF and that there are two drugs (i.e., parathyroid hormone (1-84) and abaloparatide) less tolerated than placebo. INTRODUCTION No studies have compared various osteoporosis drugs in postmenopausal women (PMW) either with or without prevalent vertebral fracture (PVF). We aimed to compare them in the two different subgroups. METHODS We searched different databases to select relevant studies. We performed Bayesian random effects network meta-analysis to synthesize hazard ratio (HR) and 95% confidence interval (CI) for clinical fracture stratified by PVF and to synthesize risk ratio (RR) for tolerability and vertebral fracture. RESULTS We included 33 trials involving 79,144 PMW. In the PVF ≥ 50% subgroup, teriparatide (HR 0.39, 95% CI 0.28-0.57), romosozumab (HR 0.49, 95% CI 0.29-0.75), risedronate (HR 0.62, 95% CI 0.50-0.79), zoledronate (HR 0.67, 95% CI 0.47-0.96), and alendronate (HR 0.69, 95% CI 0.47-0.97) reduced clinical fracture risk. In the other subgroup, abaloparatide (HR 0.56, 95% CI 0.33-0.92), romosozumab (HR 0.67, 95% CI 0.47-0.95), and denosumab (HR 0.68, 95% CI 0.50-0.85) reduced clinical fracture risk. Five drugs reduced vertebral fracture risk in the PVF ≥ 50% subgroup whereas seven did in the other subgroup. All drugs did not increase withdrawal risk except for parathyroid hormone (1-84) (PTH) (RR 1.9, 95% CI 1.4-2.6) and abaloparatide (RR 1.6, 95% CI 1.2-2.3). CONCLUSION Different effective drugs should be used to prevent fragility fractures according to PMW with or without PVF, and romosozumab is the only one which can reduce clinical and vertebral fractures in both of the two populations. PTH and abaloparatide are less tolerated than placebo whereas the eight other drugs assessed in the study have the same tolerability as placebo.
Collapse
Affiliation(s)
- L-L Ding
- Department of Orthopedics, The People's Hospital of Rongchang District, Chongqing, 402460, China
| | - F Wen
- Department of Orthopedics, The People's Hospital of Rongchang District, Chongqing, 402460, China
| | - H Wang
- Department of Orthopedics, The People's Hospital of Rongchang District, Chongqing, 402460, China
| | - D-H Wang
- Department of Orthopedics, The People's Hospital of Rongchang District, Chongqing, 402460, China
| | - Q Liu
- Department of Orthopedics, Yueyang Second People's Hospital, Hunan Normal University, Yueyang, 414000, Hunan, China
| | - Y-X Mo
- Department of Gynecology, The People's Hospital of Rongchang District, Chongqing, 402460, China
| | - X Tan
- Department of Orthopedics, The People's Hospital of Rongchang District, Chongqing, 402460, China
| | - M Qiu
- Department of Gynecology, The People's Hospital of Rongchang District, Chongqing, 402460, China.
| | - J-X Hu
- Department of Orthopedics, Yueyang Second People's Hospital, Hunan Normal University, Yueyang, 414000, Hunan, China.
| |
Collapse
|
46
|
Hygum K, Harsløf T, Jørgensen NR, Rungby J, Pedersen SB, Langdahl BL. Bone resorption is unchanged by liraglutide in type 2 diabetes patients: A randomised controlled trial. Bone 2020; 132:115197. [PMID: 31870634 DOI: 10.1016/j.bone.2019.115197] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/08/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Liraglutide, a glucagon-like peptide-1 receptor agonist, has well known beneficial effects on glucose metabolism, and animal studies indicate that liraglutide also affects bone turnover by decreasing bone resorption. The primary objective of the study was to investigate the effect of liraglutide on bone turnover in patients with T2D. METHODS The study was a randomized, double-blinded, clinical trial. Sixty participants with T2D were randomized to treatment with liraglutide 1.8 mg daily or placebo for 26 weeks. The primary endpoint was change in p-collagen I cross-linked C-terminal telopeptide (p-CTX). RESULTS P-CTX increased in patients treated with liraglutide by 0.07 (0.03; 0.10) μg/L (p < 0.001) and in patients treated with placebo by 0.03 (0.00; 0.06) μg/L (p = 0.04), however, changes were not different between the groups (p = 0.16). Weight decreased in patients treated with liraglutide from baseline to week four (p < 0.001) and remained stable thereafter. P-procollagen type 1 N-terminal propeptide (P1NP) decreased in patients treated with liraglutide from baseline to week four (p < 0.01), increased between weeks 4 and 13 (p = 0.03), and remained elevated thereafter. Weight and p-P1NP did not change in patients treated with placebo. Hip bone mineral density (BMD) decreased in placebo treated patients from baseline to end of study, whereas no changes were seen in patients treated with liraglutide (p = 0.01 difference between groups). CONCLUSION Liraglutide treatment for 26 weeks did not affect bone resorption and preserved hip BMD despite weight loss in patients with T2D, suggesting that liraglutide has some antiresorptive effect.
Collapse
Affiliation(s)
- Katrine Hygum
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark.
| | - Torben Harsløf
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Denmark; OPEN, Open Patient data Explorative Network, Odense University Hospital/Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jørgen Rungby
- Department of Endocrinology IC/ Copenhagen Center for Translational Research, Bispebjerg University Hospital, Denmark
| | - Steen B Pedersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark
| | - Bente L Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark
| |
Collapse
|
47
|
Liu JM, Zhu DL, Mu YM, Xia WB. Management of fracture risk in patients with diabetes-Chinese Expert Consensus. J Diabetes 2019; 11:906-919. [PMID: 31219236 DOI: 10.1111/1753-0407.12962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/20/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
- Jian-Min Liu
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai, China
| | - Da-Long Zhu
- Department of Endocrinology, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Yi-Ming Mu
- Department of Endocrinology, The General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Wei-Bo Xia
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
48
|
Hidayat K, Du X, Wu MJ, Shi BM. The use of metformin, insulin, sulphonylureas, and thiazolidinediones and the risk of fracture: Systematic review and meta-analysis of observational studies. Obes Rev 2019; 20:1494-1503. [PMID: 31250977 DOI: 10.1111/obr.12885] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
Abstract
Certain glucose-lowering medications have been implicated in the risk of fracture. While there is convincing evidence from randomized controlled trials (RCTs) that thiazolidinedione use is associated with a higher risk of fracture, the effects of metformin, insulin, and sulphonylureas on the risk of fracture remain equivocal because these medications are not generally investigated in RCTs. A meta-analysis of observational studies to provide further insights into the association between the use of metformin, insulin, sulphonylureas, or thiazolidinediones and the risk of fracture was performed. PubMed and Web of Science databases were searched to identify relevant observational studies. A random effects model was used to estimate the summary relative risks (RRs) with 95% confidence intervals (CIs). The use of insulin (RR 1.49, 95% CI 1.29, 1.73; n = 23 studies), sulphonylureas (RR 1.30, 95% CI 1.18, 1.43; n = 10), and thiazolidinediones (RR 1.24, 95% CI 1.13, 1.35; n = 14) was associated with an increased risk of fracture, whereas the use of metformin was associated with a reduced risk of fracture (RR 0.86, 95% CI 0.75, 0.99; n = 12). Regarding types of thiazolidinediones, both pioglitazone (RR 1.38, 95% CI 1.23, 1.54; n = 5) and rosiglitazone (RR 1.34, 95% CI 1.14, 1.58; n = 5) were positively associated with the risk of fracture. In summary, there is compelling evidence to discourage the use of thiazolidinediones in individuals with an increased risk of fracture, whereas metformin appears to have a good safety profile for the risk of fracture. The reduced risk of fracture with metformin could possibly be due to the reduced overall risk of fracture among metformin users, as this medication is typically prescribed in the early stages of type 2 diabetes mellitus. The use of insulin or sulphonylureas may increase fracture risk; this risk is most likely attributed to an increased risk of hypoglycaemia-induced falls. Further confirmation by additional RCTs is required to determine whether the observed association between the use of metformin, insulin, or sulphonylureas and the risk of fracture is due to treatment with these medications or confounding factors.
Collapse
Affiliation(s)
- Khemayanto Hidayat
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuan Du
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng-Jiao Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bi-Min Shi
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
49
|
Chen Q, Liu T, Zhou H, Peng H, Yan C. Risk of Fractures Associated with Dipeptidyl Peptidase-4 Inhibitor Treatment: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diabetes Ther 2019; 10:1879-1892. [PMID: 31347093 PMCID: PMC6778576 DOI: 10.1007/s13300-019-0668-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION More and more studies suggest that type 2 diabetes mellitus (T2DM) can lead to an increased fracture risk. Some previous clinical studies and experimental data have shown that some antidiabetic drugs can increase or decrease the incidence of fractures. METHODS We searched Medline, Embase, Cochrane Library, and the ClinicalTrials.gov website ( https://www.clinicaltrials.gov ) for published or unpublished randomized controlled trials (RCTs) from inception through 2 December 2018 to compare the effects of dipeptidyl peptidase-4 (DDP-4) inhibitors with active control drugs or placebo in T2DM patients. All RCTs had a duration of at least 12 weeks, and the ultimate measure was whether a fracture occurs or not. We calculated odds ratios and their 95% confidence intervals by the fixed effect Mantel-Haenszel model. Publication bias was investigated firstly through visual observation of funnel plot asymmetry and then through Begg's test or Egger's test. The Cochrane bias risk tools were used to assess the quality of included studies. RESULTS Eighty-seven eligible RCTs were included in this study. Of 93,772 participants, 49,270 patients received therapy and 44,502 were control patients. Five kinds of DDP-4 inhibitors were included: sitagliptin, saxagliptin, alogliptin, linagliptin and vildagliptin. There were 676 fractures in the DDP-4 inhibitor treatment group and 646 in the control group. The median average glycosylated hemoglobin level was 8.2%. DDP-4 inhibitor treatment did not seem to influence the fracture risk, no matter whether compared with placebo or active comparators in T2DM patients (Mantel-Haenszel odds ratio (MH-OR) = 1.01, 95% CI 0.90-1.12, P = 0.92). After three subgroup analyses which were defined by drug type, control regimen and duration, the results were still stable. CONCLUSION This systematic review and meta-analysis shows that DDP-4 inhibitors do not affect the fracture risk when compared with antidiabetic drugs or placebo in T2DM patients.
Collapse
Affiliation(s)
- Qing Chen
- Department of Endocrinology, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Ting Liu
- Department of Endocrinology, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Haonan Zhou
- Department of Endocrinology, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Huawei Peng
- Department of Endocrinology, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Caifeng Yan
- Department of Endocrinology, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| |
Collapse
|
50
|
Hidayat K, Du X, Shi BM. Risk of fracture with dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors in real-world use: systematic review and meta-analysis of observational studies. Osteoporos Int 2019; 30:1923-1940. [PMID: 31134305 DOI: 10.1007/s00198-019-04968-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/07/2019] [Indexed: 12/19/2022]
Abstract
In the present meta-analysis based on real-world data, the use of dipeptidyl peptidase-4 inhibitors (DPP-4i), glucagon-like peptide-1 receptor agonists (GLP-1ra), or sodium-glucose cotransporter-2 inhibitors (SGLT2i) was not associated with the risk of fracture. INTRODUCTION Cumulative evidence from randomized control trials (RCTs) with limited fracture events showed that the use of DPP-4i, GLP-1ra, or SGLT2i may not affect the risk of fracture. However, additional insights from large population-based studies with routinely collected data on fracture events and an adequate amount of fracture events are necessary to draw firm conclusions. To refine and complement the results from RCTs, a systematic review and meta-analysis of observational studies were performed to investigate the association between the use of DPP-4i, GLP-1ra, or SGLT2i and the risk of fracture in real-world settings. METHODS The PubMed and Web of Science databases were searched to identify relevant observational studies. A random-effect model was used to estimate the summary relative risks (RRs). RESULTS The use of DPP-4i (RR 0.83, 95% CI [confidence interval] 0.60, 1.14; n = 11), GLP-1ra (RR 0.65, 95% CI 0.24, 1.74; n = 4), or SGLT2i (RR 1.02, 95% CI 0.91, 1.16; n = 4) was not associated with the risk of fracture. In general, there was a consistent lack of association between the use of DPP-4i or GLP-1ra and the risk of fracture across nearly all subgroups, except for a significantly reduced risk of hip fracture with the use of GLP-1ra (RR 0.21, 95% CI 0.04, 0.98). CONCLUSIONS Cumulative real-world evidence does not support an association between the use of DPP-4i, GLP-1ra, or SGLT2i and the risk of fracture. Our findings, together with the cumulative evidence from RCTs, should reassure policy makers and medical practitioners that the use of these medications is unlikely to increase the risk of fracture among type 2 diabetes mellitus patients in general. Further studies need to investigate the long-term impact of these drugs on the fracture risk, particularly in high-risk populations.
Collapse
Affiliation(s)
- K Hidayat
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215006, China.
| | - X Du
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215006, China
| | - B-M Shi
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215006, China.
| |
Collapse
|