1
|
Xu W, Gong L, Tang W, Lu G. Nitrogen-containing bisphosphonate induces enhancement of OPG expression and inhibition of RANKL expression via inhibition of farnesyl pyrophosphate synthase to inhibit the osteogenic differentiation and calcification in vascular smooth muscle cells. BMC Cardiovasc Disord 2024; 24:494. [PMID: 39289624 PMCID: PMC11406803 DOI: 10.1186/s12872-024-04048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/12/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Nitrogen-containing bisphosphonate(N-BP)had been found to inhibit the osteogenic differentiation and calcification in vascular smooth muscle cells (VSMCs), but the mechanism is not clear. We intend to verify that N-BP induces enhancement of OPG expression and inhibition of RANKL expression via inhibition of farnesyl pyrophosphate synthase(FPPS) to inhibit the osteogenic differentiation and calcification in VSMCs. METHODS β-glycerophosphate (β-GP) was used to induce the osteogenic differentiation and calcification in VSMCs. VSMCs were treated with N-BP or pretreated with downstream products of farnesyl pyrophosphate synthase(FPPS) in mevalonate pathway, such as farnesol (FOH) or geranylgeraniol (GGOH). Alizarin red S staining and determination of calcium content were used to detect calcium deposition.Western Blotting were used to detect expressions of proteins(OPG and RANKL ) and osteogenic marker proteins (Runx2 and OPN). RESULTS β-GP induced the osteogenic differentiation and calcification in VSMCs, increased RANKL protein expression and had no significant effect on OPG protein expression. With the treatment of N-BP, the expression of OPG protein was increased and expression of RANKL protein was decreased in VSMCs undergoing osteogenic differentiation and calcification. In addition, N-BP reduced the osteogenic marker proteins (Runx2 and OPN) expression and calcium deposition in VSMCs undergoing osteogenic differentiation and calcification. These effects of N-BP on the osteogenic differentiation and calcification in VSMCs were concentration-dependent, which could be reversed by the downstream products of FPPS, such as FOH or GGOH. CONCLUSION N-BP increases OPG expression and decreases RANKL expression via inhibition of FPPS to inhibit the osteogenic differentiation and calcification in VSMCs.
Collapse
MESH Headings
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Osteogenesis/drug effects
- RANK Ligand/metabolism
- Cell Differentiation/drug effects
- Osteoprotegerin/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/enzymology
- Vascular Calcification/metabolism
- Vascular Calcification/drug therapy
- Cells, Cultured
- Geranyltranstransferase/metabolism
- Geranyltranstransferase/antagonists & inhibitors
- Core Binding Factor Alpha 1 Subunit/metabolism
- Humans
- Glycerophosphates/pharmacology
- Osteopontin/metabolism
Collapse
Affiliation(s)
- Wei Xu
- Department of Nephrology, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Department of Nephrology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213000, Jiangsu, China
- Department of Nephrology, People's Hospital of Hainan Tibetan Autonomous Prefecture, Hainan Tibetan Autonomous Prefecture, Qinghai, 813099, China
| | - Lifeng Gong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Department of Nephrology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213000, Jiangsu, China
| | - Weigang Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Department of Nephrology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213000, Jiangsu, China
| | - Guoyuan Lu
- Department of Nephrology, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
2
|
Geers J, Bing R, Pawade TA, Doris MK, Daghem M, Fletcher AJ, White AC, Forsyth L, Evans E, Kwieciński J, Williams MC, van Beek EJR, Kwak S, Peeters FECM, Tzolos E, Slomka PJ, Lucatelli C, Ralston SH, Prendergast B, Newby DE, Dweck MR. Effect of Denosumab or Alendronate on Vascular Calcification: Secondary Analysis of SALTIRE2 Randomized Controlled Trial. J Am Heart Assoc 2024; 13:e032571. [PMID: 39248270 DOI: 10.1161/jaha.123.032571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/08/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Patients with osteoporosis demonstrate increased vascular calcification but the effect of osteoporosis treatments on vascular calcification remains unclear. The present study aimed to examine whether coronary or aortic calcification are influenced by denosumab and alendronic acid treatment. METHODS AND RESULTS In a double-blind randomized controlled SALTIRE2 (Study Investigating the Effect of Drugs Used to Treat Osteoporosis on the Progression of Calcific Aortic Stenosis) trial, patients with aortic stenosis were randomized 2:1:2:1 to denosumab, placebo injection, alendronic acid, or placebo capsule. Participants underwent serial imaging with computed tomography and 18F-sodium fluoride positron emission tomography for the assessment of vascular calcium burden and calcification activity, respectively. We report the prespecified secondary analyses of 24-month change in coronary calcium score, and 12-month changes in thoracic aorta calcium score, coronary and aortic 18F-sodium fluoride activity. One hundred fifty patients with aortic stenosis (72±8 years; 21% female) were randomized to denosumab (n=49), alendronic acid (n=51), and placebo (injection n=25, capsule n=25). There were no differences in change in coronary calcium scores between placebo (16 [-64 to 148] Agatston units) and either denosumab (94 [0-212] Agatston units, P=0.24) or alendronic acid (34 [-62 to 134], P=0.99). There were no differences in change in thoracic aorta calcium scores between placebo (132 [22-512] Agatston units) and either denosumab (118 [11-340], P=0.75) or alendronic acid (116 [26-498] Agatston units, P=0.62). There were no differences in changes in coronary or aortic 18F-sodium fluoride activity between treatment groups. CONCLUSIONS Neither alendronic acid nor denosumab are associated with changes in the activity or progression of coronary or aortic calcification. Osteoporosis treatments do not appear to have major impact on vascular calcification of atherosclerosis. REGISTRATION https://www.clinicaltrials.gov; Unique identifier: NCT02132026.
Collapse
Affiliation(s)
- Jolien Geers
- BHF Centre for Cardiovascular Science University of Edinburgh Edinburgh UK
- Department of Cardiology Universitair Ziekenhuis Brussel (UZ Brussel) Vrije Universiteit Brussel (VUB) Brussels Belgium
| | - Rong Bing
- BHF Centre for Cardiovascular Science University of Edinburgh Edinburgh UK
| | - Tania A Pawade
- BHF Centre for Cardiovascular Science University of Edinburgh Edinburgh UK
| | - Mhairi K Doris
- BHF Centre for Cardiovascular Science University of Edinburgh Edinburgh UK
| | - Marwa Daghem
- BHF Centre for Cardiovascular Science University of Edinburgh Edinburgh UK
| | - Alexander J Fletcher
- BHF Centre for Cardiovascular Science University of Edinburgh Edinburgh UK
- Department of Child Health University of Glasgow Glasgow UK
| | - Audrey C White
- BHF Centre for Cardiovascular Science University of Edinburgh Edinburgh UK
| | - Laura Forsyth
- Edinburgh Clinical Trials Unit University of Edinburgh Edinburgh UK
| | - Emily Evans
- Edinburgh Clinical Research Facility University of Edinburgh Edinburgh UK
| | - Jacek Kwieciński
- Department of Interventional Cardiology and Angiology Institute of Cardiology Warsaw Poland
| | - Michelle C Williams
- BHF Centre for Cardiovascular Science University of Edinburgh Edinburgh UK
- Edinburgh Imaging University of Edinburgh Edinburgh UK
| | - Edwin J R van Beek
- BHF Centre for Cardiovascular Science University of Edinburgh Edinburgh UK
- Edinburgh Imaging University of Edinburgh Edinburgh UK
| | - Soongu Kwak
- Department of Internal Medicine Seoul National University Hospital Seoul South Korea
| | | | - Evangelos Tzolos
- BHF Centre for Cardiovascular Science University of Edinburgh Edinburgh UK
| | - Piotr J Slomka
- Departments of Biomedical Sciences and Medicine Cedars-Sinai Medical Center Biomedical Imaging Research Institute Los Angeles CA USA
| | | | - Stuart H Ralston
- Institute of Genetics and Molecular Medicine University of Edinburgh UK
| | | | - David E Newby
- BHF Centre for Cardiovascular Science University of Edinburgh Edinburgh UK
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science University of Edinburgh Edinburgh UK
| |
Collapse
|
3
|
Xu W, Lu G, Gong L, Tang W, Liu X, Yang Q, Jiang W, Liu X, Li X. Non-nitrogen-containing bisphosphonates and nitrogen-containing bisphosphonates for the treatment of atherosclerosis and vascular calcification: A meta-analysis. Medicine (Baltimore) 2024; 103:e38404. [PMID: 38847712 PMCID: PMC11155605 DOI: 10.1097/md.0000000000038404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/08/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND The role of non-nitrogen-containing bisphosphonates (non-N-BPs) and nitrogen-containing bisphosphonates (N-BPs) in the treatment of atherosclerosis (AS) and vascular calcification (VC) is uncertain. This meta-analysis was conducted to evaluate the efficacy of non-N-BPs and N-BPs in the treatment of AS and VC. METHODS The PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, and Wanfang databases were searched from their inception to July 5th, 2023. Eligible studies comparing bisphosphonates (BPs) versus no BPs in the treatment of AS and VC were included. The data were analyzed using Review Manager Version 5.3. RESULTS Seventeen studies were included in this meta-analysis. Twelve were randomized control trials (RCTs), and 5 were nonrandomized studies. Overall, 813 patients were included in the BPs group, and 821 patients were included in the no BPs group. Compared with no BP treatment, non-N-BP or N-BP treatment did not affect serum calcium (P > .05), phosphorus (P > .05) or parathyroid hormone (PTH) levels (P > .05). Regarding the effect on serum lipids, non-N-BPs decreased the serum total cholesterol (TC) level (P < .05) and increased the serum triglyceride (TG) level (P < .01) but did not affect the serum low-density lipoprotein cholesterol (LDL-C) level (P > .05). N-BPs did not affect serum TC (P > .05), TG (P > .05) or LDL-C levels (P > .05). Regarding the effect on AS, non-N-BPs did not have a beneficial effect (P > .05). N-BPs had a beneficial effect on AS, including reducing the intima-media thickness (IMT) (P < .05) and plaque area (P < .01). For the effect on VC, non-N-BPs had a beneficial effect (P < .01), but N-BPs did not have a beneficial effect (P > .05). CONCLUSION Non-N-BPs and N-BPs did not affect serum calcium, phosphorus or PTH levels. Non-N-BPs decreased serum TC levels and increased serum TG levels. N-BPs did not affect serum lipid levels. Non-N-BPs had a beneficial effect on VC, and N-BPs had a beneficial effect on AS.
Collapse
Affiliation(s)
- Wei Xu
- Department of Nephrology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Nephrology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Nephrology, People’s Hospital of Hainan Tibetan Autonomous Prefecture, Hainan Tibetan Autonomous Prefecture, Qinghai, China
| | - Guoyuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lifeng Gong
- Department of Nephrology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Nephrology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Weigang Tang
- Department of Nephrology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Nephrology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Xiaowu Liu
- Department of Nephrology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Nephrology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Qichao Yang
- Department of Nephrology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Nephrology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Wei Jiang
- Department of Nephrology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Nephrology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
- Department of Nephrology, People’s Hospital of Hainan Tibetan Autonomous Prefecture, Hainan Tibetan Autonomous Prefecture, Qinghai, China
| | - Xiaoming Liu
- Department of Nephrology, People’s Hospital of Hainan Tibetan Autonomous Prefecture, Hainan Tibetan Autonomous Prefecture, Qinghai, China
| | - Xianping Li
- Department of Nephrology, People’s Hospital of Hainan Tibetan Autonomous Prefecture, Hainan Tibetan Autonomous Prefecture, Qinghai, China
| |
Collapse
|
4
|
Abstract
Patients with chronic kidney disease (CKD) exhibit tremendously elevated risk for cardiovascular disease, particularly ischemic heart disease, due to premature vascular and cardiac aging and accelerated ectopic calcification. The presence of cardiovascular calcification associates with increased risk in patients with CKD. Disturbed mineral homeostasis and diverse comorbidities in these patients drive increased systemic cardiovascular calcification in different manifestations with diverse clinical consequences, like plaque instability, vessel stiffening, and aortic stenosis. This review outlines the heterogeneity in calcification patterning, including mineral type and location and potential implications on clinical outcomes. The advent of therapeutics currently in clinical trials may reduce CKD-associated morbidity. Development of therapeutics for cardiovascular calcification begins with the premise that less mineral is better. While restoring diseased tissues to a noncalcified homeostasis remains the ultimate goal, in some cases, calcific mineral may play a protective role, such as in atherosclerotic plaques. Therefore, developing treatments for ectopic calcification may require a nuanced approach that considers individual patient risk factors. Here, we discuss the most common cardiac and vascular calcification pathologies observed in CKD, how mineral in these tissues affects function, and the potential outcomes and considerations for therapeutic strategies that seek to disrupt the nucleation and growth of mineral. Finally, we discuss future patient-specific considerations for treating cardiac and vascular calcification in patients with CKD-a population in need of anticalcification therapies.
Collapse
Affiliation(s)
- Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL (J.D.H.)
| | - Claudia Goettsch
- Department of Internal Medicine I, Division of Cardiology, Medical Faculty, RWTH Aachen University, Germany (C.G.)
| |
Collapse
|
5
|
Fãgãrãşan A, Gozar L, Ghiragosian SER, Murariu M, Pop M, Crauciuc A, Miclea D, Şuteu CC. Severe early-onset manifestations of generalized arterial calcification of infancy (mimicking severe coarctation of the aorta) with ABCC6 gene variant - Case report and literature review. Front Cardiovasc Med 2022; 9:1032519. [PMID: 36606277 PMCID: PMC9807665 DOI: 10.3389/fcvm.2022.1032519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Generalized arterial calcification of infancy (GACI) is a rare cause of infantile heart failure and systemic hypertension with a poor prognosis, characterized by extensive calcification and proliferation of the intimal layer of large and medium sized arteries. Case report We present the first case report of successful surgical treatment of severe aortic arch obstruction by calcified plaques mimicking severe coarctation of the aorta and the outcome (of bisphosphonate therapy) in a newborn with GACI. Furthermore, we report the identification of a variant in ATP Binding Cassette Subfamily C, Member 6 (ABCC6) gene, possibly associated with severe early-onset manifestations of GACI. Conclusion This case report highlights the importance of considering GACI in an infant with heart failure, systemic hypertension, and evidence of increased echogenicity of the arterial vessels. We noted the favorable outcome in improving the aortic calcification in our patient after surgical treatment and bisphosphonates therapy. Early diagnosis and treatment improve the long-term prognosis. A better understanding of this rare genetic disease could lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Amalia Fãgãrãşan
- Clinic of Pediatric Cardiology, Emergency Institute of Cardiovascular Diseases and Transplantation, Târgu Mureş, Romania,Department of Pediatrics III, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Liliana Gozar
- Clinic of Pediatric Cardiology, Emergency Institute of Cardiovascular Diseases and Transplantation, Târgu Mureş, Romania,Department of Pediatrics III, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş, Romania,*Correspondence: Liliana Gozar,
| | - Simina-Elena Rusu Ghiragosian
- Department of Pediatrics III, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş, Romania,Simina-Elena Rusu Ghiragosian,
| | - Mircea Murariu
- Clinic of Pediatric Cardiology, Emergency Institute of Cardiovascular Diseases and Transplantation, Târgu Mureş, Romania
| | - Marian Pop
- ME1 Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş, Romania,Department of Radiology, Emergency Institute for Cardiovascular Diseases and Heart Transplant, Târgu Mureş, Romania
| | - Andrei Crauciuc
- Clinic of Pediatric Cardiology, Emergency Institute of Cardiovascular Diseases and Transplantation, Târgu Mureş, Romania
| | - Diana Miclea
- Department of Medical Genetics, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen Corina Şuteu
- Clinic of Pediatric Cardiology, Emergency Institute of Cardiovascular Diseases and Transplantation, Târgu Mureş, Romania
| |
Collapse
|
6
|
Liu N, Feng Y, Zhan Y, Ma F. Relationship between blood cadmium and abdominal aortic calcification: NHANES 2013-2014. J Trace Elem Med Biol 2022; 72:126975. [PMID: 35344900 DOI: 10.1016/j.jtemb.2022.126975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/27/2022] [Accepted: 03/17/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cadmium is a common toxic heavy metal in the environment and can cause irreversible damage to the human body. It is well established that cadmium has direct cardiovascular toxicity, but the relationship between cadmium exposure and abdominal aortic calcification (AAC) is not clear. METHODS This was a cross-sectional study that aimed to assess the relationship between blood cadmium (B-Cd) and AAC in U.S. adults ≥ 40 years old. We obtained data from the 2013-2014 National Health and Nutrition Examination Survey. The AAC score was quantified by the Kauppila score system, whereas severe AAC was defined as an AAC score ≥ 6. We performed multivariate regressions, correlated subgroup analyses, and interaction terms to evaluate the relationship between B-Cd and AAC score and severe AAC. RESULTS For 1530 enrolled participants, the mean AAC score was 1.52 ± 3.32, and the prevalence of severe AAC was 8.95%. Participants with higher B-Cd levels showed higher AAC scores (β = 0.36, 95% CI: 0.03, 0.70, P = 0.0323) and an increased risk of severe AAC (OR=1.61, 95% CI: 1.01, 2.56, P = 0.0432). However, these associations were weakened after adjusting for serum cotinine to define smoking exposure. Subgroup analyses and correlated interaction terms indicated that the relationship between B-Cd and AAC was generally similar in different population settings, except for males, nonsmokers, and participants with a normal body mass index (BMI). The interaction terms indicated that smoking exposure status defined by serum cotinine interacted with the relationship between B-Cd and AAC condition (P for interaction=0.0413). CONCLUSIONS There might be positive associations between B-Cd levels and AAC scores and the risk of severe AAC, while these associations were partially explained by smoking exposure. However, more well-designed studies are still needed to validate this relationship.
Collapse
Affiliation(s)
- Nuozhou Liu
- West China Hospital, West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yuejuan Zhan
- West China Hospital, West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Cardiovascular Safety and Effectiveness of Bisphosphonates: From Intervention Trials to Real-Life Data. Nutrients 2022; 14:nu14122369. [PMID: 35745099 PMCID: PMC9227734 DOI: 10.3390/nu14122369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Both osteoporosis with related fragility fractures and cardiovascular diseases are rapidly outspreading worldwide. Since they are often coexistent in elderly patients and may be related to possible common pathogenetic mechanisms, the possible reciprocal effects of drugs employed to treat these diseases have to be considered in clinical practice. Bisphosphonates, the agents most largely employed to decrease bone fragility, have been shown to be overall safe with respect to cardiovascular diseases and even capable of reducing cardiovascular morbidity in some settings, as mainly shown by real life studies. No randomized controlled trials with cardiovascular outcomes as primary endpoints are available. While contradictory results have emerged about a possible BSP-mediated reduction of overall mortality, it is undeniable that these drugs can be employed safely in patients with high fracture risk, since no increased mortality has ever been demonstrated. Although partial reassurance has emerged from meta-analysis assessing the risk of cardiac arrhythmias during bisphosphonates treatment, caution is warranted in administering this class of drugs to patients at risk for atrial fibrillation, possibly preferring other antiresorptives or anabolics, according to osteoporosis guidelines. This paper focuses on the complex relationship between bisphosphonates use and cardiovascular disease and possible co-management issues.
Collapse
|
8
|
Rodríguez AJ, Abrahamsen B. Cardiovascular Safety of Antifracture Medications in Patients With Osteoporosis: A Narrative Review of Evidence From Randomized Studies. JBMR Plus 2021; 5:e10522. [PMID: 34258509 PMCID: PMC8260817 DOI: 10.1002/jbm4.10522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/02/2021] [Indexed: 01/10/2023] Open
Abstract
Osteoporosis and cardiovascular (CV) disease share common risk factors and pathophysiology. Low bone mineral density (BMD) and fractures appear to increase the risk for multiple CV diseases. Equally, prevalent CV disease appears to predispose to bone loss and increase fracture rates. This relationship has naturally provoked the hypothesis that stopping bone loss may result in some CV benefit. Secondary analyses of safety and adverse event data from many randomized controlled trials (RCTs) have attempted to clarify this putative association. Recently, the discontinuation of odanacatib (anti-cathepsin K monoclonal antibody) over stroke concerns and the imbalance in ischemic events in romosozumab-treated (anti-sclerostin monoclonal antibody) women compared to bisphosphonate-treated women, has provided further justification to better characterize potential CV benefits and harms of osteoporosis medications. This review delves into the seminal, and other major RCTs of osteoporosis medications and, using both published data and additional information provided on trial registration pages, examines the evidence for CV safety and harms of these medications. Accepted and emerging "off-target" effects are explored for validity, biological plausibility, and clinical importance. A brief research agenda is provided to stimulate the next wave of clinical development and CV understanding of osteoporosis medications. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alexander J Rodríguez
- Bone and Muscle Health Research Group, Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences Monash University, Monash Medical Centre Clayton Victoria Australia.,Disorders of Mineralisation Research Group, School of Medical and Health Sciences Edith Cowan University Joondalup Western Australia Australia
| | - Bo Abrahamsen
- Department of Medicine Holbæk Hospital Holbæk Denmark.,Odense Patient Data Explorative Network (OPEN) University of Southern Denmark Odense Denmark
| |
Collapse
|
9
|
Jiang L, Yin Q, Yang M, Li M, Pan M, Han Y, Zhao Z, Wang Z, Zhu L, Wei Q, Tu Y, Gao M, Liu H, Zhang X, Liu BC, Wang B. Fibroblast Growth Factor 21 Predicts and Promotes Vascular Calcification in Haemodialysis Patients. KIDNEY DISEASES 2021; 7:227-240. [PMID: 34179118 DOI: 10.1159/000512750] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/31/2020] [Indexed: 01/02/2023]
Abstract
Background Cardiovascular disease (CVD) is the leading cause of death in haemodialysis (HD) patients. Vascular calcification (VC) is dramatically accelerated and is strongly associated with CVD events and mortality in HD patients. VC coexists with osteoporosis in many studies. Fibroblast growth factor 21 (FGF21) which is known as an adipocytokine is a new hypoglycemic strategy and is inversely related to bone mineral density. Methods To evaluate the contribution of FGF21 to VC in HD patients, we detected circulating FGF21 levels and measured the whole thoracic aorta calcification scores (TACS) and calcification scores of the 3 segments of thoracic aorta, including ascending thoracic aorta (ATACS), aortic arch (AoACS), and descending thoracic aorta (DTACS) of our HD patients in this cross-sectional study. In addition, we pre-incubated human aortic endothelial cells (HAECs) with FGF21 in the presence or absence of parathyroid hormone (PTH) in vitro. Results The median serum FGF21 level in HD patients was 11-fold higher than that in healthy controls. Ln(FGF21) was positively correlated with Ln(TACS+1), Ln(ATACS+1), Ln(AoACS+1), and Ln(DTACS+1), respectively, in HD patients. Serum FGF21 was independently associated with TACS and ATACS, AoACS, and DTACS. FGF21 which was combined with age, calcium, and intact PTH demonstrated a high area under the curve of 0.84 with optimal sensitivity (84%) and specificity (71%) for the prediction of VC in HD patients. Our vitro results showed that FGF21 enhanced the calcification effect of PTH on HAECs by increasing calcium deposition and endothelial-to-mesenchymal transition. Conclusions Circulating FGF21 was notably higher and was a potential predictor and promoter of VC in HD patients.
Collapse
Affiliation(s)
- Liqiong Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China.,Department of Nephrology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qing Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Min Yang
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Min Li
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Mingming Pan
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yuchen Han
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Zhen Zhao
- Department of Radiology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Zhi Wang
- Department of Radiology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Lili Zhu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Qing Wei
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yan Tu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Min Gao
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Xiaoliang Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
10
|
Bäck M, Michel JB. From organic and inorganic phosphates to valvular and vascular calcifications. Cardiovasc Res 2021; 117:2016-2029. [PMID: 33576771 PMCID: PMC8318101 DOI: 10.1093/cvr/cvab038] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/26/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Calcification of the arterial wall and valves is an important part of the pathophysiological process of peripheral and coronary atherosclerosis, aortic stenosis, ageing, diabetes, and chronic kidney disease. This review aims to better understand how extracellular phosphates and their ability to be retained as calcium phosphates on the extracellular matrix initiate the mineralization process of arteries and valves. In this context, the physiological process of bone mineralization remains a human model for pathological soft tissue mineralization. Soluble (ionized) calcium precipitation occurs on extracellular phosphates; either with inorganic or on exposed organic phosphates. Organic phosphates are classified as either structural (phospholipids, nucleic acids) or energetic (corresponding to phosphoryl transfer activities). Extracellular phosphates promote a phenotypic shift in vascular smooth muscle and valvular interstitial cells towards an osteoblast gene expression pattern, which provokes the active phase of mineralization. A line of defense systems protects arterial and valvular tissue calcifications. Given the major roles of phosphate in soft tissue calcification, phosphate mimetics, and/or prevention of phosphate dissipation represent novel potential therapeutic approaches for arterial and valvular calcification.
Collapse
Affiliation(s)
- Magnus Bäck
- Division of Valvular and Coronary Disease, Department of Cardiology, Karolinska University Hospital, 141 86 Stockholm, Sweden.,Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,University of Lorraine, Nancy University Hospital, INSERM U1116, Nancy, France
| | | |
Collapse
|
11
|
Hildebrand S, Cunningham J. Is there a role for bisphosphonates in vascular calcification in chronic kidney disease? Bone 2021; 142:115751. [PMID: 33188959 DOI: 10.1016/j.bone.2020.115751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 01/15/2023]
Abstract
Theoretically bisphosphonates could accelerate or retard vascular calcification. In subjects with low GFR, the position is further confounded by a combination of uncertain pharmacokinetics (GI absorption is poor and inconsistent at all levels of renal function and the effect of low GFR generally is to increase bioavailability) and a highly variable skeletal substrate with extremes of turnover that increase unpredictably further. Although bisphosphonates reduce bone formation by 70-90% in subjects with normal GFR and reduce the ability of bone to buffer exogenous calcium fluxes, in bisphosphonate treated postmenopausal women accelerated vascular calcification has not been documented. The kidneys assist with this buffering, but the capacity to modulate calcium excretion declines as GFR falls, increasing the risk of hypercalcaemia in the event of high calcium influx. In the ESRD patient, decreased buffering capacity substantially increases the risk of transient hypercalcaemia, especially in the setting of dialysis, and as such may promote vascular calcification which is highly prevalent in the CKD population. Low bone turnover may thus be less of a vascular problem in patients with preserved renal function and a bigger problem when the GFR is low. In patients with stage 4 and 5 CKD, adynamic bone disease associates with the severity and progression of arterial calcification, including coronary artery calcification, and further suppression of bone turnover by a bisphosphonate might exacerbate an already high predisposition to vascular calcification. No convincing signal of harm has emerged from clinical studies thus far. For example 51 individuals with CKD stage 3-4 treated with either alendronate 70 mg per week or placebo for 18 months showed no difference in the rate of vascular calcifications. Conversely an observational study of women with stage 3-4 CKD with pre-existing cardiovascular disease found an increased risk of mortality with a hazard ratio of 1.22 (1.04-1.42) in those given bisphosphonates. Direct suppression of vascular calcification by bisphosphonates is probably confined to etidronate - treatment of soft tissue calcification was a recognized indication for this drug and etidronate markedly reduced progression of vascular calcification in CKD patients. Bisphosphonates are analogues of pyrophosphate, a potent calcification inhibitor in bone and soft tissue. Thus the efficacy of etidronate as treatment for soft tissue calcification brought with it a problematic tendency to cause osteomalacia. In contrast, conventional doses of nitrogen-containing bisphosphonates fail to yield circulating concentrations sufficient to exert direct anti-calcifying effects, at least in patients with good renal function and studies using alendronate and ibandronate have yielded inconsistent vascular outcomes.
Collapse
Affiliation(s)
- S Hildebrand
- Centre for Nephrology, Royal Free Hospital, London, UK.
| | - J Cunningham
- Centre for Nephrology, Royal Free Hospital, London, UK
| |
Collapse
|
12
|
Lin YC, Lee TC, Chen CY, Lin SJ, Hwang SJ, Lin MY. Effectiveness of antiresorptive medications in women on long-term dialysis after hip fracture: A population-based cohort study. PLoS One 2020; 15:e0238248. [PMID: 32877436 PMCID: PMC7467303 DOI: 10.1371/journal.pone.0238248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/12/2020] [Indexed: 11/30/2022] Open
Abstract
There is no clear evidence how effective the antiresorptive (AR) drugs alendronate and raloxifene are at reducing risk of second hip fracture and mortality in dialysis populations. The purpose of this study was to compare the risk of hospitalization for second hip fracture and risk of mortality between AR user and non-user groups in Taiwanese women on long-term dialysis with hip fractures. We conducted a retrospective cohort study using Taiwan National Health Insurance Research Datasets. Long-term dialysis women older than 50 years with newly diagnosed hip fractures and new to AR therapy from 2005 to 2011 were recruited. The patients were divided into AR users and non-users and matched by propensity score. We used Cox Proportional Hazards models to assess association of AR with risks of second hip fracture and mortality. Totally, 1,079 dialysis patients were included, and after matching, we were left with 74 AR users and 74 non-users. AR users did not show a significant reduction in the incidence of second hip fracture compared with non-users (adjusted Hazard Ratio (HR): 0.91, 95% CI: 0.30-2.76), and alendronate users exhibited higher risk of second hip fracture compared with raloxifene users (adjusted HR: 2.80, 95% CI: 0.42-18.79). In addition, AR users were found to have significantly lower 1- and 2-year mortality rates than the non-users (1- year: adjusted HR 0.25, 95% CI, 0.07-0.90; 2-year: 0.35, 95%CI: 0.17-0.72). AR treatment did not significantly improve the risk of second hip fracture but significantly reduce mortality in older women on dialysis. Further clinical trials on effectiveness of AR medications for dialysis populations should be warranted.
Collapse
Affiliation(s)
- Yu-Ciou Lin
- Graduate Institute of Clinical Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tien-Ching Lee
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Yu Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shun-Jin Lin
- Graduate Institute of Clinical Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shang-Jyh Hwang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Yen Lin
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Master of Public Health Degree Program, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|