1
|
K N V, Bamne SS, Crasta J, Kumar C S, Bhat RM, Shuster BM, Oliver JWK, Abbott ZD. Bacillus subtilis ZB423: 90-Day repeat dose oral (gavage) toxicity study in Wistar rats. J Appl Toxicol 2024; 44:1874-1885. [PMID: 39168852 DOI: 10.1002/jat.4677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
The novel genetically modified probiotic Bacillus subtilis ZB423 was assessed in a 90-day repeated-dose oral toxicity study adhering to Good Laboratory Practice (GLP) and Organization for Economic Cooperation and Development (OECD) guidelines. Spray-dried spores at a concentration of 1.1E12 CFU/g were administered at doses of 130, 260, and 519 mg/kg body weight/day correlating to 1.43 × 1011, 2.86 × 1011, and 5.71 × 1011 CFU/kg/day, respectively, by oral gavage to Wistar rats for a period of 90 consecutive days. Results showed no toxicologically relevant findings for B. subtilis ZB423 from measured parameters. The no observed adverse effect level (NOAEL) of B. subtilis ZB423 is 519 mg/kg body weight/day corresponding to 5.71 × 1011 CFU/kg/day for lyophilized B. subtilis ZB423 spores under the test conditions employed.
Collapse
Affiliation(s)
- Vijayakumar K N
- Adgyl Lifesciences Private Limited (Formerly Department of Safety Assessment, Eurofins Advinus Limited), Bengaluru, Karnataka, India
| | - Swati S Bamne
- Adgyl Lifesciences Private Limited (Formerly Department of Safety Assessment, Eurofins Advinus Limited), Bengaluru, Karnataka, India
| | - Johnson Crasta
- Adgyl Lifesciences Private Limited (Formerly Department of Safety Assessment, Eurofins Advinus Limited), Bengaluru, Karnataka, India
| | - Satish Kumar C
- Adgyl Lifesciences Private Limited (Formerly Department of Safety Assessment, Eurofins Advinus Limited), Bengaluru, Karnataka, India
| | - Ramakrishna M Bhat
- Adgyl Lifesciences Private Limited (Formerly Department of Safety Assessment, Eurofins Advinus Limited), Bengaluru, Karnataka, India
| | | | | | | |
Collapse
|
2
|
Sharma D, Chetri PB, Ranga V, Sen S, Sarmah BK, Barooah M. Genomic analysis of acid tolerance genes and deciphering the function of ydaG gene in mitigating acid tolerance in Priestia megaterium. Front Microbiol 2024; 15:1414777. [PMID: 38966390 PMCID: PMC11222612 DOI: 10.3389/fmicb.2024.1414777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
Adverse environmental conditions, such as acid stress, induce bacteria to employ several strategies to overcome these stressors. These strategies include forming biofilms and activating specific molecular pathways, such as the general stress response (GSR). The genome of Priestia megaterium strain G18 was sequenced using the Illumina NextSeq 500 system, resulting in a de novo assembly of 80 scaffolds. The scaffolded genome comprises 5,367,956 bp with a GC content of 37.89%, and was compared to related strains using the MiGA web server, revealing high similarity to P. megaterium NBRC 15308 and P. aryabhattai B8W22 with ANI scores of 95.4%. Phylogenetic and ribosomal multilocus sequence typing (rMLST) analyses, based on the 16S rRNA and ribosomal protein-encoding alleles, confirmed close relationships within the P. megaterium species. Functional annotation identified 5,484 protein-coding genes, with 72.31% classified into 22 COG categories, highlighting roles in amino acid transport, transcription, carbohydrate metabolism, and ribosomal structure. An in-depth genome analysis of P. megaterium G18 revealed several key genes associated with acid tolerance. Targeted inactivation of the ydaG gene from SigB regulon, a general stress response gene, significantly reduced growth under acidic conditions compared to the wild type. qRT-PCR analysis showed increased ydaG expression in acidic conditions, further supporting its role in acid stress response. Microscopic analysis revealed no morphological differences between wild-type and mutant cells, suggesting that ydaG is not involved in maintaining cellular morphology but in facilitating acid tolerance through stress protein production. This research contributes to understanding the molecular mechanisms underlying acid tolerance in soil bacteria, P. megaterium, shedding light on potential applications in agriculture and industry.
Collapse
Affiliation(s)
- Darshana Sharma
- DBT—North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Purna Bahadur Chetri
- DBT—North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Vipin Ranga
- DBT—North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Subhajit Sen
- DBT—North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Bidyut Kumar Sarmah
- DBT—North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Madhumita Barooah
- DBT—North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| |
Collapse
|
3
|
Wahab WAA, Shafey HI, Mahrous KF, Esawy MA, Saleh SAA. Coculture of bacterial levans and evaluation of its anti-cancer activity against hepatocellular carcinoma cell lines. Sci Rep 2024; 14:3173. [PMID: 38326332 PMCID: PMC10850072 DOI: 10.1038/s41598-024-52699-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
This research represents a novel study to assess how coculture affects levan yield, structure, bioactivities, and molecular weight. Among the 16 honey isolates, four bacterial strains recorded the highest levan yield. The Plackett-Burman design showed that the coculture (M) of isolates G2 and K2 had the maximum levan yield (52 g/L) and the effective factors were sucrose, incubation time, and sugarcane bagasse. The CCD showed that the most proper concentrations for maximum levan yield (81 g/L): were 130 g/L of sucrose and 6 g/f of sugarcane bagasse. Levan's backbone was characterized, and the molecular weight was determined. G2 and K2 isolates were identified based on 16 sRNA as Bacillus megaterium strain YM1C10 and Rhizobium sp. G6-1. M levan had promising antioxidant activity (99.66%), slowed the migration activity to a great extent, and recorded 70.70% inhibition against the hepatoblastoma cell line (HepG2) at 1000 µg/mL. Gene expression analysis in liver cancer cell lines (HePG2) revealed that M levan decreased the expression of CCL20), 2GRB2, and CCR6) genes and was superior to Doxo. While increasing the expression of the IL4R and IL-10 genes. The DNA damage values were significantly increased (P < 0.01) in treated liver cancer cell lines with levan M and Doxo. The results referred to the importance of each of the hydroxyl and carboxyl groups and the molecular weight in levans bioactivities.
Collapse
Affiliation(s)
- Walaa A Abdel Wahab
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Heba I Shafey
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Karima F Mahrous
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Mona A Esawy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, Egypt.
| | - Shireen A A Saleh
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
4
|
Lagzian A, Riseh RS, Sarikhan S, Ghorbani A, Khodaygan P, Borriss R, Guzzi PH, Veltri P. Genome mining conformance to metabolite profile of Bacillus strains to control potato pathogens. Sci Rep 2023; 13:19095. [PMID: 37925555 PMCID: PMC10625545 DOI: 10.1038/s41598-023-46672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/03/2023] [Indexed: 11/06/2023] Open
Abstract
Biocontrol agents are safe and effective methods for controlling plant disease pathogens, such as Fusarium solani, which causes dry wilt, and Pectobacterium spp., responsible for potato soft rot disease. Discovering agents that can effectively control both fungal and bacterial pathogens in potatoes has always presented a challenge. Biological controls were investigated using 500 bacterial strains isolated from rhizospheric microbial communities, along with two promising biocontrol strains: Pseudomonas (T17-4 and VUPf5). Bacillus velezensis (Q12 and US1) and Pseudomonas chlororaphis VUPf5 exhibited the highest inhibition of fungal growth and pathogenicity in both laboratory (48%, 48%, 38%) and greenhouse (100%, 85%, 90%) settings. Q12 demonstrated better control against bacterial pathogens in vivo (approximately 50%). Whole-genome sequencing of Q12 and US1 revealed a genome size of approximately 4.1 Mb. Q12 had 4413 gene IDs and 4300 coding sequences, while US1 had 4369 gene IDs and 4255 coding sequences. Q12 exhibited a higher number of genes classified under functional subcategories related to stress response, cell wall, capsule, levansucrase synthesis, and polysaccharide metabolism. Both Q12 and US1 contained eleven secondary metabolite gene clusters as identified by the antiSMASH and RAST servers. Notably, Q12 possessed the antibacterial locillomycin and iturin A gene clusters, which were absent in US1. This genetic information suggests that Q12 may have a more pronounced control over bacterial pathogens compared to US1. Metabolic profiling of the superior strains, as determined by LC/MS/MS, validated our genetic findings. The investigated strains produced compounds such as iturin A, bacillomycin D, surfactin, fengycin, phenazine derivatives, etc. These compounds reduced spore production and caused deformation of the hyphae in F. solani. In contrast, B. velezensis UR1, which lacked the production of surfactin, fengycin, and iturin, did not affect these structures and failed to inhibit the growth of any pathogens. Our findings suggest that locillomycin and iturin A may contribute to the enhanced control of bacterial pectolytic rot by Q12.
Collapse
Affiliation(s)
- Arezoo Lagzian
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Sajjad Sarikhan
- Molecular Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran.
| | - Pejman Khodaygan
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Rainer Borriss
- Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, University of Catanzaro, Catanzaro, Italy.
| | - Pierangelo Veltri
- Department of Informatics Modeling Electronics and System Engineering, University of Calabria, Calabria, Italy
| |
Collapse
|
5
|
Hettiarachchi A, Cnockaert M, Joossens M, Laureys D, De Clippeleer J, Vereecken NJ, Michez D, Smagghe G, de Graaf DC, Vandamme P. Convivina is a specialised core gut symbiont of the invasive hornet Vespa velutina. INSECT MOLECULAR BIOLOGY 2023; 32:510-527. [PMID: 37204105 DOI: 10.1111/imb.12847] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/28/2023] [Indexed: 05/20/2023]
Abstract
We provide a culturomics analysis of the cultivable bacterial communities of the crop, midgut and hindgut compartments, as well as the ovaries, of the invasive insect Vespa velutina, along with a cultivation-independent analysis of samples of the same nest through 16S rRNA amplicon sequencing. The Vespa velutina bacterial symbiont community was dominated by the genera Convivina, Fructobacillus, Lactiplantibacillus, Lactococcus, Sphingomonas and Spiroplasma. Lactococcus lactis and Lactiplantibacillus plantarum represented generalist core lactic acid bacteria (LAB) symbionts, while Convivina species and Fructobacillus fructosus represented highly specialised core LAB symbionts with strongly reduced genome sizes. Sphingomonas and Spiroplasma were the only non-LAB core symbionts but were not isolated. Convivina bacteria were particularly enriched in the hornet crop and included Convivina intestini, a species adapted towards amino acid metabolism, and Convivina praedatoris sp. nov. which was adapted towards carbohydrate metabolism.
Collapse
Affiliation(s)
- Amanda Hettiarachchi
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Marie Joossens
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - David Laureys
- Innovation Centre for Brewing & Fermentation, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jessika De Clippeleer
- Innovation Centre for Brewing & Fermentation, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Dirk C de Graaf
- Laboratory of Molecular Entomology and Bee Pathology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Fu B, Yan Q. Exopolysaccharide is required for motility, stress tolerance, and plant colonization by the endophytic bacterium Paraburkholderia phytofirmans PsJN. Front Microbiol 2023; 14:1218653. [PMID: 37670984 PMCID: PMC10475733 DOI: 10.3389/fmicb.2023.1218653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023] Open
Abstract
Paraburkholderia phytofirmans PsJN is an endophytic bacterium and has been shown to promote the growth and health of many different plants. Exopolysaccharide (EPS) plays important roles in plant-bacteria interaction and tolerance to environmental stresses. However, the function of EPS in PsJN and its interaction with plants remain largely unknown. In this study, a deletion mutation of bceQ gene, encoding a putative flippase for the EPS biosynthesis, was introduced in the genome of PsJN. The ΔbceQ mutant produced a significantly lower level of EPS than the wild type strain in culture media. Compared to the wild type PsJN, the ΔbceQ mutant was more sensitive to desiccation, UV damage, salt (NaCl) and iron (FeCl3) stresses, and bacteriophage infection. More importantly, the mutation of bceQ decreased the endophytic colonization of PsJN in camelina (Camelina sativa) and pea (Camelina sativa) under plant drought stress conditions. To the best of our knowledge, this is the first report that EPS production is required for the maximal colonization of an endophytic bacterium in the plant tissues under stress conditions.
Collapse
Affiliation(s)
| | - Qing Yan
- Plant Sciences and Plant Pathology Department, Montana State University, Bozeman, MT, United States
| |
Collapse
|
7
|
Yi X, Yang D, Xu X, Wang Y, Guo Y, Zhang M, Wang Y, He Y, Zhu J. Cold plasma pretreatment reinforces the lignocellulose-derived aldehyde inhibitors tolerance and bioethanol fermentability for Zymomonas mobilis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:102. [PMID: 37322470 DOI: 10.1186/s13068-023-02354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Lignocellulose-derived aldehyde inhibitors seriously blocked the biorefinery of biofuels and biochemicals. To date, the economic production of lignocellulose-based products heavily relied on high productivities of fermenting strains. However, it was expensive and time-consuming for the achievable rational modification to strengthen stress tolerance robustness of aldehyde inhibitors. Here, it aimed to improve aldehyde inhibitors tolerance and cellulosic bioethanol fermentability for the chassis Zymomonas mobilis ZM4 pretreated using energy-efficient and eco-friendly cold plasma. RESULTS It was found that bioethanol fermentability was weaker in CSH (corn stover hydrolysates) than that in synthetic medium for Z. mobilis, and thus was attributed to the inhibition of the lignocellulose-derived aldehyde inhibitors in CSH. Convincingly, it further confirmed that the mixed aldehydes severely decreased bioethanol accumulation through additional aldehydes supplementary assays in synthetic medium. After assayed under different processing time (10-30 s), discharge power (80-160 W), and working pressure (120-180 Pa) using cold atmosphere plasma (CAP), it achieved the increased bioethanol fermentability for Z. mobilis after pretreated at the optimized parameters (20 s, 140 W and 165 Pa). It showed that cold plasma brought about three mutation sites including ZMO0694 (E220V), ZMO0843 (L471L) and ZMO0843 (P505H) via Genome resequencing-based SNPs (single nucleotide polymorphisms). A serial of differentially expressed genes (DEGs) were further identified as the potential contributors for stress tolerance via RNA-Seq sequencing, including ZMO0253 and ZMO_RS09265 (type I secretion outer membrane protein), ZMO1941 (Type IV secretory pathway protease TraF-like protein), ZMOr003 and ZMOr006 (16S ribosomal RNA), ZMO0375 and ZMO0374 (levansucrase) and ZMO1705 (thioredoxins). It enriched cellular process, followed by metabolic process and single-organism process for biological process. For KEGG analysis, the mutant was also referred to starch and sucrose metabolism, galactose metabolism and two-component system. Finally, but interestingly, it simultaneously achieved the enhanced stress tolerance capacity of aldehyde inhibitors and bioethanol fermentability in CSH for the mutant Z. mobilis. CONCLUSIONS Of several candidate genetic changes, the mutant Z. mobilis treated with cold plasma was conferred upon the facilitated aldehyde inhibitors tolerance and bioethanol production. This work would provide a strain biocatalyst for the efficient production of lignocellulosic biofuels and biochemicals.
Collapse
Affiliation(s)
- Xia Yi
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164, China.
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China.
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Dong Yang
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Xiaoyan Xu
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Youjun Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yan Guo
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Meng Zhang
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yilong Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yucai He
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164, China.
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Jie Zhu
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164, China.
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China.
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, Jiangsu, China.
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
8
|
Netrusov AI, Liyaskina EV, Kurgaeva IV, Liyaskina AU, Yang G, Revin VV. Exopolysaccharides Producing Bacteria: A Review. Microorganisms 2023; 11:1541. [PMID: 37375041 DOI: 10.3390/microorganisms11061541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial exopolysaccharides (EPS) are essential natural biopolymers used in different areas including biomedicine, food, cosmetic, petroleum, and pharmaceuticals and also in environmental remediation. The interest in them is primarily due to their unique structure and properties such as biocompatibility, biodegradability, higher purity, hydrophilic nature, anti-inflammatory, antioxidant, anti-cancer, antibacterial, and immune-modulating and prebiotic activities. The present review summarizes the current research progress on bacterial EPSs including their properties, biological functions, and promising applications in the various fields of science, industry, medicine, and technology, as well as characteristics and the isolation sources of EPSs-producing bacterial strains. This review provides an overview of the latest advances in the study of such important industrial exopolysaccharides as xanthan, bacterial cellulose, and levan. Finally, current study limitations and future directions are discussed.
Collapse
Affiliation(s)
- Alexander I Netrusov
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology and Biotechnology, High School of Economics, 119991 Moscow, Russia
| | - Elena V Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Alexandra U Liyaskina
- Institute of the World Ocean, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| |
Collapse
|
9
|
Nasir A, Ahmad W, Sattar F, Ashfaq I, Lindemann SR, Chen MH, Van den Ende W, Ӧner ET, Kirtel O, Khaliq S, Ghauri MA, Anwar MA. Production of a high molecular weight levan by Bacillus paralicheniformis, an industrially and agriculturally important isolate from the buffalo grass rhizosphere. Antonie Van Leeuwenhoek 2022; 115:1101-1112. [PMID: 35840814 DOI: 10.1007/s10482-022-01760-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
Abstract
A new exopolysaccharide (EPS) producing Gram-positive bacterium was isolated from the rhizosphere of Bouteloua dactyloides (buffalo grass) and its EPS product was structurally characterized. The isolate, designated as LB1-1A, was identified as Bacillus paralicheniformis based on 16S rRNA gene sequence and phylogenetic tree analysis. The EPS produced by LB1-1A was identified as a levan, having β(2 → 6) linked backbone with β(2 → 1) linkages at the branch points (4.66%). The isolate LB1-1A yielded large amount (~ 42 g/l) of levan having high weight average molecular weight (Mw) of 5.517 × 107 Da. The relatively low degree of branching and high molecular weight of this levan makes B. paralicheniformis LB1-1A a promising candidate for industrial applications.
Collapse
Affiliation(s)
- Anam Nasir
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, 38000, Faisalabad, Pakistan
| | - Waqar Ahmad
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, 38000, Faisalabad, Pakistan
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, Pakistan
| | - Fazal Sattar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, 38000, Faisalabad, Pakistan
| | - Iram Ashfaq
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, 38000, Faisalabad, Pakistan
| | - Stephen R Lindemann
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN, 47907, USA
| | - Ming-Hsu Chen
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN, 47907, USA
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
| | - Ebru Toksoy Ӧner
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Göztepe Campus, Istanbul, Turkey
| | - Onur Kirtel
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Göztepe Campus, Istanbul, Turkey
| | - Shazia Khaliq
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, 38000, Faisalabad, Pakistan
| | - Muhammad A Ghauri
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, 38000, Faisalabad, Pakistan
| | - Munir A Anwar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, 38000, Faisalabad, Pakistan.
| |
Collapse
|
10
|
Huang R, Feng H, Xu Z, Zhang N, Liu Y, Shao J, Shen Q, Zhang R. Identification of Adhesins in Plant Beneficial Rhizobacteria Bacillus velezensis SQR9 and Their Effect on Root Colonization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:64-72. [PMID: 34698535 DOI: 10.1094/mpmi-09-21-0234-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Probiotic Bacillus colonization of plant root surfaces has been reported to improve its beneficial effect. Chemotaxis, adhesion, aggregation, and biofilm formation are the four steps of root colonization by plant growth-promoting rhizobacteria (PGPRs). Compared with the other three well-studied processes, adhesion of PGPRs is less known. In this study, using mutant strains deleted for potential adhesin genes in PGPR strain Bacillus velezensis SQR9, adherence to both cucumber root surface and abiotic surface by those strains was evaluated. Results showed that deletion mutations ΔlytB, ΔV529_10500, ΔfliD, ΔyhaN, and ΔsacB reduced the adhesion to root surfaces, while, among them, only ΔfliD had significant defects in adhesion to abiotic surfaces (glass and polystyrene). In addition, B. velevzensis SQR9 mutants defective in adhesion to root surfaces showed a deficiency in rhizosphere colonization. Among the encoded proteins, FliD and YhaN played vital roles in root adhesion. This research systematically explored the potential adhesins in a well-studied PGPR strain and also indicated that adhesion progress was required for root colonization, which will help to enhance rhizosphere colonization and beneficial function of PGPRs in agricultural production.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Rong Huang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Haichao Feng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Yunpeng Liu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Ruifu Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
11
|
Fricke PM, Klemm A, Bott M, Polen T. On the way toward regulatable expression systems in acetic acid bacteria: target gene expression and use cases. Appl Microbiol Biotechnol 2021; 105:3423-3456. [PMID: 33856535 PMCID: PMC8102297 DOI: 10.1007/s00253-021-11269-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 04/04/2021] [Indexed: 01/06/2023]
Abstract
Acetic acid bacteria (AAB) are valuable biocatalysts for which there is growing interest in understanding their basics including physiology and biochemistry. This is accompanied by growing demands for metabolic engineering of AAB to take advantage of their properties and to improve their biomanufacturing efficiencies. Controlled expression of target genes is key to fundamental and applied microbiological research. In order to get an overview of expression systems and their applications in AAB, we carried out a comprehensive literature search using the Web of Science Core Collection database. The Acetobacteraceae family currently comprises 49 genera. We found overall 6097 publications related to one or more AAB genera since 1973, when the first successful recombinant DNA experiments in Escherichia coli have been published. The use of plasmids in AAB began in 1985 and till today was reported for only nine out of the 49 AAB genera currently described. We found at least five major expression plasmid lineages and a multitude of further expression plasmids, almost all enabling only constitutive target gene expression. Only recently, two regulatable expression systems became available for AAB, an N-acyl homoserine lactone (AHL)-inducible system for Komagataeibacter rhaeticus and an L-arabinose-inducible system for Gluconobacter oxydans. Thus, after 35 years of constitutive target gene expression in AAB, we now have the first regulatable expression systems for AAB in hand and further regulatable expression systems for AAB can be expected. KEY POINTS: • Literature search revealed developments and usage of expression systems in AAB. • Only recently 2 regulatable plasmid systems became available for only 2 AAB genera. • Further regulatable expression systems for AAB are in sight.
Collapse
Affiliation(s)
- Philipp Moritz Fricke
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Angelika Klemm
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
12
|
Koskey G, Mburu SW, Awino R, Njeru EM, Maingi JM. Potential Use of Beneficial Microorganisms for Soil Amelioration, Phytopathogen Biocontrol, and Sustainable Crop Production in Smallholder Agroecosystems. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.606308] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Smallholder agroecosystems play a key role in the world's food security providing more than 50% of the food produced globally. These unique agroecosystems face a myriad of challenges and remain largely unsupported, yet they are thought to be a critical resource for feeding the projected increasing human population in the coming years. The new challenge to increase food production through agricultural intensification in shrinking per capita arable lands, dwindling world economies, and unpredictable climate change, has led to over-dependence on agrochemical inputs that are often costly and hazardous to both human and animal health and the environment. To ensure healthy crop production approaches, the search for alternative ecofriendly strategies that best fit to the smallholder systems have been proposed. The most common and widely accepted solution that has gained a lot of interest among researchers and smallholder farmers is the use of biological agents; mainly plant growth promoting microorganisms (PGPMs) that provide essential agroecosystem services within a holistic vision of enhancing farm productivity and environmental protection. PGPMs play critical roles in agroecological cycles fundamental for soil nutrient amelioration, crop nutrient improvement, plant tolerance to biotic and abiotic stresses, biocontrol of pests and diseases, and water uptake. This review explores different research strategies involving the use of beneficial microorganisms, within the unique context of smallholder agroecosystems, to promote sustainable maintenance of plant and soil health and enhance agroecosystem resilience against unpredictable climatic perturbations.
Collapse
|
13
|
The Immunomodulatory Properties of β-2,6 Fructans: A Comprehensive Review. Nutrients 2021; 13:nu13041309. [PMID: 33921025 PMCID: PMC8071392 DOI: 10.3390/nu13041309] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Polysaccharides such as β-2,1-linked fructans including inulin or fructose oligosaccharides are well-known prebiotics with recognised immunomodulatory properties. In recent years, other fructan types covering β-2,6-linked fructans, particularly microbial levans, have gained increasing interest in the field. β-2,6-linked fructans of different degrees of polymerisation can be synthesised by plants or microbes including those that reside in the gastrointestinal tract. Accumulating evidence suggests a role for these β-2,6 fructans in modulating immune function. Here, we provide an overview of the sources and structures of β-2,6 fructans from plants and microbes and describe their ability to modulate immune function in vitro and in vivo along with the suggested mechanisms underpinning their immunomodulatory properties. Further, we discuss the limitations and perspectives pertinent to current studies and the potential applications of β-2,6 fructans including in gut health.
Collapse
|
14
|
Leandro MR, Vespoli LDS, Andrade LF, Soares FS, Boechat AL, Pimentel VR, Moreira JR, Passamani LZ, Silveira V, de Souza Filho GA. DegP protease is essential for tolerance to salt stress in the plant growth-promoting bacterium Gluconacetobacter diazotrophicus PAL5. Microbiol Res 2020; 243:126654. [PMID: 33285429 DOI: 10.1016/j.micres.2020.126654] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 11/19/2022]
Abstract
The use of plant growth-promoting bacteria represents an alternative to the massive use of mineral fertilizers in agriculture. However, some abiotic stresses commonly found in the environment, like salinity, can affect the efficiency of this approach. Here, we investigated the key mechanisms involved in the response of the plant growth-promoting bacterium Gluconacetobacter diazotrophicus to salt stress by using morphological and cell viability analyses, comparative proteomics, and reverse genetics. Our results revealed that the bacteria produce filamentous cells in response to salt at 100 mM and 150 mM NaCl. However, such a response was not observed at higher concentrations, where cell viability was severely affected. Proteomic analysis showed that salt stress modulates proteins involved in several pathways, including iron uptake, outer membrane efflux, osmotic adjustment, cell division and elongation, and protein transport and quality control. Proteomic data also revealed the repression of several extracytoplasmic proteins, especially those located at periplasm and outer membrane. The role of such pathways in the tolerance to salt stress was analyzed by the use of mutant defectives for Δtbdr (iron uptake), ΔmtlK and ΔotsA (compatible solutes synthesis), and ΔdegP (quality control of nascent extracytoplasmic proteins). ΔdegP presented the highest sensitivity to salt stress, Δtbdr, andΔmtlK also showed increased sensitivity, but ΔotsA was not affected. This is the first demonstration that DegP protein, a protease with minor chaperone activity, is essential for tolerance to salt stress in G. diazotrophicus. Our data contribute to a better understanding of the molecular bases that control the bacterial response/tolerance to salt stress, shedding light on quality control of nascent extracytoplasmic proteins.
Collapse
Affiliation(s)
- Mariana Ramos Leandro
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Luciano de Souza Vespoli
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Leandro Fernandes Andrade
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Fabiano Silva Soares
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Ana Laura Boechat
- Instituto de Química (Departamento de Bioquímica), Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil
| | - Vivian Ribeiro Pimentel
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Julia Rosa Moreira
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Lucas Zanchetta Passamani
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Gonçalo Apolinário de Souza Filho
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Leandro M, Andrade L, Vespoli L, Moreira J, Pimentel V, Soares F, Passamani L, Silveira V, de Souza Filho G. Comparative proteomics reveals essential mechanisms for osmotolerance in Gluconacetobacter diazotrophicus. Res Microbiol 2020; 172:103785. [PMID: 33035671 DOI: 10.1016/j.resmic.2020.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Plant growth-promoting bacteria are a promising alternative to improve agricultural sustainability. Gluconacetobacter diazotrophicus is an osmotolerant bacterium able to colonize several plant species, including sugarcane, coffee, and rice. Despite its biotechnological potential, the mechanisms controlling such osmotolerance remain unclear. The present study investigated the key mechanisms of resistance to osmotic stress in G. diazotrophicus. The molecular pathways regulated by the stress were investigated by comparative proteomics, and proteins essential for resistance were identified by knock-out mutagenesis. Proteomics analysis led to identify regulatory pathways for osmotic adjustment, de novo saturated fatty acids biosynthesis, and uptake of nutrients. The mutagenesis analysis showed that the lack of AccC protein, an essential component of de novo fatty acid biosynthesis, severely affected G. diazotrophicus resistance to osmotic stress. Additionally, knock-out mutants for nutrients uptake (Δtbdr and ΔoprB) and compatible solutes synthesis (ΔmtlK and ΔotsA) became more sensitive to osmotic stress. Together, our results identified specific genes and mechanisms regulated by osmotic stress in an osmotolerant bacterium, shedding light on the essential role of cell envelope and extracytoplasmic proteins for osmotolerance.
Collapse
Affiliation(s)
- Mariana Leandro
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Leandro Andrade
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Luciano Vespoli
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Julia Moreira
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Vivian Pimentel
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Fabiano Soares
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Lucas Passamani
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Vanildo Silveira
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Gonçalo de Souza Filho
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Wu B, Qin H, Yang Y, Duan G, Yang S, Xin F, Zhao C, Shao H, Wang Y, Zhu Q, Tan F, Hu G, He M. Engineered Zymomonas mobilis tolerant to acetic acid and low pH via multiplex atmospheric and room temperature plasma mutagenesis. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:10. [PMID: 30627218 PMCID: PMC6321654 DOI: 10.1186/s13068-018-1348-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/24/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Cellulosic biofuels are sustainable compared to fossil fuels. However, inhibitors, such as acetic acid generated during lignocellulose pretreatment and hydrolysis, would significantly inhibit microbial fermentation efficiency. Microbial mutants able to tolerate high concentration of acetic acid are needed urgently to alleviate this inhibition. RESULTS Zymomonas mobilis mutants AQ8-1 and AC8-9 with enhanced tolerance against acetic acid were generated via a multiplex atmospheric and room temperature plasma (mARTP) mutagenesis. The growth and ethanol productivity of AQ8-1 and AC8-9 were both improved in the presence of 5.0-8.0 g/L acetic acid. Ethanol yield reached 84% of theoretical value in the presence of 8.0 g/L acetic acid (~ pH 4.0). Furthermore, a mutant tolerant to pH 3.5, named PH1-29, was generated via the third round of ARTP mutagenesis. PH1-29 showed enhanced growth and ethanol production under both sterilized/unsterilized conditions at pH 4.0 or 3.5. Intracellular NAD levels revealed that mARTP mutants could modulate NADH/NAD+ ratio to respond to acetic acid and low pH stresses. Moreover, genomic re-sequencing revealed that eleven single nucleic variations (SNVs) were likely related to acetic acid and low pH tolerance. Most SNVs were targeted in regions between genes ZMO0952 and ZMO0956, ZMO0152 and ZMO0153, and ZMO0373 and ZMO0374. CONCLUSIONS The multiplex mutagenesis strategy mARTP was efficient for enhancing the tolerance in Z. mobilis. The ARTP mutants generated in this study could serve as potential cellulosic ethanol producers.
Collapse
Affiliation(s)
- Bo Wu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin Rd. South, Chengdu, 610041 China
| | - Han Qin
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin Rd. South, Chengdu, 610041 China
| | - Yiwei Yang
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin Rd. South, Chengdu, 610041 China
| | - Guowei Duan
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin Rd. South, Chengdu, 610041 China
| | - Shihui Yang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Rd, Pukou District, Nanjing, 211816 China
| | - Chunyan Zhao
- College of Life Science, Sichuan Normal University, Section 2-1819, Chenglong Avenue, Chengdu, 610101 China
| | - Huanhuan Shao
- College of Life Science, Sichuan Normal University, Section 2-1819, Chenglong Avenue, Chengdu, 610101 China
| | - Yanwei Wang
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin Rd. South, Chengdu, 610041 China
| | - Qili Zhu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin Rd. South, Chengdu, 610041 China
| | - Furong Tan
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin Rd. South, Chengdu, 610041 China
| | - Guoquan Hu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin Rd. South, Chengdu, 610041 China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin Rd. South, Chengdu, 610041 China
| |
Collapse
|
17
|
Grillo-Puertas M, Delaporte-Quintana P, Pedraza RO, Rapisarda VA. Intracellular Polyphosphate Levels in Gluconacetobacter diazotrophicus Affect Tolerance to Abiotic Stressors and Biofilm Formation. Microbes Environ 2018; 33:440-445. [PMID: 30404971 PMCID: PMC6307995 DOI: 10.1264/jsme2.me18044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Gluconacetobacter diazotrophicus is a plant growth-promoting bacterium that is used as a bioinoculant. Phosphate (Pi) modulates intracellular polyphosphate (polyP) levels in Escherichia coli, affecting cellular fitness and biofilm formation capacity. It currently remains unclear whether environmental Pi modulates polyP levels in G. diazotrophicus to enhance fitness in view of its technological applications. In high Pi media, cells accumulated polyP and degraded it, thereby improving survival, tolerance to environmental stressors, biofilm formation capacity on abiotic and biotic surfaces, and competence as a growth promoter of strawberry plants. The present results support the importance of Pi and intracellular polyP as signals involved in the survival of G. diazotrophicus.
Collapse
Affiliation(s)
- Mariana Grillo-Puertas
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica, "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. San Miguel de Tucumán
| | | | | | - Viviana Andrea Rapisarda
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica, "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. San Miguel de Tucumán
| |
Collapse
|
18
|
Dent D. Non-nodular Endophytic Bacterial Symbiosis and the Nitrogen Fixation of Gluconacetobacter diazotrophicus. Symbiosis 2018. [DOI: 10.5772/intechopen.75813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Hussain SS, Mehnaz S, Siddique KHM. Harnessing the Plant Microbiome for Improved Abiotic Stress Tolerance. PLANT MICROBIOME: STRESS RESPONSE 2018. [DOI: 10.1007/978-981-10-5514-0_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Molina-Romero D, Baez A, Quintero-Hernández V, Castañeda-Lucio M, Fuentes-Ramírez LE, Bustillos-Cristales MDR, Rodríguez-Andrade O, Morales-García YE, Munive A, Muñoz-Rojas J. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PLoS One 2017; 12:e0187913. [PMID: 29117218 PMCID: PMC5678714 DOI: 10.1371/journal.pone.0187913] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/27/2017] [Indexed: 11/18/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium) apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440) and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02) strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.
Collapse
Affiliation(s)
- Dalia Molina-Romero
- Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
- Laboratorio de Biología Molecular y Microbiología, Facultad de Ciencias Biológicas, BUAP, Edificio 112-A, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
| | - Antonino Baez
- Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
| | - Verónica Quintero-Hernández
- CONACYT, LEMM, CICM, IC-BUAP, Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
| | - Miguel Castañeda-Lucio
- Genética Molecular Microbiana, CICM, IC-BUAP, Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
| | - Luis Ernesto Fuentes-Ramírez
- Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
| | - María del Rocío Bustillos-Cristales
- Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
| | - Osvaldo Rodríguez-Andrade
- Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
| | - Yolanda Elizabeth Morales-García
- Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
- Laboratorio de Biología Molecular y Microbiología, Facultad de Ciencias Biológicas, BUAP, Edificio 112-A, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
| | - Antonio Munive
- Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
| | - Jesús Muñoz-Rojas
- Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
- * E-mail:
| |
Collapse
|
21
|
Cai S, Cheng H, Pang H, Lu Y, Jian J. Role of the toxR Gene from Fish Pathogen Vibiro alginolyticus in the Physiology and Virulence. Indian J Microbiol 2017; 57:477-484. [PMID: 29151649 DOI: 10.1007/s12088-017-0685-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/21/2017] [Indexed: 12/19/2022] Open
Abstract
A mutant strain of Vibiro alginolyticus with an in-frame deletion of the toxR gene was constructed to reveal the role of ToxR in the physiology and virulence of V. alginolyticus. The statistical analysis showed no significant difference in the growth ability, swarming motility, activity of extracellular protease and the virulence by injection (the value of LD50) between the wild-type and the toxR mutant. However, the deletion of toxR could decrease the level of biofilm formation. The comparative proteomic analysis demonstrated the deletion mutation of toxR could up-regulate the expression of glutamine synthetase and levansucrase, and down-regulate the expression of 10 proteins such as OmpU, DnaK, etc. These results suggest that ToxR may be involved in the early stages of infection by influencing colonization of the bacteria on the surface of the intestine through enhancing the biofilm information of V. alginolyticus via modulating the expression of glutamine synthetize, levansucrase and OmpU.
Collapse
Affiliation(s)
- Shuanghu Cai
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals and Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Haiyan Cheng
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals and Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Huanying Pang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals and Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Yishan Lu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals and Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Jichan Jian
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals and Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
22
|
Brandt JU, Jakob F, Behr J, Geissler AJ, Vogel RF. Dissection of exopolysaccharide biosynthesis in Kozakia baliensis. Microb Cell Fact 2016; 15:170. [PMID: 27716345 PMCID: PMC5050591 DOI: 10.1186/s12934-016-0572-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background Acetic acid bacteria (AAB) are well known producers of commercially used exopolysaccharides, such as cellulose and levan. Kozakia (K.) baliensis is a relatively new member of AAB, which produces ultra-high molecular weight levan from sucrose. Throughout cultivation of two K. baliensis strains (DSM 14400, NBRC 16680) on sucrose-deficient media, we found that both strains still produce high amounts of mucous, water-soluble substances from mannitol and glycerol as (main) carbon sources. This indicated that both Kozakia strains additionally produce new classes of so far not characterized EPS. Results By whole genome sequencing of both strains, circularized genomes could be established and typical EPS forming clusters were identified. As expected, complete ORFs coding for levansucrases could be detected in both Kozakia strains. In K. baliensis DSM 14400 plasmid encoded cellulose synthase genes and fragments of truncated levansucrase operons could be assigned in contrast to K. baliensis NBRC 16680. Additionally, both K. baliensis strains harbor identical gum-like clusters, which are related to the well characterized gum cluster coding for xanthan synthesis in Xanthomanas campestris and show highest similarity with gum-like heteropolysaccharide (HePS) clusters from other acetic acid bacteria such as Gluconacetobacter diazotrophicus and Komagataeibacter xylinus. A mutant strain of K. baliensis NBRC 16680 lacking EPS production on sucrose-deficient media exhibited a transposon insertion in front of the gumD gene of its gum-like cluster in contrast to the wildtype strain, which indicated the essential role of gumD and of the associated gum genes for production of these new EPS. The EPS secreted by K. baliensis are composed of glucose, galactose and mannose, respectively, which is in agreement with the predicted sugar monomer composition derived from in silico genome analysis of the respective gum-like clusters. Conclusions By comparative sugar monomer and genome analysis, the polymeric substances secreted by K. baliensis can be considered as unique HePS. Via genome sequencing of K. baliensis DSM 14400 + NBRC 16680 we got first insights into the biosynthesis of these novel HePS, which is related to xanthan and acetan biosynthesis. Consequently, the present study provides the basis for establishment of K. baliensis strains as novel microbial cell factories for biotechnologically relevant, unique polysaccharides. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0572-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia U Brandt
- Technische Universität München, Lehrstuhl für Technische Mikrobiologie, Gregor-Mendel-Straße 4, 85354, Freising, Germany
| | - Frank Jakob
- Technische Universität München, Lehrstuhl für Technische Mikrobiologie, Gregor-Mendel-Straße 4, 85354, Freising, Germany.
| | - Jürgen Behr
- Technische Universität München, Lehrstuhl für Technische Mikrobiologie, Gregor-Mendel-Straße 4, 85354, Freising, Germany
| | - Andreas J Geissler
- Technische Universität München, Lehrstuhl für Technische Mikrobiologie, Gregor-Mendel-Straße 4, 85354, Freising, Germany
| | - Rudi F Vogel
- Technische Universität München, Lehrstuhl für Technische Mikrobiologie, Gregor-Mendel-Straße 4, 85354, Freising, Germany
| |
Collapse
|
23
|
Öner ET, Hernández L, Combie J. Review of Levan polysaccharide: From a century of past experiences to future prospects. Biotechnol Adv 2016; 34:827-844. [DOI: 10.1016/j.biotechadv.2016.05.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/01/2016] [Accepted: 05/04/2016] [Indexed: 01/24/2023]
|
24
|
Miguel PSB, de Oliveira MNV, Delvaux JC, de Jesus GL, Borges AC, Tótola MR, Neves JCL, Costa MD. Diversity and distribution of the endophytic bacterial community at different stages of Eucalyptus growth. Antonie van Leeuwenhoek 2016; 109:755-71. [PMID: 27010209 DOI: 10.1007/s10482-016-0676-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/04/2016] [Indexed: 11/29/2022]
Abstract
The relationships between plants and endophytic bacteria significantly contribute to plant health and yield. However, the microbial diversity in leaves of Eucalyptus spp. is still poorly characterized. Here, we investigated the endophytic diversity in leaves of hybrid Eucalyptus grandis x E. urophylla (Eucalyptus "urograndis") by using culture-independent and culture-dependent approaches, to better understand their ecology in leaves at different stages of Eucalyptus development, including bacteria with N2 fixation potential. Firmicutes, Proteobacteria (classes alpha-, beta- and gamma-) and Actinobacteria were identified in the Eucalyptus "urograndis" endophytic bacterial community. Within this community, the species Novosphingobium barchaimii, Rhizobium grahamii, Stenotrophomonas panacihumi, Paenibacillus terrigena, P. darwinianus and Terrabacter lapilli represent the first report these bacteria as endophytes. The diversity of the total endophytic bacteria was higher in the leaves from the 'field' (the Shannon-Wiener index, 2.99), followed by the indices obtained in the 'clonal garden' (2.78), the 'recently out from under shade (2.68), 'under shade' (2.63) and 'plants for dispatch' (2.51). In contrast, for diazotrophic bacteria, the highest means of these indices were obtained from the leaves of plants in the 'under shade' (2.56), 'recently out from under shade (2.52)' and 'field' stages (2.54). The distribution of the endophytic bacterial species in Eucalyptus was distinct and specific to the development stages under study, and many of the species had the potential for nitrogen fixation, raising the question of whether these bacteria could contribute to overall nitrogen metabolism of Eucalyptus.
Collapse
Affiliation(s)
- Paulo Sérgio Balbino Miguel
- Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Marcelo Nagem Valério de Oliveira
- Departamento de Ciências Básicas da Vida, Universidade Federal de Juiz de Fora, Campus Governador Valadares, Juiz de Fora, MG, 36570-000, Brazil
| | - Júlio César Delvaux
- Coordenação geral de Ensino e Extensão, Instituto Federal do Triângulo Mineiro, Ituiutaba, MG, 38035-200, Brazil
| | | | - Arnaldo Chaer Borges
- Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Marcos Rogério Tótola
- Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | | | - Maurício Dutra Costa
- Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil.
| |
Collapse
|
25
|
De Oliveira MVV, Intorne AC, Vespoli LDS, Madureira HC, Leandro MR, Pereira TNS, Olivares FL, Berbert-Molina MA, De Souza Filho GA. Differential effects of salinity and osmotic stress on the plant growth-promoting bacterium Gluconacetobacter diazotrophicus PAL5. Arch Microbiol 2016; 198:287-94. [PMID: 26809283 DOI: 10.1007/s00203-015-1176-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/26/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
Abstract
Plant growth-promoting bacteria (PGPB) represent a promising alternative to the massive use of industrial fertilizers in agriculture. Gluconacetobacter diazotrophicus is a PGPB that colonizes several plant species. Although this bacterium is able to grow at high sucrose concentrations, its response to environmental stresses is poorly understood. The present study evaluated G. diazotrophicus PAL5 response to stresses caused by sucrose, PEG 400, NaCl, KCl, Na2SO4 and K2SO4. Morphological, ultrastructural and cell growth analysis revealed that G. diazotrophicus PAL5 is more sensitive to salt than osmotic stress. Growth inhibition and strong morphological changes were caused by salinity, in consequence of Cl ion-specific toxic effect. Interestingly, low osmotic stress levels were beneficial for bacterial multiplication, which was able to tolerate high sucrose concentrations, Na2SO4 and K2SO4. Our data show that G. diazotrophicus PAL5 has differential response to osmotic and salinity stress, which may influence its use as inoculant in saline environments.
Collapse
Affiliation(s)
- Marcos Vinicius V De Oliveira
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF (State University of Northern Rio de Janeiro - UENF), Campos dos Goytacazes, RJ, 28013-600, Brazil
| | - Aline C Intorne
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF (State University of Northern Rio de Janeiro - UENF), Campos dos Goytacazes, RJ, 28013-600, Brazil
| | - Luciano de S Vespoli
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF (State University of Northern Rio de Janeiro - UENF), Campos dos Goytacazes, RJ, 28013-600, Brazil
| | - Hérika C Madureira
- Laboratory of Genetics and Plant Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF (State University of Northern Rio de Janeiro - UENF), Campos dos Goytacazes, RJ, Brazil
| | - Mariana R Leandro
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF (State University of Northern Rio de Janeiro - UENF), Campos dos Goytacazes, RJ, 28013-600, Brazil
| | - Telma N S Pereira
- Laboratory of Genetics and Plant Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF (State University of Northern Rio de Janeiro - UENF), Campos dos Goytacazes, RJ, Brazil
| | - Fábio L Olivares
- Laboratory of Cell and Tissue Biology, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF (State University of Northern Rio de Janeiro - UENF), Campos dos Goytacazes, RJ, Brazil
| | - Marília A Berbert-Molina
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF (State University of Northern Rio de Janeiro - UENF), Campos dos Goytacazes, RJ, 28013-600, Brazil
| | - Gonçalo A De Souza Filho
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF (State University of Northern Rio de Janeiro - UENF), Campos dos Goytacazes, RJ, 28013-600, Brazil.
| |
Collapse
|
26
|
Endo A, Tanizawa Y, Tanaka N, Maeno S, Kumar H, Shiwa Y, Okada S, Yoshikawa H, Dicks L, Nakagawa J, Arita M. Comparative genomics of Fructobacillus spp. and Leuconostoc spp. reveals niche-specific evolution of Fructobacillus spp. BMC Genomics 2015; 16:1117. [PMID: 26715526 PMCID: PMC4696137 DOI: 10.1186/s12864-015-2339-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 12/22/2015] [Indexed: 11/21/2022] Open
Abstract
Background Fructobacillus spp. in fructose-rich niches belong to the family Leuconostocaceae. They were originally classified as Leuconostoc spp., but were later grouped into a novel genus, Fructobacillus, based on their phylogenetic position, morphology and specific biochemical characteristics. The unique characters, so called fructophilic characteristics, had not been reported in the group of lactic acid bacteria, suggesting unique evolution at the genome level. Here we studied four draft genome sequences of Fructobacillus spp. and compared their metabolic properties against those of Leuconostoc spp. Results Fructobacillus species possess significantly less protein coding sequences in their small genomes. The number of genes was significantly smaller in carbohydrate transport and metabolism. Several other metabolic pathways, including TCA cycle, ubiquinone and other terpenoid-quinone biosynthesis and phosphotransferase systems, were characterized as discriminative pathways between the two genera. The adhE gene for bifunctional acetaldehyde/alcohol dehydrogenase, and genes for subunits of the pyruvate dehydrogenase complex were absent in Fructobacillus spp. The two genera also show different levels of GC contents, which are mainly due to the different GC contents at the third codon position. Conclusion The present genome characteristics in Fructobacillus spp. suggest reductive evolution that took place to adapt to specific niches. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2339-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akihito Endo
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido, 099-2493, Japan.
| | - Yasuhiro Tanizawa
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan. .,Center for Information Biology, National Institute of Genetics, Mishima, Japan.
| | - Naoto Tanaka
- NODAI Culture Collection Centre, Tokyo University of Agriculture, Tokyo, Japan.
| | - Shintaro Maeno
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido, 099-2493, Japan.
| | - Himanshu Kumar
- Functional Foods Forum, University of Turku, Turku, Finland.
| | - Yuh Shiwa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Tokyo, Japan.
| | - Sanae Okada
- NODAI Culture Collection Centre, Tokyo University of Agriculture, Tokyo, Japan.
| | - Hirofumi Yoshikawa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Tokyo, Japan. .,Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan.
| | - Leon Dicks
- Department of Microbiology, University of Stellenbosch, Stellenbosch, South Africa.
| | - Junichi Nakagawa
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido, 099-2493, Japan.
| | - Masanori Arita
- Center for Information Biology, National Institute of Genetics, Mishima, Japan. .,RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
| |
Collapse
|
27
|
Farrar K, Bryant D, Cope-Selby N. Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1193-206. [PMID: 25431199 PMCID: PMC4265282 DOI: 10.1111/pbi.12279] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/22/2014] [Accepted: 10/09/2014] [Indexed: 05/16/2023]
Abstract
Plant production systems globally must be optimized to produce stable high yields from limited land under changing and variable climates. Demands for food, animal feed, and feedstocks for bioenergy and biorefining applications, are increasing with population growth, urbanization and affluence. Low-input, sustainable, alternatives to petrochemical-derived fertilizers and pesticides are required to reduce input costs and maintain or increase yields, with potential biological solutions having an important role to play. In contrast to crops that have been bred for food, many bioenergy crops are largely undomesticated, and so there is an opportunity to harness beneficial plant-microbe relationships which may have been inadvertently lost through intensive crop breeding. Plant-microbe interactions span a wide range of relationships in which one or both of the organisms may have a beneficial, neutral or negative effect on the other partner. A relatively small number of beneficial plant-microbe interactions are well understood and already exploited; however, others remain understudied and represent an untapped reservoir for optimizing plant production. There may be near-term applications for bacterial strains as microbial biopesticides and biofertilizers to increase biomass yield from energy crops grown on land unsuitable for food production. Longer term aims involve the design of synthetic genetic circuits within and between the host and microbes to optimize plant production. A highly exciting prospect is that endosymbionts comprise a unique resource of reduced complexity microbial genomes with adaptive traits of great interest for a wide variety of applications.
Collapse
Affiliation(s)
- Kerrie Farrar
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth UniversityAberystwyth, UK
- *Correspondence (Tel +0044 (0)1970 823097; fax 0044 (0)1970 828357; email )
| | - David Bryant
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth UniversityAberystwyth, UK
| | - Naomi Cope-Selby
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth UniversityAberystwyth, UK
| |
Collapse
|
28
|
Idogawa N, Amamoto R, Murata K, Kawai S. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5. Bioengineered 2014; 5:173-9. [PMID: 24717418 DOI: 10.4161/bioe.28792] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotrophicus Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A G. diazotrophicus Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production.
Collapse
Affiliation(s)
- Nao Idogawa
- Laboratory of Basic and Applied Molecular Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto, Japan
| | - Ryuta Amamoto
- Laboratory of Basic and Applied Molecular Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto, Japan
| | - Kousaku Murata
- Laboratory of Basic and Applied Molecular Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto, Japan
| | - Shigeyuki Kawai
- Laboratory of Basic and Applied Molecular Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto, Japan
| |
Collapse
|
29
|
Bogino P, Abod A, Nievas F, Giordano W. Water-limiting conditions alter the structure and biofilm-forming ability of bacterial multispecies communities in the alfalfa rhizosphere. PLoS One 2013; 8:e79614. [PMID: 24223979 PMCID: PMC3817132 DOI: 10.1371/journal.pone.0079614] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/26/2013] [Indexed: 11/18/2022] Open
Abstract
Biofilms are microbial communities that adhere to biotic or abiotic surfaces and are enclosed in a protective matrix of extracellular compounds. An important advantage of the biofilm lifestyle for soil bacteria (rhizobacteria) is protection against water deprivation (desiccation or osmotic effect). The rhizosphere is a crucial microhabitat for ecological, interactive, and agricultural production processes. The composition and functions of bacterial biofilms in soil microniches are poorly understood. We studied multibacterial communities established as biofilm-like structures in the rhizosphere of Medicago sativa (alfalfa) exposed to 3 experimental conditions of water limitation. The whole biofilm-forming ability (WBFA) for rhizospheric communities exposed to desiccation was higher than that of communities exposed to saline or nonstressful conditions. A culture-dependent ribotyping analysis indicated that communities exposed to desiccation or saline conditions were more diverse than those under the nonstressful condition. 16S rRNA gene sequencing of selected strains showed that the rhizospheric communities consisted primarily of members of the Actinobacteria and α- and γ-Proteobacteria, regardless of the water-limiting condition. Our findings contribute to improved understanding of the effects of environmental stress factors on plant-bacteria interaction processes and have potential application to agricultural management practices.
Collapse
Affiliation(s)
- Pablo Bogino
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Ayelén Abod
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Fiorela Nievas
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Walter Giordano
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
30
|
Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SC. Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.01.038] [Citation(s) in RCA: 314] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|