1
|
Rubinstein J, Pinney SM, Xie C, Wang HS. Association of same-day urinary phenol levels and cardiac electrical alterations: analysis of the Fernald Community Cohort. Environ Health 2024; 23:76. [PMID: 39300535 PMCID: PMC11412060 DOI: 10.1186/s12940-024-01114-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Exposure to phenols has been linked in animal models and human populations to cardiac function alterations and cardiovascular diseases, although their effects on cardiac electrical properties in humans remains to be established. This study aimed to identify changes in electrocardiographic (ECG) parameters associated with environmental phenol exposure in adults of a midwestern large cohort known as the Fernald Community Cohort (FCC). METHODS During the day of the first comprehensive medical examination, urine samples were obtained, and electrocardiograms were recorded. Cross-sectional linear regression analyses were performed. RESULTS Bisphenol A (BPA) and bisphenol F (BPF) were both associated with a longer PR interval, an indication of delayed atrial-to-ventricle conduction, in females (p < 0.05) but not males. BPA combined with BPF was associated with an increase QRS duration, an indication of delayed ventricular activation, in females (P < 0.05) but not males. Higher triclocarban (TCC) level was associated with longer QTc interval, an indication of delayed ventricular repolarization, in males (P < 0.01) but not females. Body mass index (BMI) was associated with a significant increase in PR and QTc intervals and ventricular rate in females and in ventricular rate in males. In females, the combined effect of being in the top tertile for both BPA urinary concentration and BMI was an estimate of a 10% increase in PR interval. No associations were found with the other phenols. CONCLUSION Higher exposure to some phenols was associated with alterations of cardiac electrical properties in a sex specific manner in the Fernald cohort. Our population-based findings correlate directly with clinically relevant parameters that are associated with known pathophysiologic cardiac conditions in humans.
Collapse
Affiliation(s)
- Jack Rubinstein
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Susan M Pinney
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Changchun Xie
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Hong-Sheng Wang
- Department of Pharmacology, Physiology and Neurobiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Rubinstein J, Pinney SM, Xie C, Wang HS. Association of same-day urinary phenol levels and cardiac electrical alterations: analysis of the Fernald Community Cohort. RESEARCH SQUARE 2024:rs.3.rs-4445657. [PMID: 38853936 PMCID: PMC11160919 DOI: 10.21203/rs.3.rs-4445657/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Exposure to phenols has been linked in animal models and human populations to cardiac function alterations and cardiovascular diseases, although their effects on cardiac electrical properties in humans remains to be established. This study aimed to identify changes in electrocardiographic (ECG) parameters associated with environmental phenol exposure in adults of a midwestern large cohort known as the Fernald Community Cohort (FCC). Methods During the day of the first comprehensive medical examination, urine samples were obtained, and electrocardiograms were recorded. Cross-sectional linear regression analyses were performed. Results Bisphenol A (BPA) and bisphenol F (BPF) were both associated with a longer PR interval, an indication of delayed atrial-to-ventricle conduction, in females (p < 0.05) but not males. BPA combined with BPF was associated with an increase QRS duration, an indication of delayed ventricular activation, in females (P < 0.05) but not males. Higher triclocarban (TCC) level was associated with longer QTc interval, an indication of delayed ventricular repolarization, in males (P < 0.01) but not females. Body mass index (BMI) was associated with a significant increase in PR and QTc intervals and ventricular rate in females and in ventricular rate in males. In females, the combined effect of being in the top tertile for both BPA urinary concentration and BMI was an estimate of a 10% increase in PR interval. No associations were found with the other phenols. Conclusion Higher exposure to some phenols was associated with alterations of cardiac electrical properties in a sex specific manner in the Fernald cohort. Our population-based findings correlate directly with clinically relevant parameters that are associated with known pathophysiologic cardiac conditions in humans.
Collapse
|
3
|
Gisone I, Cecchettini A, Ceccherini E, Persiani E, Morales MA, Vozzi F. Cardiac tissue engineering: Multiple approaches and potential applications. Front Bioeng Biotechnol 2022; 10:980393. [PMID: 36263357 PMCID: PMC9574555 DOI: 10.3389/fbioe.2022.980393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
The overall increase in cardiovascular diseases and, specifically, the ever-rising exposure to cardiotoxic compounds has greatly increased in vivo animal testing; however, mainly due to ethical concerns related to experimental animal models, there is a strong interest in new in vitro models focused on the human heart. In recent years, human pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) emerged as reference cell systems for cardiac studies due to their biological similarity to primary CMs, the flexibility in cell culture protocols, and the capability to be amplified several times. Furthermore, the ability to be genetically reprogrammed makes patient-derived hiPSCs, a source for studies on personalized medicine. In this mini-review, the different models used for in vitro cardiac studies will be described, and their pros and cons analyzed to help researchers choose the best fitting model for their studies. Particular attention will be paid to hiPSC-CMs and three-dimensional (3D) systems since they can mimic the cytoarchitecture of the human heart, reproducing its morphological, biochemical, and mechanical features. The advantages of 3D in vitro heart models compared to traditional 2D cell cultures will be discussed, and the differences between scaffold-free and scaffold-based systems will also be spotlighted.
Collapse
Affiliation(s)
- Ilaria Gisone
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Elisa Persiani
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | | | - Federico Vozzi
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- *Correspondence: Federico Vozzi,
| |
Collapse
|
4
|
Zhao Y, Gao J, Wang Z, Cui Y, Zhang Y, Dai H, Li D. Distinct bacterial communities and resistance genes enriched by triclocarban-contaminated polyethylene microplastics in antibiotics and heavy metals polluted sewage environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156330. [PMID: 35640752 DOI: 10.1016/j.scitotenv.2022.156330] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Knowledge gaps still surround the question of what biofilms form on contaminated microplastics (MPs) in the antibiotics and (or) heavy metals polluted sewage. In this work, the clean polyethylene microplastics (PE MPs) and triclocarban (TCC)-contaminated PE MPs were cultured in the sewage containing only ampicillin (AMP), only copper (Cu) and both AMP and Cu for 28 days. The results showed that the TCC on PE MPs (with concentration of 2.48 mg/g PE MPs) did not impede the adhesion of the bacteria and the formation of biofilm. Moreover, many potential pathogenic bacteria (Aquabacterium and Pseudoxanthomonas) and potential resistant bacteria (Stenotrophomonas) were more likely to attach on TCC-contaminated PE MPs compared with clean PE MPs. In addition, biofilms of TCC-contaminated PE MPs had highest potential pathogenic functions. TCC-contaminated PE MPs also caused the increases of various resistance genes in both biofilm and sewage. The co-occurrence of TCC, AMP and Cu might exert a stronger selective pressure on bacterial communities and promote the co-selection of resistance genes. In addition, TCC-contaminated PE MPs resulted in higher abundance of five mobile genetic elements (MGEs) (intI1, intI3, tnpA-04, IS613 and trb-C) in sewage, which might further promote the transmission of resistance genes.
Collapse
Affiliation(s)
- Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yingchao Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Huihui Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Dingchang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
5
|
Zilles JC, Dos Santos FL, Kulkamp-Guerreiro IC, Contri RV. Biological activities and safety data of kojic acid and its derivatives - a review. Exp Dermatol 2022; 31:1500-1521. [PMID: 35960194 DOI: 10.1111/exd.14662] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/30/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
Kojic acid presents a variety of applications for human use, especially as a depigmenting agent. Its derivatives are also proposed in order to prevent chemical degradation, prevent adverse effects and improve efficacy. The aim of this study was to peer review the current scientific literature concerning the biological activities and safety data of kojic acid or its derivatives, aiming at human use, and trying to elucidate the action mechanisms. Three different databases were assessed and the word "kojic" was crossed with "toxicity", "adverse effect", "efficacy", "effect", "activity" and "safety". Articles were selected according to pre-defined criteria. Besides the depigmenting activity, kojic acid and derivatives can act as antioxidant, antimicrobial, anti-inflammatory, radioprotector, anticonvulsant and obesity management agents, and present potential as antitumor substances. Depigmenting activity is due to the molecules, after penetrating the cell, binding to tyrosinase active site, regulating melanogenesis factors, leucocytes modulation and free radical scavenging activity. Hence, polarity, size and ligands are also important factors for activity. Kojic acid and derivatives present cytotoxicity to some cancerous cell lines, including melanoma, hepatocellular carcinoma, ovarian cancer, breast cancer and colon cancer. Regarding safety, kojic acid or its derivatives are safe molecules for human use in the concentrations tested. Kojic acid and its derivatives have great potential for cosmetic, pharmaceutical and medical applications.
Collapse
Affiliation(s)
- Júlia Capp Zilles
- Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Universidade Federal do Rio grande do Sul, 90610-000, Porto Alegre, RS, Brazil
| | | | - Irene Clemes Kulkamp-Guerreiro
- Faculdade de Farmácia Universidade Federal do Rio grande do Sul, 90610-000, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Universidade Federal do Rio grande do Sul, 90610-000, Porto Alegre, RS, Brazil
| | - Renata Vidor Contri
- Faculdade de Farmácia Universidade Federal do Rio grande do Sul, 90610-000, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Universidade Federal do Rio grande do Sul, 90610-000, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Daley MC, Mende U, Choi BR, McMullen PD, Coulombe KLK. Beyond pharmaceuticals: Fit-for-purpose new approach methodologies for environmental cardiotoxicity testing. ALTEX 2022; 40:103-116. [PMID: 35648122 PMCID: PMC10502740 DOI: 10.14573/altex.2109131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
Environmental factors play a substantial role in determining cardiovascular health, but data informing the risks presented by environmental toxicants is insufficient. In vitro new approach methodologies (NAMs) offer a promising approach with which to address the limitations of traditional in vivo and in vitro assays for assessing cardiotoxicity. Driven largely by the needs of pharmaceutical toxicity testing, considerable progress in developing NAMs for cardiotoxicity analysis has already been made. As the scientific and regulatory interest in NAMs for environmental chemicals continues to grow, a thorough understanding of the unique features of environmental cardiotoxicants and their associated cardiotoxicities is needed. Here, we review the key characteristics of as well as important regulatory and biological considerations for fit-for-purpose NAMs for environmental cardiotoxicity. By emphasizing the challenges and opportunities presented by NAMs for environmental cardiotoxicity we hope to accelerate their development, acceptance, and application.
Collapse
Affiliation(s)
- Mark C Daley
- Center for Biomedical Engineering, School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Bum-Rak Choi
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
7
|
Cherianidou A, Seidel F, Kappenberg F, Dreser N, Blum J, Waldmann T, Blüthgen N, Meisig J, Madjar K, Henry M, Rotshteyn T, Marchan R, Edlund K, Leist M, Rahnenführer J, Sachinidis A, Hengstler JG. Classification of Developmental Toxicants in a Human iPSC Transcriptomics-Based Test. Chem Res Toxicol 2022; 35:760-773. [PMID: 35416653 PMCID: PMC9377669 DOI: 10.1021/acs.chemrestox.1c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the progress made in developmental toxicology, there is a great need for in vitro tests that identify developmental toxicants in relation to human oral doses and blood concentrations. In the present study, we established the hiPSC-based UKK2 in vitro test and analyzed genome-wide expression profiles of 23 known teratogens and 16 non-teratogens. Compounds were analyzed at the maximal plasma concentration (Cmax) and at 20-fold Cmax for a 24 h incubation period in three independent experiments. Based on the 1000 probe sets with the highest variance and including information on cytotoxicity, penalized logistic regression with leave-one-out cross-validation was used to classify the compounds as test-positive or test-negative, reaching an area under the curve (AUC), accuracy, sensitivity, and specificity of 0.96, 0.92, 0.96, and 0.88, respectively. Omitting the cytotoxicity information reduced the test performance to an AUC of 0.94, an accuracy of 0.79, and a sensitivity of 0.74. A second method, which used the number of significantly deregulated probe sets to classify the compounds, resulted in a specificity of 1; however, the AUC (0.90), accuracy (0.90), and sensitivity (0.83) were inferior compared to those of the logistic regression-based procedure. Finally, no increased performance was achieved when the high test concentrations (20-fold Cmax) were used, in comparison to testing within the realistic clinical range (1-fold Cmax). In conclusion, although further optimization is required, for example, by including additional readouts and cell systems that model different developmental processes, the UKK2-test in its present form can support the early discovery-phase detection of human developmental toxicants.
Collapse
Affiliation(s)
- Anna Cherianidou
- Faculty
of Medicine and University Hospital Cologne, Center for Physiology,
Working Group Sachinidis, University of
Cologne, Robert-Koch-Str.
39, 50931 Cologne, Germany
| | - Florian Seidel
- Leibniz
Research Centre for Working Environment and Human Factors at the Technical
University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Franziska Kappenberg
- Department
of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227 Dortmund, Germany
| | - Nadine Dreser
- In
Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, P.O.
Box M657, 78457 Konstanz, Germany
| | - Jonathan Blum
- In
Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, P.O.
Box M657, 78457 Konstanz, Germany
| | - Tanja Waldmann
- Department
of Advanced Cell Systems, trenzyme GmbH, Byk-Gulden-Str. 2, 78467 Konstanz, Germany
| | - Nils Blüthgen
- Institute
of Pathology, Charité-Universitätsmedizin
Berlin, Chariteplatz
1, 10117 Berlin, Germany
- IRI
Life Sciences, Humboldt Universität zu Berlin, Philippstraße 13, Haus 18, 10115 Berlin, Germany
| | - Johannes Meisig
- Institute
of Pathology, Charité-Universitätsmedizin
Berlin, Chariteplatz
1, 10117 Berlin, Germany
- IRI
Life Sciences, Humboldt Universität zu Berlin, Philippstraße 13, Haus 18, 10115 Berlin, Germany
| | - Katrin Madjar
- Department
of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227 Dortmund, Germany
| | - Margit Henry
- Faculty
of Medicine and University Hospital Cologne, Center for Physiology,
Working Group Sachinidis, University of
Cologne, Robert-Koch-Str.
39, 50931 Cologne, Germany
- Center
for Molecular Medicine Cologne (CMMC), University
of Cologne, 50931 Cologne, Germany
| | - Tamara Rotshteyn
- Faculty
of Medicine and University Hospital Cologne, Center for Physiology,
Working Group Sachinidis, University of
Cologne, Robert-Koch-Str.
39, 50931 Cologne, Germany
- Center
for Molecular Medicine Cologne (CMMC), University
of Cologne, 50931 Cologne, Germany
| | - Rosemarie Marchan
- Leibniz
Research Centre for Working Environment and Human Factors at the Technical
University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Karolina Edlund
- Leibniz
Research Centre for Working Environment and Human Factors at the Technical
University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Marcel Leist
- In
Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, P.O.
Box M657, 78457 Konstanz, Germany
| | - Jörg Rahnenführer
- Department
of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227 Dortmund, Germany
| | - Agapios Sachinidis
- Faculty
of Medicine and University Hospital Cologne, Center for Physiology,
Working Group Sachinidis, University of
Cologne, Robert-Koch-Str.
39, 50931 Cologne, Germany
- Center
for Molecular Medicine Cologne (CMMC), University
of Cologne, 50931 Cologne, Germany
| | - Jan G. Hengstler
- Leibniz
Research Centre for Working Environment and Human Factors at the Technical
University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| |
Collapse
|
8
|
Acharya A, Nemade H, Rajendra Prasad K, Khan K, Hescheler J, Blackburn N, Hemmersbach R, Papadopoulos S, Sachinidis A. Live-Cell Imaging of the Contractile Velocity and Transient Intracellular Ca 2+ Fluctuations in Human Stem Cell-Derived Cardiomyocytes. Cells 2022; 11:1280. [PMID: 35455960 PMCID: PMC9031802 DOI: 10.3390/cells11081280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Live-cell imaging techniques are essential for acquiring vital physiological and pathophysiological knowledge to understand and treat heart disease. For live-cell imaging of transient alterations of [Ca2+]i in human cardiomyocytes, we engineered human-induced pluripotent stem cells carrying a genetically-encoded Ca2+-indicator (GECI). To monitor sarcomere shortening and relaxation in cardiomyocytes in real-time, we generated a α-cardiac actinin (ACTN2)-copepod (cop) green fluorescent protein (GFP+)-human-induced pluripotent stem cell line by using the CRISPR-Cas9 and a homology directed recombination approach. The engineered human-induced pluripotent stem cells were differentiated in transgenic GECI-enhanced GFP+-cardiomyocytes and ACTN2-copGFP+-cardiomyocytes, allowing real-time imaging of [Ca2+]i transients and live recordings of the sarcomere shortening velocity of ACTN2-copGFP+-cardiomyocytes. We developed a video analysis software tool to quantify various parameters of sarcoplasmic Ca2+ fluctuations recorded during contraction of cardiomyocytes and to calculate the contraction velocity of cardiomyocytes in the presence and absence of different drugs affecting cardiac function. Our cellular and software tool not only proved the positive and negative inotropic and lusitropic effects of the tested cardioactive drugs but also quantified the expected effects precisely. Our platform will offer a human-relevant in vitro alternative for high-throughput drug screenings, as well as a model to explore the underlying mechanisms of cardiac diseases.
Collapse
Affiliation(s)
- Aviseka Acharya
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Harshal Nemade
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Krishna Rajendra Prasad
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Khadija Khan
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Jürgen Hescheler
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Nick Blackburn
- Bioras Company, Kaarsbergsvej 2, 8400 Ebeltoft, Denmark;
| | - Ruth Hemmersbach
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Linder Hoehe, 51147 Cologne, Germany;
| | - Symeon Papadopoulos
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Agapios Sachinidis
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
9
|
Statistical Analysis and Machine Learning Used in the Case of Two Behavioral Tests Applied in Zebrafish Exposed to Mycotoxins. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Machine learning is a branch of artificial intelligence that allows computer systems to learn directly from examples, data, and experience. Statistical modeling is more about finding connections between variables and consequently the impact of these relationships, while also catering for prediction. It should be clear that these two methodologies are different in terms of their purpose, despite the fact that they use similar means to get there. The evaluation of the machine learning algorithm uses a set of tests to validate its accuracy. Although, for a statistical model, the analysis of regression parameters by confidence intervals, significance tests and other tests can be used to assess the legitimacy of the model. To demonstrate the applications and usefulness of this theory, an experimental study was conducted on zebrafish exposed to mycotoxin. Methods: Patulin (70 µg/L) and kojic acid (100 mg/L, 204 mg/L, and 284 mg/L) were administered by immersion to zebrafish once daily for a period of 7 days before the behavior testing. The following behavioral tests were performed: a novel tank test (NTT) (to assess the explorative behavior and anxiety); and a Y-maze test (which measures the spontaneous explorative behavior). Behavioral tests were performed on separate days. For the behavior tests, the statistical analysis was performed using ANOVA variation analysis (two-way ANOVA). All results are expressed as the mean ± standard error of the mean. The values of the general index F for which p < 0.05 were considered statistically significant. Results: Y-maze—patulin exposure led to an intensification of the locomotor activity and an increased traveled distance and number of arm entries. By increasing the spontaneous alternation between the aquarium’s arms, patulin has shown a stimulating effect on spatial memory. In the case of zebrafish exposed to 100 mg/L kojic acid, the traveled distance was shorter by 27% than the distance attained by those in the control group. The higher doses of kojic acid (204 mg/L and 284 mg/L) led to an increased locomotor activity, distance traveled, number of arm entries, and the spontaneous alternation. The increase in spontaneous alternation demonstrates that 204 mg/L and 284 mg/L kojic acid doses had a stimulating effect on spatial memory. Novel tank test—compared to the control group, the traveled distance of the patulin-exposed fish is slightly reduced. Compared to the control group, the traveled distance of the kojic acid-exposed fish is reduced, due to a shorter mobile time (by 25–27% in the case of fish exposed to 204 mg/L and 284 mg/L kojic acid). Patulin and kojic acid exhibit toxic effects on zebrafish liver, kidney, and myocardium and leads to severe alteration. We continued the analysis by trying some machine learning algorithms on the classification problems in the case of the two behavioral tests MAZE and NTT, after which we concluded that the results were better in the case of the NTT test relative to the MAZE test and that the use of decision tree algorithms leads to amazing results, knowing that their hierarchical structure allows them to learn signals from both classes. Conclusions: The groups exposed to patulin and kojic acid show histological changes in the liver, kidneys, and myocardial muscle tissue. The novel tank test, which assesses exploratory behavior, has been shown to be conclusive in the behavioral analysis of fish that have been given toxins, demonstrating that the intoxicated fish had a decreased explorative behavior and increased anxiety. We were able to detect a machine learning algorithm in the category of decision trees, which can be trained to classify the behavior of fish that were given a toxin in the category of those used in the experiment, only by analyzing the characteristic features of the NTT Behavior Test.
Collapse
|
10
|
Konala VBR, Nandakumar S, Surendran H, Datar S, Bhonde R, Pal R. Neuronal and cardiac toxicity of pharmacological compounds identified through transcriptomic analysis of human pluripotent stem cell-derived embryoid bodies. Toxicol Appl Pharmacol 2021; 433:115792. [PMID: 34742744 DOI: 10.1016/j.taap.2021.115792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Concurrent with the '3R' principle, the embryonic stem cell test (EST) using mouse embryonic stem cells, developed in 2000, remains the solely accepted in vitro method for embryotoxicity testing. However, the scope and implementation of EST for embryotoxicity screening, compliant with regulatory requirements, are limited. This is due to its technical complexity, long testing period, labor-intensive methodology, and limited endpoint data, leading to misclassification of embryotoxic potential. In this study, we used human induced pluripotent stem cell (hiPSC)-derived embryoid bodies (EB) as an in vitro model to investigate the embryotoxic effects of a carefully selected set of pharmacological compounds. Morphology, viability, and differentiation potential were investigated after exposing EBs to folic acid, all-trans-retinoic acid, dexamethasone, and valproic acid for 15 days. The results showed that the compounds differentially repressed cell growth, compromised morphology, and triggered apoptosis in the EBs. Further, transcriptomics was employed to compare subtle temporal changes between treated and untreated cultures. Gene ontology and pathway analysis revealed that dysregulation of a large number of genes strongly correlated with impaired neuroectoderm and cardiac mesoderm formation. This aberrant gene expression pattern was associated with several disorders of the brain like mental retardation, multiple sclerosis, stroke and of the heart like dilated cardiomyopathy, ventricular tachycardia, and ventricular arrhythmia. Lastly, these in vitro findings were validated using in ovo chick embryo model. Taken together, pharmacological compound or drug-induced defective EB development from hiPSCs could potentially be used as a suitable in vitro platform for embryotoxicity screening.
Collapse
Affiliation(s)
- Vijay Bhaskar Reddy Konala
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru 560064, Karnataka, India; Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), Bengaluru 560065, Karnataka, India
| | - Swapna Nandakumar
- Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), Bengaluru 560065, Karnataka, India
| | - Harshini Surendran
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru 560064, Karnataka, India; Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), Bengaluru 560065, Karnataka, India
| | - Savita Datar
- Department of Zoology, S. P. College, Pune 411030, Maharashtra, India
| | - Ramesh Bhonde
- Dr. D. Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
| | - Rajarshi Pal
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru 560064, Karnataka, India; Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), Bengaluru 560065, Karnataka, India.
| |
Collapse
|
11
|
Burnett SD, Blanchette AD, Chiu WA, Rusyn I. Cardiotoxicity Hazard and Risk Characterization of ToxCast Chemicals Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes from Multiple Donors. Chem Res Toxicol 2021; 34:2110-2124. [PMID: 34448577 PMCID: PMC8762671 DOI: 10.1021/acs.chemrestox.1c00203] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heart disease remains a significant human health burden worldwide with a significant fraction of morbidity attributable to environmental exposures. However, the extent to which the thousands of chemicals in commerce and the environment may contribute to heart disease morbidity is largely unknown, because in contrast to pharmaceuticals, environmental chemicals are seldom tested for potential cardiotoxicity. Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes have become an informative in vitro model for cardiotoxicity testing of drugs with the availability of cells from multiple individuals allowing in vitro testing of population variability. In this study, we hypothesized that a panel of iPSC-derived cardiomyocytes from healthy human donors can be used to screen for the potential cardiotoxicity hazard and risk of environmental chemicals. We conducted concentration-response testing of 1029 chemicals (drugs, pesticides, flame retardants, polycyclic aromatic hydrocarbons (PAHs), plasticizers, industrial chemicals, food/flavor/fragrance agents, etc.) in iPSC-derived cardiomyocytes from 5 donors. We used kinetic calcium flux and high-content imaging to derive quantitative measures as inputs into Bayesian population concentration-response modeling of the effects of each chemical. We found that many environmental chemicals pose a hazard to human cardiomyocytes in vitro with more than half of all chemicals eliciting positive or negative chronotropic or arrhythmogenic effects. However, most of the tested environmental chemicals for which human exposure and high-throughput toxicokinetics data were available had wide margins of exposure and, thus, do not appear to pose a significant human health risk in a general population. Still, relatively narrow margins of exposure (<100) were estimated for some perfuoroalkyl substances and phthalates, raising concerns that cumulative exposures may pose a cardiotoxicity risk. Collectively, this study demonstrated the value of using a population-based human in vitro model for rapid, high-throughput hazard and risk characterization of chemicals for which little to no cardiotoxicity data are available from guideline studies in animals.
Collapse
Affiliation(s)
- Sarah D. Burnett
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Alexander D. Blanchette
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Weihsueh A. Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| |
Collapse
|
12
|
The Different Facets of Triclocarban: A Review. Molecules 2021; 26:molecules26092811. [PMID: 34068616 PMCID: PMC8126057 DOI: 10.3390/molecules26092811] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
In the late 1930s and early 1940s, it was discovered that the substitution on aromatic rings of hydrogen atoms with chlorine yielded a novel chemistry of antimicrobials. However, within a few years, many of these compounds and formulations showed adverse effects, including human toxicity, ecotoxicity, and unwanted environmental persistence and bioaccumulation, quickly leading to regulatory bans and phase-outs. Among these, the triclocarban, a polychlorinated aromatic antimicrobial agent, was employed as a major ingredient of toys, clothing, food packaging materials, food industry floors, medical supplies, and especially of personal care products, such as soaps, toothpaste, and shampoo. Triclocarban has been widely used for over 50 years, but only recently some concerns were raised about its endocrine disruptive properties. In September 2016, the U.S. Food and Drug Administration banned its use in over-the-counter hand and body washes because of its toxicity. The withdrawal of triclocarban has prompted the efforts to search for new antimicrobial compounds and several analogues of triclocarban have also been studied. In this review, an examination of different facets of triclocarban and its analogues will be analyzed.
Collapse
|
13
|
Papazoglou P, Peng L, Sachinidis A. Epigenetic Mechanisms Involved in the Cardiovascular Toxicity of Anticancer Drugs. Front Cardiovasc Med 2021; 8:658900. [PMID: 33987212 PMCID: PMC8110725 DOI: 10.3389/fcvm.2021.658900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
The cardiovascular toxicity of anticancer drugs promotes the development of cardiovascular diseases. Therefore, cardiovascular toxicity is an important safety issue that must be considered when developing medications and therapeutic applications to treat cancer. Among anticancer drugs, members of the anthracycline family, such as doxorubicin, daunorubicin and mitoxantrone, are known to cause cardiotoxicity and even heart failure. Using human-induced pluripotent stem cell-derived cardiomyocytes in combination with "Omic" technologies, we identified several cardiotoxicity mechanisms and signal transduction pathways. Moreover, these drugs acted as cardiovascular toxicants through a syndrome of mechanisms, including epigenetic ones. Herein, we discuss the main cardiovascular toxicity mechanisms, with an emphasis on those associated with reactive oxygen species and mitochondria that contribute to cardiotoxic epigenetic modifications. We also discuss how to mitigate the cardiotoxic effects of anticancer drugs using available pharmaceutical "weapons."
Collapse
Affiliation(s)
| | - Luying Peng
- Heart Health Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Agapios Sachinidis
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Abstract
Abstract
The field of nanotechnology is being greatly explored by cosmetic industries in order to improve the efficacy of cosmetic products. The increased use of nanomaterials in the field of cosmetics can have two sides as health-related benefits and detrimental effects. This review mainly seeks the pros and cons of the use of nanomaterials in cosmetics along with some examples of nanomaterials that are widely used in cosmetic industries along with different types of nanotechnology-based cosmetic products. The benefits of nanomaterials in cosmetic formulations are huge. Moreover the study regarding the toxic effects on the health also equally matters. This review gives a brief outline of the advantages as well as disadvantages of nanotechnology in cosmetics.
Collapse
|
15
|
Burnett SD, Blanchette AD, Chiu WA, Rusyn I. Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes as an in vitro model in toxicology: strengths and weaknesses for hazard identification and risk characterization. Expert Opin Drug Metab Toxicol 2021; 17:887-902. [PMID: 33612039 DOI: 10.1080/17425255.2021.1894122] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes is one of the most widely used cell-based models that resulted from the discovery of how non-embryonic stem cells can be differentiated into multiple cell types. In just one decade, iPSC-derived cardiomyocytes went from a research lab to widespread use in biomedical research and preclinical safety evaluation for drugs and other chemicals. AREAS COVERED This manuscript reviews data on toxicology applications of human iPSC-derived cardiomyocytes. We detail the outcome of a systematic literature search on their use (i) in hazard assessment for cardiotoxicity liabilities, (ii) for risk characterization, (iii) as models for population variability, and (iv) in studies of personalized medicine and disease. EXPERT OPINION iPSC-derived cardiomyocytes are useful to increase the accuracy, precision, and efficiency of cardiotoxicity hazard identification for both drugs and non-pharmaceuticals, with recent efforts beginning to demonstrate their utility for risk characterization. Notable limitations include the needs to improve the maturation of cells in culture, to better understand their potential use identifying structural cardiotoxicity, and for additional case studies involving population-wide and disease-specific risk characterization. Ultimately, the greatest future benefits are likely for non-pharmaceutical chemicals, filling a critical gap where no routine testing for cardiotoxicity is currently performed.
Collapse
Affiliation(s)
- Sarah D Burnett
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Alexander D Blanchette
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
16
|
Krishna S, Berridge B, Kleinstreuer N. High-Throughput Screening to Identify Chemical Cardiotoxic Potential. Chem Res Toxicol 2020; 34:566-583. [PMID: 33346635 DOI: 10.1021/acs.chemrestox.0c00382] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiovascular (CV) disease is one of the most prevalent public health concerns, and mounting evidence supports the contribution of environmental chemicals to CV disease burden. In this study, we performed cardiotoxicity profiling for the Tox21 chemical library by focusing on high-throughput screening (HTS) assays whose targets are associated with adverse events related to CV failure modes. Our objective was to develop new hypotheses around environmental chemicals of potential interest for adverse CV outcomes using Tox21/ToxCast HTS data. Molecular and cellular events linked to six failure modes of CV toxicity were cross-referenced with 1399 Tox21/ToxCast assays to identify cardio-relevant bioactivity signatures. The resulting 40 targets, measured in 314 assays, were integrated via a ToxPi visualization tool and ranking system to prioritize 1138 chemicals based upon formal integration across multiple domains of information. Filtering was performed based on cytotoxicity and generalized cell stress endpoints to try and isolate chemicals with effects specific to CV biology, and bioactivity- and structure-based clustering identified subgroups of chemicals preferentially affecting targets such as ion channels and vascular tissue biology. Our approach identified drugs with known cardiotoxic effects, such as estrogenic modulators like clomiphene and raloxifene, anti-arrhythmic drugs like amiodarone and haloperidol, and antipsychotic drugs like chlorpromazine. Several classes of environmental chemicals such as organotins, bisphenol-like chemicals, pesticides, and quaternary ammonium compounds demonstrated strong bioactivity against CV targets; these were compared to existing data in the literature (e.g., from cardiomyocytes, animal data, or human epidemiological studies) and prioritized for further testing.
Collapse
Affiliation(s)
- Shagun Krishna
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, North Carolina 27560, United States
| | - Brian Berridge
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, North Carolina 27560, United States
| | - Nicole Kleinstreuer
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, North Carolina 27560, United States
| |
Collapse
|
17
|
Lauschke K, Rosenmai AK, Meiser I, Neubauer JC, Schmidt K, Rasmussen MA, Holst B, Taxvig C, Emnéus JK, Vinggaard AM. A novel human pluripotent stem cell-based assay to predict developmental toxicity. Arch Toxicol 2020; 94:3831-3846. [PMID: 32700165 PMCID: PMC7603451 DOI: 10.1007/s00204-020-02856-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/14/2020] [Indexed: 01/12/2023]
Abstract
There is a great need for novel in vitro methods to predict human developmental toxicity to comply with the 3R principles and to improve human safety. Human-induced pluripotent stem cells (hiPSC) are ideal for the development of such methods, because they are easy to retrieve by conversion of adult somatic cells and can differentiate into most cell types of the body. Advanced three-dimensional (3D) cultures of these cells, so-called embryoid bodies (EBs), moreover mimic the early developing embryo. We took advantage of this to develop a novel human toxicity assay to predict chemically induced developmental toxicity, which we termed the PluriBeat assay. We employed three different hiPSC lines from male and female donors and a robust microtiter plate-based method to produce EBs. We differentiated the cells into cardiomyocytes and introduced a scoring system for a quantitative readout of the assay-cardiomyocyte contractions in the EBs observed on day 7. Finally, we tested the three compounds thalidomide (2.3-36 µM), valproic acid (25-300 µM), and epoxiconazole (1.3-20 µM) on beating and size of the EBs. We were able to detect the human-specific teratogenicity of thalidomide and found the rodent toxicant epoxiconazole as more potent than thalidomide in our assay. We conclude that the PluriBeat assay is a novel method for predicting chemicals' adverse effects on embryonic development.
Collapse
Affiliation(s)
- Karin Lauschke
- National Food Institute, Technical University of Denmark, Kemitorvet, 2800, Kongens Lyngby, Denmark
- Department for Biotechnology and Biomedicine, Technical University of Denmark, Produktionstorvet, 2800, Kongens Lyngby, Denmark
| | - Anna Kjerstine Rosenmai
- National Food Institute, Technical University of Denmark, Kemitorvet, 2800, Kongens Lyngby, Denmark
| | - Ina Meiser
- Fraunhofer Institute for Biomedical Engineering, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Julia Christiane Neubauer
- Fraunhofer Institute for Biomedical Engineering, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Neunerplatz 2, 97082, Würzburg, Germany
| | - Katharina Schmidt
- Fraunhofer Institute for Biomedical Engineering, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | | | - Bjørn Holst
- Bioneer A/S, Kogle Allé 2, 2970, Hørsholm, Denmark
| | - Camilla Taxvig
- National Food Institute, Technical University of Denmark, Kemitorvet, 2800, Kongens Lyngby, Denmark
| | - Jenny Katarina Emnéus
- Department for Biotechnology and Biomedicine, Technical University of Denmark, Produktionstorvet, 2800, Kongens Lyngby, Denmark
| | - Anne Marie Vinggaard
- National Food Institute, Technical University of Denmark, Kemitorvet, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
18
|
Albrecht W. Which concentrations are optimal for in vitro testing? EXCLI JOURNAL 2020; 19:1172-1173. [PMID: 33088256 PMCID: PMC7573170 DOI: 10.17179/excli2020-2761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Wiebke Albrecht
- Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139 Dortmund, Germany
| |
Collapse
|
19
|
Mini CA, Dorta DJ, Maria-Engler SS, Oliveira DP. Immortalized equivalent human epidermis as a platform to evaluation hair dyes toxicity: Efficiency comparison between 3D and monolayer culture. Chem Biol Interact 2020; 330:109227. [PMID: 32818478 DOI: 10.1016/j.cbi.2020.109227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/09/2020] [Accepted: 08/11/2020] [Indexed: 01/13/2023]
Abstract
The use of 3D models in various scientific applications is becoming more popular to replace traditional monolayers models. In this work, we used a three-dimensional in-house model of epidermis using HaCaT immortalized cells to evaluate the dermal toxicity induced by Basic Blue 99 and Basic Red 51, both present in commercial hair dye formulations. Our data show that cells cultured in the 3D model respond differently to those cultured in monolayer. Basic Red 51 dye induces apoptosis an DNA breaks in both models, however, these effects is more pronounced in cells cultured in monolayer. The toxic mode of action of Basic Blue 99 seems to be the induction of cell death, without genotoxic effects, but while the necrotic pathway is observed in HaCaT monolayer cell culture, was apoptosis seen in the Equivalent Human Epidermis (EHE) model. We could also confirm that cells in EHE model, an environment that could better mimic human effects, react differently to chemical stressors than the cells cultivated in 2D.
Collapse
Affiliation(s)
- C A Mini
- Faculty of Pharmaceutical Sciences of Ribeirão Preto- Laboratory of Ecotoxicology and Human Toxicology, University of São Paulo, Brazil
| | - D J Dorta
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Departamento de Química, Brazil
| | - S S Maria-Engler
- Faculty of Pharmaceutical Sciences- Laboratory of Skin Biology and Melanoma Group, University of São Paulo, Brazil
| | - D P Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto- Laboratory of Ecotoxicology and Human Toxicology, University of São Paulo, Brazil.
| |
Collapse
|
20
|
Seddek AL, Ghallab A. Fluoride: no evidence of developmental neurotoxicity due to current exposure levels in Europe. Arch Toxicol 2020; 94:2543-2544. [DOI: 10.1007/s00204-020-02823-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 11/29/2022]
|
21
|
Zink D, Chuah JKC, Ying JY. Assessing Toxicity with Human Cell-Based In Vitro Methods. Trends Mol Med 2020; 26:570-582. [PMID: 32470384 DOI: 10.1016/j.molmed.2020.01.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/02/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023]
Abstract
In toxicology, there is a strong push towards replacing animal experiments with alternative methods, which include cell-based in vitro methods for the assessment of adverse health effects in humans. High-throughput methods are of central interest due to the large and steadily growing numbers of compounds that require assessment. Tremendous progress has been made during the last decade in developing and applying such methods. Innovative technologies for addressing complex biological interactions include induced pluripotent stem cell- and organoid-based approaches, organotypic coculture systems, and microfluidic 'multiorgan' chips. Combining in vitro methods with bioinformatics and in silico modeling generates new powerful tools for toxicity assessment, and the rapid progress in the field is expected to continue.
Collapse
Affiliation(s)
- Daniele Zink
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore; Innovations in Food and Chemical Safety Programme, A*STAR, Singapore.
| | - Jacqueline Kai Chin Chuah
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore; Cellbae Pte Ltd, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Jackie Y Ying
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore.
| |
Collapse
|
22
|
Sachinidis A. Cardiotoxicity and Heart Failure: Lessons from Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Anticancer Drugs. Cells 2020; 9:cells9041001. [PMID: 32316481 PMCID: PMC7226145 DOI: 10.3390/cells9041001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) are discussed as disease modeling for optimization and adaptation of therapy to each individual. However, the fundamental question is still under debate whether stem-cell-based disease modeling and drug discovery are applicable for recapitulating pathological processes under in vivo conditions. Drug treatment and exposure to different chemicals and environmental factors can initiate diseases due to toxicity effects in humans. It is well documented that drug-induced cardiotoxicity accelerates the development of heart failure (HF). Until now, investigations on the understanding of mechanisms involved in HF by anticancer drugs are hindered by limitations of the available cellular models which are relevant for human physiology and by the fact that the clinical manifestation of HF often occurs several years after its initiation. Recently, we identified similar genomic biomarkers as observed by HF after short treatment of hiPSCs-derived cardiomyocytes (hiPSC-CMs) with different antitumor drugs such as anthracyclines and etoposide (ETP). Moreover, we identified common cardiotoxic biological processes and signal transduction pathways which are discussed as being crucial for the survival and function of cardiomyocytes and, therefore, for the development of HF. In the present review, I discuss the applicability of the in vitro cardiotoxicity test systems as modeling for discovering preventive mechanisms/targets against cardiotoxicity and, therefore, for novel HF therapeutic concepts.
Collapse
Affiliation(s)
- Agapios Sachinidis
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany;
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| |
Collapse
|
23
|
Kajta M, Rzemieniec J, Wnuk A, Lasoń W. Triclocarban impairs autophagy in neuronal cells and disrupts estrogen receptor signaling via hypermethylation of specific genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134818. [PMID: 31706213 DOI: 10.1016/j.scitotenv.2019.134818] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 05/20/2023]
Abstract
Although an increasing body of evidence suggests that triclocarban, a phenyl ether classified as a contaminant of emerging concern, presents a risk to development, there is limited data available on the potential interplay of triclocarban with the developing mammalian nervous system. This study was aimed to investigate the impact of environmentally pervasive chemical triclocarban on autophagy and estrogen receptor-mediated signaling pathways in mouse neurons. The study showed that triclocarban impaired autophagy and disrupted estrogen receptor signaling in mouse embryonic neurons in primary culture. Triclocarban used at environmentally relevant concentrations inhibited the mRNA and protein expression of ESR1 and GPER1 but not ESR2. The triclocarban-induced decrease in the expression of estrogen receptors was supported by the colocalization of the receptors in mouse neurons and corresponded to hypermethylation of the Esr1 and Gper1 genes. Selective antagonists increased the effects of triclocarban, which suggests that the neurotoxic effects of triclocarban, in addition to decreasing estrogen receptor expression, are mediated via inhibition of the neuroprotective capacity of the receptors. Furthermore, Becn1 and Atg7 siRNAs potentiated the caspase-3-dependent effect of triclocarban, which points to triclocarban-induced impairment of autophagy. Indeed, triclocarban dysregulated the expression of autophagy-related genes, and caused a time-dependent inhibition of the mRNA expression of Becn1, Map1lc3a, Map1lc3b, Nup62, and Atg7, which was correlated with a decrease in the protein levels of MAP1LC3B, BECN1 and autophagosomes, but not NUP62 protein level which was increased. Intriguingly, the Esr1 and Gper1 siRNAs did not affect the level of autophagosomes, suggesting that the triclocarban-induced impairment of autophagy is independent of the triclocarban-induced disruption of estrogen receptor signaling in mammalian neurons. Because our data provided evidence that triclocarban has the capacity to impair autophagy and disrupt estrogen receptor signaling in brain neurons at an early developmental stage, we postulate to categorize the compound as a neurodevelopmental risk factor.
Collapse
Affiliation(s)
- M Kajta
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Laboratory of Molecular Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| | - J Rzemieniec
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Laboratory of Molecular Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland
| | - A Wnuk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Laboratory of Molecular Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland
| | - W Lasoń
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland
| |
Collapse
|
24
|
Brecklinghaus T. Highlight report: mechanisms of nephrotoxicity and available in vitro systems. Arch Toxicol 2019; 94:347-348. [PMID: 31822929 DOI: 10.1007/s00204-019-02640-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Tim Brecklinghaus
- Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139, Dortmund, Germany.
| |
Collapse
|
25
|
de Korte T, Katili PA, Mohd Yusof NAN, van Meer BJ, Saleem U, Burton FL, Smith GL, Clements P, Mummery CL, Eschenhagen T, Hansen A, Denning C. Unlocking Personalized Biomedicine and Drug Discovery with Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Fit for Purpose or Forever Elusive? Annu Rev Pharmacol Toxicol 2019; 60:529-551. [PMID: 31506008 DOI: 10.1146/annurev-pharmtox-010919-023309] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In recent decades, drug development costs have increased by approximately a hundredfold, and yet about 1 in 7 licensed drugs are withdrawn from the market, often due to cardiotoxicity. This review considers whether technologies using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) could complement existing assays to improve discovery and safety while reducing socioeconomic costs and assisting with regulatory guidelines on cardiac safety assessments. We draw on lessons from our own work to suggest a panel of 12 drugs that will be useful in testing the suitability of hiPSC-CM platforms to evaluate contractility. We review issues, including maturity versus complexity, consistency, quality, and cost, while considering a potential need to incorporate auxiliary approaches to compensate for limitations in hiPSC-CM technology. We give examples on how coupling hiPSC-CM technologies with Cas9/CRISPR genome engineering is starting to be used to personalize diagnosis, stratify risk, provide mechanistic insights, and identify new pathogenic variants for cardiovascular disease.
Collapse
Affiliation(s)
- Tessa de Korte
- Ncardia, 2333 BD Leiden, The Netherlands.,Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZD Leiden, The Netherlands
| | - Puspita A Katili
- Department of Stem Cell Biology, University of Nottingham, NG7 2RD Nottingham, United Kingdom;
| | - Nurul A N Mohd Yusof
- Department of Stem Cell Biology, University of Nottingham, NG7 2RD Nottingham, United Kingdom;
| | - Berend J van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZD Leiden, The Netherlands
| | - Umber Saleem
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Francis L Burton
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | - Peter Clements
- David Jack Centre for Research & Development, GlaxoSmithKline, SG12 0DP Hertfordshire, United Kingdom
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZD Leiden, The Netherlands
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Chris Denning
- Department of Stem Cell Biology, University of Nottingham, NG7 2RD Nottingham, United Kingdom;
| |
Collapse
|
26
|
Sachinidis A, Albrecht W, Nell P, Cherianidou A, Hewitt NJ, Edlund K, Hengstler JG. Road Map for Development of Stem Cell-Based Alternative Test Methods. Trends Mol Med 2019; 25:470-481. [PMID: 31130451 DOI: 10.1016/j.molmed.2019.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
Much progress has been made in establishing strategies for differentiation of induced human pluripotent stem cells (hiPSCs). However, differentiated hiPSCs are not yet routinely used for prediction of toxicity. Here, limiting factors are summarised and possibilities for improvement are discussed, with a focus on hepatocytes, cardiomyocytes, tubular epithelial cells, and developmental toxicity. Moreover, we make recommendations for further fine-tuning of differentiation protocols for hiPSCs to hepatocyte-like cells by comparing individual steps of currently available protocols to the mechanisms occurring during embryonic development. A road map is proposed to facilitate test system development, including a description of the most useful performance metrics.
Collapse
Affiliation(s)
- Agapios Sachinidis
- Institute of Neurophysiology and Centre for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Cologne, Germany.
| | - Wiebke Albrecht
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
| | - Patrick Nell
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
| | - Anna Cherianidou
- Institute of Neurophysiology and Centre for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Cologne, Germany
| | | | - Karolina Edlund
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany.
| |
Collapse
|
27
|
Doss MX, Sachinidis A. Current Challenges of iPSC-Based Disease Modeling and Therapeutic Implications. Cells 2019; 8:cells8050403. [PMID: 31052294 PMCID: PMC6562607 DOI: 10.3390/cells8050403] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
Induced pluripotent stem cell (iPSC)-based disease modelling and the cell replacement therapy approach have proven to be very powerful and instrumental in biomedical research and personalized regenerative medicine as evidenced in the past decade by unraveling novel pathological mechanisms of a multitude of monogenic diseases at the cellular level and the ongoing and emerging clinical trials with iPSC-derived cell products. iPSC-based disease modelling has sparked widespread enthusiasm and has presented an unprecedented opportunity in high throughput drug discovery platforms and safety pharmacology in association with three-dimensional multicellular organoids such as personalized organs-on-chips, gene/base editing, artificial intelligence and high throughput "omics" methodologies. This critical review summarizes the progress made in the past decade with the advent of iPSC discovery in biomedical applications and regenerative medicine with case examples and the current major challenges that need to be addressed to unleash the full potential of iPSCs in clinical settings and pharmacology for more effective and safer regenerative therapy.
Collapse
Affiliation(s)
- Michael Xavier Doss
- Technology Development Division, BioMarin Pharmaceutical Inc, 105 Digital Drive, Novato, CA 94949, USA.
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany.
| |
Collapse
|
28
|
Godoy P, Schmidt-Heck W, Hellwig B, Nell P, Feuerborn D, Rahnenführer J, Kattler K, Walter J, Blüthgen N, Hengstler JG. Assessment of stem cell differentiation based on genome-wide expression profiles. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0221. [PMID: 29786556 DOI: 10.1098/rstb.2017.0221] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
In recent years, protocols have been established to differentiate stem and precursor cells into more mature cell types. However, progress in this field has been hampered by difficulties to assess the differentiation status of stem cell-derived cells in an unbiased manner. Here, we present an analysis pipeline based on published data and methods to quantify the degree of differentiation and to identify transcriptional control factors explaining differences from the intended target cells or tissues. The pipeline requires RNA-Seq or gene array data of the stem cell starting population, derived 'mature' cells and primary target cells or tissue. It consists of a principal component analysis to represent global expression changes and to identify possible problems of the dataset that require special attention, such as: batch effects; clustering techniques to identify gene groups with similar features; over-representation analysis to characterize biological motifs and transcriptional control factors of the identified gene clusters; and metagenes as well as gene regulatory networks for quantitative cell-type assessment and identification of influential transcription factors. Possibilities and limitations of the analysis pipeline are illustrated using the example of human embryonic stem cell and human induced pluripotent cells to generate 'hepatocyte-like cells'. The pipeline quantifies the degree of incomplete differentiation as well as remaining stemness and identifies unwanted features, such as colon- and fibroblast-associated gene clusters that are absent in real hepatocytes but typically induced by currently available differentiation protocols. Finally, transcription factors responsible for incomplete and unwanted differentiation are identified. The proposed method is widely applicable and allows an unbiased and quantitative assessment of stem cell-derived cells.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- Patricio Godoy
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Wolfgang Schmidt-Heck
- Leibniz Institute for Natural Product Research and Infection Biology eV-Hans-Knöll Institute, Jena, Germany
| | - Birte Hellwig
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Patrick Nell
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - David Feuerborn
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | | | - Kathrin Kattler
- Department of Genetics, University of Saarland, Saarbrücken 66123, Germany
| | - Jörn Walter
- Institute of Pathology, Charité Universitätsmedizin, 10117 Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité Universitätsmedizin, 10117 Berlin, Germany.,Integrative Research Institute for the Life Sciences, Institute for Theoretical Biology, Humboldt Universität, 10115 Berlin, Germany
| | - Jan G Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| |
Collapse
|
29
|
Alias E, Parikh V, Hidalgo-Bastida A, Wilkinson M, Davidge KS, Gibson T, Sharp D, Shakur R, Azzawi M. Doxorubicin-induced cardiomyocyte toxicity - protective effects of endothelial cells in a tri-culture model system. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/jin2.42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Eliesmaziah Alias
- Cardiovascular Research Group, School of Healthcare Science; Manchester Metropolitan University; Manchester M1 5GD UK
| | - Vijay Parikh
- Cardiovascular Research Group, School of Healthcare Science; Manchester Metropolitan University; Manchester M1 5GD UK
| | - Araida Hidalgo-Bastida
- Cardiovascular Research Group, School of Healthcare Science; Manchester Metropolitan University; Manchester M1 5GD UK
| | | | | | - Tim Gibson
- Elisha Systems Ltd; Wakefield West Yorkshire WF3 4AA UK
| | - Duncan Sharp
- Elisha Systems Ltd; Wakefield West Yorkshire WF3 4AA UK
| | - Rameen Shakur
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus; University of Cambridge; Cambridge CB10 1SA UK
| | - May Azzawi
- Cardiovascular Research Group, School of Healthcare Science; Manchester Metropolitan University; Manchester M1 5GD UK
| |
Collapse
|
30
|
Nemade H, Chaudhari U, Acharya A, Hescheler J, Hengstler JG, Papadopoulos S, Sachinidis A. Cell death mechanisms of the anti-cancer drug etoposide on human cardiomyocytes isolated from pluripotent stem cells. Arch Toxicol 2018; 92:1507-1524. [PMID: 29397400 PMCID: PMC5882643 DOI: 10.1007/s00204-018-2170-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/31/2018] [Indexed: 12/14/2022]
Abstract
Etoposide (ETP) and anthracyclines are applied for wide anti-cancer treatments. However, the ETP-induced cardiotoxicity remains to be a major safety issue and the underlying cardiotoxic mechanisms are not well understood. This study is aiming to unravel the cardiotoxicity profile of ETP in comparison to anthracyclines using physiologically relevant human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). Using xCELLigence real-time cell analyser (RTCA), we found that single high dose of ETP induces irreversible increase in hPSC-CMs beating rate and decrease in beating amplitude. We also identified 58 deregulated genes consisting of 33 upregulated and 25 downregulated genes in hPSC-CMs after ETP treatment. Gene ontology (GO) and pathway analysis showed that most upregulated genes are enriched in GO categories like positive regulation of apoptotic process, regulation of cell death, and mitochondria organization, whereas most downregulated genes were enriched in GO categories like cytoskeletal organization, muscle contraction, and Ca2+ ion homeostasis. Moreover, we also found upregulation in 5 miRNAs (has-miR-486-3p, has-miR-34c-5p, has-miR-4423-3p, has-miR-182-5p, and has-miR-139-5p) which play role in muscle contraction, arginine and proline metabolism, and hypertrophic cardiomyopathy (HCM). Immunostaining and transmission electron microscopy also confirmed the cytoskeletal and mitochondrial damage in hPSC-CMs treated with ETP, as well as noticeable alterations in intracellular calcium handling and mitochondrial membrane potential were also observed. The apoptosis inhibitor, Pifithrin-α, found to protect hPSC-CMs from ETP-induced cardiotoxicity, whereas hPSC-CMs treated with ferroptosis inhibitor, Liproxstatin-1, showed significant recovery in hPSC-CMs functional properties like beating rate and amplitude after ETP treatment. We suggest that the damage to mitochondria is a major contributing factor involved in ETP-induced cardiotoxicity and the activation of the p53-mediated ferroptosis pathway by ETP is likely the critical pathway in ETP-induced cardiotoxicity. We also conclude that the genomic biomarkers identified in this study will significantly contribute to develop and predict potential cardiotoxic effects of novel anti-cancer drugs in vitro.
Collapse
Affiliation(s)
- Harshal Nemade
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Umesh Chaudhari
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Aviseka Acharya
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Jan Georg Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139, Dortmund, Germany
| | - Symeon Papadopoulos
- Center of Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Robert-Koch-Str. 39, 50931, Cologne, Germany.
| |
Collapse
|
31
|
Bolt HM. Stem cells in toxicological research. Arch Toxicol 2017; 91:4029-4030. [PMID: 29143079 DOI: 10.1007/s00204-017-2120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 11/25/2022]
Affiliation(s)
- Hermann M Bolt
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund, Ardeystr. 67, 44139, Dortmund, Germany.
| |
Collapse
|