1
|
Kostal J, Vaughan J, Blum K, Voutchkova-Kostal A. Capturing Differential Quality of Experimental Evidence in a Predictive Quantum-Mechanical Model for Respiratory Sensitization. Chem Res Toxicol 2024; 37:1944-1951. [PMID: 39542704 DOI: 10.1021/acs.chemrestox.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Asthma is of concern in occupational toxicology with significant public-health and economic costs. In the absence of benchmark in vivo and in vitro tests, the use of mechanistically sound in silico models is critical to inform hazard and to protect workers from exposure to potentially harmful substances. We recently reported on the computer-aided discovery and REdesign (CADRE) model for respiratory sensitization, which relies on a tiered structure of expert rules, molecular simulations, quantum-mechanics calculations and advanced statistics to accurately identify respiratory sensitizers from first principles. Here, we present an update to this model based on two years of testing in the pharmaceutical space, where we captured the heterogeneity of the underlying experimental evidence in two predictive tiers, thus allowing the practitioner to select an outcome based on their expert assessment of the data reliability and relevance. This user-based tuning of predictive models is critical for end points that lack consensus on what constitutes satisfactory evidence to support a decision in the handling of chemicals for occupational safety.
Collapse
Affiliation(s)
- Jakub Kostal
- Designing Out Toxicity (DOT) Consulting LLC, 2121 Eisenhower Avenue, Alexandria, Virginia 22314, United States
- The George Washington University, 800 22nd St. NW, Washington, District of Columbia 20052, United States
| | - Joshua Vaughan
- Merck, Inc.,126 E Lincoln Ave, Rahway, New Jersey 07065, United States
| | - Kamila Blum
- Environment, Health and Safety Department, GSK Plc, Prinzregentenpl. 9, 81675 München, Germany
| | - Adelina Voutchkova-Kostal
- Designing Out Toxicity (DOT) Consulting LLC, 2121 Eisenhower Avenue, Alexandria, Virginia 22314, United States
| |
Collapse
|
2
|
Han Y, Kim HY, Kim HR. Development of a novel in vitro respiratory sensitization assay and its application in an integrated testing strategy (ITS). Arch Toxicol 2024:10.1007/s00204-024-03924-x. [PMID: 39661166 DOI: 10.1007/s00204-024-03924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
Currently, evaluating respiratory sensitization is challenging with a lack of mechanistic understanding and appropriate testing methods. Given the similarities between skin and respiratory sensitization, using defined approach (DA) in OECD Test Guideline (TG) 497 will be helpful. However, adopting skin sensitization DA is not reliable in predicting respiratory sensitization and has not been validated. To address this limitation, we developed an in vitro respiratory sensitization assay (RS assay) to assess the inflammatory responses associated with respiratory sensitization. Additionally, we investigated the applicability of direct peptide reactivity assay (DPRA) for respiratory sensitization testing. Combined with in silico structure-activity relationship (SAR) predictions derived from the respiratory sensitization reactive domain, respiratory sensitization integrated testing strategy (ITS) was established. RS assay showed 80% sensitivity, 100% specificity, and 90% accuracy. The respiratory sensitization ITS demonstrated more higher predictive capacity for respiratory sensitization than an individual test method, with 90% sensitivity, 100% specificity, and 95% accuracy when using the 20 reference chemicals. When using respiratory sensitization ITS, hazard identification and sub-categorization of potency as strong, moderate/weak, and negative were possible. As a non-animal testing approach, the respiratory sensitization ITS represents a significant milestone for regulating respiratory sensitizers.
Collapse
Affiliation(s)
- Yubin Han
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Hyeon Young Kim
- College of Pharmacy, Ewha Woman's University, Seoul, 03760, Republic of Korea
| | - Ha Ryong Kim
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea.
| |
Collapse
|
3
|
Roach KA, Anderson SE, Waggy C, Aldinger J, Stefaniak AB, Roberts JR. Assessment of dermal sensitization by nickel salts in a novel humanized TLR-4 mouse model. J Immunotoxicol 2024; 21:2414979. [PMID: 39632339 DOI: 10.1080/1547691x.2024.2414979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 12/07/2024] Open
Abstract
The fundamental goal of this study was to determine the potential utility of a novel humanized Toll-like receptor-4 (hTLR-4) mouse model for future in vivo studies of nickel allergy. First, mice of both sexes and hTLR-4 expression profiles were incorporated into a Local Lymph Node Assay (LLNA) to assess skin sensitization. Next, a set of hTLR-4 hTLR-4-positive mice (female and male groups) was similarly exposed to vehicle control (VC) or 10% NiSO4 on Days 1, 2, and 3. Mice were euthanized on Day 10, lymph node (LN) cellularity was assessed, LN and spleen cells were phenotyped, and serum was collected to quantify circulating cytokine and IgE levels. In the LLNA, hTLR-4-positive mice of both sexes exhibited enhanced responsivity to nickel. NiSO4 (10%) had a stimulation index (SI) of 3.7 (females) and 3.8 (males) in hTLR-4-positive animals, and an SI of 0.5 (females) and 0.8 (males) in hTLR-4 hTLR-4-negative mice. In the 10d study, hTLR-4-positive mice exposed to 10% NiSO4 exhibited increased LN cellularity (6.0× increase in females, 3.2× in males) and significantly higher concentrations of circulating IgE (4.1× increase in females, 3.4× in males). Significant increases in serum interferon (IFN)-γ, interleukin (IL)-4, and IL-5 levels were seen in female mice, while altered concentrations of IL-4 and IL-10 were detected in male mice. The results of this study ultimately demonstrate that murine expression of hTLR-4 confers enhanced susceptibility to dermal sensitization by nickel, and consequently, the hTLR-4 mouse model represents a viable approach for future studies of nickel allergy in vivo.
Collapse
Affiliation(s)
- K A Roach
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - S E Anderson
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - C Waggy
- Office of the Director, NIOSH, Morgantown, WV, USA
| | - J Aldinger
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - A B Stefaniak
- Respiratory Health Division, NIOSH, Morgantown, WV, USA
| | - J R Roberts
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| |
Collapse
|
4
|
Hargitai R, Parráková L, Szatmári T, Monfort-Lanzas P, Galbiati V, Audouze K, Jornod F, Staal YCM, Burla S, Chary A, Gutleb AC, Lumniczky K, Vandebriel RJ, Gostner JM. Chemical respiratory sensitization-Current status of mechanistic understanding, knowledge gaps and possible identification methods of sensitizers. FRONTIERS IN TOXICOLOGY 2024; 6:1331803. [PMID: 39135743 PMCID: PMC11317441 DOI: 10.3389/ftox.2024.1331803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/27/2024] [Indexed: 08/15/2024] Open
Abstract
Respiratory sensitization is a complex immunological process eventually leading to hypersensitivity following re-exposure to the chemical. A frequent consequence is occupational asthma, which may occur after long latency periods. Although chemical-induced respiratory hypersensitivity has been known for decades, there are currently no comprehensive and validated approaches available for the prospective identification of chemicals that induce respiratory sensitization, while the expectations of new approach methodologies (NAMs) are high. A great hope is that due to a better understanding of the molecular key events, new methods can be developed now. However, this is a big challenge due to the different chemical classes to which respiratory sensitizers belong, as well as because of the complexity of the response and the late manifestation of symptoms. In this review article, the current information on respiratory sensitization related processes is summarized by introducing it in the available adverse outcome pathway (AOP) concept. Potentially useful models for prediction are discussed. Knowledge gaps and gaps of regulatory concern are identified.
Collapse
Affiliation(s)
- Rita Hargitai
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Lucia Parráková
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Tünde Szatmári
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Pablo Monfort-Lanzas
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
- Institute of Bioinformatics, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università Degli Studi di Milano (UNIMI), Milano, Italy
| | | | | | - Yvonne C. M. Staal
- Centre for Health Protection, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sabina Burla
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Aline Chary
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Arno C. Gutleb
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Katalin Lumniczky
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Rob J. Vandebriel
- Centre for Health Protection, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Johanna M. Gostner
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
| |
Collapse
|
5
|
Liu JY, George IC, Hussain S, Sayes CM. High-throughput screening of respiratory hazards: Exploring lung surfactant inhibition with 20 benchmark chemicals. Toxicology 2024; 504:153785. [PMID: 38518839 DOI: 10.1016/j.tox.2024.153785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
As environmental air quality worsens and respiratory health injuries and diseases increase, it is essential to enhance our ability to develop better methods to identify potential hazards. One promising approach in emerging toxicology involves the utilization of lung surfactant as a model that addresses the limitations of conventional in vitro toxicology methods by incorporating the biophysical aspect of inhalation. This study employed a constrained drop surfactometer to assess 20 chemicals for potential surfactant inhibition. Of these, eight were identified as inhibiting lung surfactant function: 1-aminoethanol, bovine serum albumin, maleic anhydride, propylene glycol, sodium glycocholate, sodium taurocholate, sodium taurodeoxycholate, and Triton X-100. These results are consistent with previously reported chemical-induced acute lung dysfunction in vivo. The study provides information on each chemical's minimum and maximum surface tension conditions and corresponding relative area and contact angle values. Isotherms and box plots are reported for selected chemicals across doses, and vector plots are used to summarize and compare the results concisely. This lung surfactant bioassay is a promising non-animal model for hazard identification, with broader implications for developing predictive modeling and decision-making tools.
Collapse
Affiliation(s)
- James Y Liu
- Department of Environmental Science, Baylor University, Waco, TX 76798-7266, USA
| | - Ian C George
- 711th Human Performance Wing, Air Force Research Laboratory, Dayton, OH, USA
| | - Saber Hussain
- 711th Human Performance Wing, Air Force Research Laboratory, Dayton, OH, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX 76798-7266, USA.
| |
Collapse
|
6
|
Garcia da Silva AC, Carvalho Filho SDM, Furtado de Mendonça IC, Valadares MC. Identification of toxicity-induced biomarkers in human non-immune airway cells exposed to respiratory sensitizers: A mechanistic approach. Toxicology 2024; 503:153750. [PMID: 38360295 DOI: 10.1016/j.tox.2024.153750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Occupational asthma covers a group of work-related diseases whose clinical manifestations include airway hyperresponsiveness and airflow limitation. Although the chemical respiratory allergy (CRA) induced by Low Molecular Weight (LMW) sensitizers is a major concern, especially in terms of the regulatory framework, to date there are no methods available for preclinically addressing this toxicological outcome, as its mechanistic background is not fully understood at molecular or cellular levels. This paper proposes a mechanistic study applying New Approach Methodologies (NAM) of the pro-inflammatory and functional effects triggered by LMW respiratory allergens in different respiratory tract cell lines, including bronchial epithelial (BEAS-2B), lung fibroblast (MRC-5), and endothelial cells (EA.hy926), and an analysis of the capacity of such chemicals to interact with the mucin protein, to address certain toxicodynamic aspects of such compounds. The results showed that some of the sensitizers evaluated interact with mucin, the main protein mucus component, but the toxicant-mucin complex formation does not seem to be a common feature of different chemical classes of allergens. At a cellular level, sensitizers promoted an increase in IL-8, IL-6, and IL-1β production in the evaluated cell types. It also impaired the MUC1 expression by bronchial cells and activated endothelial cells, thereby increasing the ICAM-I surface expression. Taken together, our results showed that these aforementioned cell types participate in the CRA Adverse Outcome Pathway and must be considered when developing preclinical testing strategies, particularly investigating danger signal production after exposure to LMW sensitizers in different tissue compartments.
Collapse
Affiliation(s)
- Artur Christian Garcia da Silva
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Sérgio de Morais Carvalho Filho
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Marize Campos Valadares
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
7
|
da Silva ACG, de Mendonça ICF, Valadares MC. Characterization and applicability of a novel physiologically relevant 3D-tetraculture bronchial model for in vitro assessment of respiratory sensitization. Toxicology 2024; 503:153756. [PMID: 38369009 DOI: 10.1016/j.tox.2024.153756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Chemical Respiratory Allergy (CRA) is triggered after exposure to Low Molecular Weight (LMW) sensitizers and manifests clinically as asthma and rhinitis. From a risk/toxicity assessment point of view, there are few methods, none of them validated, for evaluating the respiratory sensitization potential of chemicals once the in vivo-based models usually employed for inhalation toxicity addressment do not comprise allergenicity endpoints specifically. Based on that, we developed, characterized, and evaluated the applicability of a 3D-tetraculture airway model reconstructed with bronchial epithelial, fibroblasts, endothelial and monocytic cell lines. Moreover, we exposed the tissue to maleic anhydride (MA) aerosols to challenge the model and subsequently assessed inflammatory and functional aspects of the tissue. The reconstructed tissue presented phenotypic biomarkers compatible with human bronchial epithelium, and MA aerosol exposure triggered an increased IL-8 and IL-6 production, reactive oxygen species (ROS) formation, and apoptosis of epithelial cells. Besides, augmented IL-8 production by monocytic cells was also found, correlating with dendritic cell activation within the co-culture model after MA exposure. Our results demonstrated that the 3D-tetraculture bronchial model presents hallmarks related to human airways' structure and function. Additionally, exposure to a respiratory sensitizer induced inflammatory and functional alterations in the reconstructed tissue, rendering it a valuable tool for exploring the mechanistic framework of chemically induced respiratory sensitization.
Collapse
Affiliation(s)
- Artur Christian Garcia da Silva
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Marize Campos Valadares
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
8
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Durjava M, Dusemund B, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Villa RE, Woutersen R, Brantom P, Chesson A, Mantovani A, Manini P, Pizzo F, Galobart J. Guidance on the assessment of the safety of feed additives for the users. EFSA J 2023; 21:e8469. [PMID: 38075627 PMCID: PMC10698700 DOI: 10.2903/j.efsa.2023.8469] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024] Open
Abstract
This guidance document is intended to assist the applicant in the preparation and the presentation of an application, as foreseen in Article 7.6 of Regulation (EC) No 1831/2003, for the authorisation of additives for use in animal nutrition. It specifically covers the assessment of the safety for the users.
Collapse
|
9
|
del Giudice G, Migliaccio G, D’Alessandro N, Saarimäki LA, Torres Maia M, Annala ME, Leppänen J, Mӧbus L, Pavel A, Vaani M, Vallius A, Ylä‐Outinen L, Greco D, Serra A. Advancing chemical safety assessment through an omics-based characterization of the test system-chemical interaction. FRONTIERS IN TOXICOLOGY 2023; 5:1294780. [PMID: 38026842 PMCID: PMC10673692 DOI: 10.3389/ftox.2023.1294780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Assessing chemical safety is essential to evaluate the potential risks of chemical exposure to human health and the environment. Traditional methods relying on animal testing are being replaced by 3R (reduction, refinement, and replacement) principle-based alternatives, mainly depending on in vitro test methods and the Adverse Outcome Pathway framework. However, these approaches often focus on the properties of the compound, missing the broader chemical-biological interaction perspective. Currently, the lack of comprehensive molecular characterization of the in vitro test system results in limited real-world representation and contextualization of the toxicological effect under study. Leveraging omics data strengthens the understanding of the responses of different biological systems, emphasizing holistic chemical-biological interactions when developing in vitro methods. Here, we discuss the relevance of meticulous test system characterization on two safety assessment relevant scenarios and how omics-based, data-driven approaches can improve the future generation of alternative methods.
Collapse
Affiliation(s)
- Giusy del Giudice
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Giorgia Migliaccio
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
| | - Nicoletta D’Alessandro
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
| | - Laura Aliisa Saarimäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Marcella Torres Maia
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
| | - Maria Emilia Annala
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
| | - Jenni Leppänen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
| | - Lena Mӧbus
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
| | - Alisa Pavel
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
| | - Maaret Vaani
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
| | - Anna Vallius
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
| | - Laura Ylä‐Outinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
| |
Collapse
|
10
|
Tanabe I, Yoshida K, Ishikawa S, Ishimori K, Hashizume T, Yoshimoto T, Ashikaga T. Development of an In Vitro Sensitisation Test Using a Coculture System of Human Bronchial Epithelium and Immune Cells. Altern Lab Anim 2023; 51:387-400. [PMID: 37796587 DOI: 10.1177/02611929231204823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Chemical respiratory sensitisation is a serious health problem. However, to date, there are no validated test methods available for identifying respiratory sensitisers. The aim of this study was to develop an in vitro sensitisation test by modifying the human cell line activation test (h-CLAT) to detect respiratory sensitisers and distinguish them from skin sensitisers. THP-1 cells were exposed to the test chemicals (two skin sensitisers and six respiratory sensitisers), either as monocultures or as cocultures with air-liquid interface-cultured reconstructed human bronchial epithelium. The responses were analysed by measuring the expression levels of surface markers on THP-1 cells (CD86, CD54 and OX40L) and the concentrations of cytokines in the culture media (interleukin (IL)-8, IL-33 and thymic stromal lymphopoietin (TSLP)). The cocultures exhibited increased CD54 expression on THP-1 cells; moreover, in the cocultures but not in the monocultures, exposure to two uronium salts (i.e. respiratory sensitisers) increased CD54 expression on THP-1 cells to levels above the criteria for a positive h-CLAT result. Additionally, exposure to the respiratory sensitiser abietic acid, significantly increased IL-8 concentration in the culture medium, but only in the cocultures. Although further optimisation of the method is needed to distinguish respiratory from skin sensitisers by using these potential markers (OX40L, IL-33 and TSLP), the coculture of THP-1 cells with bronchial epithelial cells offers a potentially useful approach for the detection of respiratory sensitisers.
Collapse
Affiliation(s)
- Ikuya Tanabe
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Kanagawa, Japan
| | - Kunitaka Yoshida
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Kanagawa, Japan
| | - Shinkichi Ishikawa
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Kanagawa, Japan
| | - Kanae Ishimori
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Kanagawa, Japan
| | - Tsuneo Hashizume
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Kanagawa, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takao Ashikaga
- Division of Risk Assessment, National Institute of Health Sciences Center for Biological Safety and Research, Kanagawa, Japan
| |
Collapse
|
11
|
Gibb M, Sayes CM. An In Vitro Alveolar Model Allows for the Rapid Assessment of Particles for Respiratory Sensitization Potential. Int J Mol Sci 2023; 24:10104. [PMID: 37373252 DOI: 10.3390/ijms241210104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 06/29/2023] Open
Abstract
Dust, both industrial and household, contains particulates that can reach the most distal aspects of the lung. Silica and nickel compounds are two such particulates and have known profiles of poor health outcomes. While silica is well-characterized, nickel compounds still need to be fully understood for their potential to cause long-term immune responses in the lungs. To assess these hazards and decrease animal numbers used in testing, investigations that lead to verifiable in vitro methods are needed. To understand the implications of these two compounds reaching the distal aspect of the lungs, the alveoli, an architecturally relevant alveolar model consisting of epithelial cells, macrophages, and dendritic cells in a maintained submerged system, was utilized for high throughput testing. Exposures include crystalline silica (SiO2) and nickel oxide (NiO). The endpoints measured included mitochondrial reactive oxygen species and cytostructural changes assessed via confocal laser scanning microscopy; cell morphology evaluated via scanning electron microscopy; biochemical reactions assessed via protein arrays; transcriptome assessed via gene arrays, and cell surface activation markers evaluated via flow cytometry. The results showed that, compared to untreated cultures, NiO increased markers for dendritic cell activation, trafficking, and antigen presentation; oxidative stress and cytoskeletal changes, and gene and cytokine expression of neutrophil and other leukocyte chemoattractants. The chemokines and cytokines CCL3, CCL7, CXCL5, IL-6, and IL-8 were identified as potential biomarkers of respiratory sensitization.
Collapse
Affiliation(s)
- Matthew Gibb
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Christie M Sayes
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
12
|
da Silva ACG, de Morais Carvalho Filho S, Valadares MC. Biological effects triggered by chemical respiratory sensitizers on THP-1 monocytic cells. Toxicol In Vitro 2023; 90:105602. [PMID: 37146919 DOI: 10.1016/j.tiv.2023.105602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/07/2023]
Abstract
Respiratory sensitization encompasses a group of diseases that manifest through airway hyperresponsiveness and airflow limitation. Although the concerns regarding human health, to date there are still no validated methods for preclinical assessment of this class of toxicants once the chemical respiratory allergy mechanistic framework is not fully understood. As Dendritic Cells (DCs) are the bridging elements between innate and adaptative immune responses, we preliminarily investigated the biological alterations triggered by seven different LMW respiratory allergens in the DC model THP-1. The results have shown that exposure to respiratory allergens promoted alterations in DCs maturation/activation status and triggered pro-inflammatory changes in these cells through increased expression for the CD86/HLA-DR/CD11c surface biomarkers and enhancement in IL-8 and IL-6 production by exposed THP-1 cells. Therefore, evidence was found to support the startpoint for chemical respiratory allergy pathogenesis elucidation, subsidizing the contribution of dendritic cells in such pathomechanisms.
Collapse
Affiliation(s)
- Artur Christian Garcia da Silva
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Sérgio de Morais Carvalho Filho
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Marize Campos Valadares
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
13
|
Wang X, Li N, Ma M, Han Y, Rao K. Immunotoxicity In Vitro Assays for Environmental Pollutants under Paradigm Shift in Toxicity Tests. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:273. [PMID: 36612599 PMCID: PMC9819277 DOI: 10.3390/ijerph20010273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
With the outbreak of COVID-19, increasingly more attention has been paid to the effects of environmental factors on the immune system of organisms, because environmental pollutants may act in synergy with viruses by affecting the immunity of organisms. The immune system is a developing defense system formed by all metazoans in the course of struggling with various internal and external factors, whose damage may lead to increased susceptibility to pathogens and diseases. Due to a greater vulnerability of the immune system, immunotoxicity has the potential to be the early event of other toxic effects, and should be incorporated into environmental risk assessment. However, compared with other toxicity endpoints, e.g., genotoxicity, endocrine toxicity, or developmental toxicity, there are many challenges for the immunotoxicity test of environmental pollutants; this is due to the lack of detailed mechanisms of action and reliable assay methods. In addition, with the strong appeal for animal-free experiments, there has been a significant shift in the toxicity test paradigm, from traditional animal experiments to high-throughput in vitro assays that rely on cell lines. Therefore, there is an urgent need to build high-though put immunotoxicity test methods to screen massive environmental pollutants. This paper reviews the common methods of immunotoxicity assays, including assays for direct immunotoxicity and skin sensitization. Direct immunotoxicity mainly refers to immunosuppression, for which the assays mostly use mixed immune cells or isolated single cells from animals with obvious problems, such as high cost, complex experimental operation, strong variability and so on. Meanwhile, there have been no stable and standard cell lines targeting immune functions developed for high-throughput tests. Compared with direct immunotoxicity, skin sensitizer screening has developed relatively mature in vitro assay methods based on an adverse outcome pathway (AOP), which points out the way forward for the paradigm shift in toxicity tests. According to the experience of skin sensitizer screening, this paper proposes that we also should seek appropriate nodes and establish more complete AOPs for immunosuppression and other immune-mediated diseases. Then, effective in vitro immunotoxicity assay methods can be developed targeting key events, simultaneously coordinating the studies of the chemical immunotoxicity mechanism, and further promoting the paradigm shift in the immunotoxicity test.
Collapse
Affiliation(s)
- Xinge Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingnan Han
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| |
Collapse
|
14
|
An in vitro alveolar model allows for the rapid assessment of chemical respiratory sensitization with modifiable biomarker endpoints. Chem Biol Interact 2022; 368:110232. [DOI: 10.1016/j.cbi.2022.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022]
|
15
|
Voutchkova-Kostal A, Vaccaro S, Kostal J. Computer-Aided Discovery and Redesign for Respiratory Sensitization: A Tiered Mechanistic Model to Deliver Robust Performance Across a Diverse Chemical Space. Chem Res Toxicol 2022; 35:2097-2106. [PMID: 36190799 DOI: 10.1021/acs.chemrestox.2c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Asthma is among the most common occupational diseases with considerable public health and economic costs. Chemicals that induce hypersensitivity in the airways can cause respiratory distress and comorbidities with respiratory infections such as COVID. Robust predictive models for this end point are still elusive due to the lack of an experimental benchmark and the over-reliance of existing in silico tools on structural alerts and structural (vs chemical) similarities. The Computer-Aided Discovery and REdesign (CADRE) platform is a proven strategy for providing robust computational predictions for hazard end points using a tiered hybrid system of expert rules, molecular simulations, and quantum mechanics calculations. The recently developed CADRE model for respiratory sensitization is based on a highly curated data set of structurally diverse chemicals with high-fidelity biological data. The model evaluates absorption kinetics in lung mucosa using Monte Carlo simulations, assigns reactive centers in a molecule and possible biotransformations via expert rules, and determines subsequent reactivity with cell proteins via quantum-mechanics calculations using a multi-tiered regression. The model affords an accuracy above 0.90, with a series of external validations based on literature data in the range of 0.88-0.95. The model is applicable to all low-molecular-weight organics and can inform not only chemical substitution but also chemical redesign to advance development of safer alternatives.
Collapse
Affiliation(s)
- Adelina Voutchkova-Kostal
- Designing Out Toxicity (DOT) Consulting, LLC, 2121 Eisenhower Avenue, Alexandria, Virginia22314, United States.,The George Washington University, 800 22nd Street NW, Washington, DC20052, United States
| | - Samantha Vaccaro
- Designing Out Toxicity (DOT) Consulting, LLC, 2121 Eisenhower Avenue, Alexandria, Virginia22314, United States
| | - Jakub Kostal
- Designing Out Toxicity (DOT) Consulting, LLC, 2121 Eisenhower Avenue, Alexandria, Virginia22314, United States.,The George Washington University, 800 22nd Street NW, Washington, DC20052, United States
| |
Collapse
|
16
|
Ponder J, Rajagopal R, Singal M, Baker N, Patlewicz G, Roggen E, Cochrane S, Sullivan K. “In Litero” Screening: Retrospective Evaluation of Clinical Evidence to Establish a Reference List of Human Chemical Respiratory Sensitizers. FRONTIERS IN TOXICOLOGY 2022; 4:916370. [PMID: 35910543 PMCID: PMC9335368 DOI: 10.3389/ftox.2022.916370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Despite decades of investigation, test methods to identify respiratory sensitizers remain an unmet regulatory need. In order to support the evaluation of New Approach Methodologies in development, we sought to establish a reference set of low molecular weight respiratory sensitizers based on case reports of occupational asthma. In this context, we have developed an “in litero” approach to identify cases of low molecular weight chemical exposures leading to respiratory sensitization in clinical literature. We utilized the EPA-developed Abstract Sifter literature review tool to maximize the retrieval of publications relevant to respiratory effects in humans for each chemical in a list of chemicals suspected of inducing respiratory sensitization. The literature retrieved for each of these candidate chemicals was sifted to identify relevant case reports and studies, and then evaluated by applying defined selection criteria. Clinical diagnostic criteria were defined around exposure history, respiratory effects, and specific immune response to conclusively demonstrate occupational asthma as a result of sensitization, rather than irritation. This approach successfully identified 28 chemicals that can be considered as human respiratory sensitizers and used to evaluate the performance of NAMs as part of a weight of evidence approach to identify novel respiratory sensitizers. Further, these results have immediate implications for the development and refinement of predictive tools to distinguish between skin and respiratory sensitizers. A comparison of the protein binding mechanisms of our identified “in litero” clinical respiratory sensitizers shows that acylation is a prevalent protein binding mechanism, in contrast to Michael addition and Schiff base formation common to skin sensitizers. Overall, this approach provides an exemplary method to evaluate and apply human data as part of the weight of evidence when establishing reference chemical lists.
Collapse
Affiliation(s)
- Jessica Ponder
- Physicians Committee for Responsible Medicine, Washington, D.C., DC, United States
| | | | - Madhuri Singal
- AeroTox Consulting Services, LLC, Montvale, NJ, United States
| | - Nancy Baker
- Leidos Contractor to the US EPA, Research Triangle Park, Durham, NC, United States
| | - Grace Patlewicz
- US EPA, Research Triangle Park, Washington, NC, United States
| | | | | | - Kristie Sullivan
- Physicians Committee for Responsible Medicine, Washington, D.C., DC, United States
| |
Collapse
|
17
|
An Explainable Supervised Machine Learning Model for Predicting Respiratory Toxicity of Chemicals Using Optimal Molecular Descriptors. Pharmaceutics 2022; 14:pharmaceutics14040832. [PMID: 35456666 PMCID: PMC9028223 DOI: 10.3390/pharmaceutics14040832] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 01/27/2023] Open
Abstract
Respiratory toxicity is a serious public health concern caused by the adverse effects of drugs or chemicals, so the pharmaceutical and chemical industries demand reliable and precise computational tools to assess the respiratory toxicity of compounds. The purpose of this study is to develop quantitative structure-activity relationship models for a large dataset of chemical compounds associated with respiratory system toxicity. First, several feature selection techniques are explored to find the optimal subset of molecular descriptors for efficient modeling. Then, eight different machine learning algorithms are utilized to construct respiratory toxicity prediction models. The support vector machine classifier outperforms all other optimized models in 10-fold cross-validation. Additionally, it outperforms the prior study by 2% in prediction accuracy and 4% in MCC. The best SVM model achieves a prediction accuracy of 86.2% and a MCC of 0.722 on the test set. The proposed SVM model predictions are explained using the SHapley Additive exPlanations approach, which prioritizes the relevance of key modeling descriptors influencing the prediction of respiratory toxicity. Thus, our proposed model would be incredibly beneficial in the early stages of drug development for predicting and understanding potential respiratory toxic compounds.
Collapse
|
18
|
Dekant W, Colnot T. Evaluation of animal toxicity studies with diisocyanates regarding presence of thresholds for induction and elicitation of respiratory allergy by quantitative weight of evidence. Toxicol Ind Health 2022; 38:578-594. [PMID: 35148210 DOI: 10.1177/07482337211069234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Animal toxicity studies on diisocyanates were evaluated using quantitative weight of evidence (QWoE) to test the hypothesis that the dose-response curve shows a threshold for the induction and/or elicitation of respiratory sensitization. A literature search identified 59 references that included at least two concentration groups of the diisocyanate and a vehicle-exposed concurrent control in the study design. These studies were subjected to a QWoE-assessment applying scoring criteria for quality and relevance/strength of effects relevant to the selected endpoint of respiratory sensitization. Overall, the studies assessing dose/concentration-response for diisocyanates with the endpoint, respiratory sensitization, were heterogenous regarding study design, animal models used, endpoints assessed, and quality. Only a limited number of the studies subjected to the QWoE-assessment allowed drawing conclusions about possible thresholds for respiratory sensitization. Highest quality and relevance/strength of effects scores were obtained by a series of studies specifically designed to investigate a potential threshold for elicitation of respiratory sensitization in the Brown Norway (BN) rat. These studies applied an elaborate study design to optimize induction of respiratory sensitization and reduce interference by respiratory tract irritation. In summary, the available studies provided moderate to good support for the existence of a threshold for elicitation and limited to moderate support for a threshold regarding induction of respiratory allergy by diisocyanates in experimental animals. However, a quantitative extrapolation of threshold values established in rodents to humans remains complex.
Collapse
Affiliation(s)
- Wolfgang Dekant
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
19
|
de Oliveira M, De Sibio MT, Costa FAS, Sakalem ME. Airway and Alveoli Organoids as Valuable Research Tools in COVID-19. ACS Biomater Sci Eng 2021; 7:3487-3502. [PMID: 34288642 PMCID: PMC8315244 DOI: 10.1021/acsbiomaterials.1c00306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022]
Abstract
The coronavirus disease 2019 (COVID-19), caused by the novel coronavirus, SARS-CoV-2, affects tissues from different body systems but mostly the respiratory system, and the damage evoked in the lungs may occasionally result in severe respiratory complications and eventually lead to death. Studies of human respiratory infections have been limited by the scarcity of functional models that mimic in vivo physiology and pathophysiology. In the last decades, organoid models have emerged as potential research tools due to the possibility of reproducing in vivo tissue in culture. Despite being studied for over one year, there is still no effective treatment against COVID-19, and investigations using pulmonary tissue and possible therapeutics are still very limited. Thus, human lung organoids can provide robust support to simulate SARS-CoV-2 infection and replication and aid in a better understanding of their effects in human tissue. The present review describes methodological aspects of different protocols to develop airway and alveoli organoids, which have a promising perspective to further investigate COVID-19.
Collapse
Affiliation(s)
- Miriane de Oliveira
- Department of Internal Clinic, Botucatu Medicine
School, São Paulo State University (UNESP), District of
Rubião Jr, s/n, 18618-000, Botucatu, São Paulo,
Brazil
| | - Maria T. De Sibio
- Department of Internal Clinic, Botucatu Medicine
School, São Paulo State University (UNESP), District of
Rubião Jr, s/n, 18618-000, Botucatu, São Paulo,
Brazil
| | - Felipe A. S. Costa
- São Paulo State University (UNESP), School of
Agricultural Sciences, Department of Bioprocesses and Biotechnology, Central
Multiuser Laboratory, Av. Universitária, no 3780, Altos do
Paraíso, 18610-034, Botucatu, Sao Paulo, Brazil
| | - Marna E. Sakalem
- Department of Anatomy, CCB, State
University of Londrina (UEL), Campus Universitário s/n, Caixa
Postal 10011, 86057-970, Londrina, Parana, Brazil
| |
Collapse
|
20
|
Thá EL, Canavez ADPM, Schuck DC, Gagosian VSC, Lorencini M, Leme DM. Beyond dermal exposure: The respiratory tract as a target organ in hazard assessments of cosmetic ingredients. Regul Toxicol Pharmacol 2021; 124:104976. [PMID: 34139277 DOI: 10.1016/j.yrtph.2021.104976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/30/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Dermal contact is the main route of exposure for most cosmetics; however, inhalation exposure could be significant for some formulations (e.g., aerosols, powders). Current cosmetic regulations do not require specific tests addressing respiratory irritation and sensitisation, and despite the prohibition of animal testing for cosmetics, no alternative methods have been validated to assess these endpoints to date. Inhalation hazard is mainly determined based on existing human and animal evidence, read-across, and extrapolation of data from different target organs or tissues, such as the skin. However, because of mechanistic differences, effects on the skin cannot predict effects on the respiratory tract, which indicates a substantial need for the development of new approach methodologies addressing respiratory endpoints for inhalable chemicals in general. Cosmetics might present a particularly significant need for risk assessments of inhalation exposure to provide a more accurate toxicological evaluation and ensure consumer safety. This review describes the differences in the mechanisms of irritation and sensitisation between the skin and the respiratory tract, the progress that has already been made, and what still needs to be done to fill the gap in the inhalation risk assessment of cosmetic ingredients.
Collapse
Affiliation(s)
- Emanoela Lundgren Thá
- Graduate Program in Genetics, Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | | | | | | | - Márcio Lorencini
- Grupo Boticário, Product Safety Management- Q&PP, São José dos Pinhais, PR, Brazil
| | - Daniela Morais Leme
- Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| |
Collapse
|
21
|
Prasse C. Reactivity-directed analysis - a novel approach for the identification of toxic organic electrophiles in drinking water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:48-65. [PMID: 33432313 DOI: 10.1039/d0em00471e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Drinking water consumption results in exposure to complex mixtures of organic chemicals, including natural and anthropogenic chemicals and compounds formed during drinking water treatment such as disinfection by-products. The complexity of drinking water contaminant mixtures has hindered efforts to assess associated health impacts. Existing approaches focus primarily on individual chemicals and/or the evaluation of mixtures, without providing information about the chemicals causing the toxic effect. Thus, there is a need for the development of novel strategies to evaluate chemical mixtures and provide insights into the species responsible for the observed toxic effects. This critical review introduces the application of a novel approach called Reactivity-Directed Analysis (RDA) to assess and identify organic electrophiles, the largest group of known environmental toxicants. In contrast to existing in vivo and in vitro approaches, RDA utilizes in chemico methodologies that investigate the reaction of organic electrophiles with nucleophilic biomolecules, including proteins and DNA. This review summarizes the existing knowledge about the presence of electrophiles in drinking water, with a particular focus on their formation in oxidative treatment systems with ozone, advanced oxidation processes, and UV light, as well as disinfectants such as chlorine, chloramines and chlorine dioxide. This summary is followed by an overview of existing RDA approaches and their application for the assessment of aqueous environmental matrices, with an emphasis on drinking water. RDA can be applied beyond drinking water, however, to evaluate source waters and wastewater for human and environmental health risks. Finally, future research demands for the detection and identification of electrophiles in drinking water via RDA are outlined.
Collapse
Affiliation(s)
- Carsten Prasse
- Department of Environmental Health and Engineering, Whiting School of Engineering and Bloomberg School of Public Health, Johns Hopkins University, 3400 N Charles St, Baltimore, MD-21318, USA.
| |
Collapse
|
22
|
Golden E, Maertens M, Hartung T, Maertens A. Mapping Chemical Respiratory Sensitization: How Useful Are Our Current Computational Tools? Chem Res Toxicol 2020; 34:473-482. [PMID: 33320000 DOI: 10.1021/acs.chemrestox.0c00320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chemical respiratory sensitization is an immunological process that manifests clinically mostly as occupational asthma and is responsible for 1 in 6 cases of adult asthma, although this may be an underestimate of the prevalence, as it is under-diagnosed. Occupational asthma results in unemployment for roughly one-third of those affected due to severe health issues. Despite its high prevalence, chemical respiratory sensitization is difficult to predict, as there are currently no validated models and the mechanisms are not entirely understood, creating a significant challenge for regulatory bodies and industry alike. The Adverse Outcome Pathway (AOP) for respiratory sensitization is currently incomplete. However, some key events have been identified, and there is overlap with the comparatively well-characterized AOP for dermal sensitization. Because of this, and the fact that dermal sensitization is often assessed by in vivo, in chemico, or in silico methods, regulatory bodies are defaulting to the dermal sensitization status of chemicals as a proxy for respiratory sensitization status when evaluating chemical safety. We identified a data set of known human respiratory sensitizers, which we used to investigate the accuracy of a structural alert model, Toxtree, designed for skin sensitization and the Centre for Occupational and Environmental Health (COEH)'s model, a model developed specifically for occupational asthma. While both models had a reasonable level of accuracy, the COEH model achieved the highest balanced accuracy at 76%; when the models agreed, the overall accuracy was 87%. There were important differences between the models: Toxtree had superior performance for some structural alerts and some categories of well-characterized skin sensitizers, while the COEH model had high accuracy in identifying sensitizers that lacked identified skin sensitization reactivity domains. Overall, both models achieved respectable accuracy. However, neither model addresses potency, which, along with data quality, remains a hurdle, and the field must prioritize these issues to move forward.
Collapse
Affiliation(s)
- Emily Golden
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Mikhail Maertens
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States.,CAAT-Europe, University of Konstanz, 78464 Konstanz, Germany
| | - Alexandra Maertens
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| |
Collapse
|
23
|
da Silva ACG, Sousa IP, Dos Santos TRM, Valadares MC. Assessing Agricultural Toxicity in Brazil: Advances and Opportunities in the 21st Century. Toxicol Sci 2020; 177:316-324. [PMID: 32930792 DOI: 10.1093/toxsci/kfaa120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Agriculture in the 21st century faces multiple challenges to produce food for the growing population using ethical/sustainable and efficient methods safely for humans and the environment. Brazil today is a world leader in terms of production of food of plant origin, both for human consumption and animal feed. Agriculture and livestock raising are critical economic activities in maintaining a positive balance in its economy. As a consequence, the registration and use of pesticides in Brazil have grown at an accelerated rate. This work shows the current situation in Brazil in terms of the prevailing laws about the registration of pesticides, with a focus on the toxicological aspects related to human health. The regulatory aspects of registration of pesticides in Brazil, the mandatory testing for evaluating pesticide toxicity, adoption of the Globally Harmonized System of Classification and Labeling of Chemicals, and recent progress toward nonanimal methods to toxicity evaluation were explored in this work. In this field, Brazil has advanced and there are opportunities and challenges. There is still much to be done and investments to be made so that Brazil can definitively consolidate its conduct within the context of a Modern Regulatory Toxicology, which has entered the 21st century.
Collapse
Affiliation(s)
- Artur Christian Garcia da Silva
- Laboratory of Education and Research in In Vitro Toxicology, Tox In, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO 74605.170, Brazil
| | - Isabelly Paula Sousa
- Laboratory of Education and Research in In Vitro Toxicology, Tox In, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO 74605.170, Brazil
| | - Thaís Rosa Marques Dos Santos
- Laboratory of Education and Research in In Vitro Toxicology, Tox In, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO 74605.170, Brazil
| | - Marize Campos Valadares
- Laboratory of Education and Research in In Vitro Toxicology, Tox In, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO 74605.170, Brazil
| |
Collapse
|
24
|
Chen S, Li D, Wu X, Chen L, Zhang B, Tan Y, Yu D, Niu Y, Duan H, Li Q, Chen R, Aschner M, Zheng Y, Chen W. Application of cell-based biological bioassays for health risk assessment of PM2.5 exposure in three megacities, China. ENVIRONMENT INTERNATIONAL 2020; 139:105703. [PMID: 32259755 DOI: 10.1016/j.envint.2020.105703] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/21/2020] [Accepted: 03/29/2020] [Indexed: 05/05/2023]
Abstract
The determination of PM2.5-induced biological response is essential for understanding the adverse health risk associated with PM2.5 exposure. In this study, we conducted cell-based bioassays to measure the toxic effects of PM2.5 exposure, including cytotoxicity, oxidative stress, genotoxicity and inflammatory response. The concentration-response relationship was analyzed by benchmark dose (BMD) modeling and the BMDL10 was used to estimate the biological potency of PM2.5 exposure. PM2.5 samples were collected from three typical megacities of China (Beijing, BJ; Wuhan, WH; Guangzhou, GZ) in typical seasons (winter and summer). The total PM, water-soluble fractions (WSF), and organic extracts (OE) were prepared and subjected to examination of toxic effects. The biological potencies for cytotoxicity, oxidative stress and genotoxicity were generally higher in winter samples, while the inflammatory potency of PM2.5 was higher in summer samples. The relative health risk (RHR) was determined by integration of the biological potencies and the cumulative exposure level, and the ranks of RHR were BJ-W > WH-W > BJ-S > WH-S > GZ-W > GZ-S. Notably, we note that different PM2.5 compositions were associated with distinct biological effects, and the health effects distribution of PM2.5 varied in regions and seasons. These findings demonstrate that the approach of integrated cell-based bioassays could be used for the evaluation of health effects of PM2.5 exposure.
Collapse
Affiliation(s)
- Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaonen Wu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Zhang
- Wuhan Children's Hospital & Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430015, China
| | - Yafei Tan
- Wuhan Children's Hospital & Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430015, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Qiong Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rui Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
25
|
Arts J. How to assess respiratory sensitization of low molecular weight chemicals? Int J Hyg Environ Health 2020; 225:113469. [PMID: 32058937 DOI: 10.1016/j.ijheh.2020.113469] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/29/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
There are no validated and regulatory accepted (animal) models to test for respiratory sensitization of low molecular weight (LMW) chemicals. Since several decades such chemicals are classified as respiratory sensitizers almost exclusively based on observations in workers. However, both respiratory allergens (in which process the immune system is involved) as well as asthmagens (no involvement of the immune system) may induce the same type of respiratory symptoms. Correct classification is very important from a health's perspective point of view. On the other hand, over-classification is not preferable in view of high costs to overdue workplace engineering controls or the chemical ultimately being banned due to Authorities' decisions. It would therefore be very beneficial if respiratory sensitizers can be correctly identified and distinguished from skin sensitizers and non-sensitizers/respiratory irritants. The purpose of this paper is to consider whether LMW chemicals can be correctly identified based on the currently available screening methods in workers, and/or via in silico, in vitro and/or in vivo testing. Collectively, based on the available information further effort is still needed to be able to correctly identify respiratory sensitizers and to distinguish these from skin sensitizers and irritants, not at least because of the far-reaching consequences once a chemical is classified as a respiratory sensitizer.
Collapse
Affiliation(s)
- Josje Arts
- Nouryon, Velperweg 76, 6824 BM Arnhem, the Netherlands.
| |
Collapse
|
26
|
Electro-mechanical Lung Simulator Using Polymer and Organic Human Lung Equivalents for Realistic Breathing Simulation. Sci Rep 2019; 9:19778. [PMID: 31874980 PMCID: PMC6930199 DOI: 10.1038/s41598-019-56176-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/09/2019] [Indexed: 11/24/2022] Open
Abstract
Simulation models in respiratory research are increasingly used for medical product development and testing, especially because in-vivo models are coupled with a high degree of complexity and ethical concerns. This work introduces a respiratory simulation system, which is bridging the gap between the complex, real anatomical environment and the safe, cost-effective simulation methods. The presented electro-mechanical lung simulator, xPULM, combines in-silico, ex-vivo and mechanical respiratory approaches by realistically replicating an actively breathing human lung. The reproducibility of sinusoidal breathing simulations with xPULM was verified for selected breathing frequencies (10–18 bpm) and tidal volumes (400–600 ml) physiologically occurring during human breathing at rest. Human lung anatomy was modelled using latex bags and primed porcine lungs. High reproducibility of flow and pressure characteristics was shown by evaluating breathing cycles (nTotal = 3273) with highest standard deviation |3σ| for both, simplified lung equivalents (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\boldsymbol{\mu }}}_{\dot{{\bf{V}}}}$$\end{document}µV˙ = 23.98 ± 1.04 l/min, μP = −0.78 ± 0.63 hPa) and primed porcine lungs (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\boldsymbol{\mu }}}_{\dot{{\bf{V}}}}$$\end{document}µV˙ = 18.87 ± 2.49 l/min, μP = −21.13 ± 1.47 hPa). The adaptability of the breathing simulation parameters, coupled with the use of porcine lungs salvaged from a slaughterhouse process, represents an advancement towards anatomically and physiologically realistic modelling of human respiration.
Collapse
|
27
|
Roach KA, Stefaniak AB, Roberts JR. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J Immunotoxicol 2019; 16:87-124. [PMID: 31195861 PMCID: PMC6649684 DOI: 10.1080/1547691x.2019.1605553] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
The recent surge in incorporation of metallic and metal oxide nanomaterials into consumer products and their corresponding use in occupational settings have raised concerns over the potential for metals to induce size-specific adverse toxicological effects. Although nano-metals have been shown to induce greater lung injury and inflammation than their larger metal counterparts, their size-related effects on the immune system and allergic disease remain largely unknown. This knowledge gap is particularly concerning since metals are historically recognized as common inducers of allergic contact dermatitis, occupational asthma, and allergic adjuvancy. The investigation into the potential for adverse immune effects following exposure to metal nanomaterials is becoming an area of scientific interest since these characteristically lightweight materials are easily aerosolized and inhaled, and their small size may allow for penetration of the skin, which may promote unique size-specific immune effects with implications for allergic disease. Additionally, alterations in physicochemical properties of metals in the nano-scale greatly influence their interactions with components of biological systems, potentially leading to implications for inducing or exacerbating allergic disease. Although some research has been directed toward addressing these concerns, many aspects of metal nanomaterial-induced immune effects remain unclear. Overall, more scientific knowledge exists in regards to the potential for metal nanomaterials to exacerbate allergic disease than to their potential to induce allergic disease. Furthermore, effects of metal nanomaterial exposure on respiratory allergy have been more thoroughly-characterized than their potential influence on dermal allergy. Current knowledge regarding metal nanomaterials and their potential to induce/exacerbate dermal and respiratory allergy are summarized in this review. In addition, an examination of several remaining knowledge gaps and considerations for future studies is provided.
Collapse
Affiliation(s)
- Katherine A Roach
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
- b School of Pharmacy , West Virginia University , Morgantown , WV , USA
| | - Aleksandr B Stefaniak
- c Respiratory Health Division (RHD) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Jenny R Roberts
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| |
Collapse
|
28
|
Krutz NL, Winget J, Ryan CA, Wimalasena R, Maurer-Stroh S, Dearman RJ, Kimber I, Gerberick GF. Proteomic and Bioinformatic Analyses for the Identification of Proteins With Low Allergenic Potential for Hazard Assessment. Toxicol Sci 2019; 170:210-222. [DOI: 10.1093/toxsci/kfz078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Nora L Krutz
- NV Procter & Gamble Services Company SA, Strombeek-Bever, Belgium
| | | | | | | | - Sebastian Maurer-Stroh
- Department of Biological Sciences, Bioinformatics Institute, Agency for Science, Technology and Research, National University of Singapore,Singapore
| | - Rebecca J Dearman
- The Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ian Kimber
- The Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - G Frank Gerberick
- The Procter & Gamble Company, Mason, Ohio
- GF3 Consultancy LLC, West Chester, OH
| |
Collapse
|