1
|
Brandauer K, Schweinitzer S, Lorenz A, Krauß J, Schobesberger S, Frauenlob M, Ertl P. Advances of dual-organ and multi-organ systems for gut, lung, skin and liver models in absorption and metabolism studies. LAB ON A CHIP 2025. [PMID: 39973270 DOI: 10.1039/d4lc01011f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Drug development is a costly and timely process with high risks of failure during clinical trials. Although in vitro tissue models have significantly advanced over the years, thus fostering a transition from animal-derived models towards human-derived models, failure rates still remain high. Current cell-based assays are still not able to provide an accurate prediction of the clinical success or failure of a drug candidate. To overcome the limitations of current methods, a variety of microfluidic systems have been developed as powerful tools that are capable of mimicking (micro)physiological conditions more closely by integrating physiological fluid flow conditions, mechanobiological cues and concentration gradients, to name only a few. One major advantage of these biochip-based tissue cultures, however, is their ability to seamlessly connect different organ models, thereby allowing the study of organ-crosstalk and metabolic byproduct effects. This is especially important when assessing absorption, distribution, metabolism, and excretion (ADME) processes of drug candidates, where an interplay between various organs is a prerequisite. In the current review, a number of in vitro models as well as microfluidic dual- and multi-organ systems are summarized with a focus on absorption (skin, lung, gut) and metabolism (liver). Additionally, the advantage of multi-organ chips in identifying a drug's on and off-target toxicity is discussed. Finally, the potential high-throughput implementation and modular chip design of multi-organ-on-a-chip systems within the pharmaceutical industry is highlighted, outlining the necessity of reducing handling complexity.
Collapse
Affiliation(s)
- Konstanze Brandauer
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Sophie Schweinitzer
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Alexandra Lorenz
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Judith Krauß
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria.
| | | | - Martin Frauenlob
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Peter Ertl
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria.
| |
Collapse
|
2
|
Hu J, Wang T, Xu J, Hai J, Ji Y, Li R. Dual-emission red carbon dots for ATP real-time monitoring and quantification to reveal drug and cancer effects on lysosomes. Talanta 2024; 280:126671. [PMID: 39128312 DOI: 10.1016/j.talanta.2024.126671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Monitoring and quantifying ATP levels in vivo is essential to understanding its role as a signaling molecule in tumor progression and therapy. Nevertheless, the real-time monitoring and quantitative assessment of lysosomal ATP remains challenging due to the lack of accurate tools in deep tissues. In this study, based on the crosslinking enhanced emission (CEE) effect, we successfully synthesized red carbon dots (R-CDs) with dual emission properties for efficient quantification of intracellular ATP. The R-CDs emit in the near-infrared range and target lysosomes with rapid detection capabilities, rendering them exceptionally well-suited for directly observing and analyzing the dynamics of lysosomal ATP through live cell imaging techniques. Importantly, R-CDs have proven their efficacy in real-time monitoring of drug stimulus-induced fluctuations in endogenous lysosomal ATP concentration and have also been employed for quantifying and distinguishing lysosomal ATP levels among normal and cancer cell lines. These noteworthy findings emphasize the versatility of the R-CD as a valuable imaging tool for elucidating the functional role of lysosomal ATP in drug screening and cancer diagnostics and hold the promise of becoming a reference tool for deepening our understanding of drug mechanisms of action.
Collapse
Affiliation(s)
- Jing Hu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianmiao Wang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingyuan Xu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Hai
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China.
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China.
| |
Collapse
|
3
|
Dey S, Bhat A, Janani G, Shandilya V, Gupta R, Mandal BB. Microfluidic human physiomimetic liver model as a screening platform for drug induced liver injury. Biomaterials 2024; 310:122627. [PMID: 38823194 DOI: 10.1016/j.biomaterials.2024.122627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
The pre-clinical animal models often fail to predict intrinsic and idiosyncratic drug induced liver injury (DILI), thus contributing to drug failures in clinical trials, black box warnings and withdrawal of marketed drugs. This suggests a critical need for human-relevant in vitro models to predict diverse DILI phenotypes. In this study, a porcine liver extracellular matrix (ECM) based biomaterial ink with high printing fidelity, biocompatibility and tunable rheological and mechanical properties is formulated for supporting both parenchymal and non-parenchymal cells. Further, we applied 3D printing and microfluidic technology to bioengineer a human physiomimetic liver acinus model (HPLAM), recapitulating the radial hepatic cord-like structure with functional sinusoidal microvasculature network, biochemical and biophysical properties of native liver acinus. Intriguingly, the human derived hepatic cells incorporated HPLAM cultured under physiologically relevant microenvironment, acts as metabolic biofactories manifesting enhanced hepatic functionality, secretome levels and biomarkers expression over several weeks. We also report that the matured HPLAM reproduces dose- and time-dependent hepatotoxic response of human clinical relevance to drugs typically recognized for inducing diverse DILI phenotypes as compared to conventional static culture. Overall, the developed HPLAM emulates in vivo like functions and may provide a useful platform for DILI risk assessment to better determine safety and human risk.
Collapse
Affiliation(s)
- Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Amritha Bhat
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - G Janani
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Vartik Shandilya
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Raghvendra Gupta
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Biman B Mandal
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
4
|
Kang S, Chen EC, Cifuentes H, Co JY, Cole G, Graham J, Hsia R, Kiyota T, Klein JA, Kroll KT, Nieves Lopez LM, Norona LM, Peiris H, Potla R, Romero-Lopez M, Roth JG, Tseng M, Fullerton AM, Homan KA. Complex in vitromodels positioned for impact to drug testing in pharma: a review. Biofabrication 2024; 16:042006. [PMID: 39189069 DOI: 10.1088/1758-5090/ad6933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Recent years have seen the creation and popularization of various complexin vitromodels (CIVMs), such as organoids and organs-on-chip, as a technology with the potential to reduce animal usage in pharma while also enhancing our ability to create safe and efficacious drugs for patients. Public awareness of CIVMs has increased, in part, due to the recent passage of the FDA Modernization Act 2.0. This visibility is expected to spur deeper investment in and adoption of such models. Thus, end-users and model developers alike require a framework to both understand the readiness of current models to enter the drug development process, and to assess upcoming models for the same. This review presents such a framework for model selection based on comparative -omics data (which we term model-omics), and metrics for qualification of specific test assays that a model may support that we term context-of-use (COU) assays. We surveyed existing healthy tissue models and assays for ten drug development-critical organs of the body, and provide evaluations of readiness and suggestions for improving model-omics and COU assays for each. In whole, this review comes from a pharma perspective, and seeks to provide an evaluation of where CIVMs are poised for maximum impact in the drug development process, and a roadmap for realizing that potential.
Collapse
Affiliation(s)
- Serah Kang
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Eugene C Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Helen Cifuentes
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julia Y Co
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Gabrielle Cole
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica Graham
- Product Quality & Occupational Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of Americaica
| | - Rebecca Hsia
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Tomomi Kiyota
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica A Klein
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Katharina T Kroll
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Lenitza M Nieves Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Leah M Norona
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Heshan Peiris
- Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Ratnakar Potla
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Monica Romero-Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julien G Roth
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Min Tseng
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Aaron M Fullerton
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Kimberly A Homan
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| |
Collapse
|
5
|
Alves RF, Lopes C, Rocha E, Madureira TV. Estrogenic Responsiveness of Brown Trout Primary Hepatocyte Spheroids to Environmental Levels of 17α-Ethinylestradiol. J Xenobiot 2024; 14:1064-1078. [PMID: 39189175 PMCID: PMC11348032 DOI: 10.3390/jox14030060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
Three-dimensional (3D) fish hepatocyte cultures are promising alternative models for replicating in vivo data. Few studies have attempted to characterise the structure and function of fish 3D liver models and illustrate their applicability. This study aimed to further characterise a previously established spheroid model obtained from juvenile brown trout (Salmo trutta) primary hepatocytes under estrogenic stimulation. The spheroids were exposed for six days to environmentally relevant concentrations of 17α-ethinylestradiol-EE2 (1-100 ng/L). The mRNA levels of peroxisome (catalase-Cat and urate oxidase-Uox), lipid metabolism (acyl-CoA long chain synthetase 1-Acsl1, apolipoprotein AI-ApoAI, and fatty acid binding protein 1-Fabp1), and estrogen-related (estrogen receptor α-ERα, estrogen receptor β-ERβ, vitellogenin A-VtgA, zona pellucida glycoprotein 2.5-ZP2.5, and zona pellucida glycoprotein 3a.2-ZP3a.2) target genes were evaluated by quantitative real-time polymerase chain reaction. Immunohistochemistry was used to assess Vtg and ZP protein expressions. At the highest EE2 concentration, VtgA and ZP2.5 genes were significantly upregulated. The remaining target genes were not significantly altered by EE2. Vtg and ZP immunostaining was consistently increased in spheroids exposed to 50 and 100 ng/L of EE2, whereas lower EE2 levels resulted in a weaker signal. EE2 did not induce significant changes in the spheroids' viability and morphological parameters. This study identified EE2 effects at environmentally relevant doses in trout liver spheroids, indicating its usefulness as a proxy for in vivo impacts of xenoestrogens.
Collapse
Affiliation(s)
- Rodrigo F. Alves
- Team of Animal Morphology and Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (R.F.A.); (C.L.); (E.R.)
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Célia Lopes
- Team of Animal Morphology and Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (R.F.A.); (C.L.); (E.R.)
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Eduardo Rocha
- Team of Animal Morphology and Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (R.F.A.); (C.L.); (E.R.)
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Tânia Vieira Madureira
- Team of Animal Morphology and Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (R.F.A.); (C.L.); (E.R.)
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Mehta V, Karnam G, Madgula V. Liver-on-chips for drug discovery and development. Mater Today Bio 2024; 27:101143. [PMID: 39070097 PMCID: PMC11279310 DOI: 10.1016/j.mtbio.2024.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Recent FDA modernization act 2.0 has led to increasing industrial R&D investment in advanced in vitro 3D models such as organoids, spheroids, organ-on-chips, 3D bioprinting, and in silico approaches. Liver-related advanced in vitro models remain the prime area of interest, as liver plays a central role in drug clearance of compounds. Growing evidence indicates the importance of recapitulating the overall liver microenvironment to enhance hepatocyte maturity and culture longevity using liver-on-chips (LoC) in vitro. Hence, pharmaceutical industries have started exploring LoC assays in the two of the most challenging areas: accurate in vitro-in vivo extrapolation (IVIVE) of hepatic drug clearance and drug-induced liver injury. We examine the joint efforts of commercial chip manufacturers and pharmaceutical companies to present an up-to-date overview of the adoption of LoC technology in the drug discovery. Further, several roadblocks are identified to the rapid adoption of LoC assays in the current drug development framework. Finally, we discuss some of the underexplored application areas of LoC models, where conventional 2D hepatic models are deemed unsuitable. These include clearance prediction of metabolically stable compounds, immune-mediated drug-induced liver injury (DILI) predictions, bioavailability prediction with gut-liver systems, hepatic clearance prediction of drugs given during pregnancy, and dose adjustment studies in disease conditions. We conclude the review by discussing the importance of PBPK modeling with LoC, digital twins, and AI/ML integration with LoC.
Collapse
Affiliation(s)
- Viraj Mehta
- Organoid Technology Lab, DMPK Department, Sai Life Sciences, Hyderabad, 500078, India
| | - Guruswamy Karnam
- Organoid Technology Lab, DMPK Department, Sai Life Sciences, Hyderabad, 500078, India
| | - Vamsi Madgula
- Organoid Technology Lab, DMPK Department, Sai Life Sciences, Hyderabad, 500078, India
| |
Collapse
|
7
|
Rainu SK, Singh N. 3D microscaffolds with triple-marker sensitive nanoprobes for studying fatty liver disease in vitro. NANOSCALE 2024; 16:10048-10063. [PMID: 38712552 DOI: 10.1039/d4nr00434e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a heterogeneous condition that encompasses a wide range of liver diseases that progresses from simple hepatic steatosis to the life-threatening state of cirrhosis. However, due to the heterogeneity of this disease, comprehensive analysis of several physicochemical and biological factors that drive its progression is necessary. Therefore, an in vitro platform is required that would enable real-time monitoring of these changes to better understand the progression of these diseases. The earliest stage of NAFLD, i.e. hepatic steatosis, is characterised by triglyceride accumulation in the form of lipid vacuoles in the cytosol of hepatocytes. This fatty acid accumulation is usually accompanied by hepatic inflammation, leading to tissue acidification and dysregulated expression of certain proteases such as matrix metalloproteinases (MMPs). Taking cues from the biological parameters of the disease, we report here a 3D in vitro GelMA/alginate microscaffold platform encapsulating a triple-marker (pH, MMP-3 and MMP-9) sensitive fluorescent nanoprobe for monitoring, and hence, distinguishing the fatty liver disease (hepatic steatosis) from healthy livers on the basis of pH change and MMP expression. The nanoprobe consists of a carbon nanoparticle (CNP) core, which exhibits intrinsic pH-dependent fluorescence properties, decorated either with an MMP-3 (NpMMP3) or MMP-9 (NpMMP9) sensitive peptide substrate. These peptide substrates are flanked with a fluorophore-quencher pair that separates on enzymatic cleavage, resulting in fluorescence emission. The cocktail of these nanoprobes generated multiple fluorescence signals corresponding to slightly acidic pH (blue) and overexpression of MMP-3 (green) and MMP-9 (red) enzymes in a 3D in vitro fatty liver model, whereas no/negligible fluorescence signals were observed in a healthy liver model. Moreover, this platform enabled us to mimic fatty liver disease in a more realistic manner. Therefore, this 3D in vitro platform encapsulating triple-marker sensitive fluorescent nanoprobes would facilitate the monitoring of the changes in pH and MMP expression, thereby enabling us to distinguish a healthy liver from a diseased liver and to study liver disease stages on the basis of these markers.
Collapse
Affiliation(s)
- Simran Kaur Rainu
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
8
|
Parvatam S, Pamies D, Pistollato F, Beken S, Mariappan I, Roth A, Piergiovanni M, G C Maisonneuve B, Ewart L, Majumder A, Dandekar P, Date R, Mahadik K, Thiyagarajan S, Coecke S. Taking the leap toward human-specific nonanimal methodologies: The need for harmonizing global policies for microphysiological systems. Stem Cell Reports 2024; 19:37-40. [PMID: 38134927 PMCID: PMC10828677 DOI: 10.1016/j.stemcr.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
With a recent amendment, India joined other countries that have removed the legislative barrier toward the use of human-relevant methods in drug development. Here, global stakeholders weigh in on the urgent need to globally harmonize the guidelines toward the standardization of microphysiological systems. We discuss a possible framework for establishing scientific confidence and regulatory approval of these methods.
Collapse
Affiliation(s)
| | - David Pamies
- SCAHT - Swiss Centre for Applied Human Toxicology. University of Basel. Missionsstrasse 64, 4055 Basel, Switzerland
| | | | - Sonja Beken
- Federal Agency for Medicines and Health Products, Brussels, Belgium
| | | | | | | | | | - Lorna Ewart
- Emulate Inc, 27 Drydock Avenue, Boston, MA, USA
| | | | | | | | - Kasturi Mahadik
- Centre for Predictive Human Model Systems, Atal Incubation Centre-Centre for Cellular and Molecular Biology (AIC-CCMB), Hyderabad, India
| | | | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
9
|
Krylov D, Rodimova S, Karabut M, Kuznetsova D. Experimental Models for Studying Structural and Functional State of the Pathological Liver (Review). Sovrem Tekhnologii Med 2023; 15:65-82. [PMID: 38434194 PMCID: PMC10902899 DOI: 10.17691/stm2023.15.4.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Indexed: 03/05/2024] Open
Abstract
Liver pathologies remain one of the leading causes of mortality worldwide. Despite a high prevalence of liver diseases, the possibilities of diagnosing, prognosing, and treating non-alcoholic and alcoholic liver diseases still have a number of limitations and require the development of new methods and approaches. In laboratory studies, various models are used to reconstitute the pathological conditions of the liver, including cell cultures, spheroids, organoids, microfluidic systems, tissue slices. We reviewed the most commonly used in vivo, in vitro, and ex vivo models for studying non-alcoholic fatty liver disease and alcoholic liver disease, toxic liver injury, and fibrosis, described their advantages, limitations, and prospects for use. Great emphasis was placed on the mechanisms of development of pathological conditions in each model, as well as the assessment of the possibility of reconstructing various key aspects of pathogenesis for all these pathologies. There is currently no consensus on the choice of the most adequate model for studying liver pathology. The choice of a certain effective research model is determined by the specific purpose and objectives of the experiment.
Collapse
Affiliation(s)
- D.P. Krylov
- Laboratory Assistant, Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Student, Institute of Biology and Biomedicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| | - S.A. Rodimova
- Junior Researcher, Laboratory of Regenerative Medicine, Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - M.M. Karabut
- Researcher, Laboratory of Genomics of Adaptive Antitumor Immunity, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - D.S. Kuznetsova
- Head of Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Head of the Research Laboratory for Molecular Genetic Researches, Institute of Clinical Medicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
10
|
Alves RF, Lopes C, Rocha E, Madureira TV. A Step Forward in the Characterization of Primary Brown Trout Hepatocytic Spheroids as Experimental Models. Animals (Basel) 2023; 13:2277. [PMID: 37508054 PMCID: PMC10376616 DOI: 10.3390/ani13142277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Mammal hepatocyte spheroids have been investigated as alternative experimental models in several contexts, since three-dimensional (3D) systems have shown the potential to mimic in vivo scenarios. The description of fish hepatocyte 3D models is still minimal. This study intends to further characterize brown trout primary hepatocyte spheroids at distinct time points up to 25 days in culture. Viability, biometry, histomorphology, and basal expression of a selection of genes (metabolism and detoxification, efflux transport, and estrogenic signalling) were considered. The gene expression of whole liver samples from the same fish donor were evaluated concurrently. After 12 days in culture, the hepatocyte spheroids exhibited biometric and morphological stability. From the 12th to the 20th day in culture, the basal expression levels for most of the selected genes did not vary. The targeted mRNA levels were higher in brown trout liver samples compared to hepatocyte spheroids. Despite that, data supported that this model resembles some in vivo features. As an experimental alternative model, it showed potential to be used in a stable time window that can be exploited for exposure tests to different xenobiotics, namely, estrogenic compounds.
Collapse
Affiliation(s)
- Rodrigo F Alves
- Team of Animal Morphology and Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Célia Lopes
- Team of Animal Morphology and Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Eduardo Rocha
- Team of Animal Morphology and Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Tânia V Madureira
- Team of Animal Morphology and Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
11
|
Usman Khan M, Cai X, Shen Z, Mekonnen T, Kourmatzis A, Cheng S, Gholizadeh H. Challenges in the Development and Application of Organ-on-Chips for Intranasal Drug Delivery Studies. Pharmaceutics 2023; 15:pharmaceutics15051557. [PMID: 37242799 DOI: 10.3390/pharmaceutics15051557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
With the growing demand for the development of intranasal (IN) products, such as nasal vaccines, which has been especially highlighted during the COVID-19 pandemic, the lack of novel technologies to accurately test the safety and effectiveness of IN products in vitro so that they can be delivered promptly to the market is critically acknowledged. There have been attempts to manufacture anatomically relevant 3D replicas of the human nasal cavity for in vitro IN drug tests, and a couple of organ-on-chip (OoC) models, which mimic some key features of the nasal mucosa, have been proposed. However, these models are still in their infancy, and have not completely recapitulated the critical characteristics of the human nasal mucosa, including its biological interactions with other organs, to provide a reliable platform for preclinical IN drug tests. While the promising potential of OoCs for drug testing and development is being extensively investigated in recent research, the applicability of this technology for IN drug tests has barely been explored. This review aims to highlight the importance of using OoC models for in vitro IN drug tests and their potential applications in IN drug development by covering the background information on the wide usage of IN drugs and their common side effects where some classical examples of each area are pointed out. Specifically, this review focuses on the major challenges of developing advanced OoC technology and discusses the need to mimic the physiological and anatomical features of the nasal cavity and nasal mucosa, the performance of relevant drug safety assays, as well as the fabrication and operational aspects, with the ultimate goal to highlight the much-needed consensus, to converge the effort of the research community in this area of work.
Collapse
Affiliation(s)
| | - Xinyu Cai
- School of Engineering, Macquarie University, Sydney, NSW 2113, Australia
| | - Zhiwei Shen
- School of Engineering, Macquarie University, Sydney, NSW 2113, Australia
| | - Taye Mekonnen
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Agisilaos Kourmatzis
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shaokoon Cheng
- School of Engineering, Macquarie University, Sydney, NSW 2113, Australia
| | - Hanieh Gholizadeh
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
12
|
Fu J, Qiu H, Tan CS. Microfluidic Liver-on-a-Chip for Preclinical Drug Discovery. Pharmaceutics 2023; 15:pharmaceutics15041300. [PMID: 37111785 PMCID: PMC10141038 DOI: 10.3390/pharmaceutics15041300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/31/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Drug discovery is an expensive, long, and complex process, usually with a high degree of uncertainty. In order to improve the efficiency of drug development, effective methods are demanded to screen lead molecules and eliminate toxic compounds in the preclinical pipeline. Drug metabolism is crucial in determining the efficacy and potential side effects, mainly in the liver. Recently, the liver-on-a-chip (LoC) platform based on microfluidic technology has attracted widespread attention. LoC systems can be applied to predict drug metabolism and hepatotoxicity or to investigate PK/PD (pharmacokinetics/pharmacodynamics) performance when combined with other artificial organ-on-chips. This review discusses the liver physiological microenvironment simulated by LoC, especially the cell compositions and roles. We summarize the current methods of constructing LoC and the pharmacological and toxicological application of LoC in preclinical research. In conclusion, we also discussed the limitations of LoC in drug discovery and proposed a direction for improvement, which may provide an agenda for further research.
Collapse
Affiliation(s)
- Jingyu Fu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hailong Qiu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Cherie S Tan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
13
|
Isin EM. Unusual Biotransformation Reactions of Drugs and Drug Candidates. Drug Metab Dispos 2023; 51:413-426. [PMID: 36653118 DOI: 10.1124/dmd.121.000744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Detailed assessment of the fate of drugs in nonclinical test species and humans is essential to ensure the safety and efficacy of medicines in patients. In this context, biotransformation of drugs and drug candidates has been an area of keen interest over many decades in the pharmaceutical industry as well as academia. Although many of the enzymes and biotransformation pathways involved in the metabolism of xenobiotics and more specifically drugs have been well characterized, each drug molecule is unique and constitutes specific challenges for the biotransformation scientist. In this mini-review written for the special issue on the occasion of the 50th Anniversary celebration of Drug Metabolism and Disposition and to celebrate contributions of F. Peter Guengerich, one of the pioneers of the drug metabolism field, recently reported "unusual" biotransformation reactions are presented. Scientific and technological advances in the "toolbox" of the biotransformation scientists are summarized. As the pharmaceutical industry continues to explore therapeutic modalities different from the traditional small molecule drugs, the new challenges confronting the biotransformation scientist as well as future opportunities are discussed. SIGNIFICANCE STATEMENT: For the biotransformation scientists, it is essential to share and be aware of unexpected biotransformation reactions so that they can increase their confidence in predicting metabolites of drugs in humans to ensure the safety and efficacy of these metabolites before the medicines reach large numbers of patients. The purpose of this review is to highlight recent observations of "unusual" metabolites so that the scientists working in the area of drug metabolism can strengthen their readiness in expecting the unexpected.
Collapse
Affiliation(s)
- Emre M Isin
- Translational Medicine, Servier, 25/27 Rue Eugène Vignat, 45000, Orléans, France
| |
Collapse
|
14
|
Monteduro AG, Rizzato S, Caragnano G, Trapani A, Giannelli G, Maruccio G. Organs-on-chips technologies – A guide from disease models to opportunities for drug development. Biosens Bioelectron 2023; 231:115271. [PMID: 37060819 DOI: 10.1016/j.bios.2023.115271] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 11/24/2022] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Current in-vitro 2D cultures and animal models present severe limitations in recapitulating human physiopathology with striking discrepancies in estimating drug efficacy and side effects when compared to human trials. For these reasons, microphysiological systems, organ-on-chip and multiorgans microdevices attracted considerable attention as novel tools for high-throughput and high-content research to achieve an improved understanding of diseases and to accelerate the drug development process towards more precise and eventually personalized standards. This review takes the form of a guide on this fast-growing field, providing useful introduction to major themes and indications for further readings. We start analyzing Organs-on-chips (OOC) technologies for testing the major drug administration routes: (1) oral/rectal route by intestine-on-a-chip, (2) inhalation by lung-on-a-chip, (3) transdermal by skin-on-a-chip and (4) intravenous through vascularization models, considering how drugs penetrate in the bloodstream and are conveyed to their targets. Then, we focus on OOC models for (other) specific organs and diseases: (1) neurodegenerative diseases with brain models and blood brain barriers, (2) tumor models including their vascularization, organoids/spheroids, engineering and screening of antitumor drugs, (3) liver/kidney on chips and multiorgan models for gastrointestinal diseases and metabolic assessment of drugs and (4) biomechanical systems recapitulating heart, muscles and bones structures and related diseases. Successively, we discuss technologies and materials for organ on chips, analyzing (1) microfluidic tools for organs-on-chips, (2) sensor integration for real-time monitoring, (3) materials and (4) cell lines for organs on chips. (Nano)delivery approaches for therapeutics and their on chip assessment are also described. Finally, we conclude with a critical discussion on current significance/relevance, trends, limitations, challenges and future prospects in terms of revolutionary impact on biomedical research, preclinical models and drug development.
Collapse
Affiliation(s)
- Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Silvia Rizzato
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Giusi Caragnano
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
| | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
15
|
Qiu L, Kong B, Kong T, Wang H. Recent advances in liver-on-chips: Design, fabrication, and applications. SMART MEDICINE 2023; 2:e20220010. [PMID: 39188562 PMCID: PMC11235950 DOI: 10.1002/smmd.20220010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/20/2022] [Indexed: 08/28/2024]
Abstract
The liver is a multifunctional organ and the metabolic center of the human body. Most drugs and toxins are metabolized in the liver, resulting in varying degrees of hepatotoxicity. The damage of liver will seriously affect human health, so it is very important to study the prevention and treatment of liver diseases. At present, there are many research studies in this field. However, most of them are based on animal models, which are limited by the time-consuming processes and species difference between human and animals. In recent years, liver-on-chips have emerged and developed rapidly and are expected to replace animal models. Liver-on-chips refer to the use of a small number of liver cells on the chips to simulate the liver microenvironment and ultrastructure in vivo. They hold extensive applications in multiple fields by reproducing the unique physiological functions of the liver in vitro. In this review, we first introduced the physiology and pathology of liver and then described the cell system of liver-on-chips, the chip-based liver models, and the applications of liver-on-chips in liver transplantation, drug screening, and metabolic evaluation. Finally, we discussed the currently encountered challenges and future trends in liver-on-chips.
Collapse
Affiliation(s)
- Linjie Qiu
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
- School of MedicineSun Yat‐Sen UniversityShenzhenChina
| | - Bin Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenChina
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenChina
| | - Huan Wang
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| |
Collapse
|
16
|
Tutty MA, Prina-Mello A. Three-Dimensional Spheroids for Cancer Research. Methods Mol Biol 2023; 2645:65-103. [PMID: 37202612 DOI: 10.1007/978-1-0716-3056-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In vitro cell culture is one of the most widely used tools used today for increasing our understanding of various things such as protein production, mechanisms of drug action, tissue engineering, and overall cellular biology. For the past decades, however, cancer researchers have relied heavily on conventional two-dimensional (2D) monolayer culture techniques to test a variety of aspects of cancer research ranging from the cytotoxic effects of antitumor drugs to the toxicity of diagnostic dyes and contact tracers. However, many promising cancer therapies have either weak or no efficacy in real-life conditions, therefore delaying or stopping altogether their translating to the clinic. This is, in part, due to the reductionist 2D cultures used to test these materials, which lack appropriate cell-cell contacts, have altered signaling, do not represent the natural tumor microenvironment, and have different drug responses, due to their reduced malignant phenotype when compared to real in vivo tumors. With the most recent advances, cancer research has moved into 3D biological investigation. Three-dimensional (3D) cultures of cancer cells not only recapitulate the in vivo environment better than their 2D counterparts, but they have, in recent years, emerged as a relatively low-cost and scientifically accurate methodology for studying cancer. In this chapter, we highlight the importance of 3D culture, specifically 3D spheroid culture, reviewing some key methodologies for forming 3D spheroids, discussing the experimental tools that can be used in conjunction with 3D spheroids and finally their applications in cancer research.
Collapse
Affiliation(s)
- Melissa Anne Tutty
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland.
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland
- Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute, (TTMI), School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Performance assessment and economic analysis of a human Liver-Chip for predictive toxicology. COMMUNICATIONS MEDICINE 2022; 2:154. [PMID: 36473994 PMCID: PMC9727064 DOI: 10.1038/s43856-022-00209-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 10/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Conventional preclinical models often miss drug toxicities, meaning the harm these drugs pose to humans is only realized in clinical trials or when they make it to market. This has caused the pharmaceutical industry to waste considerable time and resources developing drugs destined to fail. Organ-on-a-Chip technology has the potential improve success in drug development pipelines, as it can recapitulate organ-level pathophysiology and clinical responses; however, systematic and quantitative evaluations of Organ-Chips' predictive value have not yet been reported. METHODS 870 Liver-Chips were analyzed to determine their ability to predict drug-induced liver injury caused by small molecules identified as benchmarks by the Innovation and Quality consortium, who has published guidelines defining criteria for qualifying preclinical models. An economic analysis was also performed to measure the value Liver-Chips could offer if they were broadly adopted in supporting toxicity-related decisions as part of preclinical development workflows. RESULTS Here, we show that the Liver-Chip met the qualification guidelines across a blinded set of 27 known hepatotoxic and non-toxic drugs with a sensitivity of 87% and a specificity of 100%. We also show that this level of performance could generate over $3 billion annually for the pharmaceutical industry through increased small-molecule R&D productivity. CONCLUSIONS The results of this study show how incorporating predictive Organ-Chips into drug development workflows could substantially improve drug discovery and development, allowing manufacturers to bring safer, more effective medicines to market in less time and at lower costs.
Collapse
|
18
|
Fabrication of Cell Spheroids for 3D Cell Culture and Biomedical Applications. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00086-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Temple J, Velliou E, Shehata M, Lévy R, Gupta P. Current strategies with implementation of three-dimensional cell culture: the challenge of quantification. Interface Focus 2022; 12:20220019. [PMID: 35992772 PMCID: PMC9372643 DOI: 10.1098/rsfs.2022.0019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022] Open
Abstract
From growing cells in spheroids to arranging them on complex engineered scaffolds, three-dimensional cell culture protocols are rapidly expanding and diversifying. While these systems may often improve the physiological relevance of cell culture models, they come with technical challenges, as many of the analytical methods used to characterize traditional two-dimensional (2D) cells must be modified or replaced to be effective. Here we review the advantages and limitations of quantification methods based either on biochemical measurements or microscopy imaging. We focus on the most basic of parameters that one may want to measure, the number of cells. Precise determination of this number is essential for many analytical techniques where measured quantities are only meaningful when normalized to the number of cells (e.g. cytochrome p450 enzyme activity). Thus, accurate measurement of cell number is often a prerequisite to allowing comparisons across different conditions (culturing conditions or drug and treatment screening) or between cells in different spatial states. We note that this issue is often neglected in the literature with little or no information given regarding how normalization was performed, we highlight the pitfalls and complications of quantification and call for more accurate reporting to improve reproducibility.
Collapse
Affiliation(s)
- Jonathan Temple
- Bioscience building, University of Liverpool, Liverpool L69 3BX, UK
| | - Eirini Velliou
- Centre for 3D Models of Health and Disease, University College London, London, UK
| | - Mona Shehata
- Hutchison-MRC Research Centre, University of Cambridge, Cambridge CB2 1TN, UK
| | - Raphaël Lévy
- Bioscience building, University of Liverpool, Liverpool L69 3BX, UK
- Laboratoire for Vascular Translational Science, Université Sorbonne Paris Nord, Bobigny, France
| | - Priyanka Gupta
- Centre for 3D Models of Health and Disease, University College London, London, UK
| |
Collapse
|
20
|
McDuffie D, Barr D, Agarwal A, Thomas E. Physiologically relevant microsystems to study viral infection in the human liver. Front Microbiol 2022; 13:999366. [PMID: 36246284 PMCID: PMC9555087 DOI: 10.3389/fmicb.2022.999366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Viral hepatitis is a leading cause of liver disease and mortality. Infection can occur acutely or chronically, but the mechanisms that govern the clearance of virus or lack thereof are poorly understood and merit further investigation. Though cures for viral hepatitis have been developed, they are expensive, not readily accessible in vulnerable populations and some patients may remain at an increased risk of developing hepatocellular carcinoma (HCC) even after viral clearance. To sustain infection in vitro, hepatocytes must be fully mature and remain in a differentiated state. However, primary hepatocytes rapidly dedifferentiate in conventional 2D in vitro platforms. Physiologically relevant or physiomimetic microsystems, are increasingly popular alternatives to traditional two-dimensional (2D) monocultures for in vitro studies. Physiomimetic systems reconstruct and incorporate elements of the native cellular microenvironment to improve biologic functionality in vitro. Multiple elements contribute to these models including ancillary tissue architecture, cell co-cultures, matrix proteins, chemical gradients and mechanical forces that contribute to increased viability, longevity and physiologic function for the tissue of interest. These microsystems are used in a wide variety of applications to study biological phenomena. Here, we explore the use of physiomimetic microsystems as tools for studying viral hepatitis infection in the liver and how the design of these platforms is tailored for enhanced investigation of the viral lifecycle when compared to conventional 2D cell culture models. Although liver-based physiomimetic microsystems are typically applied in the context of drug studies, the platforms developed for drug discovery purposes offer a solid foundation to support studies on viral hepatitis. Physiomimetic platforms may help prolong hepatocyte functionality in order to sustain chronic viral hepatitis infection in vitro for studying virus-host interactions for prolonged periods.
Collapse
Affiliation(s)
- Dennis McDuffie
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - David Barr
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Emmanuel Thomas
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
21
|
Messelmani T, Le Goff A, Souguir Z, Maes V, Roudaut M, Vandenhaute E, Maubon N, Legallais C, Leclerc E, Jellali R. Development of Liver-on-Chip Integrating a Hydroscaffold Mimicking the Liver’s Extracellular Matrix. Bioengineering (Basel) 2022; 9:bioengineering9090443. [PMID: 36134989 PMCID: PMC9495334 DOI: 10.3390/bioengineering9090443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 12/12/2022] Open
Abstract
The 3Rs guidelines recommend replacing animal testing with alternative models. One of the solutions proposed is organ-on-chip technology in which liver-on-chip is one of the most promising alternatives for drug screening and toxicological assays. The main challenge is to achieve the relevant in vivo-like functionalities of the liver tissue in an optimized cellular microenvironment. Here, we investigated the development of hepatic cells under dynamic conditions inside a 3D hydroscaffold embedded in a microfluidic device. The hydroscaffold is made of hyaluronic acid and composed of liver extracellular matrix components (galactosamine, collagen I/IV) with RGDS (Arg-Gly-Asp-Ser) sites for cell adhesion. The HepG2/C3A cell line was cultured under a flow rate of 10 µL/min for 21 days. After seeding, the cells formed aggregates and proliferated, forming 3D spheroids. The cell viability, functionality, and spheroid integrity were investigated and compared to static cultures. The results showed a 3D aggregate organization of the cells up to large spheroid formations, high viability and albumin production, and an enhancement of HepG2 cell functionalities. Overall, these results highlighted the role of the liver-on-chip model coupled with a hydroscaffold in the enhancement of cell functions and its potential for engineering a relevant liver model for drug screening and disease study.
Collapse
Affiliation(s)
- Taha Messelmani
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
| | - Anne Le Goff
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- Correspondence: (A.L.G.); (R.J.)
| | - Zied Souguir
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Victoria Maes
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Méryl Roudaut
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Elodie Vandenhaute
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Nathalie Maubon
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Cécile Legallais
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
| | - Eric Leclerc
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Rachid Jellali
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- Correspondence: (A.L.G.); (R.J.)
| |
Collapse
|
22
|
Liu M, Xiang Y, Yang Y, Long X, Xiao Z, Nan Y, Jiang Y, Qiu Y, Huang Q, Ai K. State-of-the-art advancements in Liver-on-a-chip (LOC): Integrated biosensors for LOC. Biosens Bioelectron 2022; 218:114758. [DOI: 10.1016/j.bios.2022.114758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 12/12/2022]
|
23
|
Duan S, Jia Y, Zhu Z, Wang L, Xu P, Wang Y, Di B, Hu C. Induction of CYP450 by illicit drugs: Studies using an in vitro 3D spheroidal model in comparison to animals. Toxicol Lett 2022; 367:88-95. [PMID: 35914676 DOI: 10.1016/j.toxlet.2022.07.815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/08/2022]
Abstract
Information regarding the metabolism of illicit drugs is under urgent need for toxicological assessment. Its development, however, is limited by the currently available animal models. To this end, we proposed three-dimensional (3D) HepaRG spheroids as an in vitro model to study the effects of illicit drugs on hepatic cytochrome P450 (CYP450) enzymes and potential drug-drug interactions (DDIs). By comparing the results from animal and cell experiments, we confirmed the significant impact of heroin, morphine, tetrahydrocannabinol, and fentanyl on CYP450 enzymes, and the 3D spheroids results were in good agreement with the animal results for 2B6, 2C19, 2D6. Using 3D HepaRG spheroids, we demonstrated DDIs between heroin as a 2B6 perpetrator and clinical medicine for cancer, depression, and illicit drug withdrawal. Specifically, the clearance rate of 5.4μM bupropion was increased by 214% under DDI with 5µM heroin, highlighting the importance of DDI pre-screening and individualized medication guidance for illicit drug users. This research contributes to the growing body of evidence regarding the metabolic toxicity of illicit drugs and suggests 3D HepaRG spheroids as a high-throughput and cost-efficient platform for DDI analysis.
Collapse
Affiliation(s)
- Shiqi Duan
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Yan Jia
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Zhihang Zhu
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Lancheng Wang
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Peng Xu
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China
| | - Youmei Wang
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China
| | - Bin Di
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China.
| | - Chi Hu
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China.
| |
Collapse
|
24
|
Synthesis of novel carboxamide- and carbohydrazide-benzimidazoles as selective butyrylcholinesterase inhibitors. Mol Divers 2022; 26:2863-2876. [PMID: 35780204 DOI: 10.1007/s11030-022-10476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
Abstract
Selectively inhibiting butyrylcholinesterase (BChE) is hypothesized to help in the management of Alzheimer's disease (AD). Several studies have determined a correlation between the increased activity of BChE and the onset of AD. An advantage of BChE over acetylcholinesterase inhibition is that absence of BChE activity does not lead to obvious physiological disturbance. However, currently no BChE inhibitors are available commercially as potential therapeutics for AD. In our continuous effort to find potent BChE inhibitors for Alzheimer's disease, a total of 22 novel benzimidazoles with diversified substitutions were synthesized and evaluated for their anticholinesterase activities in this study. Among the synthesized compounds, 2j and 3f were found to exhibit potent and selective BChE inhibition with IC50 values of 1.13 and 1.46 μM, respectively. Molecular docking studies were carried out to rationalize the observed inhibitory activities. The compounds were predicted to have high penetration across the blood-brain barrier. Moreover, cell proliferative studies were also performed to evaluate the toxicity profile of the interested compounds. Compound 3f was found to be a potent and selective butyrylcholinesterase inhibitor with an IC50 value of 1.46 µM.
Collapse
|
25
|
Cox B, Barton P, Class R, Coxhead H, Delatour C, Gillent E, Henshall J, Isin EM, King L, Valentin JP. Setup of human liver-chips integrating 3D models, microwells and a standardized microfluidic platform as proof-of-concept study to support drug evaluation. BIOMATERIALS AND BIOSYSTEMS 2022; 7:100054. [PMID: 36824483 PMCID: PMC9934436 DOI: 10.1016/j.bbiosy.2022.100054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/13/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022] Open
Abstract
Human 3D liver microtissues/spheroids are powerful in vitro models to study drug-induced liver injury (DILI) but the small number of cells per spheroid limits the models' usefulness to study drug metabolism. In this work, we scale up the number of spheroids on both a plate and a standardized organ-chip platform by factor 100 using a basic method which requires only limited technical expertise. We successfully generated up to 100 spheroids using polymer-coated microwells in a 96-well plate (= liver-plate) or organ-chip (= liver-chip). Liver-chips display a comparable cellular CYP3A4 activity, viability, and biomarker expression as liver spheroids for at least one week, while liver-plate cultures display an overall reduced hepatic functionality. To prove its applicability to drug discovery and development, the liver-chip was used to test selected reference compounds. The test system could discriminate toxicity of the DILI-positive compound tolcapone from its less hepatotoxic structural analogue entacapone, using biochemical and morphological readouts. Following incubation with diclofenac, the liver-chips had an increased metabolite formation compared to standard spheroid cultures. In summary, we generated a human liver-chip model using a standardized organ-chip platform which combines up to 100 spheroids and can be used for the evaluation of both drug safety and metabolism.
Collapse
Affiliation(s)
- Benoit Cox
- Development Science, UCB Biopharma SRL, Chemin du Foriest 1, B1420 Braine-l'Alleud, Belgium,Corresponding author.
| | - Patrick Barton
- Development Science, UCB Biopharma SRL, 216 Bath Rd, Slough, Berkshire SL1 3WE, UK
| | - Reiner Class
- Development Science, UCB Biopharma SRL, Chemin du Foriest 1, B1420 Braine-l'Alleud, Belgium
| | - Hannah Coxhead
- Development Science, UCB Biopharma SRL, Chemin du Foriest 1, B1420 Braine-l'Alleud, Belgium
| | - Claude Delatour
- Development Science, UCB Biopharma SRL, Chemin du Foriest 1, B1420 Braine-l'Alleud, Belgium
| | - Eric Gillent
- Development Science, UCB Biopharma SRL, Chemin du Foriest 1, B1420 Braine-l'Alleud, Belgium
| | - Jamie Henshall
- Development Science, UCB Biopharma SRL, 216 Bath Rd, Slough, Berkshire SL1 3WE, UK
| | - Emre M. Isin
- Development Science, UCB Biopharma SRL, Chemin du Foriest 1, B1420 Braine-l'Alleud, Belgium
| | - Lloyd King
- Development Science, UCB Biopharma SRL, 216 Bath Rd, Slough, Berkshire SL1 3WE, UK
| | - Jean-Pierre Valentin
- Development Science, UCB Biopharma SRL, Chemin du Foriest 1, B1420 Braine-l'Alleud, Belgium
| |
Collapse
|
26
|
Mirahmad M, Sabourian R, Mahdavi M, Larijani B, Safavi M. In vitro cell-based models of drug-induced hepatotoxicity screening: progress and limitation. Drug Metab Rev 2022; 54:161-193. [PMID: 35403528 DOI: 10.1080/03602532.2022.2064487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Drug-induced liver injury (DILI) is one of the major causes of post-approval withdrawal of therapeutics. As a result, there is an increasing need for accurate predictive in vitro assays that reliably detect hepatotoxic drug candidates while reducing drug discovery time, costs, and the number of animal experiments. In vitro hepatocyte-based research has led to an improved comprehension of the underlying mechanisms of chemical toxicity and can assist the prioritization of therapeutic choices with low hepatotoxicity risk. Therefore, several in vitro systems have been generated over the last few decades. This review aims to comprehensively present the development and validation of 2D (two-dimensional) and 3D (three-dimensional) culture approaches on hepatotoxicity screening of compounds and highlight the main factors affecting predictive power of experiments. To this end, we first summarize some of the recognized hepatotoxicity mechanisms and related assays used to appraise DILI mechanisms and then discuss the challenges and limitations of in vitro models.
Collapse
Affiliation(s)
- Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Sabourian
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
27
|
Gholizadeh H, Cheng S, Kourmatzis A, Xing H, Traini D, Young PM, Ong HX. Application of Micro-Engineered Kidney, Liver, and Respiratory System Models to Accelerate Preclinical Drug Testing and Development. Bioengineering (Basel) 2022; 9:150. [PMID: 35447710 PMCID: PMC9025644 DOI: 10.3390/bioengineering9040150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Developing novel drug formulations and progressing them to the clinical environment relies on preclinical in vitro studies and animal tests to evaluate efficacy and toxicity. However, these current techniques have failed to accurately predict the clinical success of new therapies with a high degree of certainty. The main reason for this failure is that conventional in vitro tissue models lack numerous physiological characteristics of human organs, such as biomechanical forces and biofluid flow. Moreover, animal models often fail to recapitulate the physiology, anatomy, and mechanisms of disease development in human. These shortfalls often lead to failure in drug development, with substantial time and money spent. To tackle this issue, organ-on-chip technology offers realistic in vitro human organ models that mimic the physiology of tissues, including biomechanical forces, stress, strain, cellular heterogeneity, and the interaction between multiple tissues and their simultaneous responses to a therapy. For the latter, complex networks of multiple-organ models are constructed together, known as multiple-organs-on-chip. Numerous studies have demonstrated successful application of organ-on-chips for drug testing, with results comparable to clinical outcomes. This review will summarize and critically evaluate these studies, with a focus on kidney, liver, and respiratory system-on-chip models, and will discuss their progress in their application as a preclinical drug-testing platform to determine in vitro drug toxicology, metabolism, and transport. Further, the advances in the design of these models for improving preclinical drug testing as well as the opportunities for future work will be discussed.
Collapse
Affiliation(s)
- Hanieh Gholizadeh
- Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia; hanieh.mohammad-gholizadeh-@hdr.mq.edu.au (H.G.); (D.T.)
- Respiratory Technology, The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia;
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Ryde, NSW 2113, Australia;
| | - Shaokoon Cheng
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Ryde, NSW 2113, Australia;
| | - Agisilaos Kourmatzis
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Hanwen Xing
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Daniela Traini
- Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia; hanieh.mohammad-gholizadeh-@hdr.mq.edu.au (H.G.); (D.T.)
- Respiratory Technology, The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia;
| | - Paul M. Young
- Respiratory Technology, The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia;
- Department of Marketing, Macquarie Business School, Macquarie University, Ryde, NSW 2109, Australia
| | - Hui Xin Ong
- Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia; hanieh.mohammad-gholizadeh-@hdr.mq.edu.au (H.G.); (D.T.)
- Respiratory Technology, The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia;
| |
Collapse
|
28
|
Cuanalo-Contreras K, Benkmann D. Towards More Human and Humane Testing: The Role of the Device Supplier Industry. Altern Lab Anim 2022; 50:62-70. [PMID: 35184611 DOI: 10.1177/02611929211073132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In vivo testing has been the gold standard for preclinical drug development and toxicology. However, animal-based methods often lack human relevance and have a low predictability rate, not to mention the enormous ethical and financial concerns associated with their use. For instance, according to the US Congressional Budget Office (cbo.gov), it takes an average of 10.5 years to take a compound from the preclinical phase to the market, with a cost of US$1-US$2 billion. 90% of drugs that are tested in animals and enter clinical trials fail due to lack of safety and efficacy - this fact questions the significance of in vivo testing. Cells in culture can recapitulate certain aspects of physiology and disease, as well as indicate drug responses and toxicity. Thus, they represent a sophisticated human-relevant and humane alternative. With advances in the in vitro field, it is anticipated that confidence will be gained towards a move away from traditional in vivo models. Specialised supplier industries have been a driving force in the transition to non-animal research, by translating new approach methodologies into scalable products that have been adopted by the regulatory and testing industries - but we are still at the beginning. In this article, we introduce the perspective of the device supplier industry on the current challenges and opportunities surrounding the adoption of new in vitro methods, with the goal of promoting effective co-operation with scientists and other stakeholders. In addition, we highlight some examples of where non-animal approaches have been used in regulatory submissions, as well as listing some educational and training resources that can help when selecting the most appropriate assay.
Collapse
|
29
|
Eckstrum K, Striz A, Ferguson M, Zhao Y, Sprando R. Evaluation of the utility of the Beta Human Liver Emulation System (BHLES) for CFSAN's regulatory toxicology program. Food Chem Toxicol 2022; 161:112828. [PMID: 35066125 DOI: 10.1016/j.fct.2022.112828] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Microphysiological systems (MPS), such as organ-on-a-chip platforms, are an emerging alternative model that may be useful for predicting human physiology and/or toxicity. Due to the interest in these platforms, the Center for Food Safety and Applied Nutrition partnered with Emulate to evaluate the utility of the Beta Human Liver Emulation System (BHLES) for its regulatory science program. Using known hepatotoxic compounds (usnic acid, benzbromarone, tamoxifen, and acetaminophen) and compounds that have no reported human cases of liver toxicity (dimethyl sulfoxide, theophylline, and aminohippurate) the platforms' performance was evaluated. Chemical toxicity was assessed by albumin secretion, urea and LDH release, nuclei number, mitochondrial membrane potential, and apoptosis. System/platform performance was evaluated in terms of sensitivity and specificity, power, and variability and repeatability. Chemical interactions with the Chip material were also assessed. Preliminary findings suggested that for the model test compounds selected, the BHLES was able to accurately predict toxicity, demonstrated high sensitivity and specificity, high power, and low variability. However, some compounds interacted with the Chip material indicating variable exposure levels that should be accounted for when planning experimentation. The details of the evaluation are presented herein.
Collapse
Affiliation(s)
- Kirsten Eckstrum
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, 20708, USA.
| | - Anneliese Striz
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Martine Ferguson
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Yang Zhao
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Robert Sprando
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| |
Collapse
|
30
|
Youhanna S, Kemas AM, Preiss L, Zhou Y, Shen JX, Cakal SD, Paqualini FS, Goparaju SK, Shafagh RZ, Lind JU, Sellgren CM, Lauschke VM. Organotypic and Microphysiological Human Tissue Models for Drug Discovery and Development-Current State-of-the-Art and Future Perspectives. Pharmacol Rev 2022; 74:141-206. [PMID: 35017176 DOI: 10.1124/pharmrev.120.000238] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
The number of successful drug development projects has been stagnant for decades despite major breakthroughs in chemistry, molecular biology, and genetics. Unreliable target identification and poor translatability of preclinical models have been identified as major causes of failure. To improve predictions of clinical efficacy and safety, interest has shifted to three-dimensional culture methods in which human cells can retain many physiologically and functionally relevant phenotypes for extended periods of time. Here, we review the state of the art of available organotypic culture techniques and critically review emerging models of human tissues with key importance for pharmacokinetics, pharmacodynamics, and toxicity. In addition, developments in bioprinting and microfluidic multiorgan cultures to emulate systemic drug disposition are summarized. We close by highlighting important trends regarding the fabrication of organotypic culture platforms and the choice of platform material to limit drug absorption and polymer leaching while supporting the phenotypic maintenance of cultured cells and allowing for scalable device fabrication. We conclude that organotypic and microphysiological human tissue models constitute promising systems to promote drug discovery and development by facilitating drug target identification and improving the preclinical evaluation of drug toxicity and pharmacokinetics. There is, however, a critical need for further validation, benchmarking, and consolidation efforts ideally conducted in intersectoral multicenter settings to accelerate acceptance of these novel models as reliable tools for translational pharmacology and toxicology. SIGNIFICANCE STATEMENT: Organotypic and microphysiological culture of human cells has emerged as a promising tool for preclinical drug discovery and development that might be able to narrow the translation gap. This review discusses recent technological and methodological advancements and the use of these systems for hit discovery and the evaluation of toxicity, clearance, and absorption of lead compounds.
Collapse
Affiliation(s)
- Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Lena Preiss
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Selgin D Cakal
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Francesco S Paqualini
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Sravan K Goparaju
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Johan Ulrik Lind
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| |
Collapse
|
31
|
Lopez-Muñoz GA, Mughal S, Ramón-Azcón J. Sensors and Biosensors in Organs-on-a-Chip Platforms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:55-80. [DOI: 10.1007/978-3-031-04039-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Ménochet K, Yu H, Wang B, Tibbitts J, Hsu CP, Kamath AV, Richter WF, Baumann A. Non-human primates in the PKPD evaluation of biologics: Needs and options to reduce, refine, and replace. A BioSafe White Paper. MAbs 2022; 14:2145997. [PMID: 36418217 PMCID: PMC9704389 DOI: 10.1080/19420862.2022.2145997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Monoclonal antibodies (mAbs) deliver great benefits to patients with chronic and/or severe diseases thanks to their strong specificity to the therapeutic target. As a result of this specificity, non-human primates (NHP) are often the only preclinical species in which therapeutic antibodies cross-react with the target. Here, we highlight the value and limitations that NHP studies bring to the design of safe and efficient early clinical trials. Indeed, data generated in NHPs are integrated with in vitro information to predict the concentration/effect relationship in human, and therefore the doses to be tested in first-in-human trials. The similarities and differences in the systems defining the pharmacokinetics and pharmacodynamics (PKPD) of mAbs in NHP and human define the nature and the potential of the preclinical investigations performed in NHPs. Examples have been collated where the use of NHP was either pivotal to the design of the first-in-human trial or, inversely, led to the termination of a project prior to clinical development. The potential impact of immunogenicity on the results generated in NHPs is discussed. Strategies to optimize the use of NHPs for PKPD purposes include the addition of PD endpoints in safety assessment studies and the potential re-use of NHPs after non-terminal studies or cassette dosing several therapeutic agents of interest. Efforts are also made to reduce the use of NHPs in the industry through the use of in vitro systems, alternative in vivo models, and in silico approaches. In the case of prediction of ocular PK, the body of evidence gathered over the last two decades renders the use of NHPs obsolete. Expert perspectives, advantages, and pitfalls with these alternative approaches are shared in this review.
Collapse
Affiliation(s)
| | - Hongbin Yu
- R&D Project Management and Development Strategies, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
| | - Bonnie Wang
- Nonclinical Disposition and Bioanalysis, Bristol Myers Squibb, Inc, Princeton, NJ, USA
| | - Jay Tibbitts
- Nonclinical Development, South San Francisco, CA, USA
| | - Cheng-Pang Hsu
- Preclinical Development and Clinical Pharmacology, AskGene Pharma Inc, Camarillo, CA, USA
| | - Amrita V. Kamath
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, South San Francisco, CA, USA
| | - Wolfgang F. Richter
- Roche Pharma Research and Early Development, Roche Innovation, Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Andreas Baumann
- R&D, Bayer Pharma AG, Berlin, Germany & Non-clinical Biotech Consulting, Potsdam, Germany °(° present affiliation)
| |
Collapse
|
33
|
Schofield CA, Walker TM, Taylor MA, Patel M, Vlachou DF, Macina JM, Vidgeon-Hart MP, Williams A, McGill PJ, Newman CF, Sakatis MZ. Evaluation of a Three-Dimensional Primary Human Hepatocyte Spheroid Model: Adoption and Industrialization for the Enhanced Detection of Drug-Induced Liver Injury. Chem Res Toxicol 2021; 34:2485-2499. [PMID: 34797640 DOI: 10.1021/acs.chemrestox.1c00227] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Drug-induced liver injury is a leading cause of compound attrition during both preclinical and clinical drug development, and early strategies are in place to tackle this recurring problem. Human-relevant in vitro models that are more predictive of hepatotoxicity hazard identification, and that could be employed earlier in the drug discovery process, would improve the quality of drug candidate selection and help reduce attrition. We present an evaluation of four human hepatocyte in vitro models of increasing culture complexity (i.e., two-dimensional (2D) HepG2 monolayers, hepatocyte sandwich cultures, three-dimensional (3D) hepatocyte spheroids, and precision-cut liver slices), using the same tool compounds, viability end points, and culture time points. Having established the improved prediction potential of the 3D hepatocyte spheroid model, we describe implementing this model into an industrial screening setting, where the challenge was matching the complexity of the culture system with the scale and throughput required. Following further qualification and miniaturization into a 384-well, high-throughput screening format, data was generated on 199 compounds. This clearly demonstrated the ability to capture a greater number of severe hepatotoxins versus the current routine 2D HepG2 monolayer assay while continuing to flag no false-positive compounds. The industrialization and miniaturization of the 3D hepatocyte spheroid complex in vitro model demonstrates a significant step toward reducing drug attrition and improving the quality and safety of drugs, while retaining the flexibility for future improvements, and has replaced the routine use of the 2D HepG2 monolayer assay at GlaxoSmithKline.
Collapse
Affiliation(s)
- Christopher A Schofield
- Functional Genomics, Medicinal Science and Technology, GlaxoSmithKline Research and Development, Stevenage, Herts SG1 2NY, United Kingdom
| | - Tracy M Walker
- Oncology Cell Therapy, Oncology Therapy Area, GlaxoSmithKline Research and Development, Stevenage, Herts SG1 2NY, United Kingdom
| | - Maxine A Taylor
- Drug Metabolism and Pharmacokinetics, In Vitro/In Vivo Translation, GlaxoSmithKline Research and Development, Ware, Herts SG12 0DP, United Kingdom
| | - Metul Patel
- Screening, Profiling and Mechanistic Biology, Medicinal Science and Technology, GlaxoSmithKline Research and Development, Stevenage, Herts SG1 2NY, United Kingdom
| | - Denise F Vlachou
- Molecular Design U.K., Medicinal Science and Technology, GlaxoSmithKline Research and Development, Stevenage, Herts SG1 2NY, United Kingdom
| | - Justyna M Macina
- Screening, Profiling and Mechanistic Biology, Medicinal Science and Technology, GlaxoSmithKline Research and Development, Stevenage, Herts SG1 2NY, United Kingdom
| | - Martin P Vidgeon-Hart
- Non Clinical Safety, In Vitro/In Vivo Translation, GlaxoSmithKline Research and Development, Ware, Herts SG12 0DP, United Kingdom
| | - Ann Williams
- Pathology U.K., In Vitro/In Vivo Translation, GlaxoSmithKline Research and Development, Ware, Herts SG12 0DP, United Kingdom
| | - Paul J McGill
- Bioimaging U.K., In Vitro/In Vivo Translation, GlaxoSmithKline Research and Development, Ware, Herts SG12 0DP, United Kingdom
| | - Carla F Newman
- Bioimaging U.K., In Vitro/In Vivo Translation, GlaxoSmithKline Research and Development, Stevenage, Herts SG1 2NY, United Kingdom
| | - Melanie Z Sakatis
- Non Clinical Safety, In Vitro/In Vivo Translation, GlaxoSmithKline Research and Development, Ware, Herts SG12 0DP, United Kingdom
| |
Collapse
|
34
|
Handin N, Mickols E, Ölander M, Rudfeldt J, Blom K, Nyberg F, Senkowski W, Urdzik J, Maturi V, Fryknäs M, Artursson P. Conditions for maintenance of hepatocyte differentiation and function in 3D cultures. iScience 2021; 24:103235. [PMID: 34746700 PMCID: PMC8551077 DOI: 10.1016/j.isci.2021.103235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/02/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Spheroid cultures of primary human hepatocytes (PHH) are used in studies of hepatic drug metabolism and toxicity. The cultures are maintained under different conditions, with possible confounding results. We performed an in-depth analysis of the influence of various culture conditions to find the optimal conditions for the maintenance of an in vivo like phenotype. The formation, protein expression, and function of PHH spheroids were followed for three weeks in a high-throughput 384-well format. Medium composition affected spheroid histology, global proteome profile, drug metabolism and drug-induced toxicity. No epithelial-mesenchymal transition was observed. Media with fasting glucose and insulin levels gave spheroids with phenotypes closest to normal PHH. The most expensive medium resulted in PHH features most divergent from that of native PHH. Our results provide a protocol for culture of healthy PHH with maintained function - a prerequisite for studies of hepatocyte homeostasis and more reproducible hepatocyte research. 3D spheroid cultures were established in 384-well format Eight different media variants were used to optimize the 3D cultures Optimized William's medium was as good as expensive commercial medium The 3D cultures were used to study drug metabolism and toxicity
Collapse
Affiliation(s)
- Niklas Handin
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Evgeniya Mickols
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Magnus Ölander
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Jakob Rudfeldt
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Kristin Blom
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Frida Nyberg
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Wojciech Senkowski
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden.,Biotech Research & Innovation Centre (BRIC) and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jozef Urdzik
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Varun Maturi
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Mårten Fryknäs
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
35
|
Sano E, Deguchi S, Matsuoka N, Tsuda M, Wang M, Kosugi K, Mori C, Yagi K, Wada A, Yamasaki S, Kawai T, Yodogawa M, Mizuguchi H, Nakazawa N, Yamashita F, Torisawa YS, Takayama K. Generation of Tetrafluoroethylene-Propylene Elastomer-Based Microfluidic Devices for Drug Toxicity and Metabolism Studies. ACS OMEGA 2021; 6:24859-24865. [PMID: 34604667 PMCID: PMC8482466 DOI: 10.1021/acsomega.1c03719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Polydimethylsiloxane (PDMS) is widely used to fabricate microfluidic organs-on-chips. Using these devices (PDMS-based devices), the mechanical microenvironment of living tissues, such as pulmonary respiration and intestinal peristalsis, can be reproduced in vitro. However, the use of PDMS-based devices in drug discovery research is limited because of their extensive absorption of drugs. In this study, we investigated the feasibility of the tetrafluoroethylene-propylene (FEPM) elastomer to fabricate a hepatocyte-on-a-chip (FEPM-based hepatocyte chip) with lower drug absorption. The FEPM-based hepatocyte chip expressed drug-metabolizing enzymes, drug-conjugating enzymes, and drug transporters. Also, it could produce human albumin. Although the metabolites of midazolam and bufuralol were hardly detected in the PDMS-based hepatocyte chip, they were detected abundantly in the FEPM-based hepatocyte chip. Finally, coumarin-induced hepatocyte cytotoxicity was less severe in the PDMS-based hepatocyte chip than in the FEPM-based hepatocyte chip, reflecting the different drug absorptions of the two chips. In conclusion, the FEPM-based hepatocyte chip could be a useful tool in drug discovery research, including drug metabolism and toxicity studies.
Collapse
Affiliation(s)
- Emi Sano
- Center
for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- Department
of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Sayaka Deguchi
- Center
for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- Laboratory
of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical
Sciences, Osaka University, Osaka 565-0871, Japan
| | | | - Masahiro Tsuda
- Department
of Applied Pharmaceutics and Pharmacokinetics, Graduate School of
Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Mengyang Wang
- Department
of Applied Pharmaceutics and Pharmacokinetics, Graduate School of
Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kaori Kosugi
- Center
for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- Department
of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Chihiro Mori
- Department
of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | | | | | | | | | | | - Hiroyuki Mizuguchi
- Laboratory
of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical
Sciences, Osaka University, Osaka 565-0871, Japan
| | | | - Fumiyoshi Yamashita
- Department
of Applied Pharmaceutics and Pharmacokinetics, Graduate School of
Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Department
of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yu-suke Torisawa
- Department
of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Kazuo Takayama
- Center
for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
36
|
Bouwmeester MC, Bernal PN, Oosterhoff LA, van Wolferen ME, Lehmann V, Vermaas M, Buchholz MB, Peiffer QC, Malda J, van der Laan LJW, Kramer NI, Schneeberger K, Levato R, Spee B. Bioprinting of Human Liver-Derived Epithelial Organoids for Toxicity Studies. Macromol Biosci 2021; 21:e2100327. [PMID: 34559943 DOI: 10.1002/mabi.202100327] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 01/01/2023]
Abstract
There is a need for long-lived hepatic in vitro models to better predict drug induced liver injury (DILI). Human liver-derived epithelial organoids are a promising cell source for advanced in vitro models. Here, organoid technology is combined with biofabrication techniques, which holds great potential for the design of in vitro models with complex and customizable architectures. Here, porous constructs with human hepatocyte-like cells derived from organoids are generated using extrusion-based printing technology. Cell viability of bioprinted organoids remains stable for up to ten days (88-107% cell viability compared to the day of printing). The expression of hepatic markers, transporters, and phase I enzymes increased compared to undifferentiated controls, and is comparable to non-printed controls. Exposure to acetaminophen, a well-known hepatotoxic compound, decreases cell viability of bioprinted liver organoids to 21-51% (p < 0.05) compared to the start of exposure, and elevated levels of damage marker miR-122 are observed in the culture medium, indicating the potential use of the bioprinted constructs for toxicity testing. In conclusion, human liver-derived epithelial organoids can be combined with a biofabrication approach, thereby paving the way to create perfusable, complex constructs which can be used as toxicology- and disease-models.
Collapse
Affiliation(s)
- Manon C Bouwmeester
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Paulina N Bernal
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Loes A Oosterhoff
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Monique E van Wolferen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Vivian Lehmann
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Division of Pediatric Gastroenterology, Wilhelmina Children's Hospital, Regenerative Medicine Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Monique Vermaas
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Maj-Britt Buchholz
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Quentin C Peiffer
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Jos Malda
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus Medical Center, Postbus 2040, Rotterdam, 3000 CA, The Netherlands
| | - Nynke I Kramer
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, Utrecht, 3584 CM, The Netherlands
- Division of Toxicology, Wageningen University, P.O. box 8000, Wageningen, 6700 EA, The Netherlands
| | - Kerstin Schneeberger
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Riccardo Levato
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| |
Collapse
|
37
|
Three-Dimensional Liver Culture Systems to Maintain Primary Hepatic Properties for Toxicological Analysis In Vitro. Int J Mol Sci 2021; 22:ijms221910214. [PMID: 34638555 PMCID: PMC8508724 DOI: 10.3390/ijms221910214] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 12/13/2022] Open
Abstract
Drug-induced liver injury (DILI) is the major reason for failures in drug development and withdrawal of approved drugs from the market. Two-dimensional cultures of hepatocytes often fail to reliably predict DILI: hepatoma cell lines such as HepG2 do not reflect important primary-like hepatic properties and primary human hepatocytes (pHHs) dedifferentiate quickly in vitro and are, therefore, not suitable for long-term toxicity studies. More predictive liver in vitro models are urgently required in drug development and compound safety evaluation. This review discusses available human hepatic cell types for in vitro toxicology analysis and their usage in established and emerging three-dimensional (3D) culture systems. Generally, 3D cultures maintain or improve primary hepatic functions (including expression of drug-metabolizing enzymes) of different liver cells for several weeks of culture, thus allowing long-term and repeated-dose toxicity studies. Spheroid cultures of pHHs have been comprehensively tested, but also other cell types such as HepaRG benefit from 3D culture systems. Emerging 3D culture techniques include usage of induced pluripotent stem-cell-derived hepatocytes and primary-like upcyte cells, as well as advanced culture techniques such as microfluidic liver-on-a-chip models. In-depth characterization of existing and emerging 3D hepatocyte technologies is indispensable for successful implementation of such systems in toxicological analysis.
Collapse
|
38
|
Ravichandran A, Murekatete B, Moedder D, Meinert C, Bray LJ. Photocrosslinkable liver extracellular matrix hydrogels for the generation of 3D liver microenvironment models. Sci Rep 2021; 11:15566. [PMID: 34330947 PMCID: PMC8324893 DOI: 10.1038/s41598-021-94990-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Liver extracellular matrix (ECM)-based hydrogels have gained considerable interest as biomimetic 3D cell culture environments to investigate the mechanisms of liver pathology, metabolism, and toxicity. The preparation of current liver ECM hydrogels, however, is based on time-consuming thermal gelation and limits the control of mechanical properties. In this study, we used detergent-based protocols to produce decellularized porcine liver ECM, which in turn were solubilized and functionalized with methacrylic anhydride to generate photocrosslinkable methacrylated liver ECM (LivMA) hydrogels. Firstly, we explored the efficacy of two protocols to decellularize porcine liver tissue using varying combinations of commonly used chemical agents such as Triton X-100, Sodium Dodecyl Sulphate (SDS) and Ammonium hydroxide. Then, we demonstrated successful formation of stable, reproducible LivMA hydrogels from both the protocols by photocrosslinking. The LivMA hydrogels obtained from the two decellularization protocols showed distinct mechanical properties. The compressive modulus of the hydrogels was directly dependent on the hydrogel concentration, thereby demonstrating the tuneability of mechanical properties of these hydrogels. Immortalized Human Hepatocytes cells were encapsulated in the LivMA hydrogels and cytocompatibility of the hydrogels was demonstrated after one week of culture. In summary, the LivMA hydrogel system provides a simple, photocrosslinkable platform, which can potentially be used to simulate healthy versus damaged liver for liver disease research, drug studies and cancer metastasis modelling.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia.
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Kelvin Grove, Australia.
- Science and Engineering Faculty, School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, Australia.
| | - Berline Murekatete
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Denise Moedder
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Christoph Meinert
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Herston, Australia
| | - Laura J Bray
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Kelvin Grove, Australia
- Science and Engineering Faculty, School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
39
|
Kulsharova G, Kurmangaliyeva A. Liver microphysiological platforms for drug metabolism applications. Cell Prolif 2021; 54:e13099. [PMID: 34291515 PMCID: PMC8450120 DOI: 10.1111/cpr.13099] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/21/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
Drug development is a costly and lengthy process with low success rates. To improve the efficiency of drug development, there has been an increasing need in developing alternative methods able to eliminate toxic compounds early in the drug development pipeline. Drug metabolism plays a key role in determining the efficacy of a drug and its potential side effects. Since drug metabolism occurs mainly in the liver, liver cell‐based alternative engineering platforms have been growing in the last decade. Microphysiological liver cell‐based systems called liver‐on‐a‐chip platforms can better recapitulate the environment for human liver cells in laboratory settings and have the potential to reduce the number of animal models used in drug development by predicting the response of the liver to a drug in vitro. In this review, we discuss the liver microphysiological platforms from the perspective of drug metabolism studies. We highlight the stand‐alone liver‐on‐a‐chip platforms and multi‐organ systems integrating liver‐on‐a‐chip devices used for drug metabolism mimicry in vitro and review the state‐of‐the‐art platforms reported in the last few years. With the development of more robust and reproducible liver cell‐based microphysiological platforms, the drug development field has the potential of reducing the costs and lengths associated with currently existing drug testing methods.
Collapse
Affiliation(s)
- Gulsim Kulsharova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | | |
Collapse
|
40
|
Deguchi S, Tsuda M, Kosugi K, Sakamoto A, Mimura N, Negoro R, Sano E, Nobe T, Maeda K, Kusuhara H, Mizuguchi H, Yamashita F, Torisawa YS, Takayama K. Usability of Polydimethylsiloxane-Based Microfluidic Devices in Pharmaceutical Research Using Human Hepatocytes. ACS Biomater Sci Eng 2021; 7:3648-3657. [PMID: 34283567 DOI: 10.1021/acsbiomaterials.1c00642] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A liver-on-a-chip (liver-chip) is a microfluidic device carrying liver cells such as human hepatocytes. It is used to reproduce a part of liver function. Many microfluidic devices are composed of polydimethylsiloxane (PDMS), which is a type of silicone elastomer. PDMS is easy to process and suitable for cell observation, but its high hydrophobicity carries the risk of drug absorption. In this study, we evaluated drug absorption to the PDMS device and investigated the drug responsiveness of human hepatocytes cultured in the PDMS device (hepatocyte-chips). First, the absorption rates of 12 compounds to the PDMS device were measured. The absorption rates of midazolam, bufuralol, cyclosporine A, and verapamil were 92.9, 71.7, 71.4, and 99.6%, respectively, but the other compounds were poorly absorbed. Importantly, the absorption rate of the compounds was correlated with their octanol/water distribution coefficient (log D) values (R2 = 0.76). Next, hepatocyte-chips were used to examine the response to drugs, which are typically used to evaluate hepatic functions. Using the hepatocyte-chips, we could confirm the responsiveness of drugs including cytochrome P450 (CYP) inducers and farnesoid X receptor (FXR) ligands. We believe that our findings will contribute to drug discovery research using PDMS-based liver-chips.
Collapse
Affiliation(s)
- Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.,Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Masahiro Tsuda
- Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kaori Kosugi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.,Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Ayaka Sakamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Natsumi Mimura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Ryosuke Negoro
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, Noji-Higashi, Kusatsu 525-8577, Japan
| | - Emi Sano
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Takuro Nobe
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.,Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Fumiyoshi Yamashita
- Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.,Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yu-Suke Torisawa
- Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
41
|
Conway GE, Shah UK, Llewellyn S, Cervena T, Evans SJ, Al Ali AS, Jenkins GJ, Clift MJD, Doak SH. Adaptation of the in vitro micronucleus assay for genotoxicity testing using 3D liver models supporting longer-term exposure durations. Mutagenesis 2021; 35:319-330. [PMID: 32780103 PMCID: PMC7486679 DOI: 10.1093/mutage/geaa018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Following advancements in the field of genotoxicology, it has become widely accepted that 3D models are not only more physiologically relevant but also have the capacity to elucidate more complex biological processes that standard 2D monocultures are unable to. Whilst 3D liver models have been developed to evaluate the short-term genotoxicity of chemicals, the aim of this study was to develop a 3D model that could be used with the regulatory accepted in vitro micronucleus (MN) following low-dose, longer-term (5 days) exposure to engineered nanomaterials (ENMs). A comparison study was carried out between advanced models generated from two commonly used liver cell lines, namely HepaRG and HepG2, in spheroid format. While both spheroid systems displayed good liver functionality and viability over 14 days, the HepaRG spheroids lacked the capacity to actively proliferate and, therefore, were considered unsuitable for use with the MN assay. This study further demonstrated the efficacy of the in vitro 3D HepG2 model to be used for short-term (24 h) exposures to genotoxic chemicals, aflatoxin B1 (AFB1) and methyl-methanesulfonate (MMS). The 3D HepG2 liver spheroids were shown to be more sensitive to DNA damage induced by AFB1 and MMS when compared to the HepG2 2D monoculture. This 3D model was further developed to allow for longer-term (5 day) ENM exposure. Four days after seeding, HepG2 spheroids were exposed to Zinc Oxide ENM (0–2 µg/ml) for 5 days and assessed using both the cytokinesis-block MN (CBMN) version of the MN assay and the mononuclear MN assay. Following a 5-day exposure, differences in MN frequency were observed between the CBMN and mononuclear MN assay, demonstrating that DNA damage induced within the first few cell cycles is distributed across the mononucleated cell population. Together, this study demonstrates the necessity to adapt the MN assay accordingly, to allow for the accurate assessment of genotoxicity following longer-term, low-dose ENM exposure.
Collapse
Affiliation(s)
- Gillian E Conway
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Singleton Park Campus, Swansea, Wales, UK
| | - Ume-Kulsoom Shah
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Singleton Park Campus, Swansea, Wales, UK
| | - Samantha Llewellyn
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Singleton Park Campus, Swansea, Wales, UK
| | - Tereza Cervena
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Singleton Park Campus, Swansea, Wales, UK.,Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Stephen J Evans
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Singleton Park Campus, Swansea, Wales, UK
| | - Abdullah S Al Ali
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Singleton Park Campus, Swansea, Wales, UK
| | - Gareth J Jenkins
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Singleton Park Campus, Swansea, Wales, UK
| | - Martin J D Clift
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Singleton Park Campus, Swansea, Wales, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Singleton Park Campus, Swansea, Wales, UK
| |
Collapse
|
42
|
Davidson MD, Khetani SR. Intermittent Starvation Extends the Functional Lifetime of Primary Human Hepatocyte Cultures. Toxicol Sci 2021; 174:266-277. [PMID: 31977024 DOI: 10.1093/toxsci/kfaa003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Primary human hepatocyte (PHH) cultures have become indispensable to mitigate the risk of adverse drug reactions in human patients. In contrast to dedifferentiating monocultures, coculture with nonparenchymal cells maintains PHH functions for 2-4 weeks. However, because the functional lifespan of PHHs in vivo is 200-400 days, it is desirable to further prolong PHH functions in vitro toward modeling chronic drug exposure and disease progression. Fasting has benefits on the longevity of organisms and the health of tissues such as the liver. We hypothesized that a culturing protocol that mimics dynamic fasting/starvation could activate starvation pathways and prolong PHH functional lifetime. To mimic starvation, serum and hormones were intermittently removed from the culture medium of micropatterned cocultures (MPCCs) containing PHHs organized onto collagen domains and surrounded by 3T3-J2 murine fibroblasts. A weekly 2-day starvation optimally prolonged PHH functional lifetime for 6+ weeks in MPCCs versus a decline after 3 weeks in nonstarved controls. The 2-day starvation also enhanced the functions of PHH monocultures for 2 weeks, suggesting direct effects on PHHs. In MPCCs, starvation activated 5' adenosine monophosphate-activated protein kinase (AMPK) and restricted fibroblast overgrowth onto PHH islands, thereby maintaining hepatic polarity. The effects of starvation on MPCCs were partially recapitulated by activating AMPK using metformin or growth arresting fibroblasts via mitomycin-C. Lastly, starved MPCCs demonstrated lower false positives for drug toxicity tests and higher drug-induced cytochrome-P450 activities versus nonstarved controls even after 5 weeks. In conclusion, intermittent serum/hormone starvation extends PHH functional lifetime toward enabling clinically relevant drug screening.
Collapse
Affiliation(s)
- Matthew D Davidson
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R Khetani
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois.,Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
43
|
Howell L, Jenkins RE, Lynch S, Duckworth C, Kevin Park B, Goldring C. Proteomic profiling of murine biliary-derived hepatic organoids and their capacity for drug disposition, bioactivation and detoxification. Arch Toxicol 2021; 95:2413-2430. [PMID: 34050779 PMCID: PMC8241807 DOI: 10.1007/s00204-021-03075-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/06/2021] [Indexed: 11/26/2022]
Abstract
Hepatic organoids are a recent innovation in in vitro modeling. Initial studies suggest that organoids better recapitulate the liver phenotype in vitro compared to pre-existing proliferative cell models. However, their potential for drug metabolism and detoxification remains poorly characterized, and their global proteome has yet to be compared to their tissue of origin. This analysis is urgently needed to determine what gain-of-function this new model may represent for modeling the physiological and toxicological response of the liver to xenobiotics. Global proteomic profiling of undifferentiated and differentiated hepatic murine organoids and donor-matched livers was, therefore, performed to assess both their similarity to liver tissue, and the expression of drug-metabolizing enzymes and transporters. This analysis quantified 4405 proteins across all sample types. Data are available via ProteomeXchange (PXD017986). Differentiation of organoids significantly increased the expression of multiple cytochrome P450, phase II enzymes, liver biomarkers and hepatic transporters. While the final phenotype of differentiated organoids is distinct from liver tissue, the organoids contain multiple drug metabolizing and transporter proteins necessary for liver function and drug metabolism, such as cytochrome P450 3A, glutathione-S-transferase alpha and multidrug resistance protein 1A. Indeed, the differentiated organoids were shown to exhibit increased sensitivity to midazolam (10–1000 µM) and irinotecan (1–100 µM), when compared to the undifferentiated organoids. The predicted reduced activity of HNF4A and a resulting dysregulation of RNA polymerase II may explain the partial differentiation of the organoids. Although further experimentation, optimization and characterization is needed relative to pre-existing models to fully contextualize their use as an in vitro model of drug-induced liver injury, hepatic organoids represent an attractive novel model of the response of the liver to xenobiotics. The current study also highlights the utility of global proteomic analyses for rapid and accurate evaluation of organoid-based test systems.
Collapse
Affiliation(s)
- Lawrence Howell
- Department of Pharmacology and Therapeutics, MRC Centre of Drug Safety Science, University of Liverpool, The Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Rosalind E Jenkins
- Department of Pharmacology and Therapeutics, MRC Centre of Drug Safety Science, University of Liverpool, The Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Stephen Lynch
- Department of Pharmacology and Therapeutics, MRC Centre of Drug Safety Science, University of Liverpool, The Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Carrie Duckworth
- Department of Pharmacology and Therapeutics, MRC Centre of Drug Safety Science, University of Liverpool, The Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - B Kevin Park
- Department of Pharmacology and Therapeutics, MRC Centre of Drug Safety Science, University of Liverpool, The Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Christopher Goldring
- Department of Pharmacology and Therapeutics, MRC Centre of Drug Safety Science, University of Liverpool, The Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK.
| |
Collapse
|
44
|
Law CSW, Yeong KY. Benzimidazoles in Drug Discovery: A Patent Review. ChemMedChem 2021; 16:1861-1877. [PMID: 33646618 DOI: 10.1002/cmdc.202100004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 01/10/2023]
Abstract
Benzimidazole is a heterocyclic ring system that has been widely studied in the pharmaceutical field. For the past decade, numerous benzimidazole derivatives have been synthesized and evaluated for their wide range of pharmacological activities, which are beneficial for drug development. This article presents the biological effects of benzimidazole derivatives in each invention from 2015 to 2020. Two patent databases, Google Patents and Lens, were used to locate relevant granted patent applications. Specifically, this review delineates the role of patented benzimidazoles from a disease-centric perspective and examines the mechanisms of action of these compounds in related diseases. Most of the benzimidazoles have shown good activities against various target proteins. Whilst several of them have progressed into clinical trials, most patents presented novel therapeutic approaches for respective target diseases. Hence, their potential in being developed into clinical drugs are also discussed.
Collapse
Affiliation(s)
- Christine S W Law
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan Bandar Sunway, 47500, Selangor, Malaysia
| | - Keng Y Yeong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan Bandar Sunway, 47500, Selangor, Malaysia.,Tropical Medicine and Biology (TMB) multidisciplinary platform, Monash University Malaysia, Jalan Lagoon Selatan Bandar Sunway, 47500, Selangor, Malaysia
| |
Collapse
|
45
|
Gough A, Soto-Gutierrez A, Vernetti L, Ebrahimkhani MR, Stern AM, Taylor DL. Human biomimetic liver microphysiology systems in drug development and precision medicine. Nat Rev Gastroenterol Hepatol 2021; 18:252-268. [PMID: 33335282 PMCID: PMC9106093 DOI: 10.1038/s41575-020-00386-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Microphysiology systems (MPS), also called organs-on-chips and tissue chips, are miniaturized functional units of organs constructed with multiple cell types under a variety of physical and biochemical environmental cues that complement animal models as part of a new paradigm of drug discovery and development. Biomimetic human liver MPS have evolved from simpler 2D cell models, spheroids and organoids to address the increasing need to understand patient-specific mechanisms of complex and rare diseases, the response to therapeutic treatments, and the absorption, distribution, metabolism, excretion and toxicity of potential therapeutics. The parallel development and application of transdisciplinary technologies, including microfluidic devices, bioprinting, engineered matrix materials, defined physiological and pathophysiological media, patient-derived primary cells, and pluripotent stem cells as well as synthetic biology to engineer cell genes and functions, have created the potential to produce patient-specific, biomimetic MPS for detailed mechanistic studies. It is projected that success in the development and maturation of patient-derived MPS with known genotypes and fully matured adult phenotypes will lead to advanced applications in precision medicine. In this Review, we examine human biomimetic liver MPS that are designed to recapitulate the liver acinus structure and functions to enhance our knowledge of the mechanisms of disease progression and of the absorption, distribution, metabolism, excretion and toxicity of therapeutic candidates and drugs as well as to evaluate their mechanisms of action and their application in precision medicine and preclinical trials.
Collapse
Affiliation(s)
- Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alejandro Soto-Gutierrez
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
46
|
Serras AS, Rodrigues JS, Cipriano M, Rodrigues AV, Oliveira NG, Miranda JP. A Critical Perspective on 3D Liver Models for Drug Metabolism and Toxicology Studies. Front Cell Dev Biol 2021; 9:626805. [PMID: 33732695 PMCID: PMC7957963 DOI: 10.3389/fcell.2021.626805] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
The poor predictability of human liver toxicity is still causing high attrition rates of drug candidates in the pharmaceutical industry at the non-clinical, clinical, and post-marketing authorization stages. This is in part caused by animal models that fail to predict various human adverse drug reactions (ADRs), resulting in undetected hepatotoxicity at the non-clinical phase of drug development. In an effort to increase the prediction of human hepatotoxicity, different approaches to enhance the physiological relevance of hepatic in vitro systems are being pursued. Three-dimensional (3D) or microfluidic technologies allow to better recapitulate hepatocyte organization and cell-matrix contacts, to include additional cell types, to incorporate fluid flow and to create gradients of oxygen and nutrients, which have led to improved differentiated cell phenotype and functionality. This comprehensive review addresses the drug-induced hepatotoxicity mechanisms and the currently available 3D liver in vitro models, their characteristics, as well as their advantages and limitations for human hepatotoxicity assessment. In addition, since toxic responses are greatly dependent on the culture model, a comparative analysis of the toxicity studies performed using two-dimensional (2D) and 3D in vitro strategies with recognized hepatotoxic compounds, such as paracetamol, diclofenac, and troglitazone is performed, further highlighting the need for harmonization of the respective characterization methods. Finally, taking a step forward, we propose a roadmap for the assessment of drugs hepatotoxicity based on fully characterized fit-for-purpose in vitro models, taking advantage of the best of each model, which will ultimately contribute to more informed decision-making in the drug development and risk assessment fields.
Collapse
Affiliation(s)
- Ana S. Serras
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Madalena Cipriano
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Armanda V. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
47
|
Rasheed A, Azizi L, Turkki P, Janka M, Hytönen VP, Tuukkanen S. Extrusion-Based Bioprinting of Multilayered Nanocellulose Constructs for Cell Cultivation Using In Situ Freezing and Preprint CaCl 2 Cross-Linking. ACS OMEGA 2021; 6:569-578. [PMID: 33458509 PMCID: PMC7807796 DOI: 10.1021/acsomega.0c05036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/11/2020] [Indexed: 05/05/2023]
Abstract
Extrusion-based bioprinting with a preprint cross-linking agent and an in situ cooling stage provides a versatile method for the fabrication of 3D structures for cell culture. We added varying amounts of calcium chloride as a precross-linker into native nanofibrillated cellulose (NFC) hydrogel prior to 3D bioprinting to fabricate structurally stable multilayered constructs without the need for a separate cross-linking bath. To further enhance their stability, we bioprinted the multilayered structures onto an in situ temperature-controlled printing stage at 25, 0, and -10 °C. The extruded and subsequently freeze-dried volumetric constructs maintained their structures after being immersed into a cell culture medium. The ability to maintain the shape after immersion in cell media is an essential feature for the fabrication of stem cell-based artificial organs. We studied the viability and distribution of mouse embryonic fibroblast cells into the hydrogels using luminescence technique and confocal microscopy. Adding CaCl2 increased the stability of the multilayered nanocellulose structures, making them suitable for culturing cells inside the 3D hydrogel environment. Lower stage temperature considerably improved the structural stability of the 3D printed structures, however, had no effect on cell viability.
Collapse
Affiliation(s)
- Anum Rasheed
- Faculty
of Medicine and Health Technology, Tampere
University, Korkeakoulunkatu 7 Kampusareena, 33720 Tampere, Finland
| | - Latifeh Azizi
- Faculty
of Medicine and Health Technology, Tampere
University, Arvo Ylpön
Katu 34, 33520 Tampere, Finland
| | - Paula Turkki
- Faculty
of Medicine and Health Technology, Tampere
University, Arvo Ylpön
Katu 34, 33520 Tampere, Finland
| | - Marika Janka
- Faculty
of Medicine and Health Technology, Tampere
University, Korkeakoulunkatu 7 Kampusareena, 33720 Tampere, Finland
| | - Vesa P. Hytönen
- Faculty
of Medicine and Health Technology, Tampere
University, Arvo Ylpön
Katu 34, 33520 Tampere, Finland
- Fimlab
Laboratories, Biokatu
4, 33520 Tampere, Finland
| | - Sampo Tuukkanen
- Faculty
of Medicine and Health Technology, Tampere
University, Korkeakoulunkatu 7 Kampusareena, 33720 Tampere, Finland
| |
Collapse
|
48
|
Bircsak KM, DeBiasio R, Miedel M, Alsebahi A, Reddinger R, Saleh A, Shun T, Vernetti LA, Gough A. A 3D microfluidic liver model for high throughput compound toxicity screening in the OrganoPlate®. Toxicology 2021; 450:152667. [PMID: 33359578 DOI: 10.1016/j.tox.2020.152667] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022]
Abstract
We report the development, automation and validation of a 3D, microfluidic liver-on-a-chip for high throughput hepatotoxicity screening, the OrganoPlate LiverTox™. The model is comprised of aggregates of induced pluripotent stem cell (iPSC)-derived hepatocytes (iHep) seeded in an extracellular matrix in the organ channel and co-cultured with endothelial cells and THP-1 monoblasts differentiated to macrophages seeded in the vascular channel of the 96 well Mimetas OrganoPlate 2-lane. A key component of high throughput screening is automation and we report a protocol to seed, dose, collect and replenish media and add assay reagents in the OrganoPlate 2-lane using a standard laboratory liquid handling robot. A combination of secretome measurements and image-based analysis was used to demonstrate stable 15 day cell viability, albumin and urea secretion. Over the same time-period, CYP3A4 activity increased and alpha-fetoprotein secretion decreased suggesting further maturation of the iHeps. Troglitazone, a clinical hepatotoxin, was chosen as a control compound for validation studies. Albumin, urea, hepatocyte nuclear size and viability staining provided Robust Z'factors > 0.2 in plates treated 72 h with 180 μM troglitazone compared with a vehicle control. The viability assay provided the most robust statistic for a Robust Z' factor = 0.6. A small library of 159 compounds with known liver effects was added to the OrganoPlate LiverTox model for 72 h at 50 μM and the Toxicological Prioritization scores were calculated. A follow up dose-response evaluation of select hits revealed the albumin assay to be the most sensitive in calculating TC50 values. This platform provides a robust, novel model which can be used for high throughput hepatotoxicity screening.
Collapse
Affiliation(s)
| | - Richard DeBiasio
- Drug Discovery Institute and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Mark Miedel
- Drug Discovery Institute and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | | | | | | | - Tongying Shun
- Drug Discovery Institute and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Lawrence A Vernetti
- Drug Discovery Institute and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Albert Gough
- Drug Discovery Institute and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
49
|
Thompson CL, Fu S, Knight MM, Thorpe SD. Mechanical Stimulation: A Crucial Element of Organ-on-Chip Models. Front Bioeng Biotechnol 2020; 8:602646. [PMID: 33363131 PMCID: PMC7758201 DOI: 10.3389/fbioe.2020.602646] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Organ-on-chip (OOC) systems recapitulate key biological processes and responses in vitro exhibited by cells, tissues, and organs in vivo. Accordingly, these models of both health and disease hold great promise for improving fundamental research, drug development, personalized medicine, and testing of pharmaceuticals, food substances, pollutants etc. Cells within the body are exposed to biomechanical stimuli, the nature of which is tissue specific and may change with disease or injury. These biomechanical stimuli regulate cell behavior and can amplify, annul, or even reverse the response to a given biochemical cue or drug candidate. As such, the application of an appropriate physiological or pathological biomechanical environment is essential for the successful recapitulation of in vivo behavior in OOC models. Here we review the current range of commercially available OOC platforms which incorporate active biomechanical stimulation. We highlight recent findings demonstrating the importance of including mechanical stimuli in models used for drug development and outline emerging factors which regulate the cellular response to the biomechanical environment. We explore the incorporation of mechanical stimuli in different organ models and identify areas where further research and development is required. Challenges associated with the integration of mechanics alongside other OOC requirements including scaling to increase throughput and diagnostic imaging are discussed. In summary, compelling evidence demonstrates that the incorporation of biomechanical stimuli in these OOC or microphysiological systems is key to fully replicating in vivo physiology in health and disease.
Collapse
Affiliation(s)
- Clare L Thompson
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Su Fu
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Martin M Knight
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Stephen D Thorpe
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
50
|
Kanebratt KP, Janefeldt A, Vilén L, Vildhede A, Samuelsson K, Milton L, Björkbom A, Persson M, Leandersson C, Andersson TB, Hilgendorf C. Primary Human Hepatocyte Spheroid Model as a 3D In Vitro Platform for Metabolism Studies. J Pharm Sci 2020; 110:422-431. [PMID: 33122050 DOI: 10.1016/j.xphs.2020.10.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
3D cultures of primary human hepatocytes (PHH) are emerging as a more in vivo-like culture system than previously available hepatic models. This work describes the characterisation of drug metabolism in 3D PHH spheroids. Spheroids were formed from three different donors of PHH and the expression and activities of important cytochrome P450 enzymes (CYP1A2, 2B6, 2C9, 2D6, and 3A4) were maintained for up to 21 days after seeding. The activity of CYP2B6 and 3A4 decreased, while the activity of CYP2C9 and 2D6 increased over time (P < 0.05). For six test compounds, that are metabolised by multiple enzymes, intrinsic clearance (CLint) values were comparable to standard in vitro hepatic models and successfully predicted in vivo CLint within 3-fold from observed values for low clearance compounds. Remarkably, the metabolic turnover of these low clearance compounds was reproducibly measured using only 1-3 spheroids, each composed of 2000 cells. Importantly, metabolites identified in the spheroid cultures reproduced the major metabolites observed in vivo, both primary and secondary metabolites were captured. In summary, the 3D PHH spheroid model shows promise to be used in drug discovery projects to study drug metabolism, including unknown mechanisms, over an extended period of time.
Collapse
Affiliation(s)
- Kajsa P Kanebratt
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden.
| | - Annika Janefeldt
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
| | - Liisa Vilén
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
| | - Anna Vildhede
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
| | - Kristin Samuelsson
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
| | - Lucas Milton
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
| | - Anders Björkbom
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
| | - Marie Persson
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
| | - Carina Leandersson
- Physical & Analytical Chemistry, Research and Early Development Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
| | - Tommy B Andersson
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
| | - Constanze Hilgendorf
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
| |
Collapse
|