1
|
Iglesias-Gonzalez A, Appenzeller BMR. Comprehensive analysis, comprehensive understanding: The benefit of widening the scope to uncover the complexity of human chemical exposome and tailor personalized risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178111. [PMID: 39693651 DOI: 10.1016/j.scitotenv.2024.178111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/30/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
While biomonitoring approaches are frequently employed for assessing chemical exposure, many of them are constrained to a limited number of target chemicals, running counter to our current understanding of interactions within chemical mixtures and the growing evidence of multiple exposures within human populations. Although authors agree on the need for more comprehensive methodologies, literature provides insufficient evidence of the multifaceted nature of exposure and of the benefit of widening the analytical scope to improve exposure assessment. Moreover, although multiple exposures are generally admitted, very few are known on the scale of the human chemical exposome. Here, we illustrate how increasing the number of chemicals possibly captured improves the information on exposure. Through a literature review centered on studies utilizing hair analysis to assess exposure to anthropogenic organic pollutants, we provide here the first demonstration of how expanding the number of compounds analyzed in biomonitoring methods enhances our understanding of the chemical exposome. The results not only underscore the prevalence of multiple exposures but also reveal distinct exposure patterns within various demographic groups. Utilizing extrapolated biomonitoring data, we introduce a novel approach to estimate the number of chemicals to which humans can be simultaneously exposed. This biomonitoring-based approach is the first one relying on data derived from human samples rather than indirect metrics such as sales figures or registered chemicals. Eventually, we draw upon results from studies conducted in our team to illustrate local specificities in exposure among different populations, emphasizing the complexity of risk assessment while implemented in prevention strategies.
Collapse
Affiliation(s)
- Alba Iglesias-Gonzalez
- Human Biomonitoring Research Unit, Department of Precision Health - Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health - Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg.
| |
Collapse
|
2
|
Faÿs F, Palazzi P, Zeman F, Hardy EM, Schaeffer C, Rousselle C, Beausoleil C, Appenzeller BMR. Incorporation of Fast-Elimination Chemicals in Hair Is Governed by Pharmacokinetics-Implications for Exposure Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7336-7345. [PMID: 37146304 DOI: 10.1021/acs.est.2c06777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Mechanisms governing chemicals' incorporation in hair are incompletely understood, and gaps remain to link the concentration of chemicals in hair to level of exposure and internal dose present in the body. This study assesses the relevance of hair analysis for the biomonitoring of exposure to fast-elimination compounds and investigates the role of pharmacokinetics (PK) in their incorporation in hair. Rats were administered with pesticides, bisphenols, phthalates, and DINCH over 2 months. Hairs were analyzed for 28 chemicals/metabolites to investigate correlations between their concentration in hair and the dose administered to the animals. Urine collected over 24 h after gavage was used to determine chemicals' PK and to investigate their influence on incorporation into hair by means of linear mixed models (LMMs). Eighteen chemicals presented a significant correlation between concentration in hair and level of exposure. In models combining all chemicals, agreement between concentration in hair predicted by LMM and experimental values was moderate (R2 = 0.19) but significantly increased when PK were included in the models (R2 = 0.37), and even more when chemical families were considered separately (e.g., R2 = 0.98 for pesticides). This study shows that pharmacokinetics mediate incorporation of chemicals in hair and suggests the relevance of hair for assessing exposure to fast-elimination chemicals.
Collapse
Affiliation(s)
- François Faÿs
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
- University of Luxembourg, 2, avenue de l'Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Florence Zeman
- Institut national de l'environnement industriel et des risques (INERIS), Direction des Risques Chroniques, Pôle Dangers et Impact sur le Vivant, Unité Modèle pour l'Ecotoxicologie et la Toxicologie (METO), Parc Technologique Alata, 60550 Verneuil-en-Halatte, France
| | - Emilie M Hardy
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Charline Schaeffer
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Christophe Rousselle
- ANSES, Risk Assessment Department, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - Claire Beausoleil
- ANSES, Risk Assessment Department, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| |
Collapse
|
3
|
Elser BA, Simonsen D, Lehmler HJ, Stevens HE. Maternal and fetal tissue distribution of α-cypermethrin and permethrin in pregnant CD-1 mice. ENVIRONMENTAL ADVANCES 2022; 8:100239. [PMID: 36059860 PMCID: PMC9435064 DOI: 10.1016/j.envadv.2022.100239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Pyrethroid insecticides are widely used throughout agriculture and household products. Recent studies suggest that prenatal exposure to these insecticides may adversely affect fetal development; however, little is known about the distribution of these chemicals in pregnant animals. The present study aimed to address this gap in knowledge by investigating the distribution of two commonly used pyrethroid insecticides, permethrin and α-cypermethrin, in maternal and fetal tissues of pregnant CD-1 mice. Dams were dosed from gestational days 6 to 16 via oral gavage with permethrin (1.5, 15, and 50 mg/kg), α-cypermethrin (0.3, 3, and 10 mg/kg), or corn oil vehicle. Pyrethroid levels were determined in gestational day 16 tissues collected 90 min after the final dose was administered. Across maternal tissues, levels of both pyrethroids were the highest in maternal ovaries, followed by liver and brain, respectively. In addition, levels of both pyrethroids in maternal tissues and placenta were significantly higher than those in the fetal body and amniotic fluid, suggesting that these compounds may exhibit low transfer across the mouse placenta. While additional toxicokinetic studies are needed to verify the time course of pyrethroids in the fetal compartment, these findings support investigation into indirect modes of action relevant to the effects of pyrethroids on mammalian fetal development.
Collapse
Affiliation(s)
- Benjamin A. Elser
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, 1330 Pappajohn Biomedical Discovery Building, Iowa City, IA 52242, USA
| | - Derek Simonsen
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA 52242, USA
| | - Hans-Joachim Lehmler
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA 52242, USA
| | - Hanna E. Stevens
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, 1330 Pappajohn Biomedical Discovery Building, Iowa City, IA 52242, USA
- Corresponding author at: Department of Psychiatry, Carver College of Medicine, The University of Iowa, 1330 Pappajohn Biomedical Discovery Building, Iowa City, IA 52242, USA. (H.E. Stevens)
| |
Collapse
|
4
|
Bossou YM, Côté J, Mahrouche L, Mantha M, El Majidi N, Furtos A, Bouchard M. Excretion time courses of lambda-cyhalothrin metabolites in the urine of strawberry farmworkers and effect of coexposure with captan. Arch Toxicol 2022; 96:2465-2486. [PMID: 35567602 DOI: 10.1007/s00204-022-03310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
There are limited literature data on the impact of coexposure on the toxicokinetics of pesticides in agricultural workers. Using the largely employed pyrethroid lambda-cyhalothrin (LCT) and fungicide captan as sentinel pesticides, we compared individual temporal profiles of biomarkers of exposure to LCT in strawberry field workers following an application episode of LCT alone or in coexposure with captan. Participants provided all urine voided over a 3-day period after an application of a pesticide formulation containing LCT alone (E1) or LCT mixed with captan (E2), and in some cases following re-entry in treated field (E3). Pyrethroid metabolites were measured in all urine samples, in particular 3-(2-chloro-3,3,3-trifluoroprop-1-en-1-yl)-2,2-dimethyl-cyclopropanecarboxylic acid (CFMP), 3-phenoxybenzoic acid (3-PBA), and 4-hydroxy-3-phenoxybenzoic acid (4-OH3PBA). There were no obvious differences in individual concentration-time profiles and cumulative excretion of metabolites (CFMP, 3-PBA, 4-OH3BPA) after exposure to LCT alone or in combination with captan. For most workers and exposure scenarios, CFMP was the main metabolite excreted, but time courses of CFMP in urine did not always follow that of 3-PBA and 4-OH3BPA. Given that the latter metabolites are common to other pyrethroids, this suggests that some workers were coexposed to pyrethroids other than LCT. For several workers and exposure scenarios E1 and E2, values of CFMP increased in the hours following spraying. However, for many pesticide operators, other peaks of CFMP were observed at later times, indicating that tasks other than spraying of LCT-containing formulations contributed to this increased exposure. These tasks were mainly handling/cleaning of equipment used for spraying (tractor or sprayer) or work/inspection in LCT-treated field according to questionnaire responses. Overall, this study provided novel excretion time course data for LCT metabolites valuable for interpretation of biomonitoring data in workers, but also showed that coexposure was not a major determinant of variability in exposure biomarker levels. Our analysis also pointed out the importance of measuring specific metabolites.
Collapse
Affiliation(s)
- Yélian Marc Bossou
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, Main Station, P.O. Box 6128, Montreal, QC, U436H3C 3J7, Canada
| | - Jonathan Côté
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, Main Station, P.O. Box 6128, Montreal, QC, U436H3C 3J7, Canada
| | - Louiza Mahrouche
- Department of Chemistry, University of Montreal, MIL Building, Main Station, P.O. Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Marc Mantha
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, Main Station, P.O. Box 6128, Montreal, QC, U436H3C 3J7, Canada
| | - Naïma El Majidi
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, Main Station, P.O. Box 6128, Montreal, QC, U436H3C 3J7, Canada
| | - Alexandra Furtos
- Department of Chemistry, University of Montreal, MIL Building, Main Station, P.O. Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, Main Station, P.O. Box 6128, Montreal, QC, U436H3C 3J7, Canada.
| |
Collapse
|
5
|
Peng FJ, Emond C, Hardy EM, Sauvageot N, Alkerwi A, Lair ML, Appenzeller BMR. Population-based biomonitoring of exposure to persistent and non-persistent organic pollutants in the Grand Duchy of Luxembourg: Results from hair analysis. ENVIRONMENT INTERNATIONAL 2021; 153:106526. [PMID: 33839549 DOI: 10.1016/j.envint.2021.106526] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Environmental exposure of humans to pollutants has been associated with adverse health outcomes, but few studies have evaluated the multiple exposure of general populations. In the present study, we used hair analysis to assess the exposure of a general adult population (n = 497) in Luxembourg to 34 persistent and 33 non-persistent organic pollutants from 11 chemical families, such as polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), and pyrethroid pesticides (PYRs). We detected 24 persistent and 29 non-persistent organic pollutants, with 17 pollutants being detected in more than 50% of hair samples. The median concentrations for pollutants detected in 100% of the samples were 0.37 pg/mg for lindane (γ-HCH), 0.15 pg/mg for hexachlorobenzene (HCB), 14.1 pg/mg for p-nitrophenyl (PNP), and 0.10 pg/mg for trifluralin. Each participant in this study had detectable levels of at least 10 of the pollutants analyzed, and 50% of participants had 19 or more, suggesting the simultaneous exposure to numerous different pollutants among our study population. Significant correlations were often found between pollutants from the same family, with the strongest being found between two PYR metabolites, trans/cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-carboxylic acid (Cl2CA) and 3-phenoxybenzoic acid (3-PBA). Results from multiple linear regression analyses showed that sex, age and/or body mass index were significantly associated with 15 out of the 17 frequently detected pollutants. The current study is the first nationwide biomonitoring investigating organic contaminants in the Luxembourg population using hair analysis.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Claude Emond
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg; PhysioKinetic Simulations to Human Inc. (PKSH Inc), Mascouche, QC, J7K 0M6, Canada
| | - Emilie M Hardy
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Nicolas Sauvageot
- Competence Center for Methodology and Statistics, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Ala'a Alkerwi
- Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Marie-Lise Lair
- Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg.
| |
Collapse
|
6
|
Dos Santos GCM, Scott FB, Campos DR, Magalhães VDS, Borges DA, Miranda FR, Alves MCC, Pereira GA, Moreira LO, Lima EAS, Rocha MBDS, Cid YP. Oral pharmacokinetic profile of fipronil and efficacy against flea and tick in dogs. J Vet Pharmacol Ther 2021; 45:23-33. [PMID: 34331772 DOI: 10.1111/jvp.13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Fipronil (FIP) is an ectoparasiticide of the phenylpyrazole class, used in veterinary medicine in topical form. Supported by evidence of uncontrolled human exposure to FIP and environmental damage caused by commercially available formulations, its use by oral administration has become promising. The effectiveness of FIP against the flea Ctenocephalides felis felis and the tick Rhipicephalus sanguineus and its pharmacokinetics and main active metabolite, fipronil sulfone (SULF) were evaluated after single oral administration of tablets in three different doses (2, 4, and 6 mg/kg) in dogs. Through the plasma concentration curves, it was possible to observe that the FIP showed rapid absorption and metabolization and slow elimination. The values of Cmax (β = 0.7653) and AUC0- t (β = 0.3209) did not increase proportionally with increasing dose. At 48 h after treatment, doses of 4 mg/kg (AUC0- t = 442.39 ± 137.35 µg/ml*h) and 6 mg/kg (AUC0- t = 421.32 ± 102.84 µg/ml*h) provided 100% and 99% efficacy against fleas, and 95% and 98% against ticks, respectively. The estimated EC90 of FIP +SULF was 1.30 µg/ml against C. felis felis and 2.16 µg/ml against R. sanguineus. The correlation between the FIP pharmacokinetic and efficacy data demonstrated its potential for oral administration in the form of tablets for the control of ectoparasites in dogs, as a safer alternative for animals, humans, and the environment, aligned with the One Health concept.
Collapse
Affiliation(s)
| | - Fabio Barbour Scott
- Animal Parasitology Department, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Diefrey Ribeiro Campos
- Post graduation Program of Veterinary Science, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Viviane de Sousa Magalhães
- Animal Parasitology Department, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Debora Azevedo Borges
- Post graduation Program of Veterinary Science, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Fernando Rocha Miranda
- Post graduation Program of Veterinary Science, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Melina Cardilo Campos Alves
- Post graduation Program of Veterinary Science, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Geraldo Augusto Pereira
- Post graduation Program of Veterinary Science, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Leandra Oliveira Moreira
- Post graduation Program of Veterinary Science, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Emily Andressa Santos Lima
- Post graduation Program of Veterinary Science, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Marisa Beatriz da Silva Rocha
- Post graduation Program of Veterinary Science, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Yara Peluso Cid
- Pharmaceutical Science Department, Health and Biological Science Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| |
Collapse
|
7
|
Hardy EM, Dereumeaux C, Guldner L, Briand O, Vandentorren S, Oleko A, Zaros C, Appenzeller BMR. Hair versus urine for the biomonitoring of pesticide exposure: Results from a pilot cohort study on pregnant women. ENVIRONMENT INTERNATIONAL 2021; 152:106481. [PMID: 33706039 DOI: 10.1016/j.envint.2021.106481] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/26/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND/AIM The quantitative assessment of human exposure to contaminants such as pesticides is a crucial step in the characterization of exposure-associated risk. For this purpose, biomonitoring is often privileged as it presents the advantage of integrating all the possible sources and routes of exposure and of being representative of the internal dose resulting from exposure. Although biological fluids such as urine and blood have been used to date for this purpose, increasing interest has also been observed over the past decade for hair analysis. The present work aimed at comparing the information obtained from the analysis of urine versus hair regarding exposure to pesticides in a pilot cohort of pregnant women. METHODS In ninety-three pregnant women included in the pilot of the French cohort ELFE, one urine and one hair sample were collected simultaneously from each subject at the maternity. Samples were analyzed using GC-MS/MS analytical methods allowing for the detection of both parent pesticides and metabolites, and designed to be as similar as possible between urine and hair for reliable inter-matrix comparison. Fifty-two biomarkers of exposure were targeted, including parents and metabolites of organochlorines, organophosphates, pyrethroids, carbamates, phenylpyrazoles and other pesticides. RESULTS The number of different compounds detected ranged from 16 to 27 (median = 22) in hair, and from 3 to 22 (median = 12) in urine. In hair, 24 compounds were found in > 40% of the individuals, whereas only 12 compounds presented the same frequency of detection in urine. Among the chemicals detected in > 80% of both hair and urine samples, only one (pentachlorophenol) showed a signification correlation between hair and urine concentrations. CONCLUSIONS The present results highlight the multiple exposure of the pregnant women included in this cohort and suggest that hair provides more comprehensive information on pesticide exposure than urine analysis. This study thus supports the relevance of hair analysis in future epidemiological studies investigating association between exposure and adverse health effects.
Collapse
Affiliation(s)
- Emilie M Hardy
- Human Biomonitoring Research Unit, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | | | | | - Olivier Briand
- French Ministry of Agriculture, Agrifood, and Forestry, Paris, France
| | | | - Amivi Oleko
- Santé Publique France, Saint-Maurice, France
| | - Cécile Zaros
- Institut National d'Etudes Démographiques, Aubervilliers, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Luxembourg Institute of Health (LIH), Strassen, Luxembourg.
| |
Collapse
|
8
|
Faÿs F, Palazzi P, Hardy EM, Schaeffer C, Phillipat C, Zeimet E, Vaillant M, Beausoleil C, Rousselle C, Slama R, Appenzeller BMR. Is there an optimal sampling time and number of samples for assessing exposure to fast elimination endocrine disruptors with urinary biomarkers? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141185. [PMID: 32771784 DOI: 10.1016/j.scitotenv.2020.141185] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
In studies investigating the effects of endocrine disruptors (ED) such as phthalates, bisphenols and some pesticides on human health, exposure is usually characterized with urinary metabolites. The variability of biomarkers concentration, due to rapid elimination from the body combined with frequent exposure is however pointed out as a major limitation to exposure assessment. This study was conducted to assess variability of urinary metabolites of ED, and to investigate how sampling time and number of samples analyzed impacts exposure assessment. Urine samples were collected over 6 months from 16 volunteers according to a random sampling design, and analyzed for 16 phthalate metabolites, 9 pesticide metabolites and 4 bisphenols. The amount of biomarkers excreted in urine at different times of the day were compared. In parallel, 2 algorithms were developed to investigate the effect of the number of urine samples analyzed per subject on exposure assessment reliability. In the 805 urine samples collected from the participants, all the biomarkers tested were detected, and 18 were present in >90% of the samples. Biomarkers variability was highlighted by the low intraclass correlation coefficients (ICC) ranging from 0.09 to 0.51. Comparing the amount of biomarkers excreted in urine at different time did not allow to identify a preferred moment for urine collection between first day urine, morning, afternoon and evening. Algorithms demonstrated that between 10 (for monobenzyl (MBzP) phthalate) and 31 (for bisphenol S) samples were necessary to correctly classify 87.5% of the subjects into quartiles according to their level of exposure. The results illustrate the high variability of urinary biomarkers of ED over time and the impossibility to reliably classify subjects based on a single urine sample (or a limited number). Results showed that classifying individuals based on urinary biomarkers requires several samples per subject, and this number is highly different for different biomarkers.
Collapse
Affiliation(s)
- F Faÿs
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg; University of Luxembourg, 2, avenue de l'Université, L-4365 Esch-sur-Alzette, Luxembourg.
| | - P Palazzi
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - E M Hardy
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - C Schaeffer
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - C Phillipat
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - E Zeimet
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - M Vaillant
- Competence Center for Methodology and Statistics, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - C Beausoleil
- ANSES, Risk Assessment Department, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - C Rousselle
- ANSES, Risk Assessment Department, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - R Slama
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - B M R Appenzeller
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| |
Collapse
|
9
|
Bossou YM, Côté J, Mantha M, Haddad S, Achard S, Bouchard M. Impact of pesticide coexposure: an experimental study with binary mixtures of lambda-cyhalothrin (LCT) and captan and its impact on the toxicokinetics of LCT biomarkers of exposure. Arch Toxicol 2020; 94:3045-3058. [PMID: 32577784 DOI: 10.1007/s00204-020-02810-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022]
Abstract
This study aimed at gaining more insights into the impact of pesticide coexposure on the toxicokinetics of biomarkers of exposure. This was done by conducting an in vivo experimental case-study with binary mixtures of lambda-cyhalothrin (LCT) and captan and by assessing its impact on the kinetic profiles of LCT biomarkers of exposure. Groups of male Sprague-Dawley rats were exposed orally by gavage to LCT alone (2.5 or 12.5 mg/kg bw) or to a binary mixture of LCT and captan (2.5/2.5 or 2.5/12.5 or 12.5/12.5 mg/kg bw). In order to establish the temporal profiles of the main metabolites of LCT, serial blood samples were taken, and excreta (urine and feces) were collected at predetermined intervals up to 48 h post-dosing. Major LCT metabolites were quantified in these matrices: 3-(2-chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethyl-cyclopropane carboxylic (CFMP), 3-phenoxybenzoic acid (3-PBA), 4-hydroxy-3-phenoxybenzoic acid (4-OH3PBA). There was no clear effect of coexposure at the low LCT dose on the kinetics of CFMP and 3-PBA metabolites, based on the combined assessment of temporal profiles of these metabolites in plasma, urine and feces; however, plasma levels of 3-PBA were diminished in the coexposed high-dose groups. A significant effect of coexposure on the urinary excretion of 4-OH3PBA was also observed while fecal excretion was not affected. The temporal profiles of metabolites in plasma and in excreta were further influenced by the LCT dose. In addition, the study revealed kinetic differences between metabolites with a faster elimination of 3-PBA and 4-OH3BPA compared to CFMP. These results suggest that the pyrethroid metabolites CFMP and 3-PBA, mostly measured in biomonitoring studies, remain useful as biomarkers of exposure in mixtures, when pesticide exposure levels are below the reference values. However, the trend of coexposure effect observed in the benzyl metabolite pathway (in particular 4-OH3BPA) prompts further investigation.
Collapse
Affiliation(s)
- Yélian Marc Bossou
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry BuildingMain Station, P.O. Box 6128, Montreal, QC, U424H3C 3J7, Canada
| | - Jonathan Côté
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry BuildingMain Station, P.O. Box 6128, Montreal, QC, U424H3C 3J7, Canada
| | - Marc Mantha
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry BuildingMain Station, P.O. Box 6128, Montreal, QC, U424H3C 3J7, Canada
| | - Sami Haddad
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry BuildingMain Station, P.O. Box 6128, Montreal, QC, U424H3C 3J7, Canada
| | - Sophie Achard
- Faculty of Health - Pharmacy, HERA Team (Health Environment Risk Assessment), INSERM UMR1153-CRESS (Research Center in Epidemiology and StatisticS), University of Paris, 4 Avenue de l Observatoire, 75006, Paris, France
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry BuildingMain Station, P.O. Box 6128, Montreal, QC, U424H3C 3J7, Canada.
| |
Collapse
|