1
|
Worden CP, Hicks KB, Hackman TG, Yarbrough WG, Kimple AJ, Farzal Z. The Toxicological Effects of e-Cigarette Use in the Upper Airway: A Scoping Review. Otolaryngol Head Neck Surg 2024; 170:1246-1269. [PMID: 38353408 PMCID: PMC11060921 DOI: 10.1002/ohn.652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 05/02/2024]
Abstract
OBJECTIVE While evidence continues to emerge on the negative health effects of electronic cigarettes (e-cigarettes) on the lungs, little is known regarding their deleterious effects on the upper airway. The purpose of this review is to summarize the toxicological effects of e-cigarettes, and their components, on the upper airway. DATA SOURCES PubMed, SCOPUS, EMBASE databases. REVIEW METHODS Systematic searches were performed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines from 2003 to 2023. Studies were included if they investigated the toxicological effects of e-cigarette exposure on human or animal upper airway tissue. Two authors independently screened, reviewed, and appraised all included articles. RESULTS A total of 822 unique articles were identified, of which 53 met inclusion criteria and spanned subsites including the oral cavity (22/53 studies), nasal cavity/nasopharynx (13/53), multiple sites (10/53), larynx (5/53), trachea (2/53), and oropharynx (1/53). The most commonly observed consequences of e-cigarette use on the upper airway included: proinflammatory (15/53 studies), histological (13/53), cytotoxicity (11/53), genotoxicity (11/53), and procarcinogenic (6/53). E-cigarette humectants independently induced toxicity at multiple upper airway subsites, however, effects were generally amplified when flavoring(s) and/or nicotine were added. Across almost all studies, exposure to cigarette smoke exhibited increased toxicity in the upper airway compared with exposure to e-cigarette vapor. CONCLUSION Current data suggest that while e-cigarettes are generally less harmful than traditional cigarettes, they possess a distinct toxicological profile that is enhanced upon the addition of flavoring(s) and/or nicotine. Future investigations into underexamined subsites, such as the oropharynx and hypopharynx, are needed to comprehensively understand the effects of e-cigarettes on the upper airway.
Collapse
Affiliation(s)
- Cameron P Worden
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kayla B Hicks
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Trevor G Hackman
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wendell G Yarbrough
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, Division of Virology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Adam J Kimple
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, Division of Virology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Cystic Fibrosis Center, Marsico Lung Institute, Department of Medicine, Division of Pulmonary, Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zainab Farzal
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Oldham MJ, Desai RW, Randazzo J, Walling BE, Lalonde G, Weil R. Evaluation of mixtures of flavor chemicals in a 90-day nose-only exposures in sprague-dawley rats. Hum Exp Toxicol 2024; 43:9603271241269022. [PMID: 39101688 DOI: 10.1177/09603271241269022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
BACKGROUND One of the challenges to using some flavor chemicals in aerosol products is the lack of route of administration specific toxicology data. METHODS Flavor chemicals (88) were divided into four different flavor mixtures based upon chemical compatibility and evaluated in 2-week dose-range-finding and subsequent 90-day nose-only rodent inhalation studies (OECD 413 and GLP compliant). Sprague-Dawley rats were exposed to vehicle control or one of three increasing concentrations of each flavor mixture. RESULTS In the dose-range-range-finding studies, exposure to flavor mixture four resulted in adverse nasal histopathology in female rats at the high dose, resulting in this flavor mixture not being evaluated in a 90-day study. In the 90-day studies daily exposures to the three flavor mixtures did not induce biologically meaningful adverse effects (food consumption, body weights, respiratory physiology, serum chemistry, hematology, coagulation, urinalysis, bronchoalveolar lavage fluid analysis and terminal organ weights). All histopathology findings were observed in both vehicle control and flavor mixture exposed animals, with similar incidences and/or severities, and therefore were not considered flavor mixture related. CONCLUSION Based on the absence of adverse effects, the no-observed-adverse-effect concentration for each 90-day inhalation study was the highest dose tested, 2.5 mg/L of the aerosolized high dose of the three flavor mixtures.
Collapse
Affiliation(s)
| | - Rahat Wadhwa Desai
- Juul Labs, Inc., Washington, DC, USA
- Currently at Syngenta, Guelph, ON, Canada
| | - James Randazzo
- Charles River Laboratories, Ashland, OH, USA
- Currently at Attentive Science, LLC, Stillwell, KS, USA
| | | | | | - Roxana Weil
- Juul Labs, Inc., Washington, DC, USA
- Currently at McKinney Speciality Labs, Richmond, VA, USA
| |
Collapse
|
3
|
Desai RW, Demir K, Tsolakos N, Moir-Savitz TR, Gaworski CL, Weil R, Oldham MJ, Lalonde G. Comparison of the toxicological potential of two JUUL ENDS products to reference cigarette 3R4F and filtered air in a 90-day nose-only inhalation toxicity study. Food Chem Toxicol 2023; 179:113917. [PMID: 37451597 DOI: 10.1016/j.fct.2023.113917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Electronic nicotine delivery systems (ENDS) are generally recognized as less harmful alternatives for those who would otherwise continue to smoke cigarettes. The potential toxicity of aerosols generated from JUUL Device and Virginia Tobacco (VT3) or Menthol (ME3) JUULpods at 3.0% nicotine concentration was assessed in rats exposed at target aerosol concentrations of 1400 μg/L for up to 6 h/day on a 5 day/week basis for at least 90 days (general accordance with OECD 413). 3R4F reference cigarette smoke (250 μg/L) and Filtered Air were used as comparators. JUUL ENDS product aerosol exposures at >5x the 3R4F cigarette smoke level resulted in greater plasma nicotine and cotinine levels (up to 2x). Notable cigarette smoke related effects included pronounced body weight reductions in male rats, pulmonary inflammation evidenced by elevated lactate dehydrogenase, pro-inflammatory cytokines and neutrophils in bronchoalveolar lavage fluid, increased heart and lung weights, and minimal to marked respiratory tract histopathology. In contrast, ENDS aerosol exposed animals had minimal body weight changes, no measurable inflammatory changes and minimal to mild laryngeal squamous metaplasia. Despite the higher exposure levels, VT3 and ME3 did not result in significant toxicity or appreciable respiratory histopathology relative to 3R4F cigarette smoke following 90 days administration.
Collapse
Affiliation(s)
| | | | - Nikos Tsolakos
- Protatonce Ltd, National Centre of Scientific Research Demokritos, Patriarchou Grigoriou E' & Neapoleos 27, Technological Park Lefkippos, Bldg 27, 15341, Ag. Paraskevi, Attiki, Greece
| | - Tessa R Moir-Savitz
- AmplifyBio, 1425 NE Plain City-Georgesville Rd, West Jefferson, OH, 43162, USA
| | | | | | | | | |
Collapse
|
4
|
Dempsey R, Rodrigo G, Vonmoos F, Gunduz I, Belushkin M, Esposito M. Preliminary toxicological assessment of heated tobacco products: A review of the literature and proposed strategy. Toxicol Rep 2023; 10:195-205. [PMID: 36748021 PMCID: PMC9898577 DOI: 10.1016/j.toxrep.2023.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Heated tobacco products (HTP) have become increasingly common in many countries worldwide. The principle of heating tobacco, without combustion, to produce a nicotine-containing aerosol with remarkably reduced levels of other known toxins, compared to combusted tobacco cigarettes, is now well established. As these products are intended as alternatives to traditional combusted products, during the early stages of their development, it is important for manufacturers to ensure that the design of the product does not lead to any unintentionally increased or new risk for the consumer, compared to the traditional products that consumers seek to replace. There is limited guidance from tobacco product regulations concerning the requirements for performing such preliminary toxicological assessments. Here, we review the published literature on studies performed on HTPs in the pursuit of such data, outline a proposed approach that is consistent with regulatory requirements, and provide a logical approach to the preliminary toxicological assessment of HTPs.
Collapse
Affiliation(s)
- Ruth Dempsey
- RD Science Speaks Consultancy Sàrl, Le Mont sur Lausanne, Switzerland
| | - Gregory Rodrigo
- PMI R&D, Philip Morris Products S.A., Rue des Usines 56, 2000 Neuchâtel, Switzerland
| | - Florence Vonmoos
- PMI R&D, Philip Morris Products S.A., Rue des Usines 56, 2000 Neuchâtel, Switzerland
| | - Irfan Gunduz
- PMI R&D, Philip Morris Products S.A., Rue des Usines 56, 2000 Neuchâtel, Switzerland
| | - Maxim Belushkin
- PMI R&D, Philip Morris Products S.A., Rue des Usines 56, 2000 Neuchâtel, Switzerland
| | - Marco Esposito
- PMI R&D, Philip Morris Products S.A., Rue des Usines 56, 2000 Neuchâtel, Switzerland
| |
Collapse
|
5
|
Wong ET, Luettich K, Cammack L, Chua CS, Sciuscio D, Merg C, Corciulo M, Piault R, Ashutosh K, Smith C, Leroy P, Moine F, Glabasnia A, Diana P, Chia C, Tung CK, Ivanov N, Hoeng J, Peitsch M, Lee KM, Vanscheeuwijck P. Assessment of inhalation toxicity of cigarette smoke and aerosols from flavor mixtures: 5-week study in A/J mice. J Appl Toxicol 2022; 42:1701-1722. [PMID: 35543240 PMCID: PMC9545811 DOI: 10.1002/jat.4338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022]
Abstract
Most flavors used in e-liquids are generally recognized as safe for oral consumption, but their potential effects when inhaled are not well characterized. In vivo inhalation studies of flavor ingredients in e-liquids are scarce. A structure-based grouping approach was used to select 38 flavor group representatives (FGR) on the basis of known and in silico-predicted toxicological data. These FGRs were combined to create prototype e-liquid formulations and tested against cigarette smoke (CS) in a 5-week inhalation study. Female A/J mice were whole-body exposed for 6 h/day, 5 days/week, for 5 weeks to air, mainstream CS, or aerosols from (1) test formulations containing propylene glycol (PG), vegetable glycerol (VG), nicotine (N; 2% w/w), and flavor (F) mixtures at low (4.6% w/w), medium (9.3% w/w), or high (18.6% w/w) concentration or (2) base formulation (PG/VG/N). Male A/J mice were exposed to air, PG/VG/N, or PG/VG/N/F-high under the same exposure regimen. There were no significant mortality or in-life clinical findings in the treatment groups, with only transient weight loss during the early exposure adaptation period. While exposure to flavor aerosols did not cause notable lung inflammation, it caused only minimal adaptive changes in the larynx and nasal epithelia. In contrast, exposure to CS resulted in lung inflammation and moderate-to-severe changes in the epithelia of the nose, larynx, and trachea. In summary, the study evaluates an approach for assessing the inhalation toxicity potential of flavor mixtures, thereby informing the selection of flavor exposure concentrations (up to 18.6%) for a future chronic inhalation study.
Collapse
Affiliation(s)
- Ee Tsin Wong
- PMI R&DPhilip Morris International Research Laboratories Pte LtdSingapore
| | | | - Lydia Cammack
- PMI R&DPhilip Morris International Research Laboratories Pte LtdSingapore
| | - Chin Suan Chua
- PMI R&DPhilip Morris International Research Laboratories Pte LtdSingapore
| | | | - Celine Merg
- PMI R&DPhilip Morris Products S.ANeuchâtelSwitzerland
| | | | - Romain Piault
- PMI R&DPhilip Morris Products S.ANeuchâtelSwitzerland
| | | | | | - Patrice Leroy
- PMI R&DPhilip Morris Products S.ANeuchâtelSwitzerland
| | - Fabian Moine
- PMI R&DPhilip Morris Products S.ANeuchâtelSwitzerland
| | | | | | - Cecilia Chia
- PMI R&DPhilip Morris International Research Laboratories Pte LtdSingapore
| | - Ching Keong Tung
- PMI R&DPhilip Morris International Research Laboratories Pte LtdSingapore
| | | | - Julia Hoeng
- PMI R&DPhilip Morris Products S.ANeuchâtelSwitzerland
| | | | | | | |
Collapse
|
6
|
Ho J, Koshibu K, Xia W, Luettich K, Kondylis A, Garcia L, Phillips B, Peitsch M, Hoeng J. Effects of cigarette smoke exposure on a mouse model of multiple sclerosis. Toxicol Rep 2022; 9:597-610. [PMID: 35392156 PMCID: PMC8980708 DOI: 10.1016/j.toxrep.2022.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/06/2022] [Accepted: 03/26/2022] [Indexed: 10/31/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory autoimmune disease associated with genetic and environmental factors. Cigarette smoking is harmful to health and may be one of the risk factors for MS. However, there have been no systematic investigations under controlled experimental conditions linking cigarette smoke (CS) and MS. The present study is the first inhalation study to correlate the pre-clinical and pathological manifestations affected by different doses of CS exposure in a mouse experimental autoimmune encephalomyelitis (EAE) model. Female C57BL/6 mice were whole-body exposed to either fresh air (sham) or three concentrations of CS from a reference cigarette (3R4F) for 2 weeks before and 4 weeks after EAE induction. The effects of exposure on body weight, clinical symptoms, spinal cord pathology, and serum biochemicals were then assessed. Exposure to low and medium concentrations of CS exacerbated the severity of symptoms and spinal cord pathology, while the high concentration had no effect relative to sham exposure in mice with EAE. Interestingly, the clinical chemistry parameters for metabolic profile as well as liver and renal function (e.g. triglycerides and creatinine levels, alkaline phosphatase activity) were lower in these mice than in naïve controls. Although the mouse EAE model does not fully recapitulate the pathology or symptoms of MS in humans, these findings largely corroborate previous epidemiological findings that exposure to CS can worsen the symptoms and pathology of MS. Furthermore, the study newly highlights the possible correlation of clinical chemistry findings such as metabolism and liver and renal function between MS patients and EAE mice.
Collapse
Key Words
- AAALAC, Assessment and Accreditation of Laboratory Animal Care
- BBB, Blood-brain barrier
- CFA, Freund’s complete adjuvant
- CNS, Central nervous system
- CO, Carbon monoxide
- CS, Cigarette smoke
- Cigarette smoke
- Clinical chemistry
- DAPI, 4′,6-diamidino-2-phenylindole
- EAE, Experimental autoimmune encephalomyelitis
- Experimental autoimmune encephalomyelitis
- GAM, generalized additive model
- IACUC, Institutional Animal Care and Use Committee
- ISO, International Organization for Standardization
- Inhalation
- MOG, Myelin oligodendrocyte glycoprotein
- MS, Multiple sclerosis
- Multiple sclerosis
- OCT, Optimal cutting temperature
- PFA, Paraformaldehyde
- PMI, Philip Morris International
- PTX, Pertussis toxin
- QC, Quality control
- STAT3, signal transducer and activator of transcription 3
- TPM, Total particulate matter
- US, United States
- eGFR, estimated glomerular filtration rate
- nAChR, nicotinic acetylcholine receptors
- s.c., Subcutaneous
Collapse
Affiliation(s)
- Jenny Ho
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, 117406, Singapore
| | - Kyoko Koshibu
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Wenhao Xia
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, 117406, Singapore
| | - Karsta Luettich
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Athanasios Kondylis
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Llenalia Garcia
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Blaine Phillips
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, 117406, Singapore
| | - Manuel Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
7
|
Alanazi MM, Eissa IH, Alsaif NA, Obaidullah AJ, Alanazi WA, Alasmari AF, Albassam H, Elkady H, Elwan A. Design, synthesis, docking, ADMET studies, and anticancer evaluation of new 3-methylquinoxaline derivatives as VEGFR-2 inhibitors and apoptosis inducers. J Enzyme Inhib Med Chem 2021; 36:1760-1782. [PMID: 34340610 PMCID: PMC8344243 DOI: 10.1080/14756366.2021.1956488] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR-2) plays a critical role in cancer angiogenesis. Inhibition of VEGFR-2 activity proved effective suppression of tumour propagation. Accordingly, two series of new 3-methylquinoxaline derivatives have been designed and synthesised as VEGFR-2 inhibitors. The synthesised derivatives were evaluated in vitro for their cytotoxic activities against MCF-7and HepG2 cell lines. In addition, the VEGFR-2 inhibitory activities of the target compounds were estimated to indicate the potential mechanism of their cytotoxicity. To a great extent, the results of VEGFR-2 inhibition were highly correlated with that of cytotoxicity. Compound 27a was the most potent VEGFR-2 inhibitor with IC50 of 3.2 nM very close to positive control sorafenib (IC50 = 3.12 nM). Such compound exhibited a strong cytotoxic effect against MCF-7 and HepG2, respectively with IC50 of 7.7 and 4.5 µM in comparison to sorafenib (IC50 = 3.51 and 2.17 µM). In addition, compounds 28, 30f, 30i, and 31b exhibited excellent VEGFR-2 inhibition activities (IC50 range from 4.2 to 6.1 nM) with promising cytotoxic activity. Cell cycle progression and apoptosis induction were investigated for the most active member 27a. Also, the effect of 27a on the level of caspase-3, caspase-9, and BAX/Bcl-2 ratio was determined. Molecular docking studies were implemented to interpret the binding mode of the target compounds with the VEGFR-2 pocket. Furthermore, toxicity and ADMET calculations were performed for the synthesised compounds to study their pharmacokinetic profiles.
Collapse
Affiliation(s)
- Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael A. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hussam Albassam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
8
|
Schwotzer D, Gigliotti A, Irshad H, Dye W, McDonald J. Phytol, not propylene glycol, causes severe pulmonary injury after inhalation dosing in Sprague-Dawley rats. Inhal Toxicol 2021; 33:33-40. [PMID: 33441006 DOI: 10.1080/08958378.2020.1867260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: The use of vaping pens for inhalation of cannabinoid derived products is rising and has become a popular alternative to smoking combustible products. For efficient product delivery, additives are sometimes added and vaping pens often may include compounds like Phytol or Propylene Glycol as thinning agents. This study aimed at comparing Phytol and Propylene Glycol with respect to potential toxicity and safe use in vaping products.Methods: Male and female Sprague Dawley rats were exposed to 5 mg/L of Phytol or Propylene Glycol for up to 6 hours over up to 14 days and monitored for clinical signs and changes in body weight. Gross necropsy and histopathology of respiratory tissue was performed to assess potential adverse effects.Results: Phytol exposed animals expressed severe clinical signs, body weight loss and mortality after one or two exposure days, leading to termination of all dose groups for this compound. Lung weights were increased and respiratory tissue was severely affected, demonstrating dose-responsive tissue degeneration, necrosis, edema, hemorrhage and inflammation. Propylene Glycol exposed animals did not show any adverse reactions after 14 days of high dose exposure.Conclusions: For Phytol, a low observed adverse effect level (LOAEL) was determined at ≤109.0/10.9 mg/kg/day presented/deposited dose and therefore its use as excipient in vaping product is not recommend; a safe exposure range was not established for Phytol. Propylene Glycol, in contrast, is considered safe with a no observed adverse effect level (NOAEL) at 1151.7/115.2 mg/kg/day presented/deposited dose in rats.
Collapse
Affiliation(s)
| | | | | | - Wendy Dye
- Lovelace Biomedical, Albuquerque, NM, USA
| | | |
Collapse
|
9
|
Chang X, Abedini J, Bell S, Lee KM. Exploring in vitro to in vivo extrapolation for exposure and health impacts of e-cigarette flavor mixtures. Toxicol In Vitro 2021; 72:105090. [PMID: 33440189 DOI: 10.1016/j.tiv.2021.105090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/24/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
In vitro to in vivo extrapolation (IVIVE) leverages in vitro biological activities to predict corresponding in vivo exposures, therefore potentially reducing the need for animal safety testing that are traditionally performed to support the hazard and risk assessment. Interpretation of IVIVE predictions are affected by various factors including the model type, exposure route and kinetic assumptions for the test article, and choice of in vitro assay(s) that are relevant to clinical outcomes. Exposure scenarios are further complicated for mixtures where the in vitro activity may stem from one or more components in the mixture. In this study, we used electronic cigarette (EC) aerosols, a complex mixture, to explore impacts of these factors on the use of IVIVE in hazard identification, using open-source pharmacokinetic models of varying complexity and publicly available data. Results suggest in vitro assay selection has a greater impact on exposure estimates than modeling approaches. Using cytotoxicity assays, high exposure estimates (>1000 EC cartridges (pods) or > 700 mL EC liquid per day) would be needed to obtain the in vivo plasma levels that are corresponding to in vitro assay data, suggesting acute toxicity would be unlikely in typical usage scenarios. When mechanistic (Tox21) assays were used, the exposure estimates were much lower for the low end, but the range of exposure estimate became wider across modeling approaches. These proof-of-concept results highlight challenges and complexities in IVIVE for mixtures.
Collapse
Affiliation(s)
- Xiaoqing Chang
- Integrated Laboratory Systems, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA.
| | - Jaleh Abedini
- Integrated Laboratory Systems, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA.
| | - Shannon Bell
- Integrated Laboratory Systems, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA.
| | - K Monica Lee
- Altria Client Services LLC, 6603 W Broad St, Richmond, VA 23230, USA.
| |
Collapse
|
10
|
Bolt HM. Electronic cigarettes and vaping: toxicological awareness is increasing. Arch Toxicol 2020; 94:1783-1785. [PMID: 32440856 PMCID: PMC7240249 DOI: 10.1007/s00204-020-02786-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Hermann M Bolt
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors at TU, Dortmund (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| |
Collapse
|
11
|
Boué S, Goedertier D, Hoeng J, Iskandar A, Kuczaj AK, Marescotti D, Mathis C, May A, Phillips B, Peitsch MC, Schlage WK, Sciuscio D, Tan WT, Vanscheeuwijck P. State-of-the-art methods and devices for generation, exposure, and collection of aerosols from e-vapor products. TOXICOLOGY RESEARCH AND APPLICATION 2020. [DOI: 10.1177/2397847320979751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
E-vapor products (EVP) have become popular alternatives for cigarette smokers who would otherwise continue to smoke. EVP research is challenging and complex, mostly because of the numerous and rapidly evolving technologies and designs as well as the multiplicity of e-liquid flavors and solvents available on the market. There is an urgent need to standardize all stages of EVP assessment, from the production of a reference product to e-vapor generation methods and from physicochemical characterization methods to nonclinical and clinical exposure studies. The objective of this review is to provide a detailed description of selected experimental setups and methods for EVP aerosol generation and collection and exposure systems for their in vitro and in vivo assessment. The focus is on the specificities of the product that constitute challenges and require development of ad hoc assessment frameworks, equipment, and methods. In so doing, this review aims to support further studies, objective evaluation, comparison, and verification of existing evidence, and, ultimately, formulation of standardized methods for testing EVPs.
Collapse
Affiliation(s)
- Stéphanie Boué
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Didier Goedertier
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Anita Iskandar
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Arkadiusz K Kuczaj
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Diego Marescotti
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Carole Mathis
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Anne May
- Consultants in Science, Epalinges, Switzerland
| | - Blaine Phillips
- Philip Morris International (PMI) Research & Development, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore
| | - Manuel C Peitsch
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Davide Sciuscio
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Wei Teck Tan
- Philip Morris International (PMI) Research & Development, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore
| | - Patrick Vanscheeuwijck
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| |
Collapse
|