1
|
Suzuki S, Gi M, Kobayashi T, Miyoshi N, Yoneda N, Uehara S, Yokota Y, Noura I, Fujioka M, Vachiraarunwong A, Kakehashi A, Suemizu H, Wanibuchi H. Urinary bladder carcinogenic potential of 4,4'-methylenebis(2-chloroaniline) in humanized-liver mice. Toxicol Sci 2024; 202:210-219. [PMID: 39287002 DOI: 10.1093/toxsci/kfae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Occupational exposure to 4,4'-methylenebis(2-chloroaniline) (MOCA) has been linked to an increased risk of bladder cancer among employees in Japanese plants, indicating its significance as a risk factor for urinary bladder cancer. To investigate the role of MOCA metabolism in bladder carcinogenesis, we administered MOCA to non-humanized (F1-TKm30 mice) and humanized-liver mice for 4 and 28 wk. We compared MOCA-induced changes in metabolic enzyme expression, metabolite formation, and effects on the urinary bladder epithelium in the 2 models. At week 4, MOCA exposure induced simple hyperplasia, cell proliferation, and DNA damage in the urothelium of the humanized-liver mice, whereas in the non-humanized mice, these effects were not observed. Notably, the concentration of 4-amino-4'-hydroxylamino-3,3'-dichlorodiphenylmethane (N-OH-MOCA) in the urine of humanized-liver mice was more than 10 times higher than that in non-humanized mice at the 4-wk mark. Additionally, we observed distinct differences in the expression of cytochrome P450 isoforms between the 2 models. Although no bladder tumors were detected after 28 wk of treatment in either group, these findings suggest that N-OH-MOCA significantly contributes to the carcinogenic potential of MOCA in humans.
Collapse
Affiliation(s)
- Shugo Suzuki
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Min Gi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Takuma Kobayashi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Nao Yoneda
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Medicine and Life Science (CIEM), Kawasaki 210-0821, Japan
| | - Shotaro Uehara
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Medicine and Life Science (CIEM), Kawasaki 210-0821, Japan
| | - Yuka Yokota
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Ikue Noura
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masaki Fujioka
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Arpamas Vachiraarunwong
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Anna Kakehashi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Hiroshi Suemizu
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Medicine and Life Science (CIEM), Kawasaki 210-0821, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
2
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Human Cytochrome P450 Cancer-Related Metabolic Activities and Gene Polymorphisms: A Review. Cells 2024; 13:1958. [PMID: 39682707 DOI: 10.3390/cells13231958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Cytochromes P450 (CYPs) are heme-containing oxidoreductase enzymes with mono-oxygenase activity. Human CYPs catalyze the oxidation of a great variety of chemicals, including xenobiotics, steroid hormones, vitamins, bile acids, procarcinogens, and drugs. FINDINGS In our review article, we discuss recent data evidencing that the same CYP isoform can be involved in both bioactivation and detoxification reactions and convert the same substrate to different products. Conversely, different CYP isoforms can convert the same substrate, xenobiotic or procarcinogen, into either a more or less toxic product. These phenomena depend on the type of catalyzed reaction, substrate, tissue type, and biological species. Since the CYPs involved in bioactivation (CYP3A4, CYP1A1, CYP2D6, and CYP2C8) are primarily expressed in the liver, their metabolites can induce hepatotoxicity and hepatocarcinogenesis. Additionally, we discuss the role of drugs as CYP substrates, inducers, and inhibitors as well as the implication of nuclear receptors, efflux transporters, and drug-drug interactions in anticancer drug resistance. We highlight the molecular mechanisms underlying the development of hormone-sensitive cancers, including breast, ovarian, endometrial, and prostate cancers. Key players in these mechanisms are the 2,3- and 3,4-catechols of estrogens, which are formed by CYP1A1, CYP1A2, and CYP1B1. The catechols can also produce quinones, leading to the formation of toxic protein and DNA adducts that contribute to cancer progression. However, 2-hydroxy- and 4-hydroxy-estrogens and their O-methylated derivatives along with conjugated metabolites play cancer-protective roles. CYP17A1 and CYP11A1, which are involved in the biosynthesis of testosterone precursors, contribute to prostate cancer, whereas conversion of testosterone to 5α-dihydrotestosterone as well as sustained activation and mutation of the androgen receptor are implicated in metastatic castration-resistant prostate cancer (CRPC). CYP enzymatic activities are influenced by CYP gene polymorphisms, although a significant portion of them have no effects. However, CYP polymorphisms can determine poor, intermediate, rapid, and ultrarapid metabolizer genotypes, which can affect cancer and drug susceptibility. Despite limited statistically significant data, associations between CYP polymorphisms and cancer risk, tumor size, and metastatic status among various populations have been demonstrated. CONCLUSIONS The metabolic diversity and dual character of biological effects of CYPs underlie their implications in, preliminarily, hormone-sensitive cancers. Variations in CYP activities and CYP gene polymorphisms are implicated in the interindividual variability in cancer and drug susceptibility. The development of CYP inhibitors provides options for personalized anticancer therapy.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | | |
Collapse
|
3
|
Westra S, Goldberg MS, Labrèche F, Baumgartner J, Ho V. A structured review of the associations between breast cancer and exposures to selected organic solvents. REVIEWS ON ENVIRONMENTAL HEALTH 2024:reveh-2024-0051. [PMID: 39566889 DOI: 10.1515/reveh-2024-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/09/2024] [Indexed: 11/22/2024]
Abstract
INTRODUCTION Our objective was to identify published, peer-reviewed, epidemiological studies that estimated associations between the risk of developing or dying from malignant breast cancer and past exposure to selected organic solvents with reactive metabolites, to delineate the methods used and to synthesize the results. CONTENT We undertook a structured review of case-control and cohort studies used to investigate breast cancer risk and exposure to selected organic solvents that produce reactive metabolites in the body. We used SCOPUS, MEDLINE (Ovid) and Web of Science databases from 1966 to December 31, 2023 to identify epidemiological studies that estimated associations between the risk of developing or dying from malignant breast cancer and past exposure to selected organic solvents with reactive metabolites and organic solvents combined as a group. SUMMARY We described essential methodological characteristics of the 35 studies and presented quantitative results by individual solvent and other characteristics. We did not find compelling evidence that any of the selected organic solvents are implicated in the etiology of breast cancer. OUTLOOK As millions of workers are exposed to organic solvents, this topic necessitates further investigation. Future research should focus on elucidating organic solvents that may contribute to the burden of breast cancer.
Collapse
Affiliation(s)
- Sydney Westra
- Health Innovation and Evaluation Hub Université de Montréal Hospital Research Centre (CRCHUM), Montréal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
| | - Mark S Goldberg
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - France Labrèche
- Department of Environmental and Occupational Health, School of Public Health and Centre de recherche en santé publique (CReSP), University of Montréal and CIUSSS Centre-Sud, Montréal, QC, Canada
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montréal, QC, Canada
| | - Jill Baumgartner
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
- Department of Ethics, Equity and Policy, McGill University, Montréal, QC, Canada
| | - Vikki Ho
- Health Innovation and Evaluation Hub Université de Montréal Hospital Research Centre (CRCHUM), Montréal, QC, Canada
- Department of Social and Preventive Medicine, Université de Montréal School of Public Health (ESPUM), Montréal, QC, Canada
| |
Collapse
|
4
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Cytochrome P450 monooxygenase systems: Diversity and plasticity for adaptive stress response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:19-34. [PMID: 39245215 DOI: 10.1016/j.pbiomolbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms. Considerable variations in sequences within and between CYP families and high similarity in secondary and tertiary structures between all CYPs along with dramatic conformational changes in secondary structure elements of a substrate binding site during catalysis have been reported. This provides structural plasticity and substrate promiscuity, which underlie functional diversity of CYPs. Gene duplication and mutation events underlie CYP evolutionary diversity and emergence of novel selectable functions, which provide the involvement of CYPs in high adaptability to changing environmental conditions and dietary restrictions. In our review, we discuss the recent advancements and challenges in the elucidating the evolutionary origin and mechanisms underlying the CYP monooxygenase system diversity and plasticity. Our review is in the view of hypothesis that diversity of CYP monooxygenase systems is translated into the broad metabolic profiles, and this has been acquired during the long evolutionary time to provide structural plasticity leading to high adaptative capabilities to environmental stress conditions.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | |
Collapse
|
5
|
Huang M, Mao S, Pan Y, Zhang Z, Gui F, Tan X, Hong Y, Chen R. Pesticide metabolite 3, 5, 6-trichloro-2-pyridinol causes massive damage to the cochlea resulting in hearing loss in adult mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124691. [PMID: 39134170 DOI: 10.1016/j.envpol.2024.124691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/25/2024]
Abstract
Pesticides are a group of extensively used man-made chemicals with high toxicity and strong residues, which are closely related to hearing health. Pesticide metabolite 3, 5, 6-Trichloro-2-pyridinol (TCP) exposure leads to neurotoxicity and auditory cell toxicity. However, whether TCP causes damage to hearing in adult mice is not clear. In this study, adult male C57BL/6 mice continuously exposed to TCP for 21 days showed a dose-dependent elevation of hearing threshold. Outer hair cells and spiral neuron cells were lost in a dose-dependent manner. Type I and V of spiral ligament were severely shrunk and stria vascularis were thinned in mice after 50 and 150 mg/kg TCP exposure. Similarly, ROS levels in the cochlea were significantly increased whereas the activities of anti-oxidation enzymes were decreased after TCP exposure. The expression level of Na+/K+ ATPase was decreased, resulting in cochlear potential disruption. Levels of inflammatory factors (TNF-α and IL-1β), γ-H2AX, and pro-apoptotic-related factors (Bax and cleaved-Caspase 3) were elevated, respectively. These results suggest that TCP can cause oxidative stress, inflammation, and imbalance of cochlear potential in the cochlea, induce cochlear DNA damage and apoptosis, and cause cochlear morphological changes, eventually leading to impaired hearing function.
Collapse
Affiliation(s)
- Mao Huang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Shuangshuang Mao
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yunfei Pan
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ziying Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Fei Gui
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaohua Tan
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yu Hong
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
6
|
Zonyfar C, Ngnamsie Njimbouom S, Mosalla S, Kim JD. GTransCYPs: an improved graph transformer neural network with attention pooling for reliably predicting CYP450 inhibitors. J Cheminform 2024; 16:119. [PMID: 39472986 PMCID: PMC11524008 DOI: 10.1186/s13321-024-00915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
State‑of‑the‑art medical studies proved that predicting CYP450 enzyme inhibitors is beneficial in the early stage of drug discovery. However, accurate machine learning-based (ML) in silico methods for predicting CYP450 inhibitors remains challenging. Here, we introduce GTransCYPs, an improved graph neural network (GNN) with a transformer mechanism for predicting CYP450 inhibitors. This model significantly enhances the discrimination between inhibitors and non-inhibitors for five major CYP450 isozymes: 1A2, 2C9, 2C19, 2D6, and 3A4. GTransCYPs learns information patterns from molecular graphs by aggregating node and edge representations using a transformer. The GTransCYPs model utilizes transformer convolution layers to process features, followed by a global attention-pooling technique to synthesize the graph-level information. This information is then fed through successive linear layers for final output generation. Experimental results demonstrate that the GTransCYPs model achieved high performance, outperforming other state-of-the-art methods in CYP450 prediction.Scientific contributionThe prediction of CYP450 inhibition via computational techniques utilizing biological information has emerged as a cost-effective and highly efficient approach. Here, we presented a deep learning (DL) architecture based on GNN with transformer mechanism and attention pooling (GTransCYPs) to predict CYP450 inhibitors. Four GTransCYPs of different pooling technique were tested on an experimental tasks on the CYP450 prediction problem for the first time. Graph transformer with attention pooling algorithm achieved the best performances. Comparative and ablation experiments provide evidence of the efficacy of our proposed method in predicting CYP450 inhibitors. The source code is publicly available at https://github.com/zonwoo/GTransCYPs .
Collapse
Affiliation(s)
- Candra Zonyfar
- Department of Computer Science and Electronic Engineering, Sun Moon University, Asan, 31460, Republic of Korea
| | | | - Sophia Mosalla
- Division of Computer Science and Engineering, Sun Moon University, Asan, 31460, Republic of Korea
| | - Jeong-Dong Kim
- Department of Computer Science and Electronic Engineering, Sun Moon University, Asan, 31460, Republic of Korea.
- Division of Computer Science and Engineering, Sun Moon University, Asan, 31460, Republic of Korea.
- Genome-based BioIT Convergence Institute, Sun Moon University, Asan, 31460, Republic of Korea.
| |
Collapse
|
7
|
Zhang Y, Pan X, Shi T, Gu Z, Yang Z, Liu M, Xu Y, Yang Y, Ren L, Song X, Lin H, Deng K. P450Rdb: A manually curated database of reactions catalyzed by cytochrome P450 enzymes. J Adv Res 2024; 63:35-42. [PMID: 37871773 PMCID: PMC11380020 DOI: 10.1016/j.jare.2023.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
Abstract
INTRODUCTION Cytochrome P450 enzymes (P450s) are recognized as the most versatile catalysts worldwide, playing vital roles in numerous biological metabolism and biosynthesis processes across all kingdoms of life. Despite the vast number of P450 genes available in databases (over 300,000), only a small fraction of them (less than 0.2 %) have undergone functional characterization. OBJECTIVES To provide a convenient platform with abundant information on P450s and their corresponding reactions, we introduce the P450Rdb database, a manually curated resource compiles literature-supported reactions catalyzed by P450s. METHODS All the P450s and Reactions were manually curated from the literature and known databases. Subsequently, the P450 reactions organized and categorized according to their chemical reaction type and site. The website was developed using HTML and PHP languages, with the MySQL server utilized for data storage. RESULTS The current version of P450Rdb catalogs over 1,600 reactions, involving more than 590 P450s across a diverse range of over 200 species. Additionally, it offers a user-friendly interface with comprehensive information, enabling easy querying, browsing, and analysis of P450s and their corresponding reactions. P450Rdb is free available at http://www.cellknowledge.com.cn/p450rdb/. CONCLUSIONS We believe that this database will significantly promote structural and functional research on P450s, thereby fostering advancements in the fields of natural product synthesis, pharmaceutical engineering, biotechnological applications, agricultural and crop improvement, and the chemical industry.
Collapse
Affiliation(s)
- Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianrun Pan
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianyu Shi
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhifeng Gu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhaochang Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Minghao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yi Xu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yu Yang
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
| | - Liping Ren
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
| | - Xiaoming Song
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China.
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Kejun Deng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
8
|
Rendic SP, Guengerich FP. Formation of potentially toxic metabolites of drugs in reactions catalyzed by human drug-metabolizing enzymes. Arch Toxicol 2024; 98:1581-1628. [PMID: 38520539 PMCID: PMC11539061 DOI: 10.1007/s00204-024-03710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Data are presented on the formation of potentially toxic metabolites of drugs that are substrates of human drug metabolizing enzymes. The tabular data lists the formation of potentially toxic/reactive products. The data were obtained from in vitro experiments and showed that the oxidative reactions predominate (with 96% of the total potential toxication reactions). Reductive reactions (e.g., reduction of nitro to amino group and reductive dehalogenation) participate to the extent of 4%. Of the enzymes, cytochrome P450 (P450, CYP) enzymes catalyzed 72% of the reactions, myeloperoxidase (MPO) 7%, flavin-containing monooxygenase (FMO) 3%, aldehyde oxidase (AOX) 4%, sulfotransferase (SULT) 5%, and a group of minor participating enzymes to the extent of 9%. Within the P450 Superfamily, P450 Subfamily 3A (P450 3A4 and 3A5) participates to the extent of 27% and the Subfamily 2C (P450 2C9 and P450 2C19) to the extent of 16%, together catalyzing 43% of the reactions, followed by P450 Subfamily 1A (P450 1A1 and P450 1A2) with 15%. The P450 2D6 enzyme participated in an extent of 8%, P450 2E1 in 10%, and P450 2B6 in 6% of the reactions. All other enzymes participate to the extent of 14%. The data show that, of the human enzymes analyzed, P450 enzymes were dominant in catalyzing potential toxication reactions of drugs and their metabolites, with the major role assigned to the P450 Subfamily 3A and significant participation of the P450 Subfamilies 2C and 1A, plus the 2D6, 2E1 and 2B6 enzymes contributing. Selected examples of drugs that are activated or proposed to form toxic species are discussed.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
9
|
Carrera-Pacheco SE, Mueller A, Puente-Pineda JA, Zúñiga-Miranda J, Guamán LP. Designing cytochrome P450 enzymes for use in cancer gene therapy. Front Bioeng Biotechnol 2024; 12:1405466. [PMID: 38860140 PMCID: PMC11164052 DOI: 10.3389/fbioe.2024.1405466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
Cancer is a significant global socioeconomic burden, as millions of new cases and deaths occur annually. In 2020, almost 10 million cancer deaths were recorded worldwide. Advancements in cancer gene therapy have revolutionized the landscape of cancer treatment. An approach with promising potential for cancer gene therapy is introducing genes to cancer cells that encode for chemotherapy prodrug metabolizing enzymes, such as Cytochrome P450 (CYP) enzymes, which can contribute to the effective elimination of cancer cells. This can be achieved through gene-directed enzyme prodrug therapy (GDEPT). CYP enzymes can be genetically engineered to improve anticancer prodrug conversion to its active metabolites and to minimize chemotherapy side effects by reducing the prodrug dosage. Rational design, directed evolution, and phylogenetic methods are some approaches to developing tailored CYP enzymes for cancer therapy. Here, we provide a compilation of genetic modifications performed on CYP enzymes aiming to build highly efficient therapeutic genes capable of bio-activating different chemotherapeutic prodrugs. Additionally, this review summarizes promising preclinical and clinical trials highlighting engineered CYP enzymes' potential in GDEPT. Finally, the challenges, limitations, and future directions of using CYP enzymes for GDEPT in cancer gene therapy are discussed.
Collapse
Affiliation(s)
- Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | | | | | | |
Collapse
|
10
|
Arutyunova E, Belovodskiy A, Chen P, Khan MB, Joyce M, Saffran H, Lu J, Turner Z, Bai B, Lamer T, Young HS, Vederas J, Tyrrell DL, Lemieux MJ, Nieman JA. The Effect of Deuteration and Homologation of the Lactam Ring of Nirmatrelvir on Its Biochemical Properties and Oxidative Metabolism. ACS BIO & MED CHEM AU 2023; 3:528-541. [PMID: 38144257 PMCID: PMC10739250 DOI: 10.1021/acsbiomedchemau.3c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023]
Abstract
This study explores the relationship between structural alterations of nirmatrelvir, such as homologation and deuteration, and metabolic stability of newly synthesized derivatives. We developed a reliable synthetic protocol toward dideutero-nirmatrelvir and its homologated analogues with high isotopic incorporation. Deuteration of the primary metabolic site of nirmatrelvir provides a 3-fold improvement of its human microsomal stability but is accompanied by an increased metabolism rate at secondary sites. Homologation of the lactam ring allows the capping group modification to decrease and delocalize the molecule's lipophilicity, reducing the metabolic rate at secondary sites. The effect of deuteration was less pronounced for the 6-membered lactam than for its 5-membered analogue in human microsomes, but the trend is reversed in the case of mouse microsomes. X-ray data revealed that the homologation of the lactam ring favors the orientation of the drug's nitrile warhead for interaction with the catalytic sulfur of the SARS-CoV-2 Mpro, improving its binding. Comparable potency against SARS-CoV-2 Mpro from several variants of concern and selectivity over human cysteine proteases cathepsin B, L, and S was observed for the novel deuterated/homologated derivative and nirmatrelvir. Synthesized compounds displayed a large interspecies variability in hamster, rat, and human hepatocyte stability assays. Overall, we aimed to apply a rational approach in changing the physicochemical properties of the drug to refine its biochemical and biological parameters.
Collapse
Affiliation(s)
- Elena Arutyunova
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Li
Ka Shing Institute of Virology, University
of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Alexandr Belovodskiy
- Li Ka
Shing Applied Virology Institute, University
of Alberta, Edmonton, AB T6G 2E1, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Pu Chen
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Li
Ka Shing Institute of Virology, University
of Alberta, Edmonton, AB T6G 2E1, Canada
| | | | - Michael Joyce
- Li
Ka Shing Institute of Virology, University
of Alberta, Edmonton, AB T6G 2E1, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Holly Saffran
- Li
Ka Shing Institute of Virology, University
of Alberta, Edmonton, AB T6G 2E1, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jimmy Lu
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Li
Ka Shing Institute of Virology, University
of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Zoe Turner
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Bing Bai
- Li Ka
Shing Applied Virology Institute, University
of Alberta, Edmonton, AB T6G 2E1, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Tess Lamer
- Department
of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Howard S. Young
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - John
C. Vederas
- Department
of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - D. Lorne Tyrrell
- Li
Ka Shing Institute of Virology, University
of Alberta, Edmonton, AB T6G 2E1, Canada
- Li Ka
Shing Applied Virology Institute, University
of Alberta, Edmonton, AB T6G 2E1, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - M. Joanne Lemieux
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Li
Ka Shing Institute of Virology, University
of Alberta, Edmonton, AB T6G 2E1, Canada
| | - James A. Nieman
- Li Ka
Shing Applied Virology Institute, University
of Alberta, Edmonton, AB T6G 2E1, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
11
|
Yoshimoto FK, Guerrero SQ, Ho TM, Arman HD. Synthesis of 6β-hydroxy androgens from a 3,5-diene steroid precursor to test for cytochrome P450 3A4-catalyzed hydroxylation of androstenedione. Steroids 2023; 199:109298. [PMID: 37619673 DOI: 10.1016/j.steroids.2023.109298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
6β-Hydroxytestosterone is a biomarker for the activity of human cytochrome P450 3A4 (P450 3A4), the major drug metabolizing cytochrome P450 enzyme. Despite its significance, efficient routes for the chemical synthesis of 6β-hydroxytestosterone are rare. In this study, 6β-hydroxytestosterone was synthesized through the oxidation of a 3,5-diene precursor under the Uemura-Doyle reaction conditions using a dirhodium catalyst in the presence of tert-butylhydroperoxide. Mechanistic studies showed that some oxygen is incorporated from molecular oxygen and CH abstraction is partially rate-limiting. This reaction was used to synthesize 6β-hydroxyandrostenedione, which was used as a standard to test the hypothesis of whether P450 3A4 catalyzes the hydroxylation of androstenedione. Upon incubation of P450 3A4 with androstenedione, a hydroxylated product was formed, which matched the retention time of synthetic 6β-hydroxyandrostenedione. This reaction can be exploited to study other biochemical processes involving compounds with a 6 β -hydroxy-3-keto-Δ4 steroid backbone.
Collapse
Affiliation(s)
- Francis K Yoshimoto
- Department of Chemistry, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249-0698, United States.
| | - Samantha Q Guerrero
- Department of Chemistry, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249-0698, United States
| | - Tu M Ho
- Department of Chemistry, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249-0698, United States
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249-0698, United States
| |
Collapse
|
12
|
Khojasteh SC, Argikar UA, Cheruzel L, Cho S, Crouch RD, Dhaware D, Heck CJS, Johnson KM, Kalgutkar AS, King L, Liu J, Ma B, Maw H, Miller GP, Seneviratne HK, Takahashi RH, Wang S, Wei C, Jackson KD. Biotransformation research advances - 2022 year in review. Drug Metab Rev 2023; 55:301-342. [PMID: 37737116 DOI: 10.1080/03602532.2023.2262161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/05/2023] [Indexed: 09/23/2023]
Abstract
This annual review is the eighth of its kind since 2016 (Baillie et al. 2016, Khojasteh et al. 2017, Khojasteh et al. 2018, Khojasteh et al. 2019, Khojasteh et al. 2020, Khojasteh et al. 2021, Khojasteh et al. 2022). Our objective is to explore and share articles which we deem influential and significant in the field of biotransformation.
Collapse
Affiliation(s)
- S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Upendra A Argikar
- Non-clinical Development, Bill and Melinda Gates Medical Research Institute, Cambridge, MA, USA
| | - Lionel Cheruzel
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Sungjoon Cho
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Rachel D Crouch
- Department of Pharmacy and Pharmaceutical Sciences, Lipscomb University College of Pharmacy, Nashville, TN, USA
| | | | - Carley J S Heck
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Groton, CT, USA
| | - Kevin M Johnson
- Drug Metabolism and Pharmacokinetics, Inotiv, MD Heights, MO, USA
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | - Lloyd King
- Quantitative Drug Discovery, UCB Biopharma UK, Slough UK
| | - Joyce Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Bin Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Hlaing Maw
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of AR for Medical Sciences, Little Rock, AR, USA
| | | | - Ryan H Takahashi
- Drug Metabolism and Pharmacokinetics, Denali Therapeutics, South San Francisco, CA, USA
| | - Shuai Wang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Cong Wei
- Drug Metabolism and Pharmacokinetics, Biogen Inc, Cambridge, MA, USA
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Vignaux PA, Shriwas P, Revnew A, Agarwal G, Lane TR, McElroy CA, Ekins S. Human CYP2C19 Substrate and Inhibitor Characterization of Organophosphate Pesticides. Chem Res Toxicol 2023; 36:1451-1455. [PMID: 37650603 DOI: 10.1021/acs.chemrestox.3c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
CYP2C19 is an important enzyme for organophosphate pesticide (OPP) metabolism. Because the OPPs can be both substrates and inhibitors of CYP2C19, we screened 45 OPPs for their ability to inhibit the activity of this enzyme and investigated the role of CYP2C19 in the metabolism of 22 of these molecules. We identified several nanomolar inhibitors of CYP2C19 as well as determined that thions, in general, are more potent inhibitors than oxons. We also determined that thions are readily metabolized by CYP2C19, although we saw no relationship between IC50 values and intrinsic clearance rates. This study may have implications for mitigating the risk of OPP poisoning.
Collapse
Affiliation(s)
- Patricia A Vignaux
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina 27606, United States
| | - Pratik Shriwas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andre Revnew
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Garima Agarwal
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina 27606, United States
| | - Craig A McElroy
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina 27606, United States
| |
Collapse
|
14
|
Reichstein IS, König M, Wojtysiak N, Escher BI, Henneberger L, Behnisch P, Besselink H, Thalmann B, Colas J, Hörchner S, Hollert H, Schiwy A. Replacing animal-derived components in in vitro test guidelines OECD 455 and 487. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161454. [PMID: 36638987 DOI: 10.1016/j.scitotenv.2023.161454] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The evaluation of single substances or environmental samples for their genotoxic or estrogenic potential is highly relevant for human- and environment-related risk assessment. To examine the effects on a mechanism-specific level, standardized cell-based in vitro methods are widely applied. However, these methods include animal-derived components like fetal bovine serum (FBS) or rat-derived liver homogenate fractions (S9-mixes), which are a source of variability, reduced assay reproducibility and ethical concerns. In our study, we evaluated the adaptation of the cell-based in vitro OECD test guidelines TG 487 (assessment of genotoxicity) and TG 455 (detection of estrogenic activity) to an animal-component-free methodology. Firstly, the human cell lines A549 (for OECD TG 487), ERα-CALUX® and GeneBLAzer™ ERα-UAS-bla GripTite™ (for OECD TG 455) were investigated for growth in a chemically defined medium without the addition of FBS. Secondly, the biotechnological S9-mix ewoS9R was implemented in comparison to the induced rat liver S9 to simulate in vivo metabolism capacities in both OECD test guidelines. As a model compound, Benzo[a]pyrene was used due to its increased genotoxicity and endocrine activity after metabolization. The metabolization of Benzo[a]Pyrene by S9-mixes was examined via chemical analysis. All cell lines (A549, ERα-CALUX® and GeneBLAzer™ Erα-UAS-bla GripTite™) were successfully cultivated in chemically defined media without FBS. The micronucleus assay could not be conducted in chemically defined medium due to formation of cell clusters. The methods for endocrine activity assessment could be conducted in chemically defined media or reduced FBS content, but with decreased assay sensitivity. The biotechnological ewoS9R showed potential to replace rat liver S9 in the micronucleus in FBS-medium with A549 cells and in the ERα-CALUX® assay in FBS- and chemically defined medium. Our study showed promising steps towards an animal-component free toxicity testing. After further improvements, the new methodology could lead to more reproducible and reliable results for risk assessment.
Collapse
Affiliation(s)
- Inska S Reichstein
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria König
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Niklas Wojtysiak
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, Leipzig, Germany; Environmental Toxicology, Center for Applied Geosciences, Eberhard Karls University Tübingen, Germany
| | - Luise Henneberger
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | | | | | | | - Julien Colas
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sarah Hörchner
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer IME, Schmallenberg, Germany.
| | - Andreas Schiwy
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer IME, Schmallenberg, Germany.
| |
Collapse
|
15
|
Wang Y, Chen Y, Chen Y, Luo W, Liu Y. Induction of clastogenesis and gene mutations by carbamazepine (at its therapeutically effective serum levels) in mammalian cells and the dependence on human CYP2B6 enzyme activity. Arch Toxicol 2023; 97:1753-1764. [PMID: 36995427 DOI: 10.1007/s00204-023-03489-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Carbamazepine (CBZ, an antiepileptic) is metabolized by multiple CYP enzymes to its epoxide and hydroxides; however, whether it is genotoxic remains unclear. In this study, molecular docking (CBZ to CYPs) and cytogenotoxic toxicity assays were employed to investigate the activation of CBZ for mutagenic effects, in various mammalian cell models. Docking results indicated that CBZ was valid as a substrate of human CYP2B6 and 2E1, while not for CYP1A1, 1A2, 1B1 or 3A4. In the Chinese hamster (V79) cell line and its derivatives genetically engineered for the expression of human CYP1A1, 1A2, 1B1, 2E1 or 3A4 CBZ (2.5 ~ 40 μM) did not induce micronucleus, while in human CYP2B6-expressing cells CBZ significantly induced micronucleus formation. In a human hepatoma C3A cell line, which endogenously expressed CYP2B6 twofold higher than in HepG2 cells, CBZ induced micronucleus potently, which was blocked by 1-aminobenzotriazole (inhibitor of CYPs) and ticlopidine (specific CYP2B6 inhibitor). In HepG2 cells CBZ did not induce micronucleus; however, pretreatment of the cells with CICTO (CYP2B6 inducer) led to micronucleus formation by CBZ, while rifampicin (CYP3A4 inducer) or PCB126 (CYP1A inducer) did not change the negative results. Immunofluorescent assay showed that CBZ selectively induced centromere-free micronucleus. Moreover, CBZ induced double-strand DNA breaks (γ-H2AX elevation, by Western blot) and PIG-A gene mutations (by flowcytometry) in C3A (threshold being 5 μM, lower than its therapeutic serum concentrations, 17 ~ 51 μM), with no effects in HepG2 cells. Clearly, CBZ may induce clastogenesis and gene mutations at its therapeutic concentrations, human CYP2B6 being a major activating enzyme.
Collapse
|
16
|
Association of CYP2C19 Polymorphic Markers with Cardiovascular Disease Risk Factors in Gas Industry Workers Undergoing Periodic Medical Examinations. High Blood Press Cardiovasc Prev 2023; 30:151-165. [PMID: 36840850 DOI: 10.1007/s40292-023-00567-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
INTRODUCTION Human cytochrome P450 (CYP) enzymes have a wide range of endogenous substrates and play a crucial role in cardiovascular physiology as well as in metabolic processes, so the issue of cytochrome P450 genes investigation has received considerable critical attention in the prevention of cardiovascular diseases (CVDs). AIM Comprehensive assessment of relationship between CYP2C19*2, CYP2C19*3 polymorphisms and CVD risk factors in gas industry workers undergoing periodic medical examination (PME). MATERIALS AND METHODS The study included 193 gas industry workers aged 30-55 years without acute diseases as well as exacerbations of chronic diseases, diabetes mellitus, and CVD history. CYP2C19 (rs4244285 and rs4986893) genotyping and analysis of the relationship between CYP2C19*2 and CYP2C19*3 and CVD risk factors were performed. RESULTS The CYP2C19*2 (A) and CYP2C19*3 (A) loss-of-function alleles frequencies were 20% and 2%, respectively. The frequency of high-normal blood pressure (BP) (130-139 and/or 85-89 mm Hg) detection was higher in the CYP2C19*2 (A) subgroup compared with wild-type GG allele carriers (26.7% vs. 5.2%, p = 0.03) in individuals without arterial hypertension (AH) and BP ≥ 140 and/or 90 mm Hg on PME. The median systolic BP levels were 5 mm Hg higher in CYP2C19*2 (A) group than in CYP2C19*2 (GG) group (125 vs. 120 mm Hg, p = 0.01). There was a similar trend for diastolic BP (85 vs. 80 mmHg, p = 0.08). CYP2C19*2 (A) was associated with higher mean levels of both systolic and diastolic BP (p = 0.015 and p = 0.044, respectively) in patients with AH. CYP2C19*2 was not associated with the other CVD risk factors analyzed. CONCLUSION The association of CYP2C19*2 with BP level suggests a possible role of this factor in AH development, which requires further research.
Collapse
|
17
|
Shen Q, Liu R, Chen J, Li G, Ma S, Yu Y, An T. Co-exposure health risk of benzo[a]pyrene with aromatic VOCs: Monoaromatic hydrocarbons inhibit the glucuronidation of benzo[a]pyrene. ENVIRONMENTAL RESEARCH 2023; 219:115158. [PMID: 36580988 DOI: 10.1016/j.envres.2022.115158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Occupational workers and residents near petrochemical industry facilities are exposed to multiple contaminants on a daily basis. However, little is known about the co-exposure effects of different pollutants based on biotransformation. The study examined benzo[a]pyrene (BaP), a representative polycyclic aromatic hydrocarbon related to the petrochemical industry, to investigate changes in toxicity and co-exposure mechanism associated with different monoaromatic hydrocarbons (MAHs). A central composite design method was used to simulate site co-exposure scenarios to reveal biotransformation of BaP when co-exposed with benzene, toluene, chlorobenzene, or nitrobenzene in microsome systems. BaP metabolism depended on MAH concentration, and association of MAH with microsome concentration/incubation time. Particularly, MAH co-exposure negatively affected BaP glucuronidation, an important phase Ⅱ detoxification process. BaP metabolite intensities decreased to 43%-80% for OH-BaP-G, and 32%-71% for diOH-BaP-G in co-exposure system with MAHs, compared with control group. Furthermore, glucuronidation was affected by competitive and time-dependent inhibition. Co-exposure significantly decreased gene expression of UGT 1A10 and BCRP/ABCG2 in HepG2 cells, which are involved in BaP detoxification through metabolism and transmembrane transportation. Therefore, human co-exposure to multiple contaminants may deteriorate toxic effects of these chemicals by disturbing metabolic pathways. This study provides a reference for assessing toxic effects and co-exposure risks of pollutants.
Collapse
Affiliation(s)
- Qianyong Shen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ranran Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingyi Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
18
|
Xie J, Tu H, Chen Y, Chen Z, Yang Z, Liu Y. Triphenyl phosphate induces clastogenic effects potently in mammalian cells, human CYP1A2 and 2E1 being major activating enzymes. Chem Biol Interact 2023; 369:110259. [PMID: 36372259 DOI: 10.1016/j.cbi.2022.110259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
As a new-type flame retardant and toxic substance, triphenyl phosphate (TPP) is a ubiquitous pollutant present even in human blood. TPP is transformed by human CYP enzymes to oxidized/dealkylated metabolites. The impact of TPP metabolism on its toxicity, however, remains unclear. In this study, the genotoxicity of TPP in several mammalian cell lines and its relevance to CYP/sulfortransferase (SULT) activities were investigated. The results indicated that TPP induced micronucleus formation at ≥1 μM concentrations in a human hepatoma (C3A, endogenous CYPs being substantial) cell line, which was abolished by 1-aminobenzotriazole (CYPs inhibitor). In cell line HepG2 (parental to C3A with lower CYP expression) TPP was inactive up to 10 μM, while pretreatment with ethanol (CYP2E1 inducer), PCB 126 (CYP1A inducer), or rifampicin (CYP3A inducer) led to micronucleus formation by TPP. In V79-Mz and V79-derived cells expressing human CYP1A1 TPP was inactive (up to 32 μM), and in cells expressing human CYP1B1, 2B6 and 3A4 it induced micronucleus weakly (positive only at 32 μM). However, TPP induced micronucleus potently in V79-derived cells expressing human CYP1A2, while this effect was drastically reduced by human SULT1A1 co-expression; likewise, TPP was inactive in cells expressing both human CYP2E1 and SULT1A1, but became positive with pentachlorophenol (inhibitor of SULT1) co-exposure. Moreover, in C3A cells TPP selectively induced centromere-free micronucleus (immunofluorescent assay), and TPP increased γ-H2AX (by Western blot, indicating double-strand DNA breaks). In conclusion, this study suggests that TPP is potently clastogenic, human CYP1A2 and 2E1 being major activating enzymes while SULT1A1 involved in detoxification.
Collapse
Affiliation(s)
- Jiayi Xie
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hongwei Tu
- Guangdong Provincial Center for Disease Control and Prevention, Qunxian Road, Panyu District, Guangzhou, 511430, China
| | - Yijing Chen
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Zhihong Chen
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
19
|
Shi H, Peng J, Hao J, Wang X, Xu M, Li S. Growth performance, digestibility, and plasma metabolomic profiles of Saanen goats exposed to different doses of aflatoxin B1. J Dairy Sci 2022; 105:9552-9563. [DOI: 10.3168/jds.2022-22129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
|
20
|
Sabbioni G, Castaño A, Esteban López M, Göen T, Mol H, Riou M, Tagne-Fotso R. Literature review and evaluation of biomarkers, matrices and analytical methods for chemicals selected in the research program Human Biomonitoring for the European Union (HBM4EU). ENVIRONMENT INTERNATIONAL 2022; 169:107458. [PMID: 36179646 DOI: 10.1016/j.envint.2022.107458] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Humans are potentially exposed to a large amount of chemicals present in the environment and in the workplace. In the European Human Biomonitoring initiative (Human Biomonitoring for the European Union = HBM4EU), acrylamide, mycotoxins (aflatoxin B1, deoxynivalenol, fumonisin B1), diisocyanates (4,4'-methylenediphenyl diisocyanate, 2,4- and 2,6-toluene diisocyanate), and pyrethroids were included among the prioritized chemicals of concern for human health. For the present literature review, the analytical methods used in worldwide biomonitoring studies for these compounds were collected and presented in comprehensive tables, including the following parameter: determined biomarker, matrix, sample amount, work-up procedure, available laboratory quality assurance and quality assessment information, analytical techniques, and limit of detection. Based on the data presented in these tables, the most suitable methods were recommended. According to the paradigm of biomonitoring, the information about two different biomarkers of exposure was evaluated: a) internal dose = parent compounds and metabolites in urine and blood; and b) the biologically effective = dose measured as blood protein adducts. Urine was the preferred matrix used for deoxynivalenol, fumonisin B1, and pyrethroids (biomarkers of internal dose). Markers of the biological effective dose were determined as hemoglobin adducts for diisocyanates and acrylamide, and as serum-albumin-adducts of aflatoxin B1 and diisocyanates. The analyses and quantitation of the protein adducts in blood or the metabolites in urine were mostly performed with LC-MS/MS or GC-MS in the presence of isotope-labeled internal standards. This review also addresses the critical aspects of the application, use and selection of biomarkers. For future biomonitoring studies, a more comprehensive approach is discussed to broaden the selection of compounds.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Università della Svizzera Italiana (USI), Research and Transfer Service, Lugano, Switzerland; Institute of Environmental and Occupational Toxicology, Airolo, Switzerland; Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany.
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain.
| | - Marta Esteban López
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain.
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg (IPASUM), Erlangen, Germany.
| | - Hans Mol
- Wageningen Food Safety Research, Part of Wageningen University & Research, Wageningen, the Netherlands.
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé publique France, The National Public Health Agency, Saint-Maurice, France.
| | - Romuald Tagne-Fotso
- Department of Environmental and Occupational Health, Santé publique France, The National Public Health Agency, Saint-Maurice, France.
| |
Collapse
|
21
|
Bellamri M, Walmsley SJ, Brown C, Brandt K, Konorev D, Day A, Wu CF, Wu MT, Turesky RJ. DNA Damage and Oxidative Stress of Tobacco Smoke Condensate in Human Bladder Epithelial Cells. Chem Res Toxicol 2022; 35:1863-1880. [PMID: 35877975 PMCID: PMC9665352 DOI: 10.1021/acs.chemrestox.2c00153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Smoking is a major risk factor for bladder cancer (BC), with up to 50% of BC cases being attributed to smoking. There are 70 known carcinogens in tobacco smoke; however, the principal chemicals responsible for BC remain uncertain. The aromatic amines 4-aminobiphenyl (4-ABP) and 2-naphthylamine (2-NA) are implicated in BC pathogenesis of smokers on the basis of the elevated BC risk in factory workers exposed to these chemicals. However, 4-ABP and 2-NA only occur at several nanograms per cigarette and may be insufficient to induce BC. In contrast, other genotoxicants, including acrolein, occur at 1000-fold or higher levels in tobacco smoke. There is limited data on the toxicological effects of tobacco smoke in human bladder cells. We have assessed the cytotoxicity, oxidative stress, and DNA damage of tobacco smoke condensate (TSC) in human RT4 bladder cells. TSC was fractionated by liquid-liquid extraction into an acid-neutral fraction (NF), containing polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, phenols, and aldehydes, and a basic fraction (BF) containing aromatic amines, heterocyclic aromatic amines, and N-nitroso compounds. The TSC and NF induced a time- and concentration-dependent cytotoxicity associated with oxidative stress, lipid peroxide formation, glutathione (GSH) depletion, and apurinic/apyrimidinic (AP) site formation, while the BF showed weak effects. LC/MS-based metabolomic approaches showed that TSC and NF altered GSH biosynthesis pathways and induced more than 40 GSH conjugates. GSH conjugates of several hydroquinones were among the most abundant conjugates. RT4 cell treatment with synthetic hydroquinones and cresol mixtures at levels present in tobacco smoke accounted for most of the TSC-induced cytotoxicity and the AP sites formed. GSH conjugates of acrolein, methyl vinyl ketone, and crotonaldehyde levels also increased owing to TSC-induced oxidative stress. Thus, TSC is a potent toxicant and DNA-damaging agent, inducing deleterious effects in human bladder cells at concentrations of <1% of a cigarette in cell culture media.
Collapse
Affiliation(s)
- Madjda Bellamri
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| | - Scott J. Walmsley
- Masonic Cancer Center, University of Minnesota, MN 55455
- Division of Biostatistics, Institute of Health Informatics, University of Minnesota, MN 55455
| | - Christina Brown
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| | - Kyle Brandt
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| | - Dmitri Konorev
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| | - Abderrahman Day
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| | - Chia-Fang Wu
- Department of Environmental and Occupational Medicine, Kaohsiung Medical University, CS Building, 100 Shih-Chuan 1st Road, Kaohsiung, Taiwan
| | - Ming Tsang Wu
- Department of Environmental and Occupational Medicine, Kaohsiung Medical University, CS Building, 100 Shih-Chuan 1st Road, Kaohsiung, Taiwan
| | - Robert J. Turesky
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| |
Collapse
|
22
|
Liu L, Liu Y, Zhou X, Xu Z, Zhang Y, Ji L, Hong C, Li C. Analyzing the metabolic fate of oral administration drugs: A review and state-of-the-art roadmap. Front Pharmacol 2022; 13:962718. [PMID: 36278150 PMCID: PMC9585159 DOI: 10.3389/fphar.2022.962718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The key orally delivered drug metabolism processes are reviewed to aid the assessment of the current in vivo/vitro experimental systems applicability for evaluating drug metabolism and the interaction potential. Orally administration is the most commonly used state-of-the-art road for drug delivery due to its ease of administration, high patient compliance and cost-effectiveness. Roles of gut metabolic enzymes and microbiota in drug metabolism and absorption suggest that the gut is an important site for drug metabolism, while the liver has long been recognized as the principal organ responsible for drugs or other substances metabolism. In this contribution, we explore various experimental models from their development to the application for studying oral drugs metabolism of and summarized advantages and disadvantages. Undoubtedly, understanding the possible metabolic mechanism of drugs in vivo and evaluating the procedure with relevant models is of great significance for screening potential clinical drugs. With the increasing popularity and prevalence of orally delivered drugs, sophisticated experimental models with higher predictive capacity for the metabolism of oral drugs used in current preclinical studies will be needed. Collectively, the review seeks to provide a comprehensive roadmap for researchers in related fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
23
|
Thomson RES, D'Cunha SA, Hayes MA, Gillam EMJ. Use of engineered cytochromes P450 for accelerating drug discovery and development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:195-252. [PMID: 35953156 DOI: 10.1016/bs.apha.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Numerous steps in drug development, including the generation of authentic metabolites and late-stage functionalization of candidates, necessitate the modification of often complex molecules, such as natural products. While it can be challenging to make the required regio- and stereoselective alterations to a molecule using purely chemical catalysis, enzymes can introduce changes to complex molecules with a high degree of stereo- and regioselectivity. Cytochrome P450 enzymes are biocatalysts of unequalled versatility, capable of regio- and stereoselective functionalization of unactivated CH bonds by monooxygenation. Collectively they catalyze over 60 different biotransformations on structurally and functionally diverse organic molecules, including natural products, drugs, steroids, organic acids and other lipophilic molecules. This catalytic versatility and substrate range makes them likely candidates for application as potential biocatalysts for industrial chemistry. However, several aspects of the P450 catalytic cycle and other characteristics have limited their implementation to date in industry, including: their lability at elevated temperature, in the presence of solvents, and over lengthy incubation times; the typically low efficiency with which they metabolize non-natural substrates; and their lack of specificity for a single metabolic pathway. Protein engineering by rational design or directed evolution provides a way to engineer P450s for industrial use. Here we review the progress made to date toward engineering the properties of P450s, especially eukaryotic forms, for industrial application, and including the recent expansion of their catalytic repertoire to include non-natural reactions.
Collapse
Affiliation(s)
- Raine E S Thomson
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Stephlina A D'Cunha
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Martin A Hayes
- Compound Synthesis and Management, Discovery Sciences, BioPharmaceuticals R&D AstraZeneca, Mölndal, Sweden
| | - Elizabeth M J Gillam
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
24
|
Atypical kinetics of cytochrome P450 enzymes in pharmacology and toxicology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:131-176. [PMID: 35953154 DOI: 10.1016/bs.apha.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atypical kinetics are observed in metabolic reactions catalyzed by cytochrome P450 enzymes (P450). Yet, this phenomenon is regarded as experimental artifacts in some instances despite increasing evidence challenging the assumptions of typical Michaelis-Menten kinetics. As P450 play a major role in the metabolism of a wide range of substrates including drugs and endogenous compounds, it becomes critical to consider the impact of atypical kinetics on the accuracy of estimated kinetic and inhibitory parameters which could affect extrapolation of pharmacological and toxicological implications. The first half of this book chapter will focus on atypical non-Michaelis-Menten kinetics (e.g. substrate inhibition, biphasic and sigmoidal kinetics) as well as proposed underlying mechanisms supported by recent insights in mechanistic enzymology. In particular, substrate inhibition kinetics in P450 as well as concurrent drug inhibition of P450 in the presence of substrate inhibition will be further discussed. Moreover, mounting evidence has revealed that despite the high degree of sequence homology between CYP3A isoforms (i.e. CYP3A4 and CYP3A5), they have the propensities to exhibit vastly different susceptibilities and potencies of mechanism-based inactivation (MBI) with a common drug inhibitor. These experimental observations pertaining to the presence of these atypical isoform- and probe substrate-specific complexities in CYP3A isoforms by several clinically-relevant drugs will therefore be expounded and elaborated upon in the second half of this book chapter.
Collapse
|
25
|
Rendić SP, Crouch RD, Guengerich FP. Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions. Arch Toxicol 2022; 96:2145-2246. [PMID: 35648190 PMCID: PMC9159052 DOI: 10.1007/s00204-022-03304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic reactions of drugs, natural products, physiological compounds, and other (general) chemicals catalyzed by flavin monooxygenase (FMO), monoamine oxidase (MAO), NAD(P)H quinone oxidoreductase (NQO), and molybdenum hydroxylase enzymes (aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR)), including roles as substrates, inducers, and inhibitors of the enzymes. The metabolism and bioactivation of selected examples of each group (i.e., drugs, "general chemicals," natural products, and physiological compounds) are discussed. We identified a higher fraction of bioactivation reactions for FMO enzymes compared to other enzymes, predominately involving drugs and general chemicals. With MAO enzymes, physiological compounds predominate as substrates, and some products lead to unwanted side effects or illness. AOX and XOR enzymes are molybdenum hydroxylases that catalyze the oxidation of various heteroaromatic rings and aldehydes and the reduction of a number of different functional groups. While neither of these two enzymes contributes substantially to the metabolism of currently marketed drugs, AOX has become a frequently encountered route of metabolism among drug discovery programs in the past 10-15 years. XOR has even less of a role in the metabolism of clinical drugs and preclinical drug candidates than AOX, likely due to narrower substrate specificity.
Collapse
Affiliation(s)
| | - Rachel D Crouch
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, 37204, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
26
|
Daly AK. Pharmacogenetics of the cytochromes P450: Selected pharmacological and toxicological aspects. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:49-72. [PMID: 35953163 DOI: 10.1016/bs.apha.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the availability of detailed genomic data on all 57 human cytochrome P450 genes, it is clear that there is substantial variability in gene product activity with functionally significant polymorphisms reported across almost all isoforms. This article is concerned mainly with 13 P450 isoforms of particular relevance to xenobiotic metabolism. After brief review of the extent of polymorphism in each, the relevance of selected P450 isoforms to both adverse drug reaction and disease susceptibility is considered in detail. Bleeding due to warfarin and other coumarin anticoagulants is considered as an example of a type A reaction with idiosyncratic adverse drug reactions affecting the liver and skin as type B. It is clear that CYP2C9 variants contribute significantly to warfarin dose requirement and also risk of bleeding, with a minor contribution from CYP4F2. In the case of idiosyncratic adverse drug reactions, CYP2B6 variants appear relevant to both liver and skin reactions to several drugs with CYP2C9 variants also relevant to phenytoin-related skin rash. The relevance of P450 genotype to disease susceptibility is also considered but detailed genetic studies now suggest that CYP2A6 is the only P450 relevant to risk of lung cancer with alleles associated with low or absent activity clearly protective against disease. Other cytochrome P450 genotypes are generally not predictors for risk of cancer or other complex disease development.
Collapse
Affiliation(s)
- Ann K Daly
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom.
| |
Collapse
|
27
|
Jacobs MN, Kubickova B, Boshoff E. Candidate Proficiency Test Chemicals to Address Industrial Chemical Applicability Domains for in vitro Human Cytochrome P450 Enzyme Induction. FRONTIERS IN TOXICOLOGY 2022; 4:880818. [PMID: 35795225 PMCID: PMC9252529 DOI: 10.3389/ftox.2022.880818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Cytochrome P450 (CYP) enzymes play a key role in the metabolism of both xenobiotics and endogenous chemicals, and the activity of some CYP isoforms are susceptible to induction and/or inhibition by certain chemicals. As CYP induction/inhibition can bring about significant alterations in the level of in vivo exposure to CYP substrates and metabolites, CYP induction/inhibition data is needed for regulatory chemical toxicity hazard assessment. On the basis of available human in vivo pharmaceutical data, a draft Organisation for Economic Co-operation and Development Test Guideline (TG) for an in vitro CYP HepaRG test method that is capable of detecting the induction of four human CYPs (CYP1A1/1A2, 2B6, and 3A4), has been developed and validated for a set of pharmaceutical proficiency chemicals. However to support TG adoption, further validation data was requested to demonstrate the ability of the test method to also accurately detect CYP induction mediated by industrial and pesticidal chemicals, together with an indication on regulatory uses of the test method. As part of "GOLIATH", a European Union Horizon-2020 funded research project on metabolic disrupting chemical testing approaches, work is underway to generate supplemental validated data for an additional set of chemicals with sufficient diversity to allow for the approval of the guideline. Here we report on the process of proficiency chemical selection based on a targeted literature review, the selection criteria and considerations required for acceptance of proficiency chemical selection for OECD TG development (i.e. structural diversity, range of activity, relevant chemical sectors, global restrictions etc). The following 13 proposed proficiency chemicals were reviewed and selected as a suitable set for use in the additional validation experiments: tebuconazole, benfuracarb, atrazine, cypermethrin, chlorpyrifos, perfluorooctanoic acid, bisphenol A, N,N-diethyl-m-toluamide, benzo-[a]-pyrene, fludioxonil, malathion, triclosan, and caffeine. Illustrations of applications of the test method in relation to endocrine disruption and non-genotoxic carcinogenicity are provided.
Collapse
Affiliation(s)
- Miriam Naomi Jacobs
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Department of Toxicology, Public Health England (PHE), Harwell Science and Innovation Campus, Chilton, United Kingdom
| | - Barbara Kubickova
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Department of Toxicology, Public Health England (PHE), Harwell Science and Innovation Campus, Chilton, United Kingdom
| | - Eugene Boshoff
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Department of Toxicology, Public Health England (PHE), Harwell Science and Innovation Campus, Chilton, United Kingdom
| |
Collapse
|
28
|
Metabolism of versicolorin A, a genotoxic precursor of aflatoxin B1: Characterization of metabolites using in vitro production of standards. Food Chem Toxicol 2022; 167:113272. [PMID: 35803361 DOI: 10.1016/j.fct.2022.113272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022]
Abstract
The toxicity of mycotoxins containing bisfuranoid structures such as aflatoxin B1 (AFB1) depends largely on biotransformation processes. While the genotoxicity and mutagenicity of several bisfuranoid mycotoxins including AFB1 and sterigmatocystin have been linked to in vivo bioactivation of these molecules into reactive epoxide forms, the metabolites of genotoxic and mutagenic AFB1 precursor versicolorin A (VerA) have not yet been characterized. Because this molecule is not available commercially, our strategy was to produce a library of metabolites derived from the biotransformation of in-house purified VerA, following incubation with human liver S9 fractions, in presence of appropriate cofactors. The resulting chromatographic and mass-spectrometric data were used to identify VerA metabolites produced by intestinal cell lines as well as intestinal and liver tissues exposed ex vivo. In this way, we obtained a panel of metabolites suggesting the involvement of phase I (M + O) and phase II (glucuronide and sulfate metabolites) enzymes, the latter of which is implicated in the detoxification process. This first qualitative description of the metabolization products of VerA suggests bioactivation of the molecule into an epoxide form and provides qualitative analytic data to further conduct a precise metabolism study of VerA required for the risk assessment of this emerging mycotoxin.
Collapse
|
29
|
Sheludko YV, Gerasymenko IM, Herrmann FJ, Warzecha H. Evaluation of biotransformation capacity of transplastomic plants and hairy roots of Nicotiana tabacum expressing human cytochrome P450 2D6. Transgenic Res 2022; 31:351-368. [PMID: 35416604 PMCID: PMC9135824 DOI: 10.1007/s11248-022-00305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/19/2022] [Indexed: 11/24/2022]
Abstract
Cytochrome P450 monooxygenases (CYPs) are important tools for regio- and stereoselective oxidation of target molecules or engineering of metabolic pathways. Functional heterologous expression of eukaryotic CYPs is often problematic due to their dependency on the specific redox partner and the necessity of correct association with the membranes for displaying enzymatic activity. Plant hosts offer advantages of accessibility of reducing partners and a choice of membranes to insert heterologous CYPs. For the evaluation of plant systems for efficient CYP expression, we established transplastomic plants and hairy root cultures of Nicotiana tabacum carrying the gene encoding human CYP2D6 with broad substrate specificity. The levels of CYP2D6 transcript accumulation and enzymatic activity were estimated and compared with the data of CYP2D6 transient expression in N. benthamiana. The relative level of CYP2D6 transcripts in transplastomic plants was 2-3 orders of magnitude higher of that observed after constitutive or transient expression from the nucleus. CYP2D6 expressed in chloroplasts converted exogenous synthetic substrate loratadine without the need for co-expression of the cognate CYP reductase. The loratadine conversion rate in transplastomic plants was comparable to that in N. benthamiana plants transiently expressing a chloroplast targeted CYP2D6 from the nucleus, but was lower than the value reported for transiently expressed CYP2D6 with the native endoplasmic reticulum signal-anchor sequence. Hairy roots showed the lowest substrate conversion rate, but demonstrated the ability to release the product into the culture medium. The obtained results illustrate the potential of plant-based expression systems for exploiting the enzymatic activities of eukaryotic CYPs with broad substrate specificities.
Collapse
Affiliation(s)
- Y V Sheludko
- Plant Biotechnology and Metabolic Engineering, Technical University of Darmstadt, 64287, Darmstadt, Germany.
- Centre for Synthetic Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany.
- Department of Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany.
| | - I M Gerasymenko
- Plant Biotechnology and Metabolic Engineering, Technical University of Darmstadt, 64287, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - F J Herrmann
- Plant Biotechnology and Metabolic Engineering, Technical University of Darmstadt, 64287, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - H Warzecha
- Plant Biotechnology and Metabolic Engineering, Technical University of Darmstadt, 64287, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany
| |
Collapse
|
30
|
Wang JY, Li JX, Ning J, Huo XK, Yu ZL, Tian Y, Zhang BJ, Wang Y, Sa D, Li YC, Lv X, Ma XC. Human cytochrome P450 3A-mediated two-step oxidation metabolism of dimethomorph: Implications in the mechanism-based enzyme inactivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153585. [PMID: 35121040 DOI: 10.1016/j.scitotenv.2022.153585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Dimethomorph (DMM), an effective and broad-spectrum fungicide applied in agriculture, is toxic to environments and living organisms due to the hazardous nature of its toxic residues. This study aims to investigate the human cytochrome P450 enzyme (CYP)-mediated oxidative metabolism of DMM by combining experimental and computational approaches. Dimethomorph was metabolized predominantly through a two-step oxidation process mediated by CYPs, and CYP3A was identified as the major contributor to DMM sequential oxidative metabolism. Meanwhile, DMM elicited the mechanism-based inactivation (MBI) of CYP3A in a suicide manner, and the iminium ion and epoxide reactive intermediates generated in DMM metabolism were identified as the culprits of MBI. Furthermore, three common pesticides, prochloraz (PCZ), difenoconazole (DFZ) and chlorothalonil (CTL), could significantly inhibit CYP3A-mediated DMM metabolism, and consequently trigger elevated exposure to DMM in vivo. Computational studies elucidated that the differentiation effects in charge distribution and the interaction pattern played crucial roles in DMM-induced MBI of CYP3A4 during sequential oxidative metabolism. Collectively, this study provided a global view of the two-step metabolic activation process of DMM mediated by CYP3A, which was beneficial for elucidating the environmental fate and toxicological mechanism of DMM in humans from a new perspective.
Collapse
Affiliation(s)
- Jia-Yue Wang
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China; Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian 116000, Liaoning, China; Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jing-Xin Li
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China; School of Public Health, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Jing Ning
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Xiao-Kui Huo
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Zhen-Long Yu
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Yan Tian
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Bao-Jing Zhang
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Yan Wang
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Deng Sa
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Ya-Chen Li
- School of Public Health, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Xia Lv
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China.
| | - Xiao-Chi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian 116000, Liaoning, China.
| |
Collapse
|
31
|
Liem JF, Suryandari DA, Malik SG, Mansyur M, Soemarko DS, Kekalih A, Subekti I, Suyatna FD, Pangaribuan B. The role of the CYP2B6*6 gene polymorphisms on 3,5,6-Trichloro-2-pyridinol levels as a biomarker of chlorpyrifos toxicity among Indonesian farmers. J Prev Med Public Health 2022; 55:280-288. [PMID: 35678002 PMCID: PMC9201094 DOI: 10.3961/jpmph.21.641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/24/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jen Fuk Liem
- Doctoral Program, Faculty of Medicine Universitas Indonesia, Jakarta,
Indonesia
- Department of Occupational Health and Safety, Faculty of Medicine and Health Science Universitas Kristen Krida Wacana, Jakarta,
Indonesia
| | - Dwi A. Suryandari
- Department of Biology, Faculty of Medicine Universitas Indonesia, Jakarta,
Indonesia
| | - Safarina G. Malik
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta,
Indonesia
| | - Muchtaruddin Mansyur
- Community Medicine Department, Faculty of Medicine Universitas Indonesia, Jakarta,
Indonesia
| | - Dewi S. Soemarko
- Community Medicine Department, Faculty of Medicine Universitas Indonesia, Jakarta,
Indonesia
| | - Aria Kekalih
- Community Medicine Department, Faculty of Medicine Universitas Indonesia, Jakarta,
Indonesia
| | - Imam Subekti
- Department of Internal Medicine, Faculty of Medicine Universitas Indonesia, Dr. Cipto Mangunkusumo General Hospital, Jakarta,
Indonesia
| | - Franciscus D. Suyatna
- Department of Pharmacology and Therapeutics, Faculty of Medicine Universitas Indonesia, Jakarta,
Indonesia
| | | |
Collapse
|
32
|
Yang Z, Yu H, Tu H, Chen Z, Hu K, Jia H, Liu Y. Influence of aryl hydrocarbon receptor and sulfotransferase 1A1 on bisphenol AF-induced clastogenesis in human hepatoma cells. Toxicology 2022; 471:153175. [PMID: 35395335 DOI: 10.1016/j.tox.2022.153175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022]
Abstract
Bisphenol compounds (BPs) are ubiquitously existing pollutants. Recent evidence shows that they may be activated by human CYP1A1 for clastogenic effects; however, factors that influence/mediate CYP1A1-activated 4,4'-(hexafluoroisopropylidene)diphenol (BPAF) toxicity, particularly the aryl hydrocarbon receptor (AhR), sulfotransferase (SULT) 1A1 [known to conjugate 2,2-bis(4-hydroxyphenol)-propane (BPA)] and reactive oxygen species (ROS), remain unclear. In this study, a human hepatoma (HepG2) cell line was genetically engineered for the expression of human CYP1A1 and SULT1A1, producing HepG2-hCYP1A1 and HepG2-hSULT1A1, respectively. They were used in the micronucleus test and γ-H2AX analysis (Western blot) (indicating double-strand DNA breaks) with BPAF; the role of AhR in mediating BPAF toxicity was investigated by coexposure of AhR modulators in HepG2 and its derivative C3A (with no genetic modifications but enhanced CYP expression). The results indicated induction of micronuclei by BPAF (≥ 2.5 µM, for 2-cell cycle) in HepG2-hCYP1A1 and C3A, while inactive in HepG2 and HepG2-hSULT1A1; however, BPAF induced micronuclei in HepG2 pretreated with 3,3',4,4',5-pentachlorobiphenyl (PCB126, AhR activator), and BAY-218 (AhR inhibitor) blocked the effect of BPAF in C3A. In HepG2-hCYP1A1 BPAF selectively induced centromere-free micronuclei (immunofluorescent assay) and double-strand DNA breaks. In HepG2 cells receiving conditional medium from BPAF-HepG2-hCYP1A1 incubation micronuclei were formed, while negative in HepG2-hSULT1A1. Finally, the intracellular levels of ROS, superoxide dismutase and reduced glutathione in C3A and HepG2-hCYP1A1 exposed to BPAF were all moderately increased, while unchanged in HepG2 cells. In conclusion, like other BPs BPAF is activated by human CYP1A1 for potent clastogenicity, and this effect is enhanced by AhR while alleviated by SULT1A1.
Collapse
Affiliation(s)
- Zongying Yang
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou 510515, China
| | - Hang Yu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou 510515, China
| | - Hongwei Tu
- Guangdong Provincial Center for Disease Control and Prevention, Qunxian Road, Panyu District, Guangzhou 511430, China
| | - Zhihong Chen
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou 510515, China
| | - Keqi Hu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou 510515, China
| | - Hansi Jia
- The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Middle Road, Futian District, Shenzhen 518033, China.
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou 510515, China.
| |
Collapse
|
33
|
Okamoto T, Kishimoto S, Watanabe K. Isolation of Natural Prodrug-Like Metabolite by Simulating Human Prodrug Activation in Filamentous Fungus. Chem Pharm Bull (Tokyo) 2022; 70:304-308. [DOI: 10.1248/cpb.c21-01099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takumi Okamoto
- Department of Pharmaceutical Sciences, University of Shizuoka
| | | | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
34
|
Abu-Bakar A, Tan BH, Halim H, Ramli S, Pan Y, Ong6 CE. Cytochromes P450: Role in Carcinogenesis and Relevance to Cancers. Curr Drug Metab 2022; 23:355-373. [DOI: 10.2174/1389200223666220328143828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
Abstracts:
Cancer is a leading factor of mortality globally. Cytochrome P450 (CYP) enzymes play a pivotal role in the biotransformation of both endogenous and exogenous compounds. Evidence from numerous epidemiological, animal, and clinical studies points to instrumental role of CYPs in cancer initiation, metastasis, and prevention. Substantial research has found that CYPs are involved in activating different carcinogenic chemicals in the environment, such as polycyclic aromatic hydrocarbons and tobacco-related nitrosamines. Electrophilic intermediates produced from these chemicals can covalently bind to DNA, inducing mutation and cellular transformation that collectively result in cancer development. While bioactivation of procarcinogens and promutagens by CYPs has long been established, the role of CYP-derived endobiotics in carcinogenesis has emerged in recent years. Eicosanoids derived from arachidonic acid via CYP oxidative pathways have been implicated in tumorigenesis, cancer progression and metastasis. The purpose of this review is to update on the current state of knowledge about the cancer molecular mechanism involving CYPs with focus on the biochemical and biotransformation mechanisms in the various CYP-mediated carcinogenesis, and the role of CYP-derived reactive metabolites, from both external and endogenous sources, on cancer growth and tumour formation.
Collapse
Affiliation(s)
- A’edah Abu-Bakar
- Product Stewardship and Toxicology, Group Health, Safety, Security and Environment, PETRONAS, Kuala Lumpur, Malaysia
| | - Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Hasseri Halim
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Salfarina Ramli
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Yan Pan
- Department of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Chin Eng Ong6
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
35
|
Bandeira CM, Almeida AÁ, Alves MGO, Pascoal MBN, Chagas JFS, Neto MB, de Barros PP, Nunes FD, Carta CFL, Almeida JD. The Fagerström and AUDIT Tests as Probable Screening Tools in Oral Cancer and Their Correlation with CYP1A1, GSTM1, GSTP1, and GSTT1 Gene Expression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3991. [PMID: 35409669 PMCID: PMC8997590 DOI: 10.3390/ijerph19073991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Cancer is currently a major public health problem worldwide, with a marked increase of about 70% in the number of expected diagnosed cases over the next two decades. The amount of tobacco and alcohol consumed is calculated based on the subjective information provided by the user. Tobacco exposure can be assessed using the Fagerström Test for Cigarette Dependence (FTCD) and alcohol consumption by the Alcohol Use Disorder Identification Test (AUDIT). MATERIALS AND METHODS Forty-eight subjects answered the Fagerström, and AUDIT tests and we studied them as likely screening tools for oral cancer and their correlation with the expression of CYP1A1, GSTM1, GSTP1, and GSTT1 genes by the RT-qPCR method. RESULTS There were significant differences in the AUDIT score and CYP1A1 expression between cancer and control groups. Participants in advanced stages, whether due to tumor size or regional metastasis, showed significant differences in the duration of tobacco use, FTCD, AUDIT score, and CYP1A1 expression when compared to patients in early stages. Among subjects without cancer, we found a significant correlation between participant age and GSTP1 expression. Furthermore, the expression of GSTP1 was significantly correlated with the number of cigarettes smoked per day, duration of tobacco use, and FTCD. CONCLUSIONS Questionnaires designed to evaluate the degree of tobacco and alcohol exposure and dependence combined with gene expression tests can be useful to assess the risk of developing oral cancer. Furthermore, raising the awareness of individuals regarding their degree of dependence and encouraging them to participate in cessation programs are important educational measures for the prevention of tobacco-related malignancies.
Collapse
Affiliation(s)
- Celso Muller Bandeira
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, São Paulo State University (Unesp), São José dos Campos 12245-000, Brazil; (C.M.B.); (A.Á.A.); (P.P.d.B.); (C.F.L.C.)
- Faculdade de Ciências Médicas de São José dos Campos—Humanitas, São José dos Campos 12220-061, Brazil
| | - Adriana Ávila Almeida
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, São Paulo State University (Unesp), São José dos Campos 12245-000, Brazil; (C.M.B.); (A.Á.A.); (P.P.d.B.); (C.F.L.C.)
| | - Mônica Ghislaine Oliveira Alves
- School of Medicine, Anhembi Morumbi University, São José dos Campos 12230-002, Brazil;
- Technology Research Center (NPT), Universidade Mogi das Cruzes, Mogi das Cruzes 08780-911, Brazil
| | - Maria Beatriz Nogueira Pascoal
- Department of Head and Neck Surgery, São Leopoldo Mandic College, Campinas 13045-755, Brazil; (M.B.N.P.); (J.F.S.C.)
- Department of Head and Neck Surgery, Hospital Municipal Doutor Mário Gatti, Campinas 13036-902, Brazil
| | - José Francisco Sales Chagas
- Department of Head and Neck Surgery, São Leopoldo Mandic College, Campinas 13045-755, Brazil; (M.B.N.P.); (J.F.S.C.)
| | - Morun Bernardino Neto
- Department of Basic Sciences and Environment, São Paulo University, São Paulo 12602-810, Brazil;
| | - Patrícia Pimentel de Barros
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, São Paulo State University (Unesp), São José dos Campos 12245-000, Brazil; (C.M.B.); (A.Á.A.); (P.P.d.B.); (C.F.L.C.)
| | - Fábio Daumas Nunes
- Department of Oral Pathology, School of Dentistry, São Paulo University, São Paulo 05508-000, Brazil;
| | - Celina Faig Lima Carta
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, São Paulo State University (Unesp), São José dos Campos 12245-000, Brazil; (C.M.B.); (A.Á.A.); (P.P.d.B.); (C.F.L.C.)
| | - Janete Dias Almeida
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, São Paulo State University (Unesp), São José dos Campos 12245-000, Brazil; (C.M.B.); (A.Á.A.); (P.P.d.B.); (C.F.L.C.)
| |
Collapse
|
36
|
Bukowska B, Duchnowicz P. Molecular Mechanisms of Action of Selected Substances Involved in the Reduction of Benzo[a]pyrene-Induced Oxidative Stress. Molecules 2022; 27:molecules27041379. [PMID: 35209168 PMCID: PMC8878767 DOI: 10.3390/molecules27041379] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) primarily formed by burning of fossil fuels, wood and other organic materials. BaP as group I carcinogen shows mutagenic and carcinogenic effects. One of the important mechanisms of action of (BaP) is its free radical activity, the effect of which is the induction of oxidative stress in cells. BaP induces oxidative stress through the production of reactive oxygen species (ROS), disturbances of the activity of antioxidant enzymes, and the reduction of the level of non-enzymatic antioxidants as well as of cytokine production. Chemical compounds, such as vitamin E, curcumin, quercetin, catechin, cyanidin, kuromanin, berberine, resveratrol, baicalein, myricetin, catechin hydrate, hesperetin, rhaponticin, as well as taurine, atorvastatin, diallyl sulfide, and those contained in green and white tea, lower the oxidative stress induced by BaP. They regulate the expression of genes involved in oxidative stress and inflammation, and therefore can reduce the level of ROS. These substances remove ROS and reduce the level of lipid and protein peroxidation, reduce formation of adducts with DNA, increase the level of enzymatic and non-enzymatic antioxidants and reduce the level of pro-inflammatory cytokines. BaP can undergo chemical modification in the living cells, which results in more reactive metabolites formation. Some of protective substances have the ability to reduce BaP metabolism, and in particular reduce the induction of cytochrome (CYP P450), which reduces the formation of oxidative metabolites, and therefore decreases ROS production. The aim of this review is to discuss the oxidative properties of BaP, and describe protective activities of selected chemicals against BaP activity based on of the latest publications.
Collapse
|
37
|
Lv X, Li JX, Wang JY, Tian XG, Feng L, Sun CP, Ning J, Wang C, Zhao WY, Li YC, Ma XC. Regioselective hydroxylation of carbendazim by mammalian cytochrome P450: A combined experimental and computational study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118523. [PMID: 34793912 DOI: 10.1016/j.envpol.2021.118523] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Carbendazim (CBZ), a broad-spectrum pesticide frequently detected in fruits and vegetables, could trigger potential toxic risks to mammals. To facilitate the assessment of health risks, this study aimed to characterize the cytochrome P450 (CYPs)-mediated metabolism profiles of CBZ by a combined experimental and computational study. Our results demonstrated that CYPs-mediated region-selective hydroxylation was a major metabolism pathway for CBZ in liver microsomes from various species including rat, mouse, minipig, dog, rabbit, guinea pig, monkey, cow and human, and the metabolite was biosynthesized and well-characterized as 6-OH-CBZ. CYP1A displayed a predominant role in the region-selective hydroxylation of CBZ that could attenuate its toxicity through converting it into a less toxic metabolite. Meanwhile, five other common pesticides including chlorpyrifos-methyl, prochloraz, chlorfenapyr, chlorpyrifos, and chlorothalonil could significantly inhibit the region-selective hydroxylation of CBZ, and consequently remarkably increased CBZ exposure in vivo. Furthermore, computational study clarified the important contribution of the key amino acid residues Ser122, and Asp313 in CYP1A1, as well as Asp320 in CYP1A2 to the hydroxylation of CBZ through hydrogen bonds. These results would provide some useful information for the metabolic profiles of CBZ by mammalian CYPs, and shed new insights into CYP1A-mediated metabolic detoxification of CBZ and its health risk assessment.
Collapse
Affiliation(s)
- Xia Lv
- Institute of Precision Medicine and Transformation, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China; College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Jing-Xin Li
- Institute of Precision Medicine and Transformation, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China; College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Jia-Yue Wang
- Institute of Precision Medicine and Transformation, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Xiang-Ge Tian
- College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Lei Feng
- Institute of Precision Medicine and Transformation, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Cheng-Peng Sun
- College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Jing Ning
- College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Chao Wang
- College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Wen-Yu Zhao
- College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Ya-Chen Li
- College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Xiao-Chi Ma
- Institute of Precision Medicine and Transformation, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China; College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China.
| |
Collapse
|
38
|
Bussy U, Boisseau R, Croyal M, Temgoua RCT, Boujtita M. In-line formation and identification of toxic reductive metabolites of aristolochic acid using electrochemistry mass spectrometry coupling. Anal Bioanal Chem 2022; 414:2363-2370. [DOI: 10.1007/s00216-022-03874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 11/01/2022]
|
39
|
Ezema CA, Ezeorba TPC, Aguchem RN, Okagu IU. Therapeutic benefits of Salvia species: A focus on cancer and viral infection. Heliyon 2022; 8:e08763. [PMID: 35146151 PMCID: PMC8819530 DOI: 10.1016/j.heliyon.2022.e08763] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Man is increasingly being faced with many health conditions, including viral infection, some of which increases the risk to cancer. These infectious agents contribute to the large number of persons with cancer and the worrisome number that die from the diseases. A good range of drugs are currently in place for treating patients infected with viruses, however, some of the drugs' effectiveness are limited by the emergence of drug-resistant strains of the viruses, as well as adverse effects of the drugs. Similarly, the inability of many anticancer drugs to selectively kill cancer cells while sparing hosts' normal cells limit their use. This warrants more research for newer drugs, especially from chemicals naturally encrypted in plants with anticancer and antiviral activities. In response to infection with cancer-inducing viruses, plants such as Salvia species synthesize and store secondary metabolites to protect themselves and kill these viruses as well as inhibit their ability to induce carcinogenesis. Hence, this review presented a discussion on the potential application of Salvia species in the prevention and management of cancer and viral infection. The study also discusses the cellular mechanisms of action of these herbal products against cancer cells and viruses, where available and provided suggestions on future research directions. The study is believed to spur more research on how to exploit Salvia phytochemicals as candidates for the development of nutraceuticals and drugs for managing cancers and viral infection.
Collapse
Affiliation(s)
- Chinonso Anthony Ezema
- Department of Microbiology, University of Nigeria, Nsukka, 410001, Nigeria
- Division of Soft Matter, Hokkaido University, Sapporo, 060-0810, Japan
| | | | - Rita Ngozi Aguchem
- Department of Biochemistry, University of Nigeria, Nsukka, 410001, Nigeria
| | | |
Collapse
|
40
|
Chen Z, Xie J, Li Q, Hu K, Yang Z, Yu H, Liu Y. Human CYP enzyme-activated clastogenicity of 2-ethylhexyl diphenyl phosphate (a flame retardant) in mammalian cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117527. [PMID: 34380225 DOI: 10.1016/j.envpol.2021.117527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
2-Ethylhexyl diphenyl phosphate (EHDPP) is a common flame retardant and environmental pollutant, exposing humans with endocrinal disrupting potentials. Its mutagenicity, especially following metabolism, remains unclear. In this study, molecular docking analysis indicated that EHDPP was a potential substrate for several human CYP enzymes except for CYP1A1. Among V79-derived cell lines genetically engineered for the expression of each CYP, EHDPP (6 h exposure/18 h recovery) did not induce micronuclei in the V79 or V79-derived cells expressing human CYP1A1, however, it was positive in V79-derived cell lines expressing human CYP2E1, 3A4, and 2B6. In a human hepatoma (HepG2) cell line, EHDPP (48 h exposure) moderately induced micronuclei, which was blocked by 1-aminobenzotriazole (ABT, 60 μM, inhibitor of CYPs); pretreating HepG2 cells with bisphenol AF, another organic pollutant as inducer of CYPs (0.1 μM for 16 h), significantly potentiated micronuclei formation by EHDPP, threshold being decreased from 10 to 1.25 μM. This effect was blocked by ABT, drastically reduced by ketoconazole (inhibiting CYP3A expression/activity), and moderately inhibited by trans-1,2-dichloroethylene (selective CYP2E1 inhibitor). Immunofluorescent centromere protein B staining indicated that EHDPP-induced micronuclei in V79-derived cell lines expressing human CYP2E1 and 3A4 were predominantly centromere-negative, and that in HepG2 cells pretreated with bisphenol AF (for inducing multiple CYPs) were purely centromere-negative. In bisphenol AF-pretreated HepG2 cells EHDPP potently induced DNA breaks, as indicated by the comet assay and Western blot analysis of γ-H2AX. In conclusion, our study suggests that EHDPP is potently clastogenic, following activation by several human CYP enzymes, CYP3A4 being a major one.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Jiayi Xie
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Qing Li
- Department of Dietetics, Nanfang Hospital, Southern Medical University, 1838 N. Guangzhou Avenue, Guangzhou, 510515, China
| | - Keqi Hu
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hang Yu
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
41
|
The "beauty in the beast"-the multiple uses of Priestia megaterium in biotechnology. Appl Microbiol Biotechnol 2021; 105:5719-5737. [PMID: 34263356 PMCID: PMC8390425 DOI: 10.1007/s00253-021-11424-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023]
Abstract
Abstract Over 30 years, the Gram-positive bacterium Priestia megaterium (previously known as Bacillus megaterium) was systematically developed for biotechnological applications ranging from the production of small molecules like vitamin B12, over polymers like polyhydroxybutyrate (PHB) up to the in vivo and in vitro synthesis of multiple proteins and finally whole-cell applications. Here we describe the use of the natural vitamin B12 (cobalamin) producer P. megaterium for the elucidation of the biosynthetic pathway and the subsequent systematic knowledge-based development for production purposes. The formation of PHB, a natural product of P. megaterium and potential petro-plastic substitute, is covered and discussed. Further important biotechnological characteristics of P. megaterium for recombinant protein production including high protein secretion capacity and simple cultivation on value-added carbon sources are outlined. This includes the advanced system with almost 30 commercially available expression vectors for the intracellular and extracellular production of recombinant proteins at the g/L scale. We also revealed a novel P. megaterium transcription-translation system as a complementary and versatile biotechnological tool kit. As an impressive biotechnology application, the formation of various cytochrome P450 is also critically highlighted. Finally, whole cellular applications in plant protection are completing the overall picture of P. megaterium as a versatile giant cell factory. Key points • The use of Priestia megaterium for the biosynthesis of small molecules and recombinant proteins through to whole-cell applications is reviewed. • P. megaterium can act as a promising alternative host in biotechnological production processes.
Collapse
|
42
|
Ugartondo N, Martínez-Gil N, Esteve M, Garcia-Giralt N, Roca-Ayats N, Ovejero D, Nogués X, Díez-Pérez A, Rabionet R, Grinberg D, Balcells S. Functional Analyses of Four CYP1A1 Missense Mutations Present in Patients with Atypical Femoral Fractures. Int J Mol Sci 2021; 22:ijms22147395. [PMID: 34299011 PMCID: PMC8303772 DOI: 10.3390/ijms22147395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Osteoporosis is the most common metabolic bone disorder and nitrogen-containing bisphosphonates (BP) are a first line treatment for it. Yet, atypical femoral fractures (AFF), a rare adverse effect, may appear after prolonged BP administration. Given the low incidence of AFF, an underlying genetic cause that increases the susceptibility to these fractures is suspected. Previous studies uncovered rare CYP1A1 mutations in osteoporosis patients who suffered AFF after long-term BP treatment. CYP1A1 is involved in drug metabolism and steroid catabolism, making it an interesting candidate. However, a functional validation for the AFF-associated CYP1A1 mutations was lacking. Here we tested the enzymatic activity of four such CYP1A1 variants, by transfecting them into Saos-2 cells. We also tested the effect of commonly used BPs on the enzymatic activity of the CYP1A1 forms. We demonstrated that the p.Arg98Trp and p.Arg136His CYP1A1 variants have a significant negative effect on enzymatic activity. Moreover, all the BP treatments decreased CYP1A1 activity, although no specific interaction with CYP1A1 variants was found. Our results provide functional support to the hypothesis that an additive effect between CYP1A1 heterozygous mutations p.Arg98Trp and p.Arg136His, other rare mutations and long-term BP exposure might generate susceptibility to AFF.
Collapse
Affiliation(s)
- Nerea Ugartondo
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, 08028 Barcelona, Spain; (N.U.); (N.M.-G.); (M.E.); (N.R.-A.); (R.R.)
| | - Núria Martínez-Gil
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, 08028 Barcelona, Spain; (N.U.); (N.M.-G.); (M.E.); (N.R.-A.); (R.R.)
| | - Mònica Esteve
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, 08028 Barcelona, Spain; (N.U.); (N.M.-G.); (M.E.); (N.R.-A.); (R.R.)
| | - Natàlia Garcia-Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, 08003 Barcelona, Spain; (N.G.-G.); (D.O.); (X.N.); (A.D.-P.)
| | - Neus Roca-Ayats
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, 08028 Barcelona, Spain; (N.U.); (N.M.-G.); (M.E.); (N.R.-A.); (R.R.)
| | - Diana Ovejero
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, 08003 Barcelona, Spain; (N.G.-G.); (D.O.); (X.N.); (A.D.-P.)
| | - Xavier Nogués
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, 08003 Barcelona, Spain; (N.G.-G.); (D.O.); (X.N.); (A.D.-P.)
| | - Adolfo Díez-Pérez
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, 08003 Barcelona, Spain; (N.G.-G.); (D.O.); (X.N.); (A.D.-P.)
| | - Raquel Rabionet
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, 08028 Barcelona, Spain; (N.U.); (N.M.-G.); (M.E.); (N.R.-A.); (R.R.)
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, 08028 Barcelona, Spain; (N.U.); (N.M.-G.); (M.E.); (N.R.-A.); (R.R.)
- Correspondence: (D.G.); (S.B.); Tel.: +34-934035418 (S.B.)
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, 08028 Barcelona, Spain; (N.U.); (N.M.-G.); (M.E.); (N.R.-A.); (R.R.)
- Correspondence: (D.G.); (S.B.); Tel.: +34-934035418 (S.B.)
| |
Collapse
|
43
|
Pyrrolizidine alkaloids cause cell cycle and DNA damage repair defects as analyzed by transcriptomics in cytochrome P450 3A4-overexpressing HepG2 clone 9 cells. Cell Biol Toxicol 2021; 38:325-345. [PMID: 33884520 PMCID: PMC8986750 DOI: 10.1007/s10565-021-09599-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/02/2021] [Indexed: 10/26/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are a large group of highly toxic chemical compounds, which are found as cross-contaminants in numerous food products (e.g., honey), dietary supplements, herbal teas, and pharmaceutical herbal medicines. PA contaminations are responsible for serious hepatotoxicity and hepatocarcinogenesis. Health authorities have to set legal limit values to guarantee the safe consumption of plant-based nutritional and medical products without harmful health. Toxicological and chemical analytical methods are conventionally applied to determine legally permitted limit values for PAs. In the present investigation, we applied a highly sensitive transcriptomic approach to investigate the effect of low concentrations of five PAs (lasiocarpine, riddelliine, lycopsamine, echimidine, and monocrotaline) on human cytochrome P450 3A4-overexpressing HepG2 clone 9 hepatocytes. The transcriptomic profiling of deregulated gene expression indicated that the PAs disrupted important signaling pathways related to cell cycle regulation and DNA damage repair in the transfected hepatocytes, which may explain the carcinogenic PA effects. As PAs affected the expression of genes that involved in cell cycle regulation, we applied flow cytometric cell cycle analyses to verify the transcriptomic data. Interestingly, PA treatment led to an arrest in the S phase of the cell cycle, and this effect was more pronounced with more toxic PAs (i.e., lasiocarpine and riddelliine) than with the less toxic monocrotaline. Using immunofluorescence, high fractions of cells were detected with chromosome congression defects upon PA treatment, indicating mitotic failure. In conclusion, the tested PAs revealed threshold concentrations, above which crucial signaling pathways were deregulated resulting in cell damage and carcinogenesis. Cell cycle arrest and DNA damage repair point to the mutagenicity of PAs. The disturbance of chromosome congression is a novel mechanism of Pas, which may also contribute to PA-mediated carcinogenesis. Transcriptomic, cell cycle, and immunofluorescence analyses should supplement the standard techniques in toxicology to unravel the biological effects of PA exposure in liver cells as the primary target during metabolization of PAs.
Collapse
|