1
|
Treschow AF, Vinggaard AM, Valente MJ. Standardization and optimization of the hiPSC-based PluriLum assay for detection of embryonic and developmental toxicants. Arch Toxicol 2024; 98:4107-4116. [PMID: 39365317 PMCID: PMC11496362 DOI: 10.1007/s00204-024-03870-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
New approach methodologies (NAMs) for predicting embryotoxicity and developmental toxicity are urgently needed for generating human relevant data, while reducing turnover time and costs, and alleviating ethical concerns related to the use of animal models. We have previously developed the PluriLum assay, a NKX2.5-reporter gene 3D model using human-induced pluripotent stem cells (hiPSCs) that are genetically modified to enable the assessment of adverse effects of chemicals on the early-stage embryo. Aiming at improving the predictive value of the PluriLum assay for future screening purposes, we sought to introduce standardization steps to the protocol, improving the overall robustness of the PluriLum assay, as well as a shortening of the assay protocol. First, we showed that the initial size of embryoid bodies (EBs) is crucial for a proper differentiation into cardiomyocytes and overall reproducibility of the assay. When the starting diameter of the EBs exceeds 500 µm, robust differentiation can be anticipated. In terms of reproducibility, exposure to the fungicide epoxiconazole at smaller initial diameters resulted in a larger variation of the derived data, compared to more reliable concentration-response curves obtained using spheroids with larger initial diameters. We further investigated the ideal length of the differentiation protocol, resulting in a shortening of the PluriLum assay by 24 h to 7 days. Following exposure to the teratogens all-trans and 13-cis retinoic acid, both cardiomyocyte contraction and measurement of NKX2.5-derived luminescence were recorded with a similar or increased sensitivity after 6 days of differentiation when compared to the original 7 days. Finally, we have introduced an efficient step for enzymatic dissociation of the EBs at assay termination. This allows for an even splitting of the individual EBs and testing of additional endpoints other than the NKX2.5-luciferase reporter, which was demonstrated in this work by the simultaneous assessment of ATP levels. In conclusion, we have introduced standardizations and streamlined the PluriLum assay protocol to improve its suitability as a NAM for screening of a large number of chemicals for developmental toxicity testing.
Collapse
Affiliation(s)
- Andreas Frederik Treschow
- Cell Toxicology Team, National Food Institute, Technical University of Denmark, Kemitorvet B204, 2800 Kgs, Lyngby, Denmark.
| | - Anne Marie Vinggaard
- Cell Toxicology Team, National Food Institute, Technical University of Denmark, Kemitorvet B204, 2800 Kgs, Lyngby, Denmark
| | - Maria João Valente
- Cell Toxicology Team, National Food Institute, Technical University of Denmark, Kemitorvet B204, 2800 Kgs, Lyngby, Denmark
| |
Collapse
|
2
|
Treschow AF, Valente MJ, Lauschke K, Holst B, Andersen AR, Vinggaard AM. Investigating the applicability domain of the hiPSC-based PluriLum assay: an embryotoxicity assessment of chemicals and drugs. Arch Toxicol 2024; 98:1209-1224. [PMID: 38311648 PMCID: PMC10944425 DOI: 10.1007/s00204-023-03675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024]
Abstract
To meet the growing demand for developmental toxicity assessment of chemicals, New Approach Methodologies (NAMs) are needed. Previously, we developed two 3D in vitro assays based on human-induced pluripotent stem cells (hiPSC) and cardiomyocyte differentiation: the PluriBeat assay, based on assessment of beating differentiated embryoid bodies, and the PluriLum assay, a reporter gene assay based on the expression of the early cardiac marker NKX2.5; both promising assays for predicting embryotoxic effects of chemicals and drugs. In this work, we aimed to further describe the predictive power of the PluriLum assay and compare its sensitivity with PluriBeat and similar human stem cell-based assays developed by others. For this purpose, we assessed the toxicity of a panel of ten chemicals from different chemical classes, consisting of the known developmental toxicants 5-fluorouracil, all-trans retinoic acid and valproic acid, as well as the negative control compounds ascorbic acid and folic acid. In addition, the fungicides epoxiconazole and prochloraz, and three perfluoroalkyl substances (PFAS), PFOS, PFOA and GenX were tested. Generally, the PluriLum assay displayed higher sensitivity when compared to the PluriBeat assay. For several compounds the luminescence readout of the PluriLum assay showed effects not detected by the PluriBeat assay, including two PFAS compounds and the two fungicides. Overall, we find that the PluriLum assay has the potential to provide a fast and objective detection of developmental toxicants and has a level of sensitivity that is comparable to or higher than other in vitro assays also based on human stem cells and cardiomyocyte differentiation for assessment of developmental toxicity.
Collapse
Affiliation(s)
- Andreas Frederik Treschow
- Cell Toxicology Team, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Maria João Valente
- Cell Toxicology Team, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Karin Lauschke
- Cell Toxicology Team, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
- Cell Therapy TRU, Novo Nordisk A/S, Måløv, Denmark
| | | | - Anders Reenberg Andersen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne Marie Vinggaard
- Cell Toxicology Team, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
3
|
Branco MA, Nunes TC, Cabral JMS, Diogo MM. Developmental Toxicity Studies: The Path towards Humanized 3D Stem Cell-Based Models. Int J Mol Sci 2023; 24:ijms24054857. [PMID: 36902285 PMCID: PMC10002991 DOI: 10.3390/ijms24054857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Today, it is recognized that medicines will eventually be needed during pregnancy to help prevent to, ameliorate or treat an illness, either due to gestation-related medical conditions or pre-existing diseases. Adding to that, the rate of drug prescription to pregnant women has increased over the past few years, in accordance with the increasing trend to postpone childbirth to a later age. However, in spite of these trends, information regarding teratogenic risk in humans is often missing for most of the purchased drugs. So far, animal models have been the gold standard to obtain teratogenic data, but inter-species differences have limited the suitability of those models to predict human-specific outcomes, contributing to misidentified human teratogenicity. Therefore, the development of physiologically relevant in vitro humanized models can be the key to surpassing this limitation. In this context, this review describes the pathway towards the introduction of human pluripotent stem cell-derived models in developmental toxicity studies. Moreover, as an illustration of their relevance, a particular emphasis will be placed on those models that recapitulate two very important early developmental stages, namely gastrulation and cardiac specification.
Collapse
Affiliation(s)
- Mariana A. Branco
- Collaborative Laboratory to Foster Translation and Drug Discovery, Accelbio, 3030-197 Cantanhede, Portugal
- IBB—Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Tiago C. Nunes
- IBB—Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- IBB—Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Maria Margarida Diogo
- IBB—Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
4
|
Kirkwood‐Johnson L, Marikawa Y. Developmental toxicity of remdesivir, an anti-COVID-19 drug, is implicated by in vitro assays using morphogenetic embryoid bodies of mouse and human pluripotent stem cells. Birth Defects Res 2023; 115:224-239. [PMID: 36349436 PMCID: PMC9877128 DOI: 10.1002/bdr2.2111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/09/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Remdesivir is an antiviral drug approved for the treatment of COVID-19, whose developmental toxicity remains unclear. More information about the safety of remdesivir is urgently needed for people of childbearing potential, who are affected by the ongoing pandemic. Morphogenetic embryoid bodies (MEBs) are three-dimensional (3D) aggregates of pluripotent stem cells that recapitulate embryonic body patterning in vitro, and have been used as effective embryo models to detect the developmental toxicity of chemical exposures specifically and sensitively. METHODS MEBs were generated from mouse P19C5 and human H9 pluripotent stem cells, and used to examine the effects of remdesivir. The morphological effects were assessed by analyzing the morphometric parameters of MEBs after exposure to varying concentrations of remdesivir. The molecular impact of remdesivir was evaluated by measuring the transcript levels of developmental regulator genes. RESULTS The mouse MEB morphogenesis was impaired by remdesivir at 1-8 μM. Remdesivir affected MEBs in a manner dependent on metabolic conversion, and its potency was higher than GS-441524 and GS-621763, presumptive anti-COVID-19 drugs that act similarly to remdesivir. The expressions of developmental regulator genes, particularly those involved in axial and somite patterning, were dysregulated by remdesivir. The early stage of MEB development was more vulnerable to remdesivir exposure than the later stage. The morphogenesis and gene expression profiles of human MEBs were also impaired by remdesivir at 1-8 μM. CONCLUSIONS Remdesivir impaired mouse and human MEBs at concentrations that are comparable to the therapeutic plasma levels in humans, urging further investigation into the potential impact of remdesivir on developing embryos.
Collapse
Affiliation(s)
- Lauren Kirkwood‐Johnson
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, Department of Anatomy, Biochemistry and PhysiologyJohn A. Burns School of Medicine, University of Hawaii at ManoaHonoluluHawaiiUSA
| | - Yusuke Marikawa
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, Department of Anatomy, Biochemistry and PhysiologyJohn A. Burns School of Medicine, University of Hawaii at ManoaHonoluluHawaiiUSA
| |
Collapse
|
5
|
Escher BI, Lamoree M, Antignac JP, Scholze M, Herzler M, Hamers T, Jensen TK, Audebert M, Busquet F, Maier D, Oelgeschläger M, Valente MJ, Boye H, Schmeisser S, Dervilly G, Piumatti M, Motteau S, König M, Renko K, Margalef M, Cariou R, Ma Y, Treschow AF, Kortenkamp A, Vinggaard AM. Mixture Risk Assessment of Complex Real-Life Mixtures-The PANORAMIX Project. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12990. [PMID: 36293571 PMCID: PMC9602166 DOI: 10.3390/ijerph192012990] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 05/06/2023]
Abstract
Humans are involuntarily exposed to hundreds of chemicals that either contaminate our environment and food or are added intentionally to our daily products. These complex mixtures of chemicals may pose a risk to human health. One of the goals of the European Union's Green Deal and zero-pollution ambition for a toxic-free environment is to tackle the existent gaps in chemical mixture risk assessment by providing scientific grounds that support the implementation of adequate regulatory measures within the EU. We suggest dealing with this challenge by: (1) characterising 'real-life' chemical mixtures and determining to what extent they are transferred from the environment to humans via food and water, and from the mother to the foetus; (2) establishing a high-throughput whole-mixture-based in vitro strategy for screening of real-life complex mixtures of organic chemicals extracted from humans using integrated chemical profiling (suspect screening) together with effect-directed analysis; (3) evaluating which human blood levels of chemical mixtures might be of concern for children's development; and (4) developing a web-based, ready-to-use interface that integrates hazard and exposure data to enable component-based mixture risk estimation. These concepts form the basis of the Green Deal project PANORAMIX, whose ultimate goal is to progress mixture risk assessment of chemicals.
Collapse
Affiliation(s)
- Beate I. Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research—UFZ, DE-04318 Leipzig, Germany
- Environmental Toxicology, Department of Geoscience, Eberhard Karls University Tübingen, DE-72076 Tübingen, Germany
| | - Marja Lamoree
- Department Environment & Health, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | - Martin Scholze
- Centre for Pollution Research and Policy, Environmental Sciences Division, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Matthias Herzler
- German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Timo Hamers
- Department Environment & Health, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Tina Kold Jensen
- Department of Environmental Medicine, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Marc Audebert
- Toxalim, UMR1331, INRAE, 31027 Toulouse, France
- PrediTox, 31100 Toulouse, France
| | | | | | | | - Maria João Valente
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Henriette Boye
- Odense Child Cohort, Hans Christian Andersen Hospital for Children, Odense University Hospital, DK-5000 Odense, Denmark
| | | | | | | | | | - Maria König
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research—UFZ, DE-04318 Leipzig, Germany
- Environmental Toxicology, Department of Geoscience, Eberhard Karls University Tübingen, DE-72076 Tübingen, Germany
| | - Kostja Renko
- German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Maria Margalef
- Department Environment & Health, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | - Yanying Ma
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | - Andreas Kortenkamp
- Centre for Pollution Research and Policy, Environmental Sciences Division, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Anne Marie Vinggaard
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Kowalski TW, Lord VO, Sgarioni E, Gomes JDA, Mariath LM, Recamonde-Mendoza M, Vianna FSL. Transcriptome meta-analysis of valproic acid exposure in human embryonic stem cells. Eur Neuropsychopharmacol 2022; 60:76-88. [PMID: 35635998 DOI: 10.1016/j.euroneuro.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 11/04/2022]
Abstract
Valproic acid (VPA) is a widely used antiepileptic drug not recommended in pregnancy because it is teratogenic. Many assays have assessed the impact of the VPA exposure on the transcriptome of human embryonic stem-cells (hESC), but the molecular perturbations that VPA exerts in neurodevelopment are not completely understood. This study aimed to perform a transcriptome meta-analysis of VPA-exposed hESC to elucidate the main biological mechanisms altered by VPA effects on the gene expression. Publicly available microarray and RNA-seq transcriptomes were selected in the Gene Expression Omnibus (GEO) repository. Samples were processed according to the standard pipelines for each technology in the Galaxy server and R. Meta-analysis was performed using the Fisher-P method. Overrepresented genes were obtained by evaluating ontologies, pathways, and phenotypes' databases. The meta-analysis performed in seven datasets resulted in 61 perturbed genes, 54 upregulated. Ontology and pathway enrichments suggested neurodevelopment and neuroinflammatory effects; phenotype overrepresentation included epilepsy-related genes, such as SCN1A and GABRB2. The NDNF gene upregulation was also identified; this gene is involved in neuron migration and survival during development. Sub-network analysis proposed TGFβ and BMP pathways activation. These results suggest VPA exerts effects in epilepsy-related genes even in embryonic cells. Neurodevelopmental genes, such as NDNF were upregulated and VPA might also disturb several development pathways. These mechanisms might help to explain the spectrum of VPA-induced congenital anomalies and the molecular effects on neurodevelopment.
Collapse
Affiliation(s)
- Thayne Woycinck Kowalski
- Post-Graduation Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; National Institute of Medical Population Genetics (INAGEMP), Porto Alegre, Brazil; Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; Centro Universitário CESUCA, Cachoeirinha, Brazil.
| | - Vinícius Oliveira Lord
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; Centro Universitário CESUCA, Cachoeirinha, Brazil
| | - Eduarda Sgarioni
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Julia do Amaral Gomes
- Post-Graduation Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; National Institute of Medical Population Genetics (INAGEMP), Porto Alegre, Brazil
| | - Luiza Monteavaro Mariath
- Post-Graduation Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Mariana Recamonde-Mendoza
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Post-Graduation Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; National Institute of Medical Population Genetics (INAGEMP), Porto Alegre, Brazil.
| |
Collapse
|