1
|
Groti Antonič K, Zitzmann M. Novel perspectives of testosterone therapy in men with functional hypogonadism: traversing the gaps of knowledge. Aging Male 2024; 27:2296460. [PMID: 38149634 DOI: 10.1080/13685538.2023.2296460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023] Open
Abstract
INTRODUCTION In the past decade, there has been a significant augmentation in the corpus of evidence pertaining to functional hypogonadism. Despite this, prevailing clinical guidelines continue to advise against the universal screening for hypogonadism in middle-aged and elderly males. FINDINGS Numerous randomized controlled trials have scrutinized the effects of testosterone therapy in males afflicted with type 2 diabetes and/or obesity. However, these guidelines uniformly assert that lifestyle modifications and weight reduction should be the primary intervention strategies in overweight and obese males, relegating testosterone therapy to a secondary, selective option. It is extensively documented that testosterone therapy can yield substantial improvements in various metabolic parameters as well as ameliorate symptoms of erectile dysfunction. Moreover, recent studies have demonstrated the potential of testosterone therapy in reversing type 2 diabetes in males with low-normal testosterone levels who are at elevated risk for this condition, in comparison to the outcomes achievable through lifestyle modifications alone. CONCLUSION This focused review article aims to present a comprehensive update on the latest data concerning the innovative aspects of testosterone therapy in males with functional hypogonadism, particularly in the context of type 2 diabetes and/or obesity. Additionally, it will delve into the cardiovascular safety of such interventions within this high-risk demographic, with a special emphasis on insights gleaned from the TRAVERSE trial.
Collapse
Affiliation(s)
- Kristina Groti Antonič
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Michael Zitzmann
- Centre for Reproductive Medicine and Andrology, Münster University Hospital, Münster, Germany
| |
Collapse
|
2
|
de Alencar Silva A, de Morais LP, de Sena Bastos CM, de Menezes Dantas D, Batista PR, Dias FJ, Alencar de Menezes IR, Cardoso JHL, Raposo A, Han H, Coutinho HDM, Barbosa R. Vasorelaxant effect of phenylpropanoids: Methyl eugenol and eugenol in human umbilical cord vein. Biomed Pharmacother 2024; 178:117227. [PMID: 39084083 DOI: 10.1016/j.biopha.2024.117227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Methyl-eugenol (ME) and eugenol (EUG) are phenylpropanoids with vasodilatory effects. While EUG's vasorelaxant effect in human umbilical artery (HUA) is known, their action in veins is unclear. This study aimed to evaluate ME and EUG in human umbilical vein (HUV). Isolated HUV underwent tension recordings. ME and EUG caused 100 % relaxation in HUV, with EC50 values corresponding to: 174.3 ± 7.3 and 217.3 ± 6.2 µM for ME and EUG respectively in presence of K+; 362.3 ± 5.4 and 227.7 ± 4.9 µM for ME and EUG respectively and in presence of serotonin (5-HT). It was observed that in presence of BaCl2 and CaCl2 evoked contractions, ME (800 and 1000 µM) and EUG (1000 and 1400 µM) prevent the contractions. In presence of K+ channel blockers it was observed that ME promoted relaxation compared to its control, except in presence of 4-AP, suggesting a possible Ca2+-dependent K+ channel activation for this molecule; EUG increased all EC50 in presence of the K+ blockers except in presence of TEA 1 mM. Greater pharmacological potency was observed for ME. This study highlights natural substances' effects on HUV contractile parameters, suggesting ME and EUG as potential vasodilators in maintaining fetal oxygenation and venous flow during gestational hypertensive syndromes.
Collapse
Affiliation(s)
- Andressa de Alencar Silva
- Postgraduate Program in Physiological Sciences of the Universidade Estadual do Ceará - PPGCF/UECE, Fortaleza, Ceará, Brazil; Laboratory of Physiopharmacology of Excitable Cells of the Universidade Regional do Cariri - LFCE/URCA, Crato, Ceará, Brazil
| | - Luís Pereira de Morais
- Multicenter Postgraduate Program in Biochemistry and Molecular Biology at the Universidade Federal do Cariri - UFCA, Center for Agricultural Sciences and Biodiversity, Crato, Ceará, Brazil
| | - Carla Mikevely de Sena Bastos
- Postgraduate Program in Physiological Sciences of the Universidade Estadual do Ceará - PPGCF/UECE, Fortaleza, Ceará, Brazil; Laboratory of Physiopharmacology of Excitable Cells of the Universidade Regional do Cariri - LFCE/URCA, Crato, Ceará, Brazil
| | - Debora de Menezes Dantas
- Postgraduate Program in Biological Chemistry of the Universidade Regional do Cariri - PPQB/URCA, Crato, Ceará, Brazil
| | - Paulo Ricardo Batista
- Postgraduate Program in Biological Chemistry of the Universidade Regional do Cariri - PPQB/URCA, Crato, Ceará, Brazil
| | - Francisco Junio Dias
- Multicenter Postgraduate Program in Biochemistry and Molecular Biology at the Universidade Federal do Cariri - UFCA, Center for Agricultural Sciences and Biodiversity, Crato, Ceará, Brazil
| | - Irwin Rose Alencar de Menezes
- Multicenter Postgraduate Program in Biochemistry and Molecular Biology at the Universidade Federal do Cariri - UFCA, Center for Agricultural Sciences and Biodiversity, Crato, Ceará, Brazil
| | - José Henrique Leal Cardoso
- Postgraduate Program in Physiological Sciences of the Universidade Estadual do Ceará - PPGCF/UECE, Fortaleza, Ceará, Brazil
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, Lisboa 1749-024, Portugal.
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, 98 Gunja-Dong, Gwanjin-Gu, Seoul 143-747, South Korea.
| | | | - Roseli Barbosa
- Postgraduate Program in Physiological Sciences of the Universidade Estadual do Ceará - PPGCF/UECE, Fortaleza, Ceará, Brazil; Postgraduate Program in Biological Chemistry of the Universidade Regional do Cariri - PPQB/URCA, Crato, Ceará, Brazil
| |
Collapse
|
3
|
Chen K, Wong TH, Tan YG, Tay KJ, Tan WC, Chan J, Ho H, Cheng C, Teoh JYC, Chiu PKF, Wang HJ, Saad MB, Kanesvaran R, Li YQ, Ng CT, Tuan JKL, Yuen JSP. Cardio-oncology in advanced prostate cancer. Front Oncol 2024; 14:1386597. [PMID: 38947889 PMCID: PMC11211357 DOI: 10.3389/fonc.2024.1386597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Treatment intensification with androgen deprivation therapy (ADT) and androgen receptor pathway inhibitors (ARPi) have led to improved survival in advanced prostate cancer. However, ADT is linked to significant cardiovascular toxicity, and ARPi also negatively impacts cardiovascular health. Together with a higher prevalence of baseline cardiovascular risk factors reported among prostate cancer survivors at diagnosis, there is a pressing need to prioritise and optimise cardiovascular health in this population. Firstly, While no dedicated cardiovascular toxicity risk calculators are available, other tools such as SCORE2 can be used for baseline cardiovascular risk assessment. Next, selected patients on combination therapy may benefit from de-escalation of ADT to minimise its toxicities while maintaining cancer control. These patients can be characterised by an exceptional PSA response to hormonal treatment, favourable disease characteristics and competing comorbidities that warrant a less aggressive treatment regime. In addition, emerging molecular and genomic biomarkers hold the potential to identify patients who are suited for a de-escalated treatment approach either with ADT or with ARPi. One such biomarker is AR-V7 splice variant that predicts resistance to ARPi. Lastly, optimization of modifiable cardiovascular risk factors for patients through a coherent framework (ABCDE) and exercise therapy is equally important. This article aims to comprehensively review the cardiovascular impact of hormonal manipulation in metastatic hormone-sensitive prostate cancer, propose overarching strategies to mitigate cardiovascular toxicity associated with hormonal treatment, and, most importantly, raise awareness about the detrimental cardiovascular effects inherent in our current management strategies involving hormonal agents.
Collapse
Affiliation(s)
- Kenneth Chen
- Department of Urology, Singapore General Hospital, Singapore, Singapore
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Ting Hong Wong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yu Guang Tan
- Department of Urology, Singapore General Hospital, Singapore, Singapore
| | - Kae Jack Tay
- Department of Urology, Singapore General Hospital, Singapore, Singapore
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Wei Chong Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Johan Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Henry Ho
- Department of Urology, Singapore General Hospital, Singapore, Singapore
| | - Christopher Cheng
- Department of Urology, Singapore General Hospital, Singapore, Singapore
| | - Jeremy Yuen-Chun Teoh
- S. H. Ho Urology Centre, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Peter Ka-Fung Chiu
- S. H. Ho Urology Centre, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hung Jen Wang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University and College of Medicine, Kaohsiung, Taiwan
| | - Marniza Binti Saad
- Department of Clinical Oncology, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Ravindran Kanesvaran
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - You Quan Li
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Choon Ta Ng
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore
| | | | - John Shyi Peng Yuen
- Department of Urology, Singapore General Hospital, Singapore, Singapore
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Carbajal-García A, Reyes-García J, Díaz-Hernández V, Casas-Hernández MF, Flores-Murrieta FJ, Montaño LM. Testosterone Enhances K V Currents and Airway Smooth Muscle Relaxation Induced by ATP and UTP through P2Y 4 Receptors and Adenylyl Cyclase Pathway. Int J Mol Sci 2024; 25:4652. [PMID: 38731872 PMCID: PMC11083821 DOI: 10.3390/ijms25094652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
Numerous studies suggest the involvement of adenosine-5'-triphosphate (ATP) and similar nucleotides in the pathophysiology of asthma. Androgens, such as testosterone (TES), are proposed to alleviate asthma symptoms in young men. ATP and uridine-5'-triphosphate (UTP) relax the airway smooth muscle (ASM) via purinergic P2Y2 and P2Y4 receptors and K+ channel opening. We previously demonstrated that TES increased the expression of voltage-dependent K+ (KV) channels in ASM. This study investigates how TES may potentiate ASM relaxation induced by ATP and UTP. Tracheal tissues treated with or without TES (control group) from young male guinea pigs were used. In organ baths, tracheas exposed to TES (40 nM for 48 h) showed enhanced ATP- and UTP-evoked relaxation. Tetraethylammonium, a K+ channel blocker, annulled this effect. Patch-clamp experiments in tracheal myocytes showed that TES also increased ATP- and UTP-induced K+ currents, and this effect was abolished with flutamide (an androgen receptor antagonist). KV channels were involved in this phenomenon, which was demonstrated by inhibition with 4-aminopyridine. RB2 (an antagonist of almost all P2Y receptors except for P2Y2), as well as N-ethylmaleimide and SQ 22,536 (inhibitors of G proteins and adenylyl cyclase, respectively), attenuated the enhancement of the K+ currents induced by TES. Immunofluorescence and immunohistochemistry studies revealed that TES did not modify the expression of P2Y4 receptors or COX-1 and COX-2, while we have demonstrated that this androgen augmented the expression of KV1.2 and KV1.5 channels in ASM. Thus, TES leads to the upregulation of P2Y4 signaling and KV channels in guinea pig ASM, enhancing ATP and UTP relaxation responses, which likely limits the severity of bronchospasm in young males.
Collapse
Affiliation(s)
- Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.C.-G.); (J.R.-G.); (M.F.C.-H.)
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.C.-G.); (J.R.-G.); (M.F.C.-H.)
| | - Verónica Díaz-Hernández
- Departamento de Embriología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - María F. Casas-Hernández
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.C.-G.); (J.R.-G.); (M.F.C.-H.)
| | - Francisco Javier Flores-Murrieta
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Luis M. Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.C.-G.); (J.R.-G.); (M.F.C.-H.)
| |
Collapse
|
5
|
Mariana M, Soares AMVM, Castelo-Branco M, Cairrao E. Exposure to DEP Modifies the Human Umbilical Artery Vascular Resistance Contributing to Hypertension in Pregnancy. J Xenobiot 2024; 14:497-515. [PMID: 38651380 PMCID: PMC11036297 DOI: 10.3390/jox14020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Hypertensive disorders in pregnancy (HDP) are the most prevalent diseases during pregnancy. In addition to the already identified risk factors, exposure to environmental contaminants has been also considered a new one. Phthalates, which are classified as priority environmental pollutants due to their ubiquitousness and endocrine disrupting properties, have been implicated in HDP in some epidemiological studies. Nevertheless, phthalates' vascular impacts still need to be clarified. Thus, we aimed to understand the connection between phthalates exposure and the occurrence of gestational hypertension, as well as the pathway involved in the pathological vascular effects. We investigated diethyl phthalate's (DEP) effect on the vascular reactivity of the human umbilical arteries (HUAs) from normotensive and hypertensive pregnant women. Both DEP's nongenomic (within minutes effect) and genomic (24 h exposure to DEP) actions were evaluated, as well as the contribution of cyclic guanosine monophosphate and Ca2+ channel pathways. The results show that short-term exposure to DEP interferes with serotonin and histamine receptors, while after prolonged exposure, DEP seems to share the same vasorelaxant mechanism as estrogens, through the NO/sGC/cGMP/PKG signaling pathway, and to interfere with the L-type Ca2+ channels. Thus, the vascular effect induced by DEP is similar to that observed in HUA from hypertensive pregnancies, demonstrating that the development of HDP may be a consequence of DEP exposure.
Collapse
Affiliation(s)
- Melissa Mariana
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilha, Portugal; (M.M.); (M.C.-B.)
- Faculty of Sciences (FC-UBI), University of Beira Interior, 6201-001 Covilha, Portugal
| | - Amadeu M. V. M. Soares
- Centre for Environmental and Marine Studies (CESAM-UA), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Miguel Castelo-Branco
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilha, Portugal; (M.M.); (M.C.-B.)
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, 6200-506 Covilha, Portugal
| | - Elisa Cairrao
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilha, Portugal; (M.M.); (M.C.-B.)
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, 6200-506 Covilha, Portugal
| |
Collapse
|
6
|
Zampieri GM, Nunes PR, Abbade JF, Dias CA, Sandrim VC. Vascular contraction of umbilical arteries of pregnant women with preeclampsia. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2024; 46:e-rbgo2. [PMID: 38765503 PMCID: PMC11075432 DOI: 10.61622/rbgo/2024ao02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 05/22/2024] Open
Abstract
Objective Potassium channels have an important role in the vascular adaptation during pregnancy and a reduction in the expression of adenosine triphosphate-sensitive potassium channels (Katp) has been linked to preeclampsia. Activation of Katp induces vasodilation; however, no previous study has been conducted to evaluate the effects of the inhibition of these channels in the contractility of preeclamptic arteries. Glibenclamide is an oral antihyperglycemic agent that inhibits Katp and has been widely used in vascular studies. Methods To investigate the effects of the inhibition of Katp, umbilical arteries of preeclamptic women and women with healthy pregnancies were assessed by vascular contractility experiments, in the presence or absence of glibenclamide. The umbilical arteries were challenged with cumulative concentrations of potassium chloride (KCl) and serotonin. Results There were no differences between the groups concerning the maternal age and gestational age of the patients. The percentage of smokers, caucasians and primiparae per group was also similar. On the other hand, blood pressure parameters were elevated in the preeclamptic group. In addition, the preeclamptic group presented a significantly higher body mass index. The newborns of both groups presented similar APGAR scores and weights. Conclusion In the presence of glibenclamide, there was an increase in the KCl-induced contractions only in vessels from the PE group, showing a possible involvement of these channels in the disorder.
Collapse
Affiliation(s)
- Gabriela Morelli Zampieri
- Universidade Estadual Paulista "Julio de Mesquita Filho"BotucatuSPBrazilUniversidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP, Brazil.
| | - Priscila Rezeck Nunes
- Universidade Estadual Paulista "Julio de Mesquita Filho"BotucatuSPBrazilUniversidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP, Brazil.
| | - Joelcio Francisco Abbade
- Universidade Estadual Paulista "Julio de Mesquita Filho"BotucatuSPBrazilUniversidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP, Brazil.
| | - Carlos Alan Dias
- Universidade Estadual Paulista "Julio de Mesquita Filho"BotucatuSPBrazilUniversidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP, Brazil.
| | - Valeria Cristina Sandrim
- Universidade Estadual Paulista "Julio de Mesquita Filho"BotucatuSPBrazilUniversidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP, Brazil.
| |
Collapse
|
7
|
Fernandes LM, Lorigo M, Cairrao E. Relationship between Androgens and Vascular and Placental Function during Pre-eclampsia. Curr Issues Mol Biol 2024; 46:1668-1693. [PMID: 38534724 DOI: 10.3390/cimb46030108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Hypertensive disorders of pregnancy (HDP) represent a substantial risk to maternal and fetal health. Emerging evidence suggests an association between testosterone and pre-eclampsia (PE), potentially mediated through androgen receptors (AR). Nevertheless, the mechanism driving this association is yet to be elucidated. On the other hand, reports of transgender men's pregnancies offer a limited and insightful opportunity to understand the role of high androgen levels in the development of HDP. In this sense, a literature review was performed from a little over 2 decades (1998-2022) to address the association of testosterone levels with the development of HDP. Furthermore, this review addresses the case of transgender men for the first time. The main in vitro outcomes reveal placenta samples with greater AR mRNA expression. Moreover, ex vivo studies show that testosterone-induced vasorelaxation impairment promotes hypertension. Epidemiological data point to greater testosterone levels in blood samples during PE. Studies with transgender men allow us to infer that exogenous testosterone administration can be considered a risk factor for PE and that the administration of testosterone does not affect fetal development. Overall, all studies analyzed suggested that high testosterone levels are associated with PE.
Collapse
Affiliation(s)
- Lara M Fernandes
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
8
|
de Sena Bastos CM, Pereira-de-Morais L, de Alencar Silva A, de Menezes Dantas D, Batista PR, Gomes MFL, de Araújo Delmondes G, de Menezes IRA, da Silva RER, Barbosa R. Perillyl Alcohol Promotes Relaxation in Human Umbilical Artery. Curr Med Chem 2024; 31:7072-7082. [PMID: 38204229 DOI: 10.2174/0109298673269428231204064101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Perillyl alcohol (POH) is a monoterpenoid found in plant essential oils and has been shown to relax murine vessels, but its effect on human vessels remains poorly studied. OBJECTIVE The study aimed to characterize the effect of POH on human umbilical arteries (HUA). METHODS Rings of HUA were obtained from uncomplicated patients and suspended in an organ bath for isometric recording. The vasorelaxant effect of POH in HUA was evaluated on basal tone and electromechanical or pharmacomechanical contractions, and possible mechanisms of action were also investigated. RESULTS POH (1-1000 μM) altered the basal tone of HUA and completely relaxed HUA rings precontracted with KCl (60 mM) or 5-HT (10 μM), obtaining greater potency in the pharmacomechanical pathway (EC50 110.1 μM), suggesting a complex interference in the mobilization of extra- and intracellular Ca2+. POH (1000 μM) inhibited contractions induced by BaCl2 (0.1-30 mM) in a similar way to nifedipine (10 μM), indicating a possible blockade of L-type VOCC. In the presence of potassium channel blockers, tetraethylammonium (1 mM), 4-aminopyridine (1 mM), or glibenclamide (10 μM), an increase in the EC50 value of the POH was observed, suggesting a modulation of the activity of BKCa, KV, and KATP channels. CONCLUSION The data from this study suggest that POH modulates Ca2+ and K+ ion channels to induce a relaxant response in HUA.
Collapse
Affiliation(s)
- Carla Mikevely de Sena Bastos
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato 63105-000, Ceará, Brazil
- Physiopharmacology of Excitable Cells Laboratory, Biological Sciences Department, Pimenta Campus, Regional University of Cariri, Crato 63105-000, Ceará, Brazil
| | - Luis Pereira-de-Morais
- Physiopharmacology of Excitable Cells Laboratory, Biological Sciences Department, Pimenta Campus, Regional University of Cariri, Crato 63105-000, Ceará, Brazil
| | - Andressa de Alencar Silva
- Physiopharmacology of Excitable Cells Laboratory, Biological Sciences Department, Pimenta Campus, Regional University of Cariri, Crato 63105-000, Ceará, Brazil
| | - Débora de Menezes Dantas
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato 63105-000, Ceará, Brazil
| | - Paulo Ricardo Batista
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato 63105-000, Ceará, Brazil
- Physiopharmacology of Excitable Cells Laboratory, Biological Sciences Department, Pimenta Campus, Regional University of Cariri, Crato 63105-000, Ceará, Brazil
| | - Maria Franciele Lima Gomes
- Physiopharmacology of Excitable Cells Laboratory, Biological Sciences Department, Pimenta Campus, Regional University of Cariri, Crato 63105-000, Ceará, Brazil
| | | | | | - Renata Evaristo Rodrigues da Silva
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato 63105-000, Ceará, Brazil
- Physiopharmacology of Excitable Cells Laboratory, Biological Sciences Department, Pimenta Campus, Regional University of Cariri, Crato 63105-000, Ceará, Brazil
| | - Roseli Barbosa
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato 63105-000, Ceará, Brazil
- Physiopharmacology of Excitable Cells Laboratory, Biological Sciences Department, Pimenta Campus, Regional University of Cariri, Crato 63105-000, Ceará, Brazil
| |
Collapse
|
9
|
Lorigo M, Mangana C, Cairrao E. Disrupting effects of the emerging contaminant octylmethoxycinnamate (OMC) on human umbilical artery relaxation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122302. [PMID: 37536478 DOI: 10.1016/j.envpol.2023.122302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Cardiovascular diseases (CVD) represent the number one cause of death worldwide. The vascular endothelium may play a role in the pathophysiology of CVD diseases. Octylmethoxycinnamate (OMC) is a UV-B filter (CAS number: 5466-77-3) widely used worldwide in numerous personal care products, including sunscreens, daily creams, and makeup. This UV-B filter is considered an endocrine disruptor. Therefore, this investigation aimed to evaluate the direct effects of OMC in human umbilical arteries (HUAs) with endothelium and the possible mechanisms involved in the response. The results demonstrated that OMC exerts a rapid (non-genomic) and endothelium-dependent arterial relaxant effect on HUAs previously contracted with serotonin (5-HT) and Histamine (His). On the other hand, when HUAs were contracted with potassium chloride (KCl), the relaxing effect was only observed in HUAs without endothelium, and it appeared to be inhibited in HUAs with endothelium. Thus, the vasorelaxant effect of OMC depends on the endothelium and depends on the contractile agent used, suggesting that OMC may act through different signaling pathways. Furthermore, computational modulation studies, corroborated the binding of OMC to all the proteins under investigation (eNOS, COX-2, ET-1, and TxA2), with higher affinity for COX-2. In summary, the vascular effect of OMC may involve activating different pathways, i.e., acting through the NO pathway, COX pathway, or activating the endothelin-1 pathway.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal; C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501, Covilhã, Portugal.
| | - Carolina Mangana
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal; C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501, Covilhã, Portugal.
| |
Collapse
|
10
|
Tang J, Qi L, He Y, Li N, Zhang Z, Zhou X, Su H, Zheng Q, Zhang Y, Tao J, Xu Z. In vitro fertilization with frozen embryo transfer increased histamine-mediated contractile sensitivity via PKCβ in human umbilical vein. Reprod Biol Endocrinol 2023; 21:54. [PMID: 37312191 DOI: 10.1186/s12958-023-01103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/16/2023] [Indexed: 06/15/2023] Open
Abstract
OBJECTIVE In vitro fertilization-embryo transfer (IVF-ET) technologies (especially frozen ET) have been widely used, which might affect maternal and fetal health. Information regarding influence of IVF-ET on the vasoconstriction of human umbilical vein (HUV) is limited. This study determined effects of frozen ET on histamine-mediated vascular responses in HUV and related mechanisms. METHODS AND RESULTS HUVs were collected from frozen ET conceived pregnancy and spontaneously conceived pregnancy (control). Histamine concentration in umbilical plasma was higher in frozen ET group than the control. Histamine-mediated contractile response curve was left-shifted in the frozen ET group when comparing with the control. In isolated HUV rings, H1R showed a critical role in regulating vascular constriction, while H2R played little roles in regulating vessel tone. Iberiotoxin and 4-aminopyridine didn't significantly change histamine-mediated constriction in HUVs. Histamine-induced vasoconstrictions were significantly decreased by nifedipine, KN93, or GF109203X, while the inhibitory effects were significantly greater in the frozen ET group in comparison to the control. The constrictions by Bay K8644, phenylephrine, or PDBu were stronger in frozen ET, respectively. There was a decrease in the protein expressions of H1R and H2R, an increase in protein expressions of BKCaα and PKCβ. CONCLUSIONS Histamine-induced constriction in HUV was mainly via H1R. The increased sensitivity to histamine in HUV following frozen ET cycles were linked to the enhanced PKCβ protein expression and function. The new data and findings in this study provide important insight into influences of frozen ET on fetal vessel development and potential influence in long-term.
Collapse
Affiliation(s)
- Jiaqi Tang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Linglu Qi
- Women's Hospital School of Medicine Zhejiang University, Zhejiang, China
| | - Yun He
- Department of Obstetrics and Gynecology, Taixing People's Hospital, Taixing, Jiangsu, China
| | - Na Li
- Maternal and Child Health Care Hospital of Wuxi, Wuxi, Jiangsu, China
| | - Ze Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiuwen Zhou
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongyu Su
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qiutong Zheng
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yumeng Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianying Tao
- Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Jiangsu, China.
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China.
- Maternal and Child Health Care Hospital of Wuxi, Wuxi, Jiangsu, China.
| |
Collapse
|
11
|
Batista PR, Silva ADA, de Sena Bastos CM, Rodrigues da Silva RE, Calixto GL, de Morais LP, Delmondes GDA, Kerntopf MR, de Menezes IRA, Barbosa R. Vasodilation promoted by ( E, E)-farnesol involving ion channels in human umbilical arteries. Heliyon 2023; 9:e17328. [PMID: 37441374 PMCID: PMC10333471 DOI: 10.1016/j.heliyon.2023.e17328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Background (E,E)-farnesol is a sesquiterpene alcohol derived from plants and animals that exhibits pharmacological properties in the cardiovascular system. However, its effects on human umbilical vessels remain unknown. Purpose Thus, this study aims to characterize the vasodilatory effect of (E,E)-farnesol in human umbilical arteries (HUA). Study design The tissue is obtained from pregnant women over 18 years of age, normotensive, and without prepartum complications. After collected, the tissue was segmented and dissected to remove Wharton's jelly and obtain the umbilical arteries segments. Methods HUA segments were isolated and sectioned into rings that were subjected to isometric tension recordings in an organ bath. Results (E,E)-farnesol (1 μmol/L to 1 mmol/L) promoted vasodilatory effect in HUA preparations, affecting basal tone, and inhibiting the electromechanical coupling induced by KCl 60 mmol/L with greater potency (EC50 225.3 μmol/L) than the pharmacomechanical coupling induced by 5-HT 10 μmol/L (EC50 363.5 μmol/L). In the absence of extracellular calcium, pharmacomechanical coupling was also abolished, and contractions induced by CaCl2 or BaCl2 were attenuated by (E,E)-farnesol indicating a possible direct inhibition of L-type VOCC as a mechanism of the vasodilatory effect. The vasodilator efficacy of (E,E)-farnesol on reduction of vasocontraction induced by the presence of tetraethylammonium (1 or 10 mmol/L), 4-aminopyridine (1 mmol/L) and glibenclamide (10 μmol/L) suggesting a possible influence of different potassium channels (BKCa, KV and KATP). Conclusion These results suggest that (E,E)-farnesol may be a promising pharmacological candidate for obstetric hypertensive disorders.
Collapse
Affiliation(s)
- Paulo Ricardo Batista
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | - Andressa de Alencar Silva
- Graduate Program in Physiological Sciences, Higher Institute of Biomedical Sciences, State University of Ceará, Fortaleza, 60714-903, Ceará, Brazil
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | - Carla Mikevely de Sena Bastos
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | - Renata Evaristo Rodrigues da Silva
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | - Gabriela Lucena Calixto
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | - Luís Pereira de Morais
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
- Biotechnology By the Northeastern Biotechnology Network (RENORBIO), State University of Ceará, Fortaleza, 60714-903, Ceará, Brazil
| | | | - Marta Regina Kerntopf
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | | | - Roseli Barbosa
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| |
Collapse
|
12
|
Pereira-de-Morais L, Silva ADA, Bastos CMDS, Calixto GL, Araújo IM, Araújo MC, Barbosa R, Leal-Cardoso JH. The preeclampsia condition alters external potassium-evoked contraction of human umbilical vessels. Placenta 2023; 138:68-74. [PMID: 37209614 DOI: 10.1016/j.placenta.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/22/2023]
Abstract
INTRODUCTION Pre-eclampsia (PE) is a disease of high incidence in parturients, that adversely affects both mother and fetus. Although PE prevalence is high, there are few studies on literature describing its etiology or its mechanism of action. Thus, the aim of this study was to elucidate PE-induced alterations of contractile reactivity in umbilical vessels. METHOD Segments of human umbilical artery (HUA) and human umbilical vein (HUV) from neonates of normotensive or PE parturients were obtained and contractile responses measured with a myograph. The segments were allowed to stabilize (2 h) under 1.0, 2.0 and 3.0 g force (gf) at pre-stimulation and, then, were stimulated with high isotonic K+ concentrations ([K+]o; 10-120 mM). RESULTS All preparations responded to increases in isotonic K+ concentrations. In HUA and HUV of neonates of normotensive parturients, and in HUV of neonates of PE parturients, the contraction saturated at nearly 50 mM [K+]o, while in HUA of neonates of PE parturients, saturation occurred at 30 mM [K+]o. Additionally, several differences between contractile responses of HUA and HUV from neonates of normotensive parturients and those from neonates of parturients with PE were observed. PE alters the contractile response of the HUA and HUV to increased [K+]o, and its contractile modulation by the pre-stimulus basal tension. Moreover, in HUA of PE, reactivity is decreased for 2.0 and 3.0 gf basal tensions and increased for 1.0 gf; in the HUV of PE condition, it is increased for all basal tensions. DISCUSSION In conclusion, PE promotes several alterations in HUA and HUV contractile reactivity, vessels in which important circulatory alterations are known to occur.
Collapse
Affiliation(s)
- Luís Pereira-de-Morais
- Northeastern Biotechnology Network, State University of Ceará, Itapery Campus, 60741-000, Fortaleza, CE, Brazil.
| | - Andressa de Alencar Silva
- Graduate Program in Physiological Sciences, State University of Ceará, Itapery Campus, 60741-000, Fortaleza, CE, Brazil.
| | - Carla Mikevely de Sena Bastos
- Graduate Program in Biological Chemistry, Regional University of Cariri, Pimenta Campus, 63105-010, Crato, CE, Brazil.
| | - Gabriela Lucena Calixto
- Graduate Program in Biological Chemistry, Regional University of Cariri, Pimenta Campus, 63105-010, Crato, CE, Brazil.
| | - Isaac Moura Araújo
- Graduate Program in Biological Chemistry, Regional University of Cariri, Pimenta Campus, 63105-010, Crato, CE, Brazil.
| | - Marília Cavalcante Araújo
- Graduate Program in Physiological Sciences, State University of Ceará, Itapery Campus, 60741-000, Fortaleza, CE, Brazil.
| | - Roseli Barbosa
- Graduate Program in Biological Chemistry, Regional University of Cariri, Pimenta Campus, 63105-010, Crato, CE, Brazil.
| | - José Henrique Leal-Cardoso
- Northeastern Biotechnology Network, State University of Ceará, Itapery Campus, 60741-000, Fortaleza, CE, Brazil; Graduate Program in Physiological Sciences, State University of Ceará, Itapery Campus, 60741-000, Fortaleza, CE, Brazil.
| |
Collapse
|
13
|
Reyes-García J, Díaz-Hernández V, Carbajal-García A, Casas-Hernández MF, Sommer B, Montaño LM. Theophylline-Induced Relaxation Is Enhanced after Testosterone Treatment via Increased K V1.2 and K V1.5 Protein Expression in Guinea Pig Tracheal Smooth Muscle. Int J Mol Sci 2023; 24:ijms24065884. [PMID: 36982957 PMCID: PMC10059212 DOI: 10.3390/ijms24065884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 03/30/2023] Open
Abstract
Theophylline is a drug commonly used to treat asthma due to its anti-inflammatory and bronchodilatory properties. Testosterone (TES) has been suggested to reduce the severity of asthma symptoms. This condition affects boys more than girls in childhood, and this ratio reverses at puberty. We reported that guinea pig tracheal tissue chronic exposure to TES increases the expression of β2-adrenoreceptors and enhances salbutamol-induced K+ currents (IK+). Herein, we investigated whether the upregulation of K+ channels can enhance the relaxation response to methylxanthines, including theophylline. Chronic incubation of guinea pig tracheas with TES (40 nM, 48 h) enhanced the relaxation induced by caffeine, isobutylmethylxanthine, and theophylline, an effect that was abolished by tetraethylammonium. In tracheal myocytes, chronic incubation with TES increased theophylline-induced IK+; flutamide reversed this effect. The increase in IK+ was blocked by 4-aminopyridine by ~82%, whereas iberiotoxin reduced IK+ by ~17%. Immunofluorescence studies showed that chronic TES exposure increased the expression of KV1.2 and KV1.5 in airway smooth muscle (ASM). In conclusion, chronic exposure to TES in guinea pig ASM promotes upregulation of KV1.2 and KV1.5 and enhances theophylline relaxation response. Therefore, gender should be considered when prescribing methylxanthines, as teenage boys and males are likely to respond better than females.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Verónica Díaz-Hernández
- Departamento de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - María F Casas-Hernández
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Bettina Sommer
- Laboratorio de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
14
|
Oh ES, Steele CN, You Z, Nowak KL, Jovanovich AJ. Sex hormones and the risk of cardiovascular disease and mortality in male and female patients with chronic kidney disease: A systematic review and meta-analysis. Physiol Rep 2022; 10:e15490. [PMID: 36394074 PMCID: PMC9669609 DOI: 10.14814/phy2.15490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Patients with chronic kidney disease (CKD) commonly experience sex hormone disturbances, which may be associated with the risk of cardiovascular disease (CVD) and mortality. This review aimed to systematically evaluate current findings on the association of sex hormone levels with the risk of CVD events and mortality (CVD and all-cause) in the CKD population. Articles were systematically searched in CINAHL, Cochrane, and PubMed. A total of 1739 articles were independently screened by two reviewers and 17 prospective cohort studies were included. The clinical conditions of the patients were those with non-dialysis CKD [mean/median estimated glomerular filtration rate (eGFR) between 15-51 ml/min/1.73 m2 ] and those on chronic dialysis (mean/median vintage between 6-125 months). The sample size ranged from 111 to 2419 and the mean/median age of subjects ranged from 52 to 72 years. The sex hormones studied were testosterone, estradiol, prolactin, dehydroepiandrosterone sulfate, and relaxin. A random-effects model was used to generate a pooled hazard ratio (HR) to evaluate the association of total testosterone levels with the risk of CVD and all-cause mortality. Most studies examined total testosterone levels (11 out of 17 studies) and studied only male patients (12 out of 17 studies). A lower total testosterone level was associated with a higher risk of CVD mortality [HR 4.37 (95% CI 1.40-13.65)] and all-cause mortality [1.96 (1.35-2.83)] in males with CKD. To conclude, there is a strong need for additional studies examining the association of sex hormones with cardiovascular and mortality risk in female patients with CKD.
Collapse
Affiliation(s)
- Ester S. Oh
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Cortney N. Steele
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Zhiying You
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Kristen L. Nowak
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Anna J. Jovanovich
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- VA Eastern Colorado Healthcare SystemAuroraColoradoUSA
| |
Collapse
|
15
|
Perusquía M. Androgens and Non-Genomic vascular responses in hypertension. Biochem Pharmacol 2022; 203:115200. [PMID: 35926652 DOI: 10.1016/j.bcp.2022.115200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/02/2022]
Abstract
Arterial hypertension is a global public health concern. In the last few years, the interest in androgen deficiency has been growing, and the association between androgens and high blood pressure (BP) is still controversial. One purpose of this review was to summarize the available findings in order to clarify whether male sex steroid hormones have beneficial or harmful effect on BP. The second purpose was to enhance the recognition of the acute non-genomic sex-independent vasorelaxing effect of androgens. Remarkably, BP variation is expected to be a consequence of the androgen-induced vasorelaxation which reduces systemic BP; hence the in vivo vasodepressor, hypotensive, and antihypertensive responses of androgens were also analyzed. This article reviews the current understanding of the physiological regulation of vascular smooth muscle contractility by androgens. Additionally, it summarizes older and more recent data on androgens, and some of the possible underlying mechanisms of relaxation, structural-functional differences in the androgen molecules, and their designing ability to induce vasorelaxation. The clinical relevance of these findings in terms of designing future therapeutics mainly the 5-reduced metabolite of testosterone, 5β-dihydrotestosterone, is also highlighted. Literature collected through a PubMed database search, as well as our experimental work, was used for the present review.
Collapse
Affiliation(s)
- Mercedes Perusquía
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México.
| |
Collapse
|
16
|
Willemars MMA, Nabben M, Verdonschot JAJ, Hoes MF. Evaluation of the Interaction of Sex Hormones and Cardiovascular Function and Health. Curr Heart Fail Rep 2022; 19:200-212. [PMID: 35624387 PMCID: PMC9329157 DOI: 10.1007/s11897-022-00555-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 12/02/2022]
Abstract
Purpose of Review Sex hormones drive development and function of reproductive organs or the development of secondary sex characteristics but their effects on the cardiovascular system are poorly understood. In this review, we identify the gaps in our understanding of the interaction between sex hormones and the cardiovascular system. Recent Findings Studies are progressively elucidating molecular functions of sex hormones in specific cell types in parallel with the initiation of crucial large randomized controlled trials aimed at improving therapies for cardiovascular diseases (CVDs) associated with aberrant levels of sex hormones. Summary In contrast with historical assumptions, we now understand that men and women show different symptoms and progression of CVDs. Abnormal levels of sex hormones pose an independent risk for CVD, which is apparent in conditions like Klinefelter syndrome, androgen insensitivity syndrome, and menopause. Moreover, sex hormone–based therapies remain understudied and may not be beneficial for cardiovascular health.
Collapse
Affiliation(s)
- Myrthe M A Willemars
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Job A J Verdonschot
- CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Martijn F Hoes
- CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands. .,Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, the Netherlands. .,Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
17
|
Feiteiro J, Rocha SM, Mariana M, Maia CJ, Cairrão E. Pathways involved in the human vascular Tetrabromobisphenol A response: calcium and potassium channels and nitric oxide donors. Toxicology 2022; 470:153158. [DOI: 10.1016/j.tox.2022.153158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/28/2023]
|
18
|
Dantas DDM, Silva ADA, Pereira-de-Morais L, Bastos CMDS, Calixto GL, Kerntopf MR, Menezes IRAD, Weinreich D, Barbosa R. Characterization of the vasodilator effect of eugenol in isolated human umbilical cord arteries. Chem Biol Interact 2022; 359:109890. [DOI: 10.1016/j.cbi.2022.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
|
19
|
Could Lower Testosterone in Older Men Explain Higher COVID-19 Morbidity and Mortalities? Int J Mol Sci 2022; 23:ijms23020935. [PMID: 35055119 PMCID: PMC8781054 DOI: 10.3390/ijms23020935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 01/08/2023] Open
Abstract
The health scourge imposed on humanity by the COVID-19 pandemic seems not to recede. This fact warrants refined and novel ideas analyzing different aspects of the illness. One such aspect is related to the observation that most COVID-19 casualties were older males, a tendency also noticed in the epidemics of SARS-CoV in 2003 and the Middle East respiratory syndrome in 2012. This gender-related difference in the COVID-19 death toll might be directly involved with testosterone (TEST) and its plasmatic concentration in men. TEST has been demonstrated to provide men with anti-inflammatory and immunological advantages. As the plasmatic concentration of this androgen decreases with age, the health benefit it confers also diminishes. Low plasmatic levels of TEST can be determinant in the infection’s outcome and might be related to a dysfunctional cell Ca2+ homeostasis. Not only does TEST modulate the activity of diverse proteins that regulate cellular calcium concentrations, but these proteins have also been proven to be necessary for the replication of many viruses. Therefore, we discuss herein how TEST regulates different Ca2+-handling proteins in healthy tissues and propose how low TEST concentrations might facilitate the replication of the SARS-CoV-2 virus through the lack of modulation of the mechanisms that regulate intracellular Ca2+ concentrations.
Collapse
|
20
|
Li H, An JR, Seo MS, Kang M, Heo R, Park S, Mun SY, Bae YM, Han ET, Han JH, Chun W, Na SH, Park WS. Downregulation of large-conductance Ca 2+-activated K + channels in human umbilical arterial smooth muscle cells in gestational diabetes mellitus. Life Sci 2022; 288:120169. [PMID: 34822796 DOI: 10.1016/j.lfs.2021.120169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022]
Abstract
AIMS We investigated the changes in large-conductance Ca2+-activated K+ (BKCa) channels from human umbilical arterial smooth muscle cells experiencing gestational diabetes mellitus (GDM). MAIN METHODS Whole-cell patch-clamp technique, arterial tone measurement, RT-PCR, Quantitative real-time PCR, western blot were performed in human umbilical arterial smooth muscle cells. KEY FINDINGS Whole-cell BKCa current density was decreased in the GDM group compared with the normal group. The vasorelaxant effects of the synthetic BKCa channel activator NS-1619 (10 μM) were impaired in the GDM group compared with the normal group. Reverse-transcription polymerase chain reaction (RT-PCR), real-time RT-PCR, and western blot analyses suggested that the mRNA, total RNA, and protein expression levels of the BKCa channel were decreased in the GDM group relative to the normal group. In addition, the expression levels of protein kinase A and protein kinase G, which regulate BKCa channel activity, remained unchanged between the groups. Applying the BKCa channel inhibitor paxilline (10 μM) induced vasoconstriction and membrane depolarization of isolated umbilical arteries in the normal group but showed less of an effect on umbilical arteries in the GDM group. SIGNIFICANCE Our results demonstrate for the first time impaired BKCa current and BKCa channel-induced vasorelaxation activities that were not caused by impaired BKCa channel-regulated protein kinases, but by decreased expression of the BKCa channels, in the umbilical arteries of GDM patients.
Collapse
Affiliation(s)
- Hongliang Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Jin Ryeol An
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Mi Seon Seo
- Department of Physiology, Konkuk University School of Medicine, Chungju 27478, South Korea
| | - Minji Kang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Ryeon Heo
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Seojin Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Seo-Yeong Mun
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Young Min Bae
- Department of Physiology, Konkuk University School of Medicine, Chungju 27478, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Sung Hun Na
- Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon 24341, South Korea.
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea.
| |
Collapse
|
21
|
The Effect of Testosterone on Cardiovascular Disease and Cardiovascular Risk Factors in Men: A Review of Clinical and Preclinical Data. CJC Open 2021; 3:1238-1248. [PMID: 34888506 PMCID: PMC8636244 DOI: 10.1016/j.cjco.2021.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/09/2021] [Indexed: 11/20/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. The effects of testosterone, the primary male sex hormone, on cardiovascular risk have been of special interest due to the increased risk of CVD in men. Although it is well established that testosterone levels decline and cardiovascular mortality increases with age, the association between testosterone and CVD remains unclear. Observational and randomized studies on the effects of endogenous and exogenous testosterone have produced conflicting data, and meta-analyses have been inconclusive, suggesting significant study heterogeneity. Despite a lack of adequately powered randomized controlled trials, large observational studies in the early 2010s led to advisories on the use of testosterone replacement therapy. Similar advisories have been mandated for certain types of androgen deprivation therapy. Additional research suggests that testosterone shortens the heart-rate-corrected QT interval, improves glycemic control, induces vasodilation, is prothrombotic, and has anti-obesity effects, whereas associations with atherosclerosis and inflammation are less clear. Despite inconclusive evidence on cardiovascular risk and inconsistencies among clinical practice guidelines, millions of men continue to use testosterone replacement and androgen deprivation therapy. In addition to summarizing clinical and preclinical data, this review provides insight on potential mechanisms of action of testosterone on CVD, applications of this knowledge to clinical settings, and avenues for future research.
Collapse
|
22
|
Lorigo M, Cairrao E. Fetoplacental vasculature as a model to study human cardiovascular endocrine disruption. Mol Aspects Med 2021; 87:101054. [PMID: 34839931 DOI: 10.1016/j.mam.2021.101054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence has associated the exposure of endocrine-disrupting chemicals (EDCs) with the cardiovascular (CV) system. This exposure is particularly problematic in a sensitive window of development, pregnancy. Pregnancy exposome can affect the overall health of the pregnancy by dramatic changes in vascular physiology and endocrine activity, increasing maternal susceptibility. Moreover, fetoplacental vascular function is generally altered, increasing the risk of developing pregnancy complications (including cardiovascular diseases, CVD) and predisposing the foetus to adverse health risks later in life. Thus, our review summarizes the existing literature on exposures to EDCs during pregnancy and adverse maternal health outcomes, focusing on the human placenta, vein, and umbilical artery associated with pregnancy complications. The purpose of this review is to highlight the role of fetoplacental vasculature as a model for the study of human cardiovascular endocrine disruption. Therefore, we emphasize that the placenta, together with the umbilical arteries and veins, allows a better characterization of the pregnant woman's exposome. Consequently, it contributes to the protection of the mother and foetus against CV disorders in life.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
23
|
Gerges SH, El-Kadi AOS. Sex differences in eicosanoid formation and metabolism: A possible mediator of sex discrepancies in cardiovascular diseases. Pharmacol Ther 2021; 234:108046. [PMID: 34808133 DOI: 10.1016/j.pharmthera.2021.108046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
Arachidonic acid is metabolized by cyclooxygenase, lipoxygenase, and cytochrome P450 enzymes to produce prostaglandins, leukotrienes, epoxyeicosatrienoic acids (EETs), and hydroxyeicosatetraenoic acids (HETEs), along with other eicosanoids. Eicosanoids have important physiological and pathological roles in the body, including the cardiovascular system. Evidence from several experimental and clinical studies indicates differences in eicosanoid levels, as well as in the activity or expression levels of their synthesizing and metabolizing enzymes between males and females. In addition, there is a clear state of gender specificity in cardiovascular diseases (CVD), which tend to be more common in men compared to women, and their risk increases significantly in postmenopausal women compared to younger women. This could be largely attributed to sex hormones, as androgens exert detrimental effects on the heart and blood vessels, whereas estrogen exhibits cardioprotective effects. Many of androgen and estrogen effects on the cardiovascular system are mediated by eicosanoids. For example, androgens increase the levels of cardiotoxic eicosanoids like 20-HETE, while estrogens increase the levels of cardioprotective EETs. Thus, sex differences in eicosanoid levels in the cardiovascular system could be an important underlying mechanism for the different effects of sex hormones and the differences in CVD between males and females. Understanding the role of eicosanoids in these differences can help improve the management of CVD.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
24
|
Lorigo M, Quintaneiro C, Maia CJ, Breitenfeld L, Cairrao E. UV-B filter octylmethoxycinnamate impaired the main vasorelaxant mechanism of human umbilical artery. CHEMOSPHERE 2021; 277:130302. [PMID: 33789217 DOI: 10.1016/j.chemosphere.2021.130302] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/06/2021] [Accepted: 03/12/2021] [Indexed: 05/24/2023]
Abstract
Personal care products (PCPs) are a group of diverse substances widely used daily for health, beauty, and cleanliness. More than 90% of all PCPs contain the UV-B filter octylmethoxycinnamate (OMC) as a protective function, however, their safety has recently been questioned. The purpose of the present work was to understand how the long-term exposure of UV-filter OMC, used daily by pregnant women, disrupts their vascular homeostasis, altering vascular responses of proteins and channels involved in contractile processes. The long-term effects of 24 h of exposure to OMC (1, 10, and 50 μmol/L) were evaluated on contractile responses of human umbilical arteries (HUA) to serotonin and potassium chloride. Since OMC altered vascular homeostasis of arteries, its vascular mode of action was explored in more detail through the analysis of the activity of cGMP and Ca2+-channels, two pathways involved in their relaxation and contraction, respectively. Our findings showed that long-term exposure of UV-filter OMC impaired the main vasorelaxant mechanism of HUA, once OMC altered the vasorelaxant response pattern of sodium nitroprusside and nifedipine. Results also showed that long-term exposure to OMC induced a decreased vasorelaxation response on HUA due to an interference with the NO/sGC/cGMP/PKG pathway. Moreover, OMC seems to modulate the L-type Ca2+ channels, the BKCa 1.1 α-subunit channels, and the PKG. Overall, since OMC compromises the vascular homeostasis of pregnant women it can be an inductor of pregnancy hypertensive disorders.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| | - Carla Quintaneiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Cláudio J Maia
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| | - Luiza Breitenfeld
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
25
|
UV-B Filter Octylmethoxycinnamate Alters the Vascular Contractility Patterns in Pregnant Women with Hypothyroidism. Biomedicines 2021; 9:biomedicines9020115. [PMID: 33530401 PMCID: PMC7912698 DOI: 10.3390/biomedicines9020115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence relating the exposure and/or bioaccumulation of endocrine-disrupting compounds (EDCs) with cardiovascular system are arising. Octylmethoxycinnamate (OMC) is the most widely used UV-B filter and as EDC interacts with TH receptors. However, their effects on thyroid diseases during pregnancy remain unknown. The purpose of this work was to assess the short- and long-term effects of OMC on arterial tonus of pregnant women with hypothyroidism. To elucidate this, human umbilical artery (HUA) rings without endothelium were used to explore the vascular effects of OMC by arterial and cellular experiments. The binding energy and the modes of interaction of the OMC into the active center of the TSHR and THRα were analyzed by molecular docking studies. Our results indicated that OMC altered the contractility patterns of HUA contracted with serotonin, histamine and KCl, possibly due to an interference with serotonin and histamine receptors or an involvement of the Ca2+ channels. The molecular docking analysis show that OMC compete with T3 for the binding center of THRα. Taken together, these findings pointed out to alterations in HUA reactivity as result of OMC-exposure, which may be involved in the development and increased risk of cardiovascular diseases.
Collapse
|
26
|
Clinical Importance of the Human Umbilical Artery Potassium Channels. Cells 2020; 9:cells9091956. [PMID: 32854241 PMCID: PMC7565333 DOI: 10.3390/cells9091956] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Potassium (K+) channels are usually predominant in the membranes of vascular smooth muscle cells (SMCs). These channels play an important role in regulating the membrane potential and vessel contractility-a role that depends on the vascular bed. Thus, the activity of K+ channels represents one of the main mechanisms regulating the vascular tone in physiological and pathophysiological conditions. Briefly, the activation of K+ channels in SMC leads to hyperpolarization and vasorelaxation, while its inhibition induces depolarization and consequent vascular contraction. Currently, there are four different types of K+ channels described in SMCs: voltage-dependent K+ (KV) channels, calcium-activated K+ (KCa) channels, inward rectifier K+ (Kir) channels, and 2-pore domain K+ (K2P) channels. Due to the fundamental role of K+ channels in excitable cells, these channels are promising therapeutic targets in clinical practice. Therefore, this review discusses the basic properties of the various types of K+ channels, including structure, cellular mechanisms that regulate their activity, and new advances in the development of activators and blockers of these channels. The vascular functions of these channels will be discussed with a focus on vascular SMCs of the human umbilical artery. Then, the clinical importance of K+ channels in the treatment and prevention of cardiovascular diseases during pregnancy, such as gestational hypertension and preeclampsia, will be explored.
Collapse
|
27
|
Sesti F, Pofi R, Minnetti M, Tenuta M, Gianfrilli D, Isidori AM. Late-onset hypogonadism: Reductio ad absurdum of the cardiovascular risk-benefit of testosterone replacement therapy. Andrology 2020; 8:1614-1627. [PMID: 32737921 DOI: 10.1111/andr.12876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Low testosterone (T) level is considered a marker of poor cardiovascular health. Ten years ago, the Testosterone in Older Men with Mobility Limitations (TOM) trial was discontinued due to a higher number of adverse events in men receiving T compared with placebo. Since then, several studies have investigated the risks of T replacement therapy (TRT) in late-onset hypogonadism (LOH). OBJECTIVE To review the mechanism by which TRT could damage the cardiovascular system. MATERIALS AND METHODS Comprehensive literature search of recent clinical and experimental studies. RESULTS The mechanisms of T-mediated coronary vasodilation were reviewed with emphasis on calcium-activated and ATP-sensitive potassium ion channels. We showed how T regulates endothelial nitric oxide synthase (eNOS) and phosphoinositide 3-kinase/protein kinase B/eNOS signaling pathways in vessel walls and its direct effects on cardiomyocytes via β1-adrenergic and ryanodine receptors and provided data on myocardial infarction and heart failure. Vascular smooth muscle senescence could be explained by the modulation of growth factors, matrix metalloproteinase-2, and angiotensin II by T. Furthermore, leukocyte trafficking, facilitated by changes in TNF-α, could explain some of the effects of T on atheromatous plaques. Conflicting data on prothrombotic risk linked to platelet aggregation inhibition via NO-triggered arachidonate synthesis or increased aggregability due to enhanced thromboxane A in human platelets provide evidence regarding the hypotheses on plaque maturation and rupture risk. The effects of T on cardiac electrophysiology and oxygen delivery were also reviewed. DISCUSSION The effects of TRT on the cardiovascular system are complex. Although molecular studies suggest a potential benefit, several clinical observations reveal neutral or occasionally detrimental effects, mostly due to confounding factors. CONCLUSIONS Attempts to demonstrate that TRT damages the cardiovascular system via systematic analysis of the putative mechanisms led to the contradiction of the initial hypothesis. Current evidence indicates that TRT is safe once other comorbidities are addressed.
Collapse
Affiliation(s)
- Franz Sesti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Riccardo Pofi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Marianna Minnetti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Marta Tenuta
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
28
|
Lorigo M, Mariana M, Lemos MC, Cairrao E. Vascular mechanisms of testosterone: The non-genomic point of view. J Steroid Biochem Mol Biol 2020; 196:105496. [PMID: 31655180 DOI: 10.1016/j.jsbmb.2019.105496] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/26/2019] [Accepted: 10/07/2019] [Indexed: 01/19/2023]
Abstract
Testosterone (T) is the predominant endogenous androgen in the bloodstream. At the vascular level, T presents genomic and non-genomic effects, and both effects may overlap. The genomic actions assume that androgens can freely cross the plasma membrane of target cells and bind to nuclear androgen receptors, inducing gene transcription and protein synthesis. The non-genomic effects have a more rapid onset and may be related to the interaction with protein/receptor/ion channels of the plasma membrane. The key T effect at the vascular level is vasorelaxation, which is primarily due to its rapid effect. Thus, the main purpose of this review is to discuss the T non-genomic effects at the vascular level and the molecular pathways involved in its vasodilator effect observed in in vivo and in vitro studies. In this sense, the nuclear receptor activation, the influence of vascular endothelium and the activation or inhibition of ion channels (potassium and calcium channels, respectively) will be reviewed regarding all the data that corroborated or not. Moreover, this review also provides a brief update on the association of T with the risk factors for cardiovascular diseases, namely metabolic syndrome, type 2 diabetes mellitus, obesity, atherosclerosis, dyslipidaemia, and hypertension. In summary, in this paper we consider the non-genomic vascular mode of action of androgen in physiological conditions and the main risk factors for cardiovascular diseases.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Melissa Mariana
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Manuel C Lemos
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Elisa Cairrao
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
29
|
Montaño LM, Flores-Soto E, Sommer B, Solís-Chagoyán H, Perusquía M. Androgens are effective bronchodilators with anti-inflammatory properties: A potential alternative for asthma therapy. Steroids 2020; 153:108509. [PMID: 31586608 DOI: 10.1016/j.steroids.2019.108509] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
Abstract
Changes in plasma androgen levels in asthmatic men may be linked to asthma severity, seemingly acting through nongenomic and genomic effects. Nongenomic effects include rapid relaxation of carbachol or antigenic challenge pre-contracted guinea pig airway smooth muscle (ASM) in vitro: testosterone (TES) blocks l-type voltage dependent Ca2+ channels, stored operated Ca2+ channels, inositol 1,4,5-trisphosphate receptors and promotes prostaglandin E2 biosynthesis. In ASM at rest, TES lowers basal intracellular Ca2+ concentration and tension, maintaining a proper airway patency keeping steady smooth muscle tension and basal intracellular Ca2+ concentration at rest. Moreover, the bronchospasm in sensitized guinea-pigs was ablated by dehydroepiandrosterone (DHEA), a precursor of steroids, TES and its metabolites 5α- and 5β-dihydrotestosterone (DHT). On the other hand, genomic effects related to androgens' anti-inflammatory properties in asthma have been recently studied. Briefly, TES negatively regulates type 2 immune response sustained by CD4+ Th2 and group 2 innate lymphoid cells, diminishing allergic airway inflammation in males. Also, novel findings establish that TES decreases interleukin (IL)-17A protein expression produced by CD4+ Th17 cells and therefore neutrophilic airway inflammation. Clearly, DHEA, TES or its 5β-reduced metabolite that possesses minimal androgenic effect, might have potential therapeutic capacities in the treatment of severe asthma via mechanisms distinct from corticosteroid treatment.
Collapse
Affiliation(s)
- Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico.
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, CDMX, Mexico.
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, CDMX, Mexico.
| | - Mercedes Perusquía
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, Mexico.
| |
Collapse
|
30
|
Sun B, Yang D, Yin YZ, Xiao J. Estrogenic and anti-inflammatory effects of pseudoprotodioscin in atherosclerosis-prone mice: Insights into endothelial cells and perivascular adipose tissues. Eur J Pharmacol 2019; 869:172887. [PMID: 31877277 DOI: 10.1016/j.ejphar.2019.172887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/03/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
Pseudoprotodioscin (PPD), a phytoestrogen isolated from Dioscorea nipponica Makino, is recognized to possess anti-inflammatory and antiadipogenic capacities. However, little is known about the antiatherosclerotic effects of PPD and the underlying mechanisms. Here, the contribution of estrogen receptors (ERs) and inflammation to PPD-mediated amelioration of endothelial dysfunction has been fully assessed. PPD administration alleviated atherosclerotic lesions by lowering total cholesterol in ovariectomized apoE-/- mice fed a high-cholesterol diet. Molecular docking analysis suggested a selective interaction of PPD with ERα. Upon PPD treatment, ERα and endothelial nitric oxide synthase (eNOS) protein levels were increased, whereas cell adhesion molecule and monocyte chemoattractant protein-1 (MCP-1) mRNA levels were suppressed in human umbilical vein endothelial cells (HUVECs) after injury caused by oxidized low-density lipoprotein (ox-LDL). These effects could be abolished by an ERα antagonist or a NOS inhibitor. Whereas, PPD can ERα-independently suppress TNFα expression in peritoneal macrophages upon LPS induction. Estrogen deficiency induced inflammatory phenotypes in perivascular adipose tissue (PAT), which could be partially attenuated by PPD. The increased release of adiponectin in PAT after PPD treatment is in accordance with previous reported data showing that adiponectin exerts anti-inflammatory effects in multiple cell types. ERα-dependent antiadipogenic effects of PPD were also detected in PAT-derived stromal cells. The present study reveals a novel mechanism through which PPD exerts estrogenic and anti-inflammatory properties in atherosclerosis-prone mice. Thus, PPD is a promising compound which has potential therapeutic effects on atherosclerotic cardiovascular diseases in postmenopausal women.
Collapse
Affiliation(s)
- Bing Sun
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China
| | - Dan Yang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China
| | - Yue-Zhang Yin
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China; Shandong University of Traditional Chinese Medicine, Shandong, 250355, PR China
| | - Jing Xiao
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China.
| |
Collapse
|
31
|
Lorigo M, Mariana M, Oliveira N, Lemos MC, Cairrao E. Vascular Pathways of Testosterone: Clinical Implications. J Cardiovasc Transl Res 2019; 13:55-72. [DOI: 10.1007/s12265-019-09939-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022]
|
32
|
UV-B Filter Octylmethoxycinnamate Induces Vasorelaxation by Ca 2+ Channel Inhibition and Guanylyl Cyclase Activation in Human Umbilical Arteries. Int J Mol Sci 2019; 20:ijms20061376. [PMID: 30893788 PMCID: PMC6471535 DOI: 10.3390/ijms20061376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/18/2022] Open
Abstract
Ultraviolet (UV) filters are chemicals widely used in personal care products (PCPs). Due to their effect as endocrine disruptor compounds (EDCs), the toxicity of UV filters is a current concern for human health. EDC exposure may be correlated to cardiovascular diseases (CVD), but to our knowledge, no studies assessed the UV filters effects as human EDCs at the vascular level. Octylmethoxycinnamate (OMC) is the world's most widely used UV-B filter, present in more than 90% of PCPs. Due to its demonstrated multiple hormonal activities in animal models, this substance is also suspected to be a human EDC. The purpose of this study was to assess the rapid/short-term effects of OMC on arterial tonus and analyse its mode of action (MOA). Using human umbilical arteries, the endocrine effects of OMC were evaluated in in vitro (cellular and organ) experiments by planar cell surface area (PCSA) and organ bath, respectively. Our data show that OMC induces a rapid/short-term smooth muscle relaxation acting through an endothelium-independent MOA, which seems to be shared with oestrogens, involving an activation of soluble guanylyl cyclase (sGC) that increases the cyclic guanosine monophosphate (cGMP) intracellular levels and an inhibition of L-type voltage-operated Ca2+ channels (L-Type VOCC).
Collapse
|
33
|
Feiteiro J, Mariana M, Glória S, Cairrao E. Inhibition of L-type calcium channels by Bisphenol A in rat aorta smooth muscle. J Toxicol Sci 2018; 43:579-586. [PMID: 30298846 DOI: 10.2131/jts.43.579] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bisphenol A (BPA) is an endocrine disrupting chemical used on a wide range in industry. This compound has been used in the production of polycarbonate plastics and epoxy resins. For this reason and their global use, BPA is one of the most common environmental chemicals to which humans are exposed. This exposure can cause several adverse health outcomes, including at the cardiovascular level. The regulation of ion channels in vascular smooth muscle is pivotal and important for vasoreactivity, and changes in their flux can be involved in the pathophysiology of some cardiovascular diseases. This study aims to analyse in rat aorta whether the vasorelaxant effect of BPA is mediated by L-type Ca2+ channels inhibition. Using male Wistar rat aorta artery rings in the organ bath we analysed the contractility, and to study the activity of calcium current in A7r5 cells we used the whole cell configuration of Patch Clamp technique. Regarding the contractility experiences we observed that in both NA and KCl contraction, BPA caused a rapid and concentration-dependent relaxation. The electrophysiology experiments showed that BPA inhibited the basal and BAY K8644-stimulated whole-cell L-type Ca2+ channel (W-CLTCC) currents, indicating that this drug blocks the L-type Ca2+ channels. Our results suggest that BPA inhibits the W-CLTCC, leading to the relaxation of vascular smooth muscle.
Collapse
Affiliation(s)
- Joana Feiteiro
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, Portugal
| | - Melissa Mariana
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, Portugal
| | - Solage Glória
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, Portugal
| | - Elisa Cairrao
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, Portugal
| |
Collapse
|
34
|
Lorigo M, Mariana M, Feiteiro J, Cairrao E. How is the human umbilical artery regulated? J Obstet Gynaecol Res 2018; 44:1193-1201. [PMID: 29727040 DOI: 10.1111/jog.13667] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/31/2018] [Indexed: 01/12/2023]
Abstract
The purpose of this review is to present an update of the main mechanisms involved in the physiological regulation of contraction and relaxation of the human umbilical artery (HUA) smooth muscle cells. A literature review was performed based on the analysis of papers available on PubMed. The most important and relevant studies regarding the regulation of the HUA are presented in this article. The vascular smooth muscle is a highly specialized structure, whose main function is to regulate the vascular tonus. This is controlled by a balance between the cellular signaling pathways that mediate contraction and relaxation. The cells responsible for the contractile property of this muscle are the smooth muscle cells (SMC), and an excellent source of these cells is the HUA, involved in fetoplacental circulation. Since the umbilical blood vessels are not innervated, the HUA tonus is modulated by vasoactive substances that regulate the contractile process. The main vasoactive substances that induce contraction are serotonin, histamine, thromboxane, bradykinin, endothelin 1 and prostaglandin F2α, that are linked to the activation of proteins Gq and Gi/0 . On the other hand, the main vasorelaxation mechanisms are the activation of adenyl and guanil cyclases, potassium channels and the inhibition of calcium channels. The SMC from the HUA allow the study of different cellular mechanisms and their functions. Therefore, these cells are an important tool to study the mechanisms regulating the contractility of this artery, allowing to detect potential therapeutic targets to treat HUA disorders (gestational hypertension and pre-eclampsia).
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Melissa Mariana
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Joana Feiteiro
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
35
|
Glória S, Marques J, Feiteiro J, Marcelino H, Verde I, Cairrão E. Tributyltin role on the serotonin and histamine receptors in human umbilical artery. Toxicol In Vitro 2018; 50:210-216. [PMID: 29580985 DOI: 10.1016/j.tiv.2018.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 12/26/2022]
Abstract
Some studies in animals suggest that TBT may constitute a risk factor for cardiovascular diseases. Hence, the main purpose of this study was to investigate in human umbilical artery (HUA) the effect of TBT on vascular reactivity, manly in serotonin (5-HT) and histamine receptors. Using standard organ bath techniques, rings of HUA without endothelium were contracted by 5-HT and histamine. We also investigated the effect of TBT on the expression of the receptors using Real-time PCR. The results show that TBT short term effects include concentration-dependent relaxation. Moreover, at long term exposures, the arteries treated with 100 μM of TBT do not have contraction capacity when 5-HT is added, and the gene expression of 5-HT2A receptor decrease. Regarding histamine, it was demonstrated that TBT induces a concentration-dependent relaxation and the H1 gene expression levels decrease. In conclusion TBT modifies the activity and expression of 5-HT and histamine receptors.
Collapse
Affiliation(s)
- Solange Glória
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, Covilhã, Portugal
| | - João Marques
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, Covilhã, Portugal
| | - Joana Feiteiro
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, Covilhã, Portugal
| | - Helena Marcelino
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, Covilhã, Portugal
| | - Ignacio Verde
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrão
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
36
|
Prepubertal Development of GABAergic Transmission to Gonadotropin-Releasing Hormone (GnRH) Neurons and Postsynaptic Response Are Altered by Prenatal Androgenization. J Neurosci 2018; 38:2283-2293. [PMID: 29374136 DOI: 10.1523/jneurosci.2304-17.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/29/2017] [Accepted: 01/20/2018] [Indexed: 11/21/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons regulate reproduction through pulsatile GnRH release. Women with polycystic ovary syndrome (PCOS) have persistently elevated luteinizing hormone release frequency, reflecting GnRH release; this exacerbates hyperandrogenemia and disrupted reproductive cycles that are characteristic of this disorder. Clinical evidence suggests that neuroendocrine features of PCOS may manifest peripubertally. Adult mice prenatally exposed to androgens (PNA) mimic several reproductive features of PCOS. GnRH neurons from these mice have increased firing activity and receive increased GABAergic transmission, which is excitatory. When changes emerge during development is unknown. To study the typical postnatal development of GABAergic transmission and the effects of PNA treatment and sex, whole-cell voltage-clamp recordings were made of GABAergic postsynaptic currents (PSCs) in GnRH neurons in brain slices from prepubertal through adult control and PNA female and male mice. GABAergic transmission was present by 1 week of age in females and males and increased in frequency, reaching adult levels at 3 and 4 weeks, respectively. GABAergic PSC frequency was elevated in 3-week-old PNA versus control females. PSC frequency in both controls and PNA mice was activity independent, suggesting that PNA induces changes in synapse organization. PNA also alters the functional response of GnRH neurons to GABA. GABA induced firing in fewer neurons from 3-week-old PNA than control females; membrane potential depolarization induced by GABA was also reduced in cells from PNA mice at this age. PNA thus induces changes during development in the presynaptic organization of the GABAergic network afferent to GnRH neurons as well as the postsynaptic GnRH neuron response, both of which may contribute to adult reproductive dysfunction.SIGNIFICANCE STATEMENT The central neuronal network that regulates reproduction is overactive in polycystic ovary syndrome (PCOS), a leading cause of infertility. Recent evidence of neuroendocrine dysfunction in midpubertal girls suggests that the pathophysiological mechanisms underlying PCOS may arise before pubertal maturation. Prenatal exposure to androgens (PNA) in mice mimics several neuroendocrine features of PCOS. GABAergic transmission to gonadotropin-releasing hormone (GnRH) neurons is important for reproduction and is increased in adult PNA mice. The typical development of this network and when changes with PNA and sex arise relative to puberty are unknown. These studies provide evidence that PNA alters prepubertal development of the GABAergic network afferent to GnRH neurons, including both the presynaptic organization and postsynaptic response. These changes may contribute to reproductive dysfunction in adults.
Collapse
|
37
|
Boese AC, Kim SC, Yin KJ, Lee JP, Hamblin MH. Sex differences in vascular physiology and pathophysiology: estrogen and androgen signaling in health and disease. Am J Physiol Heart Circ Physiol 2017. [PMID: 28626075 DOI: 10.1152/ajpheart.00217.2016] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sex differences between women and men are often overlooked and underappreciated when studying the cardiovascular system. It has been long assumed that men and women are physiologically similar, and this notion has resulted in women being clinically evaluated and treated for cardiovascular pathophysiological complications as men. Currently, there is increased recognition of fundamental sex differences in cardiovascular function, anatomy, cell signaling, and pathophysiology. The National Institutes of Health have enacted guidelines expressly to gain knowledge about ways the sexes differ in both normal function and diseases at the various research levels (molecular, cellular, tissue, and organ system). Greater understanding of these sex differences will be used to steer future directions in the biomedical sciences and translational and clinical research. This review describes sex-based differences in the physiology and pathophysiology of the vasculature, with a special emphasis on sex steroid receptor (estrogen and androgen receptor) signaling and their potential impact on vascular function in health and diseases (e.g., atherosclerosis, hypertension, peripheral artery disease, abdominal aortic aneurysms, cerebral aneurysms, and stroke).
Collapse
Affiliation(s)
- Austin C Boese
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Seong C Kim
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ke-Jie Yin
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jean-Pyo Lee
- Department of Neurology, Tulane University School of Medicine, New Orleans, Louisiana; and.,Center for Stem Cell Research and Regenerative Medicine, New Orleans, Louisiana
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana;
| |
Collapse
|
38
|
Hristov KL, Parajuli SP, Provence A, Petkov GV. Testosterone decreases urinary bladder smooth muscle excitability via novel signaling mechanism involving direct activation of the BK channels. Am J Physiol Renal Physiol 2016; 311:F1253-F1259. [PMID: 27605581 PMCID: PMC5210203 DOI: 10.1152/ajprenal.00238.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/30/2016] [Indexed: 11/22/2022] Open
Abstract
In addition to improving sexual function, testosterone has been reported to have beneficial effects in ameliorating lower urinary tract symptoms by increasing bladder capacity and compliance, while decreasing bladder pressure. However, the cellular mechanisms by which testosterone regulates detrusor smooth muscle (DSM) excitability have not been elucidated. Here, we used amphotericin-B perforated whole cell patch-clamp and single channel recordings on inside-out excised membrane patches to investigate the regulatory role of testosterone in guinea pig DSM excitability. Testosterone (100 nM) significantly increased the depolarization-induced whole cell outward currents in DSM cells. The selective pharmacological inhibition of the large-conductance voltage- and Ca2+-activated K+ (BK) channels with paxilline (1 μM) completely abolished this stimulatory effect of testosterone, suggesting a mechanism involving BK channels. At a holding potential of -20 mV, DSM cells exhibited transient BK currents (TBKCs). Testosterone (100 nM) significantly increased TBKC activity in DSM cells. In current-clamp mode, testosterone (100 nM) significantly hyperpolarized the DSM cell resting membrane potential and increased spontaneous transient hyperpolarizations. Testosterone (100 nM) rapidly increased the single BK channel open probability in inside-out excised membrane patches from DSM cells, clearly suggesting a direct BK channel activation via a nongenomic mechanism. Live-cell Ca2+ imaging showed that testosterone (100 nM) caused a decrease in global intracellular Ca2+ concentration, consistent with testosterone-induced membrane hyperpolarization. In conclusion, the data provide compelling mechanistic evidence that under physiological conditions, testosterone at nanomolar concentrations directly activates BK channels in DSM cells, independent from genomic testosterone receptors, and thus regulates DSM excitability.
Collapse
Affiliation(s)
- Kiril L Hristov
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Shankar P Parajuli
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Aaron Provence
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Georgi V Petkov
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
39
|
Feiteiro J, Mariana M, Verde I, Cairrão E. Genomic and Nongenomic Effects of Mifepristone at the Cardiovascular Level: A Review. Reprod Sci 2016; 24:976-988. [DOI: 10.1177/1933719116671002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Joana Feiteiro
- Centro de Investigação em Ciências da Saúde, University of Beira Interior, Covilhã, Portugal
| | - Melissa Mariana
- Centro de Investigação em Ciências da Saúde, University of Beira Interior, Covilhã, Portugal
| | - Ignacio Verde
- Centro de Investigação em Ciências da Saúde, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrão
- Centro de Investigação em Ciências da Saúde, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
40
|
Musicki B, Bella AJ, Bivalacqua TJ, Davies KP, DiSanto ME, Gonzalez-Cadavid NF, Hannan JL, Kim NN, Podlasek CA, Wingard CJ, Burnett AL. Basic Science Evidence for the Link Between Erectile Dysfunction and Cardiometabolic Dysfunction. J Sex Med 2015; 12:2233-55. [PMID: 26646025 DOI: 10.1111/jsm.13069] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Although clinical evidence supports an association between cardiovascular/metabolic diseases (CVMD) and erectile dysfunction (ED), scientific evidence for this link is incompletely elucidated. AIM This study aims to provide scientific evidence for the link between CVMD and ED. METHODS In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current literature on basic scientific support for a mechanistic link between ED and CVMD, and deficiencies in this regard with a critical assessment of current preclinical models of disease. RESULTS A link exists between ED and CVMD on several grounds: the endothelium (endothelium-derived nitric oxide and oxidative stress imbalance); smooth muscle (SM) (SM abundance and altered molecular regulation of SM contractility); autonomic innervation (autonomic neuropathy and decreased neuronal-derived nitric oxide); hormones (impaired testosterone release and actions); and metabolics (hyperlipidemia, advanced glycation end product formation). CONCLUSION Basic science evidence supports the link between ED and CVMD. The Committee also highlighted gaps in knowledge and provided recommendations for guiding further scientific study defining this risk relationship. This endeavor serves to develop novel strategic directions for therapeutic interventions.
Collapse
Affiliation(s)
- Biljana Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Anthony J Bella
- Division of Urology, Department of Surgery and Department of Neuroscience, Ottawa Hospital Research Institute at the University of Ottawa, Ottawa, ON, Canada
| | - Trinity J Bivalacqua
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kelvin P Davies
- Department of Urology, Albert Einstein College of Medicine, New York, NY, USA
| | - Michael E DiSanto
- Department of Surgery/Division of Urology, Cooper University Hospital, Camden, NJ, USA
| | - Nestor F Gonzalez-Cadavid
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA.,Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Johanna L Hannan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Noel N Kim
- Institute for Sexual Medicine, San Diego, CA, USA
| | - Carol A Podlasek
- Departments of Urology, Physiology, and Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Christopher J Wingard
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
41
|
Mariana M, Feiteiro J, Cairrao E, Verde I. Mifepristone is a Vasodilator Due to the Inhibition of Smooth Muscle Cells L-Type Ca2+ Channels. Reprod Sci 2015; 23:723-30. [PMID: 26543162 DOI: 10.1177/1933719115612926] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Derived from the estrane progestins, mifepristone was the first synthetic steroid of this class employed as abortifacient in the first months of pregnancy. Mifepristone reduces high potassium-induced contraction and prevents calcium-induced contraction. At the vascular level, mifepristone induces direct relaxation in rat and human arteries, and this effect seems to be endothelium- and NO independent, suggesting that the vascular smooth muscle is its target. Moreover, mifepristone's effect could involve the modulation of different calcium channels. The aim of the present study is to analyze the involvement of calcium channels in the relaxation induced by mifepristone on vascular smooth muscle cells (VSMCs). Planar cell surface area (PCSA) technique was used to analyze the effect of mifepristone on the VSMC contractility, and the whole cell configuration of patch-clamp technique to measure the activity of L-type Ca(2+) channels (LTCC) in A7r5 cells. Regarding the PCSA technique, mifepristone induced relaxation of the VSMC previously contracted by different agents. Also, a rapid inhibitory effect on basal and BAY K8644-stimulated calcium current was observed, which indicates that this drug has the ability to block LTCC. These results suggest that mifepristone induces relaxation on the VSMCs due to the inhibition of the calcium channels.
Collapse
Affiliation(s)
- Melissa Mariana
- Centro de Investigação em Ciências da Saúde, University of Beira Interior, Covilhã, Portugal
| | - Joana Feiteiro
- Centro de Investigação em Ciências da Saúde, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- Centro de Investigação em Ciências da Saúde, University of Beira Interior, Covilhã, Portugal
| | - Ignacio Verde
- Centro de Investigação em Ciências da Saúde, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
42
|
Protić D, Radunović N, Spremović-Rađenović S, Živanović V, Heinle H, Petrović A, Gojković-Bukarica L. The Role of Potassium Channels in the Vasodilatation Induced by Resveratrol and Naringenin in Isolated Human Umbilical Vein. Drug Dev Res 2015; 76:17-23. [PMID: 25619904 DOI: 10.1002/ddr.21236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/01/2014] [Indexed: 01/18/2023]
Abstract
Preclinical Research Potassium (K+ ) channels have a key role in the maintenance of smooth muscle tone; a variety of agonists can modify the tone by altering K+ -channel activity. The aim of this study was assess the effects of the phenols, resveratrol, and naringenin on K+ -channels of the vascular smooth muscle. Segments of human umbilical vein (HUV) without endothelium were precontracted using serotonin (100 μM) or 100 mM K+ to derive cumulative concentration-response curves using increasing concentrations of resveratrol or naringenin. K+ -channel inhibitors were added in the bath before resveratrol (1-100 μM) or naringenin (0.01-1 mM) in assess the role of K+ -channels in their effects on HUV precontracted by serotonin. 4-Aminopiridine (4-AP; 1 mM), a nonselective blocker of voltage-dependent, tetraethylammonium (TEA; 1 mM) and barium chloride (1 mM), a nonselective blocker of Ca2+ -dependent and inward rectifier K+ -channels (respectively) induced significant shifts to the right (P < 0.05) of resveratrol. concentration-response curves. The effect of naringenin was antagonized by 4-AP (1 mM). 4-AP-, TEA-, and barium chloride-sensitive K+ -channels are probably involved in the resveratrol vasodilatatory effect, while naringenin seems to affect 4-AP-sensitive K+ -channels. However, other mechanisms of vasodilation induced by polyphenols could not be excluded. Drug Dev Res, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dragana Protić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
43
|
Hill M, Dušková M, Stárka L. Dehydroepiandrosterone, its metabolites and ion channels. J Steroid Biochem Mol Biol 2015; 145:293-314. [PMID: 24846830 DOI: 10.1016/j.jsbmb.2014.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/06/2014] [Accepted: 05/11/2014] [Indexed: 11/20/2022]
Abstract
This review is focused on the physiological and pathophysiological relevance of steroids influencing the activities of the central and peripheral nervous systems with regard to their concentrations in body fluids and tissues in various stages of human life like the fetal development or pregnancy. The data summarized in this review shows that DHEA and its unconjugated and sulfated metabolites are physiologically and pathophysiologically relevant in modulating numerous ion channels and participate in vital functions of the human organism. DHEA and its unconjugated and sulfated metabolites including 5α/β-reduced androstane steroids participate in various physiological and pathophysiological processes like the management of GnRH cyclic release, regulation of glandular and neurotransmitter secretions, maintenance of glucose homeostasis on one hand and insulin insensitivity on the other hand, control of skeletal muscle and smooth muscle activities including vasoregulation, promotion of tolerance to ischemia and other neuroprotective effects. In respect of prevalence of steroid sulfates over unconjugated steroids in the periphery and the opposite situation in the CNS, the sulfated androgens and androgen metabolites reach relevance in peripheral organs. The unconjugated androgens and estrogens are relevant in periphery and so much the more in the CNS due to higher concentrations of most unconjugated steroids in the CNS tissues than in circulation and peripheral organs. This article is part of a Special Issue entitled "Essential role of DHEA".
Collapse
Affiliation(s)
- M Hill
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| | - M Dušková
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| | - L Stárka
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| |
Collapse
|
44
|
Testosterone and atrial natriuretic peptide share the same pathway to induce vasorelaxation of human umbilical artery. J Cardiovasc Pharmacol 2014; 63:461-5. [PMID: 24805147 DOI: 10.1097/fjc.0000000000000060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We recently observed in human umbilical artery smooth muscle cells that testosterone activates protein kinase G and stimulates large-conductance Ca²⁺ activated (BKCa) and voltage sensitive (KV) potassium channels. In the same work, we also show that atrial natriuretic peptide (ANP), an activator of particulate guanylate cyclase (pGC), stimulates the activity of BKCa and KV channels because of protein kinase G activation. The aim of this work was to prove that the relaxant effects of testosterone are also because of the increase of cGMP because of activation of the pGC. Subsarcolemmal cGMP signals were monitored in single cells by recording the cGMP-gated current (ICNG) in human umbilical artery smooth muscle cells expressing the wild-type rat olfactory cyclic nucleotide-gated (CNG) channel. Sodium nitroprusside (10 and 100 μM), ANP (0.1 and 1 μM), or testosterone (0.1, 1, and 10 μM) induced activation of ICNG. This activation induced by testosterone and ANP is bigger than that elicited by sodium nitroprusside. In summary, our study reveals that testosterone and ANP activate the pGC and induce vasorelaxation of human umbilical artery.
Collapse
|
45
|
Gürer B, Turkoglu E, Kertmen H, Karavelioglu E, Arikok AT, Sekerci Z. Attenuation of cerebral vasospasm and secondary injury by testosterone following experimental subarachnoid hemorrhage in rabbit. Acta Neurochir (Wien) 2014; 156:2111-20; discussion 2120. [PMID: 25194970 DOI: 10.1007/s00701-014-2211-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/19/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND The vasodilatator effects of testosterone have been widely studied and demonstrated. Based on previous studies of these vasodilatatory activities, we hypothesized that testosterone might have potential effects on subarachnoid hemorrhage-induced cerebral vasospasm. METHODS Thirty-two adult male New Zealand white rabbits were randomly divided into four groups of eight rabbits in each group: group 1 (control); group 2 (subarachnoid hemorrhage); group 3 (subarachnoid hemorrhage + vehicle); and group 4 (subarachnoid hemorrhage + testosterone). Testosterone (15 mg/kg, intraperitoneally) was administered 5 min after the intracisternal blood injection and continued for 72 h once per day in the same dose for group 4. Animals were killed 72 h after subarachnoid hemorrhage. Basilar artery cross-sectional areas, arterial wall thicknesses, and hippocampal degeneration scores were evaluated in all groups. RESULTS Intraperitoneal administration of testosterone was found to attenuate cerebral vasospasm and provide neuroprotection after subarachnoid hemorrhage in rabbits. Testosterone treatment was determined to be effective at increasing the luminal area and reducing the wall thickness of the basilar artery. CONCLUSIONS Our findings show that testosterone has some preventive effects on SAH-induced vasospasm and secondary neuronal injury in rabbits. We propose that the vasodilatatory activity of testosterone is due to its effects on inhibiting calcium channels, activating potassium channels, augmenting nitric oxide synthesis, and inhibiting oxidant stress and inflammation.
Collapse
|
46
|
Perusquía M, Flores-Soto E, Sommer B, Campuzano-González E, Martínez-Villa I, Martínez-Banderas AI, Montaño LM. Testosterone-induced relaxation involves L-type and store-operated Ca2+ channels blockade, and PGE 2 in guinea pig airway smooth muscle. Pflugers Arch 2014; 467:767-77. [PMID: 24872164 DOI: 10.1007/s00424-014-1534-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 12/14/2022]
Abstract
In vascular smooth muscle, it has been described that testosterone (TES) produces relaxation by blocking L-type Ca(2+) channels. Recently, we found that L-type Ca(2+) and store-operated Ca(2+) (SOC) channels are the main membranal structures that provide extracellular Ca(2+) for carbachol (CCh)-induced contraction in airway smooth muscle (ASM). We studied the possible interactions between L-type and SOC channels in TES-induced relaxation in guinea pig ASM. TES (10, 32, 100, and 178 μM) induced a complete relaxation of CCh-precontracted tracheal smooth muscle, and indomethacin partially inhibited this response. In single myocytes, the KCl-induced intracellular Ca(2+) increase ([Ca(2+)]i) was decreased by 32 and completely blocked by 100 nM TES. This androgen (32 and 100 μM) significantly diminished (~25 and 49 %, respectively) the capacitative Ca(2+) entry. Myocytes stimulated with CCh produced a transient Ca(2+) peak followed by a sustained plateau. D-600 was added during the plateau phase, and a partial diminution (~35 %) was observed. A greater decrease (~78 %) was seen when 2-aminoethyl diphenylborinate (2-APB, SOC antagonist) was used. The combination of both drugs completely abolished the Ca(2+) plateau induced by CCh. TES (100 μM) also completely abolished the CCh-induced Ca(2+) plateau. Indomethacin significantly diminished this effect of TES. PGE2 and butaprost proportionally decreased the Ca(2+) plateau as indomethacin blocked it. Sarcoplasmic reticulum refilling was partially, dependently, and significantly diminished by TES. We concluded that TES-induced relaxation involves blockade of L-type Ca(2+) channels at nanomolar and SOC channels at micromolar concentration and PGE2 seems to be also involved in this phenomenon.
Collapse
Affiliation(s)
- Mercedes Perusquía
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF, México
| | | | | | | | | | | | | |
Collapse
|
47
|
Martín P, Rebolledo A, Palomo ARR, Moncada M, Piccinini L, Milesi V. Diversity of potassium channels in human umbilical artery smooth muscle cells: a review of their roles in human umbilical artery contraction. Reprod Sci 2014; 21:432-41. [PMID: 24084522 PMCID: PMC3960844 DOI: 10.1177/1933719113504468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Through their control of cell membrane potential, potassium (K(+)) channels are among the best known regulators of vascular tone. This article discusses the expression and function of K(+) channels in human umbilical artery smooth muscle cells (HUASMCs). We review the bibliographic reports and also present single-channel data recorded in freshly isolated cells. Electrophysiological properties of big conductance, voltage- and Ca(2+)-sensitive K(+) channel and voltage-dependent K(+) channels are clearly established in this vessel, where they are involved in contractile state regulation. Their role in the maintenance of membrane potential is an important control mechanism in the determination of the vessel diameter. Additionally, small conductance Ca(2+)-sensitive K(+) channels, 2-pore domains K(+) channels and inward rectifier K(+) channels also appear to be present in HUASMCs, while intermediate conductance Ca(2+)-sensitive K(+) channels and ATP-sensitive K(+) channels could not be identified. In both cases, additional investigation is necessary to reach conclusive evidence of their expression and/or functional role in HUASMCs. Finally, we discuss the role of K(+) channels in pregnancy-related pathologies like gestational diabetes and preeclampsia.
Collapse
Affiliation(s)
- Pedro Martín
- Facultad de Ciencias Exactas, GINFIV—Grupo de Investigación en Fisiología Vascular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alejandro Rebolledo
- Facultad de Ciencias Exactas, GINFIV—Grupo de Investigación en Fisiología Vascular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ana Rocio Roldán Palomo
- Facultad de Ciencias Exactas, GINFIV—Grupo de Investigación en Fisiología Vascular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Melisa Moncada
- Facultad de Ciencias Exactas, GINFIV—Grupo de Investigación en Fisiología Vascular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Luciano Piccinini
- Facultad de Ciencias Exactas, GINFIV—Grupo de Investigación en Fisiología Vascular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Verónica Milesi
- Facultad de Ciencias Exactas, GINFIV—Grupo de Investigación en Fisiología Vascular, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
48
|
Protić D, Beleslin-Čokić B, Spremović-Rađenović S, Radunović N, Heinle H, Šćepanović R, Gojković Bukarica L. The Different Effects of Resveratrol and Naringenin on Isolated Human Umbilical Vein: The Role of ATP-Sensitive K+
Channels. Phytother Res 2014; 28:1412-8. [DOI: 10.1002/ptr.5145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Dragana Protić
- Department of Pharmacology; Clinical Pharmacology and Toxicology; Faculty of Medicine; University of Belgrade; 11000 Belgrade Serbia
| | - Bojana Beleslin-Čokić
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia; Dr. Subotica 13 11000 Belgrade Serbia
| | - Svetlana Spremović-Rađenović
- Faculty of Medicine; University of Belgrade, Clinic for Gynecology and Obstetrics, Clinical Center of Serbia; 11000 Belgrade Serbia
| | - Nebojša Radunović
- Faculty of Medicine; University of Belgrade, Clinic for Gynecology and Obstetrics, Clinical Center of Serbia; 11000 Belgrade Serbia
| | - Helmut Heinle
- Institute of Physiology; University of Tüebingen; Germany
| | - Radisav Šćepanović
- Faculty of Medicine; University of Belgrade, Clinical Center Dr. Dragisa Misovic; 11000 Belgrade Serbia
| | - Ljiljana Gojković Bukarica
- Department of Pharmacology; Clinical Pharmacology and Toxicology; Faculty of Medicine; University of Belgrade; 11000 Belgrade Serbia
| |
Collapse
|
49
|
Saldanha PA, Cairrão E, Maia CJ, Verde I. Long- and short-term effects of androgens in human umbilical artery smooth muscle. Clin Exp Pharmacol Physiol 2013; 40:181-9. [PMID: 23278339 DOI: 10.1111/1440-1681.12047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/25/2012] [Accepted: 12/12/2012] [Indexed: 12/19/2022]
Abstract
The aim of the present study was to determine the effects of androgens in the regulation of human umbilical artery (HUA) contractility. The short-term effects of testosterone on the tone of the HUA were investigated, as were the long-term effects of dihydrotestosterone (DHT) on the expression of some proteins involved in the contractile process. Endothelium-denuded HUA were treated for 24 h with DHT (2 μmol/L) or the vehicle control (ethanol) to analyse the genomic effects of androgens. Twenty-four hour treatment of HUA with DHT increased the mRNA expression of the β(1)-subunit of the large-conductance Ca(2+)-activated (BK(Ca)) channel and decreased expression of the α-subunit of L-type calcium channels. In organ bath studies, testosterone (1-100 μmol/L) produced similar relaxant responses in DHT- and vehicle-treated HUA rings precontracted with 5-HT, histamine and KCl. However, the relaxation response obtained by the combined application of testosterone (100 μmol/L) and nifedipine (10 μmol/L) was significantly greater in DHT- compared with vehicle-treated HUA. The results indicate that the rapid vasorelaxant effects of testosterone that are dependent on both BK(Ca) and voltage-sensitive potassium (K(V)) channel activity in control arteries become dependent solely on K(V) channel activity in DHT-treated HUA. Thus, the present study reveals the importance of the investigation of both the short- and long-term effects of androgens in human arteries.
Collapse
Affiliation(s)
- Paulo A Saldanha
- Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | | | | |
Collapse
|
50
|
Abstract
Coronary heart disease is a leading cause of premature death in men. Epidemiological studies have shown a high prevalence of low serum testosterone levels in men with cardiovascular disease (CVD). Furthermore, a low testosterone level is associated in some but not in all observational studies with an increase in cardiovascular events and mortality. Testosterone has beneficial effects on several cardiovascular risk factors, which include cholesterol, endothelial dysfunction and inflammation: key mediators of atherosclerosis. A bidirectional relationship between low endogenous testosterone levels and concurrent illness complicates attempts to validate causality in this association and potential mechanistic actions are complex. Testosterone is a vasoactive hormone that predominantly has vasodilatory actions on several vascular beds, although some studies have reported conflicting effects. In clinical studies, acute and chronic testosterone administration increases coronary artery diameter and flow, improves cardiac ischaemia and symptoms in men with chronic stable angina and reduces peripheral vascular resistance in chronic heart failure. Although the mechanism of the action of testosterone on vascular tone in vivo is not understood, laboratory research has found that testosterone is an L-calcium channel blocker and induces potassium channel activation in vascular smooth muscle cells. Animal studies have consistently demonstrated that testosterone is atheroprotective, whereas testosterone deficiency promotes the early stages of atherogenesis. The translational effects of testosterone between in vitro animal and human studies, some of which have conflicting effects, will be discussed in this review. We review the evidence for a role of testosterone in vascular health, its therapeutic potential and safety in hypogonadal men with CVD, and some of the possible underlying mechanisms.
Collapse
Affiliation(s)
- Daniel M Kelly
- Department of Human Metabolism, Medical School, The University of Sheffield, Sheffield S10 2RX, UK
| | | |
Collapse
|