1
|
Yashmi F, Fakhri S, Shiri Varnamkhasti B, Amin MN, Khirehgesh MR, Mohammadi-Noori E, Hosseini M, Khan H. Defining the mechanisms behind the hepatoprotective properties of curcumin. Arch Toxicol 2024; 98:2331-2351. [PMID: 38837048 DOI: 10.1007/s00204-024-03758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/09/2024] [Indexed: 06/06/2024]
Abstract
As a critical cause of human dysfunctionality, hepatic failure leads to approximately two million deaths per year and is on the rise. Considering multiple inflammatory, oxidative, and apoptotic mechanisms behind hepatotoxicity, it urges the need for finding novel multi-targeting agents. Curcumin is a phenolic compound with anti-inflammatory, antioxidant, and anti-apoptotic roles. Curcumin possesses auspicious health benefits and protects against several diseases with exceptional safety and tolerability. This review focused on the hepatoprotective mechanisms of curcumin. The need to develop novel delivery systems of curcumin (e.g., nanoparticles, self-micro emulsifying, lipid-based colloids, solid lipid nanoparticles, cyclodextrin inclusion, phospholipid complexes, and nanoemulsions) is also considered.
Collapse
Affiliation(s)
- Farinam Yashmi
- Department of Pharmacy, Acibadem University, Istanbul, Turkey
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammed Namiq Amin
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Hosseini
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
2
|
Deshmukh R, Jain AK, Singh R, Paul SD, Harwansh RK. Andrographis paniculata and Andrographolide - A Snapshot on Recent Advances in Nano Drug Delivery Systems against Cancer. Curr Drug Deliv 2024; 21:631-644. [PMID: 36740794 DOI: 10.2174/1567201820666230203115752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/15/2022] [Accepted: 11/14/2022] [Indexed: 02/07/2023]
Abstract
Cancer is one of the deadliest illnesses of the 21st century. Chemotherapy and radiation therapies both have considerable side effects. Antitumor antibiotics are one of them. Coughs, common colds, fevers, laryngitis, and infectious disorders have all been treated with Andrographis paniculata for centuries. Extracts of Andrographis effectively treat various ailments, as well as cancer. The most active molecule in Andrographis paniculata is andrographolide a, diterpene, and lactone. Andrographis paniculata and its derivatives have long been used to treat various ailments. Anti-inflammatory and cancerfighting characteristics have been observed in Andrographolide. Andrographolide, a diterpene lactone separated from Andrographis paniculata, has also been shown to have important criticalessential biological protective properties. It has also been suggested that it could be used to treat major human diseases like-rheumatoid like rheumatoid, colitis, and Parkinsons disease. This summary aims to highlight Andrographolide as a promising cancer treatment option. Several databases were searched for andrographolides cytotoxic/anti-cancer effects in pre-clinical and clinical research to serve this purpose. Several studies have shown that Andrographolide is helpful in cancer medication, as detailed in this review.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Aman Kumar Jain
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Rajesh Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Swarnali Das Paul
- Department of Pharmacy, Shri Shankaracharya College of Pharmaceutical Sciences, Junwani, Bhilai, 490020, India
| | - Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| |
Collapse
|
3
|
Zhang Y, Hong L, Li X, Li Y, Zhang X, Jiang J, Shi F, Diao H. M1 macrophage-derived exosomes promote autoimmune liver injury by transferring long noncoding RNA H19 to hepatocytes. MedComm (Beijing) 2023; 4:e303. [PMID: 37398637 PMCID: PMC10310975 DOI: 10.1002/mco2.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 07/04/2023] Open
Abstract
Exosomes mediate intercellular communication by transmitting active molecules. The function of long noncoding RNA (lncRNA) H19 in autoimmune liver injury is unclear. Concanavalin A (ConA)-induced liver injury is well-characterized immune-mediated hepatitis. Here, we showed that lncRNA H19 expression was increased in the liver after ConA treatment, accompanied by increased exosome secretion. Moreover, injection of AAV-H19 aggravated ConA-induced hepatitis, with an increase in hepatocyte apoptosis. However, GW4869, an exosome inhibitor, alleviated ConA-induced liver injury and inhibited the upregulation of lncRNA H19. Intriguingly, lncRNA H19 expression in the liver was significantly downregulated, after macrophage depletion. Importantly, the lncRNA H19 was primarily expressed in type I macrophage (M1) and encapsulated in M1-derived exosomes. Furthermore, H19 was transported from M1 to hepatocytes via exosomes, and exosomal H19 dramatically induced hepatocytes apoptosis both in vitro and vivo. Mechanistically, H19 upregulated the transcription of hypoxia-inducible factor-1 alpha (HIF-1α), which accumulated in the cytoplasm and mediated hepatocyte apoptosis by upregulating p53. M1-derived exosomal lncRNA H19 plays a pivotal role in ConA-induced hepatitis through the HIF-1α-p53 signaling pathway. These findings identify M1 macrophage-derived exosomal H19 as a novel target for the treatment of autoimmune liver diseases.
Collapse
Affiliation(s)
- Yongting Zhang
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Liang Hong
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Xuehui Li
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Yuyu Li
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Xujun Zhang
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Fan Shi
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Hongyan Diao
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
4
|
Qin X, Wang X, Tian M, Dong Z, Wang J, Wang C, Huang Q. The role of Andrographolide in the prevention and treatment of liver diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154537. [PMID: 36610122 DOI: 10.1016/j.phymed.2022.154537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The presence or absence of damage to the liver organ is crucial to a person's health. Nutritional disorders, alcohol consumption, and drug abuse are the main causes of liver disease. Liver transplantation is the last irrevocable option for liver disease and has become a serious economic burden worldwide. Andrographolide (AP) is one of the main active ingredients of Herba Andrographitis. It has several biological activities and has been reported to have protective and therapeutic effects against liver diseases. Earlier literature has been written on AP's role in treating inflammation and other diseases, and there has not been a systematic review on liver diseases. This review is dedicated to sorting out the research results of AP against liver diseases. Pharmacokinetics, toxicity, and nanotechnology to improve bioavailability are discussed. Finally, an outlook and assessment of its future are provided. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. PubMed and web of Science databases were used to search all relevant literature on AP for liver disease up to 2022. RESULTS Studies have shown that AP plays an important role in different liver disease phenotypes, mainly through anti-inflammatory and antioxidant activities. AP regulates HO-1 and inhibits hepatitis virus replication. It affects the NF-κB pathway, downregulates inflammatory factors such as IL-1β, IL-6, and TNF-α, and reduces liver damage. In preventing liver fibrosis, AP inhibits angiogenesis and activation of hepatic stellate cells and reduces oxidative stress involved in the Nrf2 and TGF-β1/Smad pathways. In addition, AP impedes the development of liver cancer by promoting apoptosis and autonomous phagocytosis in a cell-dependent way. Interestingly, miRNAs are involved in the therapeutic process of liver cancer and hepatic fibrosis. The poor solubility of AP limits the development of dosage forms. Therefore, the advent of nanoformulations has improved bioavailability. Although the effect of AP is dose- and time-dependent, the magnitude of its toxicity is not negligible. Some clinical trials have shown that AP has mild side effects. CONCLUSIONS AP, as an effective natural product, has a good effect on the liver disease through multiple pathways and targets. However, the dose reaches a certain level, leading to its toxicity and side effects. For better clinical application of AP, high-quality clinical and toxic intervention mechanisms are needed to validate current studies. In addition, modulation of miRNA-mediated hepatocellular carcinoma and liver fibrosis and synergistic action with drugs may be the future focus of AP. In conclusion, AP can be regarded as an important candidate for treating different liver diseases in the future.
Collapse
Affiliation(s)
- Xiaoyan Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Xi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Maoying Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Zhaowei Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Jin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Chao Wang
- Sichuan Integrated Traditional Chinese and Western Medicine Hospital, No.51, Section 4, Renmin South Road, Wuhou District, Chengdu, 610042, PR. China.
| | - Qinwan Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China.
| |
Collapse
|
5
|
Das R, Mitra S, Tareq AM, Emran TB, Hossain MJ, Alqahtani AM, Alghazwani Y, Dhama K, Simal-Gandara J. Medicinal plants used against hepatic disorders in Bangladesh: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114588. [PMID: 34480997 DOI: 10.1016/j.jep.2021.114588] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver disease is a major cause of illness and death worldwide which accounts for approximately 2 million deaths per year worldwide, 1 million due to complications of cirrhosis and 1 million due to viral hepatitis and hepatocellular carcinoma. That's why it is seeking the researchers' attention to find out the effective treatment strategies. Phytochemicals from natural resources are the main leads for the development of noble hepatoprotective drugs. The majority of the natural sources whose active compounds are currently employed actually have an ethnomedical use. Ethnopharmacological research is essential for the development of these bioactive compounds. These studies not only provide scientific evidence on medicinal plants utilized for particular therapeutic purposes, but they also ensure cultural heritage preservation. Plenty of experimental studies have been well-documented that the ethnomedicinal plants are of therapeutics' interest for the advanced pharmacological intervention in terms of hepatic disorders. AIM OF THE STUDY This study summarizes the processes of hepatotoxicity induced by various toxins and explores identified hepatoprotective plants and their phytoconstituents, which can guide the extraction of novel phytochemical constituents from plants to treat liver injury. This review aimed to summarize the hepatoprotective activity of Bangladeshi medicinal plants where the bioactive compounds may be leads for the drug discovery in future. MATERIALS AND METHODS Literature searches in electronic databases, such as Web of Science, Science Direct, SpringerLink, PubMed, Google Scholar, Semantic Scholar, Scopus, BanglaJOL, and so on, were performed using the keywords 'Bangladesh', 'ethnomedicinal plants', 'Hepatoprotective agents' as for primary searches, and secondary search terms were used as follows, either alone or in combination: traditional medicine, medicinal plants, folk medicine, liver, hepatitis, therapeutic uses, and anti-inflammatory. Besides, several books, including the book entitled "Medicinal plants of Bangladesh: chemical constituents and uses" authored by Abdul Ghani, were carefully considered, which contained pharmacological properties and phytoconstituents of many medicinal plants growing and traditionally available in Bangladesh. Among them, the most promising plant species with their latest therapeutic effects against hepatic disorders were deeply considered in this review. RESULTS The results of this study revealed that in most cases, therapy using plant extracts stabilized altered hepatic biochemical markers induced by hepatotoxins. Initially, we investigated 32 plant species for hepatoprotective activity, however after extensive literature searching; we observed that 20 plants offer good pharmacological evidence of hepatoprotective function. Consequently, most bioactive compounds derived from the herbs including berberine, thymoquinone, andrographolide, ursolic acid, luteolin, naringenin, genistein, quercetin, troxerutin, morin, epigallocatechin-3-gallate, chlorogenic acid, emodin, curcumin, resveratrol, capsaicin, ellagic acid, etc. are appeared to be effective against hepatic disorders. CONCLUSIONS Flavonoids, phenolic acids, monoterpenoids, diterpenoids, triterpenoids, alkaloids, chromenes, capsaicinoids, curcuminoids, and anthraquinones are among the phytoconstituents were appraised to have hepatoprotective activities. All the actions displayed by these ethnomedicinal plants could make them serve as leads in the formulation of drugs with higher efficacy to treat hepatic disorders.
Collapse
Affiliation(s)
- Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareil-ly, 243122, Uttar Pradesh, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E32004, Ourense, Spain.
| |
Collapse
|
6
|
Gao L, Li B, Wang J, Shen D, Yang M, Sun R, Tung H, Xu M, Ren S, Zhang M, Yang D, Lu B, Wang H, Liu Y, Xie W. Activation of Liver X Receptor α Sensitizes Mice to T-Cell Mediated Hepatitis. Hepatol Commun 2020; 4:1664-1679. [PMID: 33163836 PMCID: PMC7603537 DOI: 10.1002/hep4.1584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/14/2020] [Accepted: 07/06/2020] [Indexed: 12/27/2022] Open
Abstract
Autoimmune hepatitis (AIH) is an inflammatory disease of the liver. Liver X receptors (LXRs), including the α and β isoforms, are previously known for their anti-inflammatory activities. The goal of this study is to determine whether and how LXR plays a role in AIH. LXRα gain-of-function and loss-of-function mouse models were used, in conjunction with the concanavalin A (ConA) model of T-cell mediated hepatitis. We first showed that the hepatic expression of LXRα was decreased in the ConA model of hepatitis and in human patients with AIH. In the ConA model, we were surprised to find that activation of LXRα in the constitutively activated VP-LXRα whole-body knock-in (LXRα-KI) mice exacerbated ConA-induced AIH, whereas the LXRα-/- mice showed attenuated ConA-induced AIH. Interestingly, hepatocyte-specific activation of LXRα in the fatty acid binding protein-VP-LXRα transgenic mice did not exacerbate ConA-induced hepatitis. Mechanistically, the sensitizing effect of the LXRα-KI allele was invariant natural killer T (iNKT)-cell dependent, because the sensitizing effect was abolished when the LXRα-KI allele was bred into the NKT-deficient CD1d-/- background. In addition, LXRα-enhanced ConA-induced hepatitis was dependent on interferon gamma. In contrast, adoptive transfer of hepatic iNKT cells isolated from LXRα-KI mice was sufficient to sensitize CD1d-/- mice to ConA-induced AIH. Conclusion: Activation of LXRα sensitizes mice to ConA-induced AIH in iNKT and interferon gamma-dependent manner. Our results suggest that LXRα plays an important role in the development of AIH.
Collapse
Affiliation(s)
- Li Gao
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
- Department of GastroenterologyPeking University People's HospitalBeijingChina
| | - Bin Li
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
- Department of Orthopedic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of PharmacologyBasic Medical School of Wuhan UniversityWuhanChina
| | - Jingyuan Wang
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Danhua Shen
- Department of PathologyPeking University People’s HospitalBeijingChina
| | - Min Yang
- Department of ImmunologyUniversity of PittsburghPittsburghPAUSA
| | - Runzi Sun
- Department of ImmunologyUniversity of PittsburghPittsburghPAUSA
| | - Hung‐Chun Tung
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Min Zhang
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Da Yang
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Binfeng Lu
- Department of ImmunologyUniversity of PittsburghPittsburghPAUSA
| | - Hui Wang
- Department of PharmacologyBasic Medical School of Wuhan UniversityWuhanChina
| | - Yulan Liu
- Department of GastroenterologyPeking University People's HospitalBeijingChina
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
- Department of Pharmacology & Chemical BiologyUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
7
|
Elfeky MG, Mantawy EM, Gad AM, Fawzy HM, El-Demerdash E. Mechanistic aspects of antifibrotic effects of honokiol in Con A-induced liver fibrosis in rats: Emphasis on TGF-β/SMAD/MAPK signaling pathways. Life Sci 2019; 240:117096. [PMID: 31760097 DOI: 10.1016/j.lfs.2019.117096] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023]
Abstract
Aim Liver fibrosis represents a massive global health burden with limited therapeutic options. Thus, the need for curative options is evident. Thus, this study aimed to assess the potential antifibrotic effect of honokiol in Concanavalin A (Con A) induced immunological model of liver fibrosis as well the possible underlying molecular mechanisms. METHODS Male Sprague-Dawley rats were treated with either Con A (20 mg/kg, IV) and/or honokiol (10 mg/kg, orally) for 4 weeks. Hepatotoxicity indices were as well as histopathological evaluation was done. Hepatic fibrosis was assessed by measuring alpha smooth muscle actin (α-SMA) expression and collagen fibers deposition by Masson's trichrome stain and hydroxyproline content. To elucidate the underlying molecular mechanisms, the effect of honokiol on oxidative stress, inflammatory markers as well as transforming growth factor beta (TGF-β)/SMAD and mitogen-activated protein kinase (MAPK) pathways was assessed. KEY FINDINGS Honokiol effectively reversed the hepatotoxicity indices elevations and abnormal histopathological changes induced by Con A. Besides, honokiol attenuated Con A-induced liver fibrosis by down-regulation of hydroxyproline levels, α-SMA expression together with a marked decrease in collagen fibers deposition. Mechanistically Con A induced oxidative stress, provocation of inflammatory responses and activation of TGF-β/SMAD/MAPK pathways. Contrariwise, honokiol co-treatment significantly restored antioxidant defence mechanisms, down-regulated inflammatory cascades and inhibited TGF-β/SMAD/MAPK signaling pathways. CONCLUSION The results provide an evidence for the promising antifibrotic effect of honokiol that could be partially due to suppressing oxidative stress and inflammatory processes as well as inhibition of TGF-β/SMAD/MAPK signaling pathways.
Collapse
Affiliation(s)
- Maha G Elfeky
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Eman M Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Hala M Fawzy
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
8
|
Guo D, Zhang Y, Zhao J, He H, Hou T. Selenium-biofortified corn peptides: Attenuating concanavalin A-Induced liver injury and structure characterization. J Trace Elem Med Biol 2019; 51:57-64. [PMID: 30466939 DOI: 10.1016/j.jtemb.2018.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/06/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022]
Abstract
The relationship between hepatoprotective effects of selenium-biofortified corn (Zea mays Linn) peptides (SeCPs) and its antioxidant ability was evaluated and the structure of SeCPs was identified. SeCPs and corn peptides (CPs) both had good antioxidant ability, and the effect of SeCPs was significantly higher than CPs within a certain concentration range (P < 0.05). Additionally, animal experiments indicated that SeCPs (200 mg/kg) had a significantly protective effect against concanavalin A (Con A) induced hepatic lesions, as it significantly declined glutamic-pyruvic transaminase (AST), alanine transaminase (ALT) activities, tumor necrosis factor alpha (TNF-α), interferon (IFN)-γ contents in serum, and malondialdehyde (MDA) contents in liver (P < 0.05). Superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities in liver were also significantly increased by SeCPs (P < 0.05). The amino acid composition of SeCPs with Mw < 1 kDa was mainly glutamic acid (Glu, 31.18%), leucine (Leu, 21.06%) and alanine (Ala, 13.26%). According to the retention time, the amino acid sequences of 8 selenium-biofortified corn peptides and 29 selenium-free corn peptides were identified. Our results illustrated that the mechanisms of SeCPs against Con A induced hepatic injury in mice may be related to its antioxidant ability and reduction of lipid peroxidation, inhibiting the release of immune factors, such as TNF-α and IFN-γ.
Collapse
Affiliation(s)
- Danjun Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 43000, China
| | - Yan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 43000, China
| | - Juanjuan Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 43000, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 43000, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 43000, China.
| |
Collapse
|
9
|
Kim HY, Noh JR, Moon SJ, Choi DH, Kim YH, Kim KS, Yook HS, An JP, Oh WK, Hwang JH, Lee CH. Sicyos angulatus ameliorates acute liver injury by inhibiting oxidative stress via upregulation of anti-oxidant enzymes. Redox Rep 2018; 23:206-212. [PMID: 30426855 PMCID: PMC6748690 DOI: 10.1080/13510002.2018.1546986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE We aimed to investigate the effect of Sicyos angulatus (SA) ethanolic extracts as antioxidants and potential treatments for liver disease. METHODS To establish a mouse model of liver injury, C57BL/6 male mice were injected via the caudal vein with a single dose of concanavalin A (Con A, 15 mg kg-1). SA extracts were administered once by oral gavage 30 min before Con A injection. RESULTS In vitro studies showed that SA decreased tert-butyl hydroperoxide (t-BHP)-induced reactive oxygen species (ROS) production. SA administration reduced plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, as well as hepatic ROS levels, in a dose-dependent manner. Moreover, SA increased the activities of the hepatic antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase in a dose-dependent manner. Furthermore, SA treatment reduced pro-apoptotic protein levels. Con A-mediated cytosolic release of Smac/DIABLO and apoptosis-inducing factor (AIF), which are markers of necrosis, were dramatically decreased in HepG2 cells treated with SA. CONCLUSION SA ameliorated liver injury and might be a good strategy for the treatment of liver injury.
Collapse
Affiliation(s)
- Hyun-Yong Kim
- a Laboratory Animal Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon , Republic of Korea.,c Department of Food and Nutrition , Chungnam National University , Daejeon , Republic of Korea
| | - Jung-Ran Noh
- a Laboratory Animal Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon , Republic of Korea
| | - Sung-Je Moon
- a Laboratory Animal Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon , Republic of Korea
| | - Dong-Hee Choi
- a Laboratory Animal Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon , Republic of Korea
| | - Yong-Hoon Kim
- a Laboratory Animal Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon , Republic of Korea.,b University of Science and Technology , Daejeon , Republic of Korea
| | - Kyoung-Shim Kim
- a Laboratory Animal Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon , Republic of Korea.,b University of Science and Technology , Daejeon , Republic of Korea
| | - Hong-Sun Yook
- c Department of Food and Nutrition , Chungnam National University , Daejeon , Republic of Korea
| | - Jin-Pyo An
- d Research Institute of Pharmaceutical Sciences, College of Pharmacy , Korea Bioactive Natural Material Bank, Seoul National University , Seoul , Republic of Korea
| | - Won-Keon Oh
- d Research Institute of Pharmaceutical Sciences, College of Pharmacy , Korea Bioactive Natural Material Bank, Seoul National University , Seoul , Republic of Korea
| | - Jung Hwan Hwang
- a Laboratory Animal Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon , Republic of Korea.,b University of Science and Technology , Daejeon , Republic of Korea
| | - Chul-Ho Lee
- a Laboratory Animal Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon , Republic of Korea.,b University of Science and Technology , Daejeon , Republic of Korea
| |
Collapse
|
10
|
Peng J. The Pharmacological Targets and Clinical Evidence of Natural Products With Anti-hepatic Inflammatory Properties. Front Pharmacol 2018; 9:455. [PMID: 29922155 PMCID: PMC5996099 DOI: 10.3389/fphar.2018.00455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/18/2018] [Indexed: 12/24/2022] Open
Abstract
Inflammation contributes heavily to the pathogenesis of liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Inflammation is probably a promising target for treatment of liver diseases. The natural products are considered as the potential source of new drug discovery and their pharmacological effects on hepatic inflammation have been widely reported. In this review, the natural products with anti-hepatic inflammatory properties are summarized based on their pharmacological effects and mechanisms, which are related to the suppression on the inflammation mediators including cytokines and chemokines, pattern recognition receptors, the activated transcriptional factors, and the potential regulatory factors. The clinical evidence is also summarized.
Collapse
Affiliation(s)
- Jinghua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
11
|
Polyguluronate sulfate (PGS) attenuates immunological liver injury in vitro and in vivo. Int J Biol Macromol 2018; 114:592-598. [PMID: 29572149 DOI: 10.1016/j.ijbiomac.2018.03.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022]
Abstract
Hepatocyte damage, especially immunological liver injury, is a key process in the pathogenesis of hepatitis virus-induced liver diseases. The aim of this study was to investigate the protective effects of polyguluronate sulfate (PGS) against immunological liver damage. The results showed that PGS significantly reduced the H2O2-induced oxidative stress and increased the cell viability in HepG2 hepatocytes. PGS also suppressed the production of malondialdehyde (MDA), lactate dehydrogenase (LDH), TNF-α, and IL-6, while up-regulating the activity of SOD in HepG2 cells. Further, PGS (150 and 300mg/kg/day) significantly attenuated the elevation of serum glutamate pyruvate transaminase (ALT), aspartate aminotransferase (AST), total bilirubin (TBiL), in addition to liver MDA and NO levels in Con A-induced immunological liver injury within mice (P<0.05). Significant improvements of organ indexes (liver, spleen, and thymus) were observed in PGS-treated mice. PGS also significantly reduced the disorganization of hepatocytes and decreased the inflammatory cell infiltration caused by Con A treatment, suggesting that PGS was able to attenuate Con A-induced liver injury. In conclusion, PGS possesses significant hepatoprotective effects on immunological liver injury in vitro and in vivo, and this may be related to its antioxidant activities.
Collapse
|
12
|
Rafe MR. A review of five traditionally used anti-diabetic plants of Bangladesh and their pharmacological activities. ASIAN PAC J TROP MED 2017; 10:933-939. [PMID: 29111187 DOI: 10.1016/j.apjtm.2017.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 11/24/2022] Open
Abstract
Plants are used traditionally throughout the globe to treat various diseases. Traditionally used medicinal plants are an essential part of the health sector in Bangladesh due to its abundance of a vast source of ethno-medicine. Rural people from developing country like Bangladesh are greatly dependent on traditional source of medicine. The prevalence of diabetes mellitus is increasing from recent years; therefore various researches are going on to discover better medicine to treat this disease. This study has focused on five plants which are Andrographis paniculata, Ageratum conyzoides, Swertia chirata, Terminalia arjuna, and Azadirachta indica to find out their traditional formulation as anti-diabetic medicine and their pharmacological activity has also been explored through literature search. The available information about traditional anti-diabetic uses of these plants and their pharmacological activities were collected from various electronic sources like Pubmed, SciFinder, Elsevier, Springer, Scopus, Scirus, Science Direct, Google Scholar and Web of Science apart from these locally available books and peer reviewed journal were also used to collect information. This study will help to strengthen the relation between traditional medicine, pharmacology and drug development. A clue may be found from the information provided this review to discover new and better anti-diabetic drugs.
Collapse
Affiliation(s)
- Md Rajdoula Rafe
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
| |
Collapse
|
13
|
Broad-spectrum antiviral properties of andrographolide. Arch Virol 2016; 162:611-623. [PMID: 27896563 DOI: 10.1007/s00705-016-3166-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/20/2016] [Indexed: 01/01/2023]
Abstract
Andrographolide, a diterpenoid, is known for its anti-inflammatory effects. It can be isolated from various plants of the genus Andrographis, commonly known as 'creat'. This purified compound has been tested for its anti-inflammatory effects in various stressful conditions, such as ischemia, pyrogenesis, arthritis, hepatic or neural toxicity, carcinoma, and oxidative stress, Apart from its anti-inflammatory effects, andrographolide also exhibits immunomodulatory effects by effectively enhancing cytotoxic T cells, natural killer (NK) cells, phagocytosis, and antibody-dependent cell-mediated cytotoxicity (ADCC). All these properties of andrographolide form the foundation for the use of this miraculous compound to restrain virus replication and virus-induced pathogenesis. The present article covers antiviral properties of andrographolide in variety of viral infections, with the hope of developing of a new highly potent antiviral drug with multiple effects.
Collapse
|
14
|
Yuan X, Li Y, Pan X, Peng X, Song G, Jiang W, Gao Q, Li M. IL-38 alleviates concanavalin A-induced liver injury in mice. Int Immunopharmacol 2016; 40:452-457. [PMID: 27723569 DOI: 10.1016/j.intimp.2016.09.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 12/23/2022]
Abstract
Interleukin (IL)-38 is a poorly characterized cytokine of the IL-1 family with anti-inflammatory activity. The role of IL-38 in liver injury remains unknown. We have investigated the potential effect of hydrodynamic-based gene delivery to express human IL-38 in mice with concanavalin A (Con A)-induced liver injury. Transfer of plasmid DNA encoding IL-38 significantly reduced hepatic toxicity and serum levels of aspartate aminotransferase and alanine aminotransferase compared with administration of a control plasmid. Moreover, IL-38 expression dramatically reduced serum levels of several pro-inflammatory cytokines, such as tumor necrosis factor-α, interferon-γ, IL-6, IL-17, and IL-22, but not levels of the anti-inflammatory cytokine IL-10. These results suggest that in vivo expression of human IL-38 in mice has hepatoprotective effects against Con A-induced liver injury by inhibition of inflammatory cytokine production.
Collapse
Affiliation(s)
- Xianli Yuan
- Department of Immunology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Yan Li
- Department of Immunology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Xiuhe Pan
- Department of Immunology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Xiao Peng
- Department of Immunology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Gaihuan Song
- Department of Immunology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Wenwen Jiang
- Department of Immunology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Qiaoyan Gao
- Department of Immunology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Mingcai Li
- Department of Immunology, Ningbo University School of Medicine, Ningbo 315211, China.
| |
Collapse
|
15
|
Gu LL, Zhang XY, Xing WM, Xu JD, Lu H. Andrographolide-induced apoptosis in human renal tubular epithelial cells: Roles of endoplasmic reticulum stress and inflammatory response. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 45:257-264. [PMID: 27344125 DOI: 10.1016/j.etap.2016.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 06/06/2023]
Abstract
Andrographolide sodium bisulfate as a kind of soluble derivative of andrographolide (AD), is obviously known to be nephrotoxicity, but AD has not been reported clearly. Our study aimed to investigate the induction of apoptosis in human renal tubular epithelial (HK-2) cells by AD and its possible mechanism. Our results demonstrated that AD (0-250μmol/L) inhibited Hk-2 cells proliferation in a dose- and time-dependent manner and induced apoptosis, accompanied by decreased of superoxide dismutase (SOD) activity and increased of malondialdehvde (MDA) content. Simultaneously, AD regulated the expression of endoplasmic reticulum (ER) molecular chaperone glucose-regulated protein 78 (GRP78/Bip) protein, elevated the expressions of C/EBP homologous protein (CHOP) and Caspase-4, indicating activation of ER stress signaling, and induced the alterative expression of kidney injury molecule-1 (KIM-1), tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6) proteins. It provided evidence that ER stress and inflammation would be significant mechanisms responsible for AD-induced apoptosis in addition to oxidative stress.
Collapse
Affiliation(s)
- Li-Li Gu
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Xin-Yue Zhang
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 31003, Zhejiang Province, China
| | - Wen-Min Xing
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Jia-Dong Xu
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Hong Lu
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China.
| |
Collapse
|
16
|
Yang N, Xiong A, Wang R, Yang L, Wang Z. Quality Evaluation of Traditional Chinese Medicine Compounds in Xiaoyan Lidan Tablets: Fingerprint and Quantitative Analysis Using UPLC-MS. Molecules 2016; 21:83. [PMID: 26805803 PMCID: PMC6273587 DOI: 10.3390/molecules21020083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 11/16/2022] Open
Abstract
XiaoyanLidan tablets (XYLDTs) are traditional Chinese medicines frequently used for syndromes of the liver and gallbladder, cholecystitis and cholangitis. To evaluate the consistency of the quality of commercial XYLDT preparations, we established a simple and reliable ultra-performance liquid chromatography (UPLC) method with a photodiode array (PDA) detector and mass spectrometry (MS), including a fingerprint analysis and quantification of the main pharmacologically-active markers. In the UPLC-PDA detection-based fingerprint analysis of XYLDTs, approximately 39 peaks were found in the XYLDT chromatogram, 26 of which were attributed to Picrasmaquassioides, nine to Andrographis and four to Isodonserra. Subsequently, the structures of these bioactive markers were identified through ESI-MS analyses. Using the chemometricmethods of similarity analysis and principal component analysis, the five significant herbal componentswere determined as 4-methoxy-5-hydroxycanthin-6-one, andrographolide, dehydroandrographolide, neoandrographolide and rosmarinic acid, and these components were qualitatively assessed. Our experimental results demonstrated that combining the fingerprint analysis with UPLC-MS and multi-ingredient determination is useful for rapid pharmaceutical quality evaluation. Moreover, the combined approach can potentially differentiate the origin, determine the authenticity and assess the overall quality of the formulae.
Collapse
Affiliation(s)
- Na Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Aizhen Xiong
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Shanghai R & D Centre for Standardization of Chinese Medicines, Shanghai 201203, China.
| | - Rui Wang
- Shanghai R & D Centre for Standardization of Chinese Medicines, Shanghai 201203, China.
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Shanghai R & D Centre for Standardization of Chinese Medicines, Shanghai 201203, China.
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Shanghai R & D Centre for Standardization of Chinese Medicines, Shanghai 201203, China.
| |
Collapse
|
17
|
Domitrović R, Potočnjak I. A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives. Arch Toxicol 2015; 90:39-79. [DOI: 10.1007/s00204-015-1580-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
|
18
|
Darwish SF, El-Bakly WM, El-Naga RN, Awad AS, El-Demerdash E. Antifibrotic mechanism of deferoxamine in concanavalin A induced-liver fibrosis: Impact on interferon therapy. Biochem Pharmacol 2015; 98:231-42. [PMID: 26358138 DOI: 10.1016/j.bcp.2015.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/02/2015] [Indexed: 02/07/2023]
Abstract
Iron-overload is a well-known factor of hepatotoxicity and liver fibrosis, which found to be a common finding among hepatitis C virus patients and related to interferon resistance. We aimed to elucidate the potential antifibrotic effect of deferoxamine; the main iron chelator, and its additional usefulness to interferon-based therapy in concanavalin A-induced immunological model of liver fibrosis. Rats were treated with deferoxamine and/or pegylated interferon-α for 6 weeks. Hepatotoxicity indices, oxidative stress, inflammatory and liver fibrosis markers were assessed. Concanavalin A induced a significant increase in hepatotoxicity indices and lipid peroxidation accompanied with a significant depletion of total antioxidant capacity, glutathione level and superoxide dismutase activity. Besides, it increased CD4(+) T-cells content and the downstream inflammatory cascades, including NF-κB, TNF-α, iNOS, COX-2, IL-6 and IFN-γ. Furthermore, α-SMA, TGF-β1 and hydroxyproline were increased markedly, which confirmed by histopathology. Treatment with either deferoxamine or pegylated interferon-α alone reduced liver fibrosis markers significantly and improved liver histology. However, some of the hepatotoxicity indices and oxidative stress markers did not improve upon pegylated interferon-α treatment alone, besides the remarkable increase in IL-6. Combination therapy of deferoxamine with pegylated interferon-α further improved all previous markers, ameliorated IL-6 elevation, as well as increased hepcidin expression. In conclusion, our study provides evidences for the potent antifibrotic effects of deferoxamine and the underlying mechanisms that involved attenuating oxidative stress and subsequent inflammatory cascade, as well as the production of profibrogenic factors. Addition of deferoxamine to interferon regimen for HCV patients may offer a promising adjuvant modality to enhance therapeutic response.
Collapse
Affiliation(s)
- Samar F Darwish
- Central Administration of Pharmaceutical Affairs, Cairo, Egypt
| | - Wesam M El-Bakly
- Pharmacology & Therapeutic Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reem N El-Naga
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Azza S Awad
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
19
|
García-Niño WR, Zazueta C. Ellagic acid: Pharmacological activities and molecular mechanisms involved in liver protection. Pharmacol Res 2015; 97:84-103. [DOI: 10.1016/j.phrs.2015.04.008] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 12/23/2022]
|
20
|
Paeoniflorin protects against concanavalin A-induced hepatitis in mice. Int Immunopharmacol 2015; 24:42-9. [DOI: 10.1016/j.intimp.2014.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/29/2014] [Accepted: 11/10/2014] [Indexed: 12/21/2022]
|
21
|
Duval F, Moreno-Cuevas JE, González-Garza MT, Rodríguez-Montalvo C, Cruz-Vega DE. Liver fibrosis and protection mechanisms action of medicinal plants targeting apoptosis of hepatocytes and hepatic stellate cells. Adv Pharmacol Sci 2014; 2014:373295. [PMID: 25505905 PMCID: PMC4258378 DOI: 10.1155/2014/373295] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 10/29/2014] [Indexed: 12/13/2022] Open
Abstract
Following chronic liver injury, hepatocytes undergo apoptosis leading to activation of hepatic stellate cells (HSC). Consequently, activated HSC proliferate and produce excessive extracellular matrix, responsible for the scar formation. The pandemic trend of obesity, combined with the high incidence of alcohol intake and viral hepatitis infections, highlights the urgent need to find accessible antifibrotic therapies. Treatment strategies should take into account the versatility of its pathogenesis and act on all the cell lines involved to reduce liver fibrosis. Medicinal plants are achieving popularity as antifibrotic agents, supported by their safety, cost-effectiveness, and versatility. This review will describe the role of hepatocytes and HSC in the pathogenesis of liver fibrosis and detail the mechanisms of modulation of apoptosis of both cell lines by twelve known hepatoprotective plants in order to reduce liver fibrosis.
Collapse
Affiliation(s)
- Florent Duval
- Catedra de Terapia Celular, Escuela de Medicina, Tecnológico de Monterrey, Avenida Morones Prieto 3000 Pte., 64710 Monterrey, NL, Mexico
| | - Jorge E. Moreno-Cuevas
- Catedra de Terapia Celular, Escuela de Medicina, Tecnológico de Monterrey, Avenida Morones Prieto 3000 Pte., 64710 Monterrey, NL, Mexico
| | - Maria Teresa González-Garza
- Catedra de Terapia Celular, Escuela de Medicina, Tecnológico de Monterrey, Avenida Morones Prieto 3000 Pte., 64710 Monterrey, NL, Mexico
| | - Carlos Rodríguez-Montalvo
- Centro de Enfermedades Hepáticas-Digestivas y Nutrición, Hospital San José, Avenida Morones Prieto 3000, 64710 Monterrey, NL, Mexico
| | - Delia Elva Cruz-Vega
- Catedra de Terapia Celular, Escuela de Medicina, Tecnológico de Monterrey, Avenida Morones Prieto 3000 Pte., 64710 Monterrey, NL, Mexico
| |
Collapse
|
22
|
Chen H, Ma YB, Huang XY, Geng CA, Zhao Y, Wang LJ, Guo RH, Liang WJ, Zhang XM, Chen JJ. Synthesis, structure-activity relationships and biological evaluation of dehydroandrographolide and andrographolide derivatives as novel anti-hepatitis B virus agents. Bioorg Med Chem Lett 2014; 24:2353-9. [PMID: 24731274 DOI: 10.1016/j.bmcl.2014.03.060] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/10/2014] [Accepted: 03/19/2014] [Indexed: 12/24/2022]
Abstract
Dehydroandrographolide and andrographolide, two natural diterpenoids isolated from Andrographis paniculata possessed activity against HBV DNA replication with IC50 values of 22.58 and 54.07μM and low SI values of 8.7 and 3.7 in our random assay. Consequently, 48 derivatives of dehydroandrographolide and andrographolide were synthesized and evaluated for their anti-HBV properties to yield a series of active derivatives with lower cytotoxicity, including 14 derivatives against HBsAg secretion, 19 derivatives against HBeAg secretion and 38 derivatives against HBV DNA replication. Interestingly, compound 4e could inhibit not only HBsAg and HBeAg secretions but also HBV DNA replication with SI values of 20.3, 125.0 and 104.9. Furthermore, the most active compound 2c with SI value higher than 165.1 inhibiting HBV DNA replication was revealed with the optimal logP value of 1.78 and logD values. Structure-activity relationships (SARs) of the derivatives were disclosed for guiding the future research toward the discovery of new anti-HBV drugs.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Xiao-Yan Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Yong Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Li-Jun Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Rui-Hua Guo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Wen-Juan Liang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China.
| |
Collapse
|
23
|
Salvianolic acid A preconditioning confers protection against concanavalin A-induced liver injury through SIRT1-mediated repression of p66shc in mice. Toxicol Appl Pharmacol 2013; 273:68-76. [DOI: 10.1016/j.taap.2013.08.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/15/2013] [Accepted: 08/16/2013] [Indexed: 12/18/2022]
|
24
|
Experimental and Clinical Pharmacology of Andrographis paniculata and Its Major Bioactive Phytoconstituent Andrographolide. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:846740. [PMID: 23634174 PMCID: PMC3619690 DOI: 10.1155/2013/846740] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/12/2013] [Accepted: 02/12/2013] [Indexed: 12/11/2022]
Abstract
Andrographis paniculata (Burm. F) Nees, generally known as “king of bitters,” is an herbaceous plant in the family Acanthaceae. In China, India, Thailand, and Malaysia, this plant has been widely used for treating sore throat, flu, and upper respiratory tract infections. Andrographolide, a major bioactive chemical constituent of the plant, has shown anticancer potential in various investigations. Andrographolide and its derivatives have anti-inflammatory effects in experimental models asthma, stroke, and arthritis. In recent years, pharmaceutical chemists have synthesized numerous andrographolide derivatives, which exhibit essential pharmacological activities such as those that are anti-inflammatory, antibacterial, antitumor, antidiabetic, anti-HIV, antifeedant, and antiviral. However, what is noteworthy about this paper is summarizing the effects of andrographolide against cardiovascular disease, platelet activation, infertility, and NF-κB activation. Therefore, this paper is intended to provide evidence reported in relevant literature on qualitative research to assist scientists in isolating and characterizing bioactive compounds.
Collapse
|
25
|
Engineered Andrographolide Nanoparticles Mitigate Paracetamol Hepatotoxicity in Mice. Pharm Res 2013; 30:1252-62. [DOI: 10.1007/s11095-012-0964-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/13/2012] [Indexed: 12/13/2022]
|
26
|
Zhang B, Yan L, Zhou P, Dong Z, Feng S, Liu K, Gong Z. CHP1002, a novel andrographolide derivative, inhibits pro-inflammatory inducible nitric oxide synthase and cyclooxygenase-2 expressions in RAW264.7 macrophages via up-regulation of heme oxygenase-1 expression. Int Immunopharmacol 2012; 15:289-95. [PMID: 23261362 DOI: 10.1016/j.intimp.2012.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 11/29/2012] [Accepted: 12/04/2012] [Indexed: 12/18/2022]
Abstract
Andrographolides, a type of diterpene lactone, are widely known to have anti-inflammatory and anti-oxidative properties. CHP1002, a synthetic derivative of andrographolide, has similar anti-inflammatory action in mouse ear swelling test and rat paw edema test. In the present study, the mechanism of anti-inflammatory effects of CHP1002 was investigated in RAW264.7 macrophages. CHP1002 potently suppressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. CHP1002 reduced the production of iNOS-derived nitric oxide (NO) and COX-2-derived prostaglandin E2 (PGE2). CHP1002 induced heme oxygenase-1 (HO-1) expression via activation of extracellular signal-regulated kinase (ERK) and NF-E2 related factor 2 transcription factor (Nrf2). Down-regulation of LPS-induced iNOS and COX-2 expressions was partially reversed by the HO-1 inhibitor zinc protoporphyrin (ZnPP). In addition, CHP1002 significantly attenuated LPS-induced TNF-α, IL-1β and IL-6 production. CHP1002 effectively induced HO-1 and was capable of inhibiting some macrophage-derived pro-inflammatory mediators, which may be closely correlated with its anti-inflammatory action.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, PR China
| | | | | | | | | | | | | |
Collapse
|
27
|
Yang Q, Zhao X, Zang L, Fang X, Zhao J, Yang X, Wang Q, Zheng L, Chang J. Anti-hepatitis B virus activities of α-DDB-FNC, a novel nucleoside-biphenyldicarboxylate compound in cells and ducks, and its anti-immunological liver injury effect in mice. Antiviral Res 2012; 96:333-9. [PMID: 23098744 DOI: 10.1016/j.antiviral.2012.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 10/13/2012] [Accepted: 10/15/2012] [Indexed: 12/31/2022]
Abstract
Infection with hepatitis B virus (HBV) continues to be a major global cause of acute and chronic liver disease with high mortality. Herein, we examined both the anti-HBV and hepatoprotective activity of α-DDB-FNC. In human HBV-transfected liver cell line HepG2.2.15, α-DDB-FNC effectively suppressed the secretion of HBV antigens in a time and dose-dependent manner with 25.11% inhibition on HBeAg and 43.68% on HBsAg at 2.5 μM on day 9. Consistent with the HBV antigen reduction, α-DDB-FNC (2.5 μM) also reduced HBV DNA level by 77.74% extracellularly and 78.94% intracellularly on day 9. In the duck hepatitis B virus (DHBV) infected ducks, after α-DDB-FNC was given once daily for 10 days, the serum and liver DHBV DNA levels were reduced markedly with 96.81% and 97.21% at 10 mgkg(-1) on day 10, respectively. In Con A-induced immunological liver-injury mice, α-DDB-FNC significantly inhibited the elevation of serum ALT, AST, TBiL and liver MDA, NO levels. Furthermore, significant improvement of the liver was observed after α-DDB-FNC treatment both in ducks and mice, as evaluated by the histopathological analysis. In conclusion, our results demonstrated that α-DDB-FNC possesses both antiviral activity against HBV and hepatoprotective effect to Con A-induced liver-injury mice.
Collapse
Affiliation(s)
- Qinghua Yang
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chao WW, Lin BF. Hepatoprotective Diterpenoids Isolated from <i>Andrographis paniculata</i>. Chin Med 2012. [DOI: 10.4236/cm.2012.33022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|