1
|
Shpakov AO. Hormonal and Allosteric Regulation of the Luteinizing Hormone/Chorionic Gonadotropin Receptor. FRONT BIOSCI-LANDMRK 2024; 29:313. [PMID: 39344322 DOI: 10.31083/j.fbl2909313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Luteinizing hormone (LH) and human chorionic gonadotropin (CG), like follicle-stimulating hormone, are the most important regulators of the reproductive system. They exert their effect on the cell through the LH/CG receptor (LHCGR), which belongs to the family of G protein-coupled receptors. Binding to gonadotropin induces the interaction of LHCGR with various types of heterotrimeric G proteins (Gs, Gq/11, Gi) and β-arrestins, which leads to stimulation (Gs) or inhibition (Gi) of cyclic adenosine monophosphate-dependent cascades, activation of the phospholipase pathway (Gq/11), and also to the formation of signalosomes that mediate the stimulation of mitogen-activated protein kinases (β-arrestins). The efficiency and selectivity of activation of intracellular cascades by different gonadotropins varies, which is due to differences in their interaction with the ligand-binding site of LHCGR. Gonadotropin signaling largely depends on the status of N- and O-glycosylation of LH and CG, on the formation of homo- and heterodimeric receptor complexes, on the cell-specific microenvironment of LHCGR and the presence of autoantibodies to it, and allosteric mechanisms are important in the implementation of these influences, which is due to the multiplicity of allosteric sites in different loci of the LHCGR. The development of low-molecular-weight allosteric regulators of LHCGR with different profiles of pharmacological activity, which can be used in medicine for the correction of reproductive disorders and in assisted reproductive technologies, is promising. These and other issues regarding the hormonal and allosteric regulation of LHCGR are summarized and discussed in this review.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
2
|
Goda R, Watanabe S, Misaka T. Allosteric modulation of the fish taste receptor type 1 (T1R) family by the extracellular chloride ion. Sci Rep 2023; 13:16348. [PMID: 37770555 PMCID: PMC10539361 DOI: 10.1038/s41598-023-43700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
Many G protein-coupled receptors (GPCRs) are allosterically modulated by inorganic ions. Although the intraoral ionic composition of the oral cavity varies depending on the living environment and feeding behavior, little is known about whether and how it affects the function of taste receptor type 1 (T1R), a member of the class C GPCR family. Here, we report that chloride ions allosterically modulate the functions of specific fish T1Rs, namely, mfT1R2a/mfT1R3 and zfT1R2a/zfT1R3. Site-directed mutagenesis revealed mfT1R2a K265, which lies in the extracellular domain of mfT1R2a, to be as a critical residue for the modulation of mfT1R2a/mfT1R3 by Cl-. However, this residue is not conserved in zfT1R2a, and the introduction of the key residue at the corresponding site of another T1R, mfT1R2b, did not confer Cl- susceptibility. These results indicate the variability of the determinants of Cl- susceptibility.
Collapse
Affiliation(s)
- Ryusei Goda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Soichi Watanabe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
3
|
Shpakov AO. Allosteric Regulation of G-Protein-Coupled Receptors: From Diversity of Molecular Mechanisms to Multiple Allosteric Sites and Their Ligands. Int J Mol Sci 2023; 24:6187. [PMID: 37047169 PMCID: PMC10094638 DOI: 10.3390/ijms24076187] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Allosteric regulation is critical for the functioning of G protein-coupled receptors (GPCRs) and their signaling pathways. Endogenous allosteric regulators of GPCRs are simple ions, various biomolecules, and protein components of GPCR signaling (G proteins and β-arrestins). The stability and functional activity of GPCR complexes is also due to multicenter allosteric interactions between protomers. The complexity of allosteric effects caused by numerous regulators differing in structure, availability, and mechanisms of action predetermines the multiplicity and different topology of allosteric sites in GPCRs. These sites can be localized in extracellular loops; inside the transmembrane tunnel and in its upper and lower vestibules; in cytoplasmic loops; and on the outer, membrane-contacting surface of the transmembrane domain. They are involved in the regulation of basal and orthosteric agonist-stimulated receptor activity, biased agonism, GPCR-complex formation, and endocytosis. They are targets for a large number of synthetic allosteric regulators and modulators, including those constructed using molecular docking. The review is devoted to the principles and mechanisms of GPCRs allosteric regulation, the multiplicity of allosteric sites and their topology, and the endogenous and synthetic allosteric regulators, including autoantibodies and pepducins. The allosteric regulation of chemokine receptors, proteinase-activated receptors, thyroid-stimulating and luteinizing hormone receptors, and beta-adrenergic receptors are described in more detail.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
4
|
Stäubert C, Wozniak M, Dupuis N, Laschet C, Pillaiyar T, Hanson J. Superconserved receptors expressed in the brain: Expression, function, motifs and evolution of an orphan receptor family. Pharmacol Ther 2022; 240:108217. [PMID: 35644261 DOI: 10.1016/j.pharmthera.2022.108217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022]
Abstract
GPR27, GPR85 and GPR173 constitute a small family of G protein-coupled receptors (GPCR) that share the distinctive characteristics of being highly conserved throughout vertebrate evolution and predominantly expressed in the brain. Accordingly, they have been coined as "Superconserved Receptors Expressed in the Brain" (SREB), although their expression profile is more complex than what was originally thought. SREBs have no known validated endogenous ligands and are thus labeled as "orphan" receptors. The investigation of this particular category of uncharacterized receptors holds great promise both in terms of physiology and drug development. In the largest GPCR family, the Rhodopsin-like or Class A, around 100 receptors are considered orphans. Because GPCRs are the most successful source of drug targets, the discovery of a novel function or ligand most likely will lead to significant breakthroughs for the discovery of innovative therapies. The high level of conservation is one of the characteristic features of the SREBs. We propose herein a detailed analysis of the putative evolutionary origin of this family. We highlight the properties that distinguish SREBs from other rhodopsin-like GPCRs. We present the current evidence for these receptors downstream signaling pathways and functions. We discuss the pharmacological challenge for the identification of natural or synthetic ligands of orphan receptors like SREBs. The different SREB-related scientific questions are presented with a highlight on what should be addressed in the near future, including the confirmation of published evidence and their validation as drug targets. In particular, we discuss in which pathological conditions these receptors may be of great relevance to solve unmet medical needs.
Collapse
Affiliation(s)
- Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany.
| | - Monika Wozniak
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Nadine Dupuis
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Céline Laschet
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium; Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium.
| |
Collapse
|
5
|
Pedreira JGB, Silva RR, Noël FG, Barreiro EJ. Effect of S-Se Bioisosteric Exchange on Affinity and Intrinsic Efficacy of Novel N-acylhydrazone Derivatives at the Adenosine A 2A Receptor. Molecules 2021; 26:7364. [PMID: 34885946 PMCID: PMC8659164 DOI: 10.3390/molecules26237364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
In this work, we evaluated the conformational effect promoted by the isosteric exchange of sulfur by selenium in the heteroaromatic ring of new N-acylhydrazone (NAH) derivatives (3-8, 13, 14), analogues of the cardioactive compounds LASSBio-294 (1) and LASSBio-785 (2). NMR spectra analysis demonstrated a chemical shift variation of the iminic Csp2 of NAH S/Se-isosters, suggesting a stronger intramolecular chalcogen interaction for Se-derivatives. To investigate the pharmacological profile of these compounds at the adenosine A2A receptor (A2AR), we performed a previously validated functional binding assay. As expected for bioisosteres, the isosteric-S/Se replacement affected neither the affinity nor the intrinsic efficacy of our NAH derivatives (1-8). However, the N-methylated compounds (2, 6-8) presented a weak partial agonist profile at A2AR, contrary to the non-methylated counterparts (1, 3-5), which appeared as weak inverse agonists. Additionally, retroisosterism between aromatic rings of NAH on S/Se-isosters mimicked the effect of the N-methylation on intrinsic efficacy at A2AR, while meta-substitution in the phenyl ring of the acyl moiety did not. This study showed that the conformational effect of NAH-N-methylation and aromatic rings retroisosterism changed the intrinsic efficacy on A2AR, indicating the S/Se-chalcogen effect to drive the conformational behavior of this series of NAH.
Collapse
Affiliation(s)
- Júlia Galvez Bulhões Pedreira
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21944-971, Brazil;
- Graduate Program of Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| | - Rafaela Ribeiro Silva
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21944-971, Brazil; (R.R.S.); (F.G.N.)
| | - François G. Noël
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21944-971, Brazil; (R.R.S.); (F.G.N.)
- Nacional Institute of Science & Technology in Drugs and Medicines (INCT-INOFAR), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21944-971, Brazil
| | - Eliezer J. Barreiro
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21944-971, Brazil;
- Graduate Program of Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
- Nacional Institute of Science & Technology in Drugs and Medicines (INCT-INOFAR), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21944-971, Brazil
| |
Collapse
|
6
|
Ozkan AD, Gettas T, Sogata A, Phaychanpheng W, Zhou M, Lacroix JJ. Mechanical and chemical activation of GPR68 probed with a genetically encoded fluorescent reporter. J Cell Sci 2021; 134:271846. [PMID: 34322699 DOI: 10.1242/jcs.255455] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/17/2021] [Indexed: 12/24/2022] Open
Abstract
G-protein-coupled receptor (GPCR) 68 (GPR68, or OGR1) couples extracellular acidifications and mechanical stimuli to G-protein signaling and plays important roles in vascular physiology, neuroplasticity and cancer progression. Inspired by previous GPCR-based reporters, here, we inserted a cyclic permuted fluorescent protein into the third intracellular loop of GPR68 to create a genetically encoded fluorescent reporter of GPR68 activation we call 'iGlow'. iGlow responds to known physiological GPR68 activators such as fluid shear stress and extracellular acidifications. In addition, iGlow responds to Ogerin, a synthetic GPR68-selective agonist, but not to a non-active Ogerin analog, showing the specificity of iGlow-mediated fluorescence signals. Flow-induced iGlow activation is not eliminated by pharmacological modulation of downstream G-protein signaling, disruption of actin filaments or application of GsMTx4, an inhibitor of certain mechanosensitive ion channels activated by membrane stretch. Deletion of the conserved helix 8, proposed to mediate mechanosensitivity in certain GPCRs, does not eliminate flow-induced iGlow activation. iGlow could be useful to investigate the contribution of GPR68-dependent signaling in health and disease.
Collapse
Affiliation(s)
- Alper D Ozkan
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| | - Tina Gettas
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| | - Audrey Sogata
- Chino Hills High School, 16150 Pomona Rincon Rd, Chino Hills, CA 91709, USA
| | - Wynn Phaychanpheng
- Chino Hills High School, 16150 Pomona Rincon Rd, Chino Hills, CA 91709, USA
| | - Miou Zhou
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| | - Jérôme J Lacroix
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| |
Collapse
|
7
|
Galera-Laporta L, Comerci CJ, Garcia-Ojalvo J, Süel GM. IonoBiology: The functional dynamics of the intracellular metallome, with lessons from bacteria. Cell Syst 2021; 12:497-508. [PMID: 34139162 PMCID: PMC8570674 DOI: 10.1016/j.cels.2021.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022]
Abstract
Metal ions are essential for life and represent the second most abundant constituent (after water) of any living cell. While the biological importance of inorganic ions has been appreciated for over a century, we are far from a comprehensive understanding of the functional roles that ions play in cells and organisms. In particular, recent advances are challenging the traditional view that cells maintain constant levels of ion concentrations (ion homeostasis). In fact, the ionic composition (metallome) of cells appears to be purposefully dynamic. The scientific journey that started over 60 years ago with the seminal work by Hodgkin and Huxley on action potentials in neurons is far from reaching its end. New evidence is uncovering how changes in ionic composition regulate unexpected cellular functions and physiology, especially in bacteria, thereby hinting at the evolutionary origins of the dynamic metallome. It is an exciting time for this field of biology, which we discuss and refer to here as IonoBiology.
Collapse
Affiliation(s)
- Leticia Galera-Laporta
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Colin J Comerci
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Gürol M Süel
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; San Diego Center for Systems Biology, University of California, San Diego, La Jolla, CA 92093- 0380, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093-0380, USA.
| |
Collapse
|
8
|
Felix L, Delekate A, Petzold GC, Rose CR. Sodium Fluctuations in Astroglia and Their Potential Impact on Astrocyte Function. Front Physiol 2020; 11:871. [PMID: 32903427 PMCID: PMC7435049 DOI: 10.3389/fphys.2020.00871] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Astrocytes are the main cell type responsible for the regulation of brain homeostasis, including the maintenance of ion gradients and neurotransmitter clearance. These processes are tightly coupled to changes in the intracellular sodium (Na+) concentration. While activation of the sodium-potassium-ATPase (NKA) in response to an elevation of extracellular K+ may decrease intracellular Na+, the cotransport of transmitters, such as glutamate, together with Na+ results in an increase in astrocytic Na+. This increase in intracellular Na+ can modulate, for instance, metabolic downstream pathways. Thereby, astrocytes are capable to react on a fast time scale to surrounding neuronal activity via intracellular Na+ fluctuations and adjust energy production to the demand of their environment. Beside the well-documented conventional roles of Na+ signaling mainly mediated through changes in its electrochemical gradient, several recent studies have identified more atypical roles for Na+, including protein interactions leading to changes in their biochemical activity or Na+-dependent regulation of gene expression. In this review, we will address both the conventional as well as the atypical functions of astrocytic Na+ signaling, presenting the role of transporters and channels involved and their implications for physiological processes in the central nervous system (CNS). We will also discuss how these important functions are affected under pathological conditions, including stroke and migraine. We postulate that Na+ is an essential player not only in the maintenance of homeostatic processes but also as a messenger for the fast communication between neurons and astrocytes, adjusting the functional properties of various cellular interaction partners to the needs of the surrounding network.
Collapse
Affiliation(s)
- Lisa Felix
- Institute of Neurobiology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Andrea Delekate
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
9
|
Chan HC, Xu Y, Tan L, Vogel H, Cheng J, Wu D, Yuan S. Enhancing the Signaling of GPCRs via Orthosteric Ions. ACS CENTRAL SCIENCE 2020; 6:274-282. [PMID: 32123746 PMCID: PMC7047428 DOI: 10.1021/acscentsci.9b01247] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 05/02/2023]
Abstract
G protein-coupled receptors play essential roles in cellular processes such as neuronal signaling, vision, olfaction, tasting, and metabolism. As GPCRs are the most important drug targets, understanding their interactions with ligands is of utmost importance for discovering related new medicines. In many GPCRs, an allosteric sodium ion next to the highly conserved residue D2.50 has been proposed to stabilize the inactive receptor state by mediating interactions between transmembrane helices. Here, we probed the existence of internal and functionally important sodium ions in the dopamine D2 receptor, using molecular dynamics simulations. Besides a new sodium ion at the allosteric ligand binding site, we discovered an additional sodium ion, located close to the orthosteric ligand binding site. Through cell-based activation assays, the signaling of D2 receptor with site-specific mutations was tested against a series of chemically modified agonists. We concluded an important structural role of this newly discovered orthosteric sodium ion in modulating the receptor signaling: It enables the coordination of a polar residue in the ligand binding site with an appropriately designed agonist molecule. An identical interaction was also observed in a recently released high-resolution crystal structure of mu-opioid receptor, which was reresolved in this work. Probably because of similar interactions, various metal ions have been found to increase the signaling of many other GPCRs. This unique principle and strategy could be used to optimize the drug activity of GPCR. Our findings open a new mechanistic opportunity of GPCR signaling and help design the next generation of drugs targeting GPCRs.
Collapse
Affiliation(s)
- H. C.
Stephen Chan
- Shenzhen
Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yueming Xu
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Liang Tan
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Horst Vogel
- Shenzhen
Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute
of Chemical Sciences and Engineering, Ecole
Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Jianjun Cheng
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
- E-mail:
| | - Dong Wu
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
- E-mail:
| | - Shuguang Yuan
- Shenzhen
Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- E-mail:
| |
Collapse
|
10
|
Helix 8 is the essential structural motif of mechanosensitive GPCRs. Nat Commun 2019; 10:5784. [PMID: 31857598 PMCID: PMC6923424 DOI: 10.1038/s41467-019-13722-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are versatile cellular sensors for chemical stimuli, but also serve as mechanosensors involved in various (patho)physiological settings like vascular regulation, cardiac hypertrophy and preeclampsia. However, the molecular mechanisms underlying mechanically induced GPCR activation have remained elusive. Here we show that mechanosensitive histamine H1 receptors (H1Rs) are endothelial sensors of fluid shear stress and contribute to flow-induced vasodilation. At the molecular level, we observe that H1Rs undergo stimulus-specific patterns of conformational changes suggesting that mechanical forces and agonists induce distinct active receptor conformations. GPCRs lacking C-terminal helix 8 (H8) are not mechanosensitive, and transfer of H8 to non-responsive GPCRs confers, while removal of H8 precludes, mechanosensitivity. Moreover, disrupting H8 structural integrity by amino acid exchanges impairs mechanosensitivity. Altogether, H8 is the essential structural motif endowing GPCRs with mechanosensitivity. These findings provide a mechanistic basis for a better understanding of the roles of mechanosensitive GPCRs in (patho)physiology. GPCRs are versatile cellular sensors for chemical stimuli but the molecular mechanisms underlying mechanically induced GPCR activation have remained elusive. Here authors identify the C-terminal helix 8 (H8) as the essential structural motif endowing H1R and other GPCRs with mechanosensitivity.
Collapse
|
11
|
Klimanova EA, Sidorenko SV, Tverskoi AM, Shiyan AA, Smolyaninova LV, Kapilevich LV, Gusakova SV, Maksimov GV, Lopina OD, Orlov SN. Search for Intracellular Sensors Involved in the Functioning of Monovalent Cations as Secondary Messengers. BIOCHEMISTRY (MOSCOW) 2019; 84:1280-1295. [DOI: 10.1134/s0006297919110063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Zarzycka B, Zaidi SA, Roth BL, Katritch V. Harnessing Ion-Binding Sites for GPCR Pharmacology. Pharmacol Rev 2019; 71:571-595. [PMID: 31551350 PMCID: PMC6782022 DOI: 10.1124/pr.119.017863] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Endogenous ions play important roles in the function and pharmacology of G-protein coupled receptors (GPCRs). Historically the evidence for ionic modulation of GPCR function dates to 1973 with studies of opioid receptors, where it was demonstrated that physiologic concentrations of sodium allosterically attenuated agonist binding. This Na+-selective effect was distinct from effects of other monovalent and divalent cations, with the latter usually counteracting sodium's negative allosteric modulation of binding. Since then, numerous studies documenting the effects of mono- and divalent ions on GPCR function have been published. While ions can act selectively and nonselectively at many sites in different receptors, the discovery of the conserved sodium ion site in class A GPCR structures in 2012 revealed the unique nature of Na+ site, which has emerged as a near-universal site for allosteric modulation of class A GPCR structure and function. In this review, we synthesize and highlight recent advances in the functional, biophysical, and structural characterization of ions bound to GPCRs. Taken together, these findings provide a molecular understanding of the unique roles of Na+ and other ions as GPCR allosteric modulators. We will also discuss how this knowledge can be applied to the redesign of receptors and ligand probes for desired functional and pharmacological profiles. SIGNIFICANCE STATEMENT: The function and pharmacology of GPCRs strongly depend on the presence of mono and divalent ions in experimental assays and in living organisms. Recent insights into the molecular mechanism of this ion-dependent allosterism from structural, biophysical, biochemical, and computational studies provide quantitative understandings of the pharmacological effects of drugs in vitro and in vivo and open new avenues for the rational design of chemical probes and drug candidates with improved properties.
Collapse
Affiliation(s)
- Barbara Zarzycka
- Departments of Biological Sciences (B.Z., S.A.Z., V.K.) and Chemistry (V.K.), Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California; and Department of Pharmacology (B.L.R.) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy (B.L.R.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Saheem A Zaidi
- Departments of Biological Sciences (B.Z., S.A.Z., V.K.) and Chemistry (V.K.), Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California; and Department of Pharmacology (B.L.R.) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy (B.L.R.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Bryan L Roth
- Departments of Biological Sciences (B.Z., S.A.Z., V.K.) and Chemistry (V.K.), Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California; and Department of Pharmacology (B.L.R.) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy (B.L.R.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Vsevolod Katritch
- Departments of Biological Sciences (B.Z., S.A.Z., V.K.) and Chemistry (V.K.), Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California; and Department of Pharmacology (B.L.R.) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy (B.L.R.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
13
|
Vosahlikova M, Ujcikova H, Hlouskova M, Musil S, Roubalova L, Alda M, Svoboda P. Induction of oxidative stress by long-term treatment of live HEK293 cells with therapeutic concentration of lithium is associated with down-regulation of δ-opioid receptor amount and function. Biochem Pharmacol 2018; 154:452-463. [DOI: 10.1016/j.bcp.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/04/2018] [Indexed: 12/27/2022]
|
14
|
Ye L, Neale C, Sljoka A, Lyda B, Pichugin D, Tsuchimura N, Larda ST, Pomès R, García AE, Ernst OP, Sunahara RK, Prosser RS. Mechanistic insights into allosteric regulation of the A 2A adenosine G protein-coupled receptor by physiological cations. Nat Commun 2018; 9:1372. [PMID: 29636462 PMCID: PMC5893540 DOI: 10.1038/s41467-018-03314-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 02/02/2018] [Indexed: 11/12/2022] Open
Abstract
Cations play key roles in regulating G-protein-coupled receptors (GPCRs), although their mechanisms are poorly understood. Here, 19F NMR is used to delineate the effects of cations on functional states of the adenosine A2A GPCR. While Na+ reinforces an inactive ensemble and a partial-agonist stabilized state, Ca2+ and Mg2+ shift the equilibrium toward active states. Positive allosteric effects of divalent cations are more pronounced with agonist and a G-protein-derived peptide. In cell membranes, divalent cations enhance both the affinity and fraction of the high affinity agonist-bound state. Molecular dynamics simulations suggest high concentrations of divalent cations bridge specific extracellular acidic residues, bringing TM5 and TM6 together at the extracellular surface and allosterically driving open the G-protein-binding cleft as shown by rigidity-transmission allostery theory. An understanding of cation allostery should enable the design of allosteric agents and enhance our understanding of GPCR regulation in the cellular milieu.
Collapse
Affiliation(s)
- Libin Ye
- Department of Chemistry, University of Toronto, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Chris Neale
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Adnan Sljoka
- Department of Informatics, School of Science and Technology, CREST, Japan Science and Technology Agency (JST), Kwansei Gakuin University, Nishinomiya, 530-0012, Japan
| | - Brent Lyda
- Department of Pharmacology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Dmitry Pichugin
- Department of Chemistry, University of Toronto, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Nobuyuki Tsuchimura
- Department of Informatics, School of Science and Technology, CREST, Japan Science and Technology Agency (JST), Kwansei Gakuin University, Nishinomiya, 530-0012, Japan
| | - Sacha T Larda
- Department of Chemistry, University of Toronto, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Régis Pomès
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Molecular Structure and Function, The Hospital for Sick Children, 686 University Avenue, Toronto, ON, M5G OA4, Canada
| | - Angel E García
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Roger K Sunahara
- Department of Pharmacology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - R Scott Prosser
- Department of Chemistry, University of Toronto, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada.
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
15
|
Dudev T, Mazmanian K, Lim C. Competition between Li + and Na + in sodium transporters and receptors: Which Na +-Binding sites are "therapeutic" Li + targets? Chem Sci 2018; 9:4093-4103. [PMID: 29780538 PMCID: PMC5944251 DOI: 10.1039/c7sc05284g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/02/2018] [Indexed: 11/21/2022] Open
Abstract
Li+ (turquoise), the better charge acceptor, can displace Na+ (purple) bound by only one or two aa residues in buried sites. Thus, Li+ can displace Na+ bound by Asp– and Ser in the A2AAR/β1AR receptor and enhance the metal site's stability, thus prohibiting structural distortions induced by agonist binding, leading to lower cytosolic levels of activated G-proteins, which are hyperactive in bipolar disorder patients.
Sodium (Na+) acts as an indispensable allosteric regulator of the activities of biologically important neurotransmitter transporters and G-protein coupled receptors (GPCRs), which comprise well-known drug targets for psychiatric disorders and addictive behavior. How selective these allosteric Na+-binding sites are for the cognate cation over abiogenic Li+, a first-line drug to treat bipolar disorder, is unclear. Here, we reveal how properties of the host protein and its binding cavity affect the outcome of the competition between Li+ and Na+ for allosteric binding sites in sodium transporters and receptors. We show that rigid Na+-sites that are crowded with multiple protein ligands are well-protected against Li+ attack, but their flexible counterparts or buried Na+-sites containing only one or two protein ligands are vulnerable to Li+ substitution. These findings suggest a novel possible mode of Li+ therapeutic action: By displacing Na+ bound by ≤2 protein ligands in buried GPCR sites and stabilizing the receptor's inactive state, Li+ could prohibit conformational changes to an active state, leading to lower cytosolic levels of activated guanine nucleotide-binding proteins, which are hyperactive/overexpressed in bipolar disorder patients.
Collapse
Affiliation(s)
- Todor Dudev
- Faculty of Chemistry and Pharmacy , Sofia University , Sofia 1164 , Bulgaria .
| | - Karine Mazmanian
- Institute of Biomedical Sciences , Academia Sinica , Taipei 11529 , Taiwan . .,Chemical Biology and Molecular Biophysics Program , Taiwan International Graduate Program , Academia Sinica , Taipei 11529 , Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences , Academia Sinica , Taipei 11529 , Taiwan . .,Department of Chemistry , National Tsing Hua University , Hsinchu 300 , Taiwan
| |
Collapse
|
16
|
Dolles D, Hoffmann M, Gunesch S, Marinelli O, Möller J, Santoni G, Chatonnet A, Lohse MJ, Wittmann HJ, Strasser A, Nabissi M, Maurice T, Decker M. Structure-Activity Relationships and Computational Investigations into the Development of Potent and Balanced Dual-Acting Butyrylcholinesterase Inhibitors and Human Cannabinoid Receptor 2 Ligands with Pro-Cognitive in Vivo Profiles. J Med Chem 2018; 61:1646-1663. [PMID: 29400965 DOI: 10.1021/acs.jmedchem.7b01760] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The enzyme butyrylcholinesterase (BChE) and the human cannabinoid receptor 2 (hCB2R) represent promising targets for pharmacotherapy in the later stages of Alzheimer's disease. We merged pharmacophores for both targets into small benzimidazole-based molecules, investigated SARs, and identified several dual-acting ligands with a balanced affinity/inhibitory activity and an excellent selectivity over both hCB1R and hAChE. A homology model for the hCB2R was developed based on the hCB1R crystal structure and used for molecular dynamics studies to investigate binding modes. In vitro studies proved hCB2R agonism. Unwanted μ-opioid receptor affinity could be designed out. One well-balanced dual-acting and selective hBChE inhibitor/hCB2R agonist showed superior in vivo activity over the lead CB2 agonist with regards to cognition improvement. The data shows the possibility to combine a small molecule with selective and balanced GPCR-activity/enzyme inhibition and in vivo activity for the therapy of AD and may help to rationalize the development of other dual-acting ligands.
Collapse
Affiliation(s)
- Dominik Dolles
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| | - Matthias Hoffmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| | - Sandra Gunesch
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| | - Oliviero Marinelli
- School of Pharmacy, Department of Experimental Medicine, University of Camerino , I-62032 Camerino, Italy
| | - Jan Möller
- Institute of Pharmacology and Toxicology, Julius Maximilian University of Würzburg , Versbacher Strabe 9, D-97078 Würzburg, Germany
| | - Giorgio Santoni
- School of Pharmacy, Department of Experimental Medicine, University of Camerino , I-62032 Camerino, Italy
| | - Arnaud Chatonnet
- INRA UMR866, University of Montpellier , F-34060 Montpellier, France
| | - Martin J Lohse
- Institute of Pharmacology and Toxicology, Julius Maximilian University of Würzburg , Versbacher Strabe 9, D-97078 Würzburg, Germany
| | - Hans-Joachim Wittmann
- Pharmaceutical and Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg , D-95053 Regensburg, Germany
| | - Andrea Strasser
- Pharmaceutical and Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg , D-95053 Regensburg, Germany
| | - Massimo Nabissi
- School of Pharmacy, Department of Experimental Medicine, University of Camerino , I-62032 Camerino, Italy
| | - Tangui Maurice
- INSERM UMR-S1198, University of Montpellier, EPHE , F-34095 Montpellier, France
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
17
|
Margolis EB, Fujita W, Devi LA, Fields HL. Two delta opioid receptor subtypes are functional in single ventral tegmental area neurons, and can interact with the mu opioid receptor. Neuropharmacology 2017. [PMID: 28645621 DOI: 10.1016/j.neuropharm.2017.06.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mu and delta opioid receptors (MOR and DOR) are highly homologous members of the opioid family of GPCRs. There is evidence that MOR and DOR interact, however the extent to which these interactions occur in vivo and affect synaptic function is unknown. There are two stable DOR subtypes: DPDPE sensitive (DOR1) and deltorphin II sensitive (DOR2); both agonists are blocked by DOR selective antagonists. Robust motivational effects are produced by local actions of both MOR and DOR ligands in the ventral tegmental area (VTA). Here we demonstrate that a majority of both dopaminergic and non-dopaminergic VTA neurons express combinations of functional DOR1, DOR2, and/or MOR, and that within a single VTA neuron, DOR1, DOR2, and MOR agonists can differentially couple to downstream signaling pathways. As reported for the MOR agonist DAMGO, DPDPE and deltorphin II produced either a predominant K+ dependent hyperpolarization or a Cav2.1 mediated depolarization in different neurons. In some neurons DPDPE and deltorphin II produced opposite responses. Excitation, inhibition, or no effect by DAMGO did not predict the response to DPDPE or deltorphin II, arguing against a MOR-DOR interaction generating DOR subtypes. However, in a subset of VTA neurons the DOR antagonist TIPP-Ψ augmented DAMGO responses; we also observed DPDPE or deltorphin II responses augmented by the MOR selective antagonist CTAP. These findings directly support the existence of two independent, stable forms of the DOR, and show that MOR and DOR can interact in some neurons to alter downstream signaling.
Collapse
Affiliation(s)
- Elyssa B Margolis
- Department of Neurology, The Wheeler Center for the Neurobiology of Addiction, Alcoholism and Addiction Research Group, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Wakako Fujita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Howard L Fields
- Department of Neurology, The Wheeler Center for the Neurobiology of Addiction, Alcoholism and Addiction Research Group, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
18
|
Storch U, Straub J, Erdogmus S, Gudermann T, Mederos Y Schnitzler M. Dynamic monitoring of G i/o-protein-mediated decreases of intracellular cAMP by FRET-based Epac sensors. Pflugers Arch 2017; 469:725-737. [PMID: 28386636 PMCID: PMC5438440 DOI: 10.1007/s00424-017-1975-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/25/2017] [Accepted: 03/30/2017] [Indexed: 01/17/2023]
Abstract
Analysis of G-protein-coupled receptor (GPCR) signaling, in particular of the second messenger cAMP that is tightly controlled by Gs- and Gi/o-proteins, is a central issue in biomedical research. The classical biochemical method to monitor increases in intracellular cAMP concentrations consists of a radioactive multicellular assay, which is well established, highly sensitive, and reproducible, but precludes continuous spatial and temporal assessment of cAMP levels in single living cells. For this purpose, Förster resonance energy transfer (FRET)-based Epac cAMP sensors are well suitable. So far, the latter sensors have been employed to monitor Gs-induced cAMP increases and it has remained elusive whether Epac sensors can reliably detect decreased intracellular cAMP levels as well. In this study, we systematically optimize experimental strategies employing FRET-based cAMP sensors to monitor Gi/o-mediated cAMP reductions. FRET experiments with adrenergic α2A or μ opioid receptors and a set of different Epac sensors allowed for time-resolved, valid, and reliable detection of cAMP level decreases upon Gi/o-coupled receptor activation in single living cells, and this effect can be reversed by selective receptor antagonists. Moreover, pre-treatment with forskolin or 3-isobutyl-1-methylxanthine (IBMX) to artificially increase basal cAMP levels was not required to monitor Gi/o-coupled receptor activation. Thus, using FRET-based cAMP sensors is of major advantage when compared to classical biochemical and multi-cellular assays.
Collapse
Affiliation(s)
- Ursula Storch
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilians University of Munich, Goethestr. 33, 80336, Munich, Germany
| | - Julie Straub
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilians University of Munich, Goethestr. 33, 80336, Munich, Germany
| | - Serap Erdogmus
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilians University of Munich, Goethestr. 33, 80336, Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilians University of Munich, Goethestr. 33, 80336, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
| | - Michael Mederos Y Schnitzler
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilians University of Munich, Goethestr. 33, 80336, Munich, Germany. .,DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
19
|
Hattori Y, Seifert R. Pharmacological Characterization of Human Histamine Receptors and Histamine Receptor Mutants in the Sf9 Cell Expression System. Handb Exp Pharmacol 2017; 241:63-118. [PMID: 28233175 PMCID: PMC7120522 DOI: 10.1007/164_2016_124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A large problem of histamine receptor research is data heterogeneity. Various experimental approaches, the complex signaling pathways of mammalian cells, and the use of different species orthologues render it difficult to compare and interpret the published results. Thus, the four human histamine receptor subtypes were analyzed side-by-side in the Sf9 insect cell expression system, using radioligand binding assays as well as functional readouts proximal to the receptor activation event (steady-state GTPase assays and [35S]GTPγS assays). The human H1R was co-expressed with the regulators of G protein signaling RGS4 or GAIP, which unmasked a productive interaction between hH1R and insect cell Gαq. By contrast, functional expression of the hH2R required the generation of an hH2R-Gsα fusion protein to ensure close proximity of G protein and receptor. Fusion of hH2R to the long (GsαL) or short (GsαS) splice variant of Gαs resulted in comparable constitutive hH2R activity, although both G protein variants show different GDP affinities. Medicinal chemistry studies revealed profound species differences between hH1R/hH2R and their guinea pig orthologues gpH1R/gpH2R. The causes for these differences were analyzed by molecular modeling in combination with mutational studies. Co-expression of the hH3R with Gαi1, Gαi2, Gαi3, and Gαi/o in Sf9 cells revealed high constitutive activity and comparable interaction efficiency with all G protein isoforms. A comparison of various cations (Li+, Na+, K+) and anions (Cl-, Br-, I-) revealed that anions with large radii most efficiently stabilize the inactive hH3R state. Potential sodium binding sites in the hH3R protein were analyzed by expressing specific hH3R mutants in Sf9 cells. In contrast to the hH3R, the hH4R preferentially couples to co-expressed Gαi2 in Sf9 cells. Its high constitutive activity is resistant to NaCl or GTPγS. The hH4R shows structural instability and adopts a G protein-independent high-affinity state. A detailed characterization of affinity and activity of a series of hH4R antagonists/inverse agonists allowed first conclusions about structure/activity relationships for inverse agonists at hH4R. In summary, the Sf9 cell system permitted a successful side-by-side comparison of all four human histamine receptor subtypes. This chapter summarizes the results of pharmacological as well as medicinal chemistry/molecular modeling approaches and demonstrates that these data are not only important for a deeper understanding of HxR pharmacology, but also have significant implications for the molecular pharmacology of GPCRs in general.
Collapse
Affiliation(s)
- Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Hannover, Germany
| |
Collapse
|
20
|
Strasser A, Wittmann HJ. Molecular Modelling Approaches for the Analysis of Histamine Receptors and Their Interaction with Ligands. Handb Exp Pharmacol 2017; 241:31-61. [PMID: 28110354 DOI: 10.1007/164_2016_113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Several experimental techniques to analyse histamine receptors are available, e.g. pharmacological characterisation of known or new compounds by different types of assays or mutagenesis studies. To obtain insights into the histamine receptors on a molecular and structural level, crystal structures have to be determined and molecular modelling studies have to be performed. It is widely accepted to generate homology models of the receptor of interest based on an appropriate crystal structure as a template and to refine the resulting models by molecular dynamic simulations. A lot of modelling techniques, e.g. docking, QSAR or interaction fingerprint methods, are used to predict binding modes of ligands and pharmacological data, e.g. affinity or even efficacy. However, within the last years, molecular dynamic simulations got more and more important: First of all, molecular dynamic simulations are very helpful to refine the binding mode of a ligand to a histamine receptor, obtained by docking studies. Furthermore, with increasing computational performance it got possible to simulate complete binding pathways of ions or ligands from the aqueous extracellular phase into the allosteric or orthosteric binding pocket of histamine receptors.
Collapse
Affiliation(s)
- Andrea Strasser
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitäts-Str. 31, Regensburg, 93040, Germany.
| | - Hans-Joachim Wittmann
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitäts-Str. 31, Regensburg, 93040, Germany
| |
Collapse
|
21
|
Noël F, do Monte FM. Validation of a Na +-shift binding assay for estimation of the intrinsic efficacy of ligands at the A 2A adenosine receptor. J Pharmacol Toxicol Methods 2016; 84:51-56. [PMID: 27810394 DOI: 10.1016/j.vascn.2016.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/27/2016] [Accepted: 10/30/2016] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Determination of the intrinsic efficacy of ligands at the A2A receptor is important for selecting drug candidates, e.g. in the case of inflammatory diseases where agonists are searched for or in Parkinson disease (antagonists). METHODS Three functional binding assays were compared with up to seven ligands with different efficacies: the GTP-shift method based on the decrease of affinity observed with agonists when GTP is added to the competition binding assay; the Ki ratio method based on the different affinity states of the receptor when using an agonist or antagonist radioligand and the Na+-shift assay based on the difference of affinity of agonists when tested in a medium containing a divalent cation (50mM MgCl2) favoring the G protein coupled agonist-receptor complex or sodium (100mM NaCl) as negative allosteric modulator. RESULTS The Na+-shift assay proposed herein successfully discriminated the full agonists CGS21680, NECA and adenosine (IC50 ratio=13-14) from the weak inverse agonists ZM241385 and IBMX (IC50 ratio=0.85) and the partial agonists LUF5834 and regadenoson (IC50 ratios equal to 3 and 10, respectively). DISCUSSION We conclude that the Na+-shift assay proposed herein for the A2A receptors has been validated and represents a rapid, economic and efficient functional binding assay to be used in a drug development program for early estimation of the intrinsic efficacy of hits.
Collapse
Affiliation(s)
- François Noël
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil.
| | - Fernando M do Monte
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Vickery ON, Machtens JP, Tamburrino G, Seeliger D, Zachariae U. Structural Mechanisms of Voltage Sensing in G Protein-Coupled Receptors. Structure 2016; 24:997-1007. [PMID: 27210286 PMCID: PMC4906246 DOI: 10.1016/j.str.2016.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/01/2022]
Abstract
G-protein-coupled receptors (GPCRs) form the largest superfamily of membrane proteins and one-third of all drug targets in humans. A number of recent studies have reported evidence for substantial voltage regulation of GPCRs. However, the structural basis of GPCR voltage sensing has remained enigmatic. Here, we present atomistic simulations on the δ-opioid and M2 muscarinic receptors, which suggest a structural and mechanistic explanation for the observed voltage-induced functional effects. The simulations reveal that the position of an internal Na(+) ion, recently detected to bind to a highly conserved aqueous pocket in receptor crystal structures, strongly responds to voltage changes. The movements give rise to gating charges in excellent agreement with previous experimental recordings. Furthermore, free energy calculations show that these rearrangements of Na(+) can be induced by physiological membrane voltages. Due to its role in receptor function and signal bias, the repositioning of Na(+) has important general implications for signal transduction in GPCRs.
Collapse
MESH Headings
- Animals
- Crystallography, X-Ray
- Humans
- Ion Channel Gating
- Models, Molecular
- Molecular Dynamics Simulation
- Protein Binding
- Protein Structure, Secondary
- Receptor, Muscarinic M2/chemistry
- Receptor, Muscarinic M2/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Opioid, delta/chemistry
- Receptors, Opioid, delta/metabolism
- Sodium/metabolism
Collapse
Affiliation(s)
- Owen N Vickery
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; Physics, School of Science and Engineering, University of Dundee, Nethergate, Dundee DD1 4NH, UK
| | - Jan-Philipp Machtens
- Forschungszentrum Jülich GmbH, Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Leo-Brandt-Strasse, 52428 Jülich, Germany
| | - Giulia Tamburrino
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; Physics, School of Science and Engineering, University of Dundee, Nethergate, Dundee DD1 4NH, UK
| | - Daniel Seeliger
- Lead Identification and Optimization Support, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach an der Riss, Germany
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; Physics, School of Science and Engineering, University of Dundee, Nethergate, Dundee DD1 4NH, UK.
| |
Collapse
|
23
|
Seifert R. Naunyn-Schmiedeberg's Archives of Pharmacology under new editorship: change and continuity. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:667-70. [PMID: 27222234 DOI: 10.1007/s00210-016-1261-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
24
|
Comparing Class A GPCRs to bitter taste receptors: Structural motifs, ligand interactions and agonist-to-antagonist ratios. Methods Cell Biol 2015; 132:401-27. [PMID: 26928553 DOI: 10.1016/bs.mcb.2015.10.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) are seven transmembrane (TM) proteins that play a key role in human physiology. The GPCR superfamily comprises about 800 members, classified into several classes, with rhodopsin-like Class A being the largest and most studied thus far. A huge component of the human repertoire consists of the chemosensory GPCRs, including ∼400 odorant receptors, 25 bitter taste receptors (TAS2Rs), which are thought to guard the organism from consuming poisons, and sweet and umami TAS1R heteromers, which indicate the nutritive value of food. The location of the binding site of TAS2Rs is similar to that of Class A GPCRs. However, most of the known bitter ligands are agonists, with only a few antagonists documented thus far. The agonist-to-antagonist ratios of Class A GPCRs vary, but in general are much lower than for TAS2Rs. For a set of well-studied GPCRs, a gradual change in agonists-to-antagonists ratios is observed when comparing low (10 μM)- and high (10 nM)-affinity ligand sets from ChEMBL and the DrugBank set of drugs. This shift reflects pharmaceutical bias toward the therapeutically desirable pharmacology for each of these GPCRs, while the 10 μM sets possibly represent the native tendency of the receptors toward either agonists or antagonists. Analyzing ligand-GPCR interactions in 56 X-ray structures representative of currently available structural data, we find that the N-terminus, TM1 and TM2 are more involved in binding of antagonists than of agonists. On the other hand, ECL2 tends to be more involved in binding of agonists. This is of interest, since TAS2Rs harbor variations on the typical Class A sequence motifs, including the absence of the ECL2-TM3 disulfide bridge. This suggests an alternative mode of regulation of conformational states for TAS2Rs, with potentially less stabilized inactive state. The comparison of TAS2Rs and Class A GPCRs structural features and the pharmacology of the their ligands highlights the intricacies of GPCR architecture and provides a framework for rational design of new ligands.
Collapse
|
25
|
Michel MC, Seifert R. Selectivity of pharmacological tools: implications for use in cell physiology. A review in the theme: Cell signaling: proteins, pathways and mechanisms. Am J Physiol Cell Physiol 2015; 308:C505-20. [PMID: 25631871 DOI: 10.1152/ajpcell.00389.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/24/2015] [Indexed: 01/08/2023]
Abstract
Pharmacological inhibitors are frequently used to identify the receptors, receptor subtypes, and associated signaling pathways involved in physiological cell responses. Based on the effects of such inhibitors conclusions are drawn about the involvement of their assumed target or lack thereof. While such inhibitors can be useful tools for a better physiological understanding, their uncritical use can lead to incorrect conclusions. This article reviews the concept of inhibitor selectivity and its implication for cell physiology. Specifically, we discuss the implications of using inhibitor vs. activator approaches, issues of direct vs. indirect pathway modulation, implications of inverse agonism and biased signaling, and those of orthosteric vs. allosteric, competitive vs. noncompetitive, and reversible vs. irreversible inhibition. Additional problems can result from inconsistent estimates of inhibitor potency and differences in potency between cell-free systems and intact cells. These concepts are illustrated by several examples of inhibitors displaying affinity for related but distinct targets or even unrelated targets. Of note, many of the issues being addressed are also applicable to genetic inhibition strategies. The main practical conclusion following from these concepts is that investigators should be critical in the choice of inhibitor, its concentrations, and its mode of application. When this advice is adhered to, small-molecule pharmacological inhibitors can be important experimental tools in the hand of physiologists.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany; and
| | - Roland Seifert
- Department of Pharmacology, Hannover Medical School, Hannover, Germany
| |
Collapse
|