1
|
Peng D, Wang A, Shi W, Lin L. Pentacyclic triterpenes, potential novel therapeutic approaches for cardiovascular diseases. Arch Pharm Res 2024; 47:709-735. [PMID: 39048758 DOI: 10.1007/s12272-024-01510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Cardiovascular diseases (CVDs) involve dysfunction of the heart and blood vessels and have become major health concerns worldwide. Multiple mechanisms may be involved in the occurrence and development of CVDs. Although therapies for CVDs are constantly being developed and applied, the incidence and mortality of CVDs remain high. The roles of natural compounds in CVD treatment are being explored, providing new approaches for the treatment of CVD. Pentacyclic triterpenes are natural compounds with a basic nucleus of 30 carbon atoms, and they have been widely studied for their potential applications in the treatment of CVDs, to which various pharmacological activities contribute, including anti-inflammatory, antioxidant, and antitumor effects. This review introduces the roles of triterpenoids in the prevention and treatment of CVDs, summarizes their potential underlying mechanisms, and provides a comprehensive overview of the therapeutic potential of triterpenoids in the management of CVDs.
Collapse
Affiliation(s)
- Dewei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Aizan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
2
|
Du J, Yu D, Li J, Si L, Zhu D, Li B, Gao Y, Sun L, Wang X, Wang X. Asiatic acid protects against pressure overload-induced heart failure in mice by inhibiting mitochondria-dependent apoptosis. Free Radic Biol Med 2023; 208:545-554. [PMID: 37717794 DOI: 10.1016/j.freeradbiomed.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Mitochondrial dysfunction and subsequent cardiomyocyte apoptosis significantly contribute to pressure overload-induced heart failure (HF). A highly oxidative environment leads to mitochondrial damage, further exacerbating this condition. Asiatic acid (AA), a proven antioxidant and anti-hypertrophic agent, might provide a solution, but its role and mechanisms in chronic pressure overload-induced HF remain largely unexplored. METHODS We induced pressure overload in mice using transverse aortic constriction (TAC) and treated them with AA (100 mg/kg/day) or vehicle daily by oral gavage for 8 weeks. The effects of AA on mitochondrial dysfunction, oxidative stress-associated signaling pathways, and overall survival were evaluated. Additionally, an in vitro model using hydrogen peroxide-exposed neonatal rat cardiomyocytes was established to further investigate the role of AA in oxidative stress-induced mitochondrial apoptosis. RESULTS AA treatment significantly improved survival and alleviated cardiac dysfunction in TAC-induced HF mice. It preserved mitochondrial structure, reduced the LVW/BW ratio by 20.24%, mitigated TAC-induced mitochondrial-dependent apoptosis by significantly lowering the Bax/Bcl-2 ratio and cleaved caspase-9/3 levels, and attenuated oxidative stress. AA treatment protected cardiomyocytes from hydrogen peroxide-induced apoptosis, with concurrent modulation of mitochondrial-dependent apoptosis pathway-related proteins and the JNK pathway. CONCLUSIONS Our findings suggest that AA effectively combats chronic TAC-induced and hydrogen peroxide-induced cardiomyocyte apoptosis through a mitochondria-dependent mechanism. AA reduces cellular levels of oxidative stress and inhibits the activation of the JNK pathway, highlighting its potential therapeutic value in the treatment of HF.
Collapse
Affiliation(s)
- Junjie Du
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Dongmin Yu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jinghang Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Linjie Si
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Dawei Zhu
- Department of Cardiothoracic Surgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211000, China
| | - Ben Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yizhou Gao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lifu Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xufeng Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
3
|
Maneesai P, Wattanathorn J, Potue P, Khamseekaew J, Rattanakanokchai S, Thukham-Mee W, Muchimapura S, Pakdeechote P. Cardiovascular complications are resolved by tuna protein hydrolysate supplementation in rats fed with a high-fat diet. Sci Rep 2023; 13:12280. [PMID: 37507421 PMCID: PMC10382531 DOI: 10.1038/s41598-023-39538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023] Open
Abstract
This study is aimed to investigate whether tuna protein hydrolysate (TPH) supplementation could alleviate cardiovascular complications induced by a high-fat diet (HFD) in rats. Rats were fed a HFD for 16 weeks and given TPH (100 mg/kg, 300 mg/kg, or 500 mg/kg) or metformin (100 mg/kg) (n = 8) for the last four weeks. TPH had the following effects: resolved their impaired glucose tolerance, hyperglycemia, dyslipidemia, obesity, and hypertension (p < 0.05); alleviated left ventricular dysfunction and hypertrophy (p < 0.05), and vascular dysfunction and hypertrophy (p < 0.05); adipocyte hypertrophy; increases in circulating leptin and tumor necrosis factor (TNF-α) were mitigated (p < 0.05); increased renin-angiotensin system (RAS), oxidative stress, and decreased nitric oxide metabolites were modulated (p < 0.05). TPH restored the expression of angiotensin II receptor type 1 (AT1R)/NADPH oxidase 2 (NOX2), endothelial nitric oxide synthase (eNOS), nuclear factor erythroid 2-related factor (Nrf2)/heme oxygenase-1 (HO-1), and peroxisome proliferator-activated receptor γ (PPARγ)/the nuclear factor kappa B (NF-κB) protein in cardiovascular tissue (p < 0.05). In metabolic syndrome (MS) rats, metformin and TPH had comparable effects. In conclusion, TPH alleviated cardiovascular complications related to MS. It suppressed RAS, oxidative stress, and inflammation that were associated with modulation of AT1R/NOX2, eNOS, Nrf2/HO-1, and PPARγ/NF-κB expression.
Collapse
Affiliation(s)
- Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jintanaporn Wattanathorn
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Prapassorn Potue
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Juthamas Khamseekaew
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Wipawee Thukham-Mee
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Supaporn Muchimapura
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
4
|
Pakdeechote P, Poasakate A, Prasatthong P, Potue P, Khamseekaew J, Maneesai P. Mitigation effect of galangin against aortic dysfunction and hypertrophy in rats with metabolic syndrome. Heliyon 2023; 9:e16500. [PMID: 37251824 PMCID: PMC10213349 DOI: 10.1016/j.heliyon.2023.e16500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Vascular alterations induced by a high-fat diet (HFD) are involved in the development of hypertension. Galangin, a flavonoid, is the major active compound isolated from galangal and propolis. The objective of this study was to investigate the effect of galangin on aortic endothelial dysfunction and hypertrophy, and the mechanisms involved in HFD-induced metabolic syndrome (MS) in rats. Male Sprague-Dawley rats (220-240 g) were separated into three groups: control + vehicle, MS + vehicle, and MS + galangin (50 mg/kg). Rats with MS received HFD plus 15% fructose solution for 16 weeks. Galangin or vehicle was orally administered daily for the final four weeks. Galangin reduced body weight and mean arterial pressure in HFD rats (p < 0.05). It also reduced circulating fasting blood glucose, insulin, and total cholesterol levels (p < 0.05). Impaired vascular responses to the exogenous acetylcholine observed in the aortic ring of HFD rats were restored by galangin (p < 0.05). However, the response to sodium nitroprusside did not differ between the groups. Galangin enhanced the expression of the aortic endothelial nitric oxide synthase (eNOS) protein and increased circulating nitric oxide (NO) levels in the MS group (p < 0.05). Aortic hypertrophy in HFD rats was alleviated by galangin (p < 0.05). Increases in tumour necrosis factor-alpha (TNF-α), interleukin (IL)-6 levels, angiotensin-converting enzyme activity and angiotensin II (Ang II) concentrations in rats with MS were suppressed in galangin treated group (p < 0.05). Furthermore, galangin reduced the upregulation of angiotensin II type I receptor (AT1R) and transforming growth factor-beta (TGF-β) expression in rats with MS (p < 0.05). In conclusion, galangin alleviates metabolic disorders and improves aortic endothelial dysfunction and hypertrophy in the MS group. These effects were consistent with increased NO availability, reduced inflammation, and suppressing Ang II/AT1R/TGF-β signalling pathway.
Collapse
Affiliation(s)
- Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Anuson Poasakate
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Patoomporn Prasatthong
- Department of Health Science, Faculty of Science and Technology, Nakhon Sawan Rajabhat University, Nakhon Sawan 60000, Thailand
| | - Prapassorn Potue
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Juthamas Khamseekaew
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
5
|
Meng YQ, Wu YJ, Kuai ZY, Ma JJ, Wang Z, Meng BB, Wang ZQ. Design, synthesis and anti-tumor activity of asiatic acid derivatives as VEGF inhibitors. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:357-368. [PMID: 35787216 DOI: 10.1080/10286020.2022.2093194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The VEGF receptor is mock-coupled with a known active compound and the active groups of the inhibitor which can bind to VEGF were analyzed. Using asiatic acid as a lead compound, 10 novel skeleton candidate compounds were designed through introduction of the active groups onto the special location and synthesized simultaneously. Furthermore, the structure of these compounds was determined by 1H NMR, 13C NMR and MS and 9 compounds were identified as the new compounds. Moreover, the in vitro anti-tumor activities of these new compounds were determined by MTT assay on two cancer cell lines (HepG2 and SGC-7901). The results showed that compounds I1 and II2 have more potent anticancer activity than positive control drugs such as gefitinib and paclitaxel.
Collapse
Affiliation(s)
- Yan-Qiu Meng
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yue-Jiao Wu
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Zhen-Yu Kuai
- Department of Pharmacy Teaching and Research, Maanshan Technical College, Maanshan 243031, China
| | - Jun-Jiao Ma
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Zan Wang
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Bei-Bei Meng
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Zhi-Qi Wang
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
6
|
Limonin mitigates cardiometabolic complications in rats with metabolic syndrome through regulation of the IRS-1/GLUT4 signalling pathway. Biomed Pharmacother 2023; 161:114448. [PMID: 36857910 DOI: 10.1016/j.biopha.2023.114448] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Limonin is a natural triterpenoid isolated from citrus fruit. In the present study, we examined the effects of limonin on cardiometabolic alterations in diet-induced metabolic syndrome. Metabolic syndrome was induced in rats by feeding them a high-fat (HF) diet plus 15% fructose in drinking water for 16 weeks. They were treated with limonin (50 or 100 mg/kg) (n = 8/group) for the final 4 weeks. Increases in body weight (BW), fasting blood glucose (FBG), serum insulin, total cholesterol (TC), blood pressure (BP), liver fat accumulation, and adipocyte hypertrophy, as well as oral glucose tolerance in rats with metabolic syndrome were alleviated by limonin treatment (p < 0.05). Limonin improved ejection fraction and left ventricular (LV) hypertrophy, and reduced angiotensin converting enzyme (ACE) activity and angiotensin II (Ang II) concentration in rats with metabolic syndrome (p < 0.05). It also reduced plasma tumour necrosis factor (TNF)-α, interleukin (IL)- 6, leptin, malonaldehyde (MDA), and superoxide generation, and increased catalase activity in rats with metabolic syndrome compared to controls (p < 0.05). Downregulation of insulin receptor substrate 1 (IRS-1) and glucose transporter type 4 (GLUT4) protein expression in epididymal fat pads and cardiac, liver, and gastrocnemius tissues was present in metabolic syndrome, and these were restored by limonin treatment (p < 0.05). In conclusion, limonin shows a potential effect in alleviating symptoms and improving cardiometabolic disorders. These beneficial effects are linked to the reduction of the renin-angiotensin system, inflammation, oxidative stress, and improvement of IRS-1/GLUT4 protein expression in the target tissue.
Collapse
|
7
|
Sun J, Liu Y, Chen C, Quarm AK, Xi S, Sun T, Zhang D, Qian J, Ding H, Gao J. Cyclophilin D-mediated angiotensin II-induced NADPH oxidase 4 activation in endothelial mitochondrial dysfunction that can be rescued by gallic acid. Eur J Pharmacol 2023; 940:175475. [PMID: 36563952 DOI: 10.1016/j.ejphar.2022.175475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Vascular endothelial dysfunction plays a central role in the most dreadful human diseases, including stroke, tumor metastasis, and the coronavirus disease 2019 (COVID-19). Strong evidence suggests that angiotensin II (Ang II)-induced mitochondrial dysfunction is essential for endothelial dysfunction pathogenesis. However, the precise molecular mechanisms remain obscure. Here, polymerase-interacting protein 2 (Poldip 2) was found in the endothelial mitochondrial matrix and no effects on Poldip 2 and NADPH oxidase 4 (NOX 4) expression treated by Ang II. Interestingly, we first found that Ang II-induced NOX 4 binds with Poldip 2 was dependent on cyclophilin D (CypD). CypD knockdown (KD) significantly inhibited the binding of NOX 4 to Poldip 2, and mitochondrial ROS generation in human umbilical vein endothelial cells (HUVECs). Similar results were also found in cyclosporin A (CsA) treated HUVECs. Our previous study suggested a crosstalk between extracellular regulated protein kinase (ERK) phosphorylation and CypD expression, and gallic acid (GA) inhibited mitochondrial dysfunction in neurons depending on regulating the ERK-CypD axis. Here, we confirmed that GA inhibited Ang II-induced NOX 4 activation and mitochondrial dysfunction via ERK/CypD/NOX 4/Poldip 2 pathway, which provide novel mechanistic insight into CypD act as a key regulator of the NOX 4/Poldip 2 axis in Ang II-induced endothelial mitochondrial dysfunction and GA might be beneficial in the treatment of wide variety of diseases, such as COVID-19, which is worthy further research.
Collapse
Affiliation(s)
- Jing Sun
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China; Department of Traditional Chinese Medicine & Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Yunxi Liu
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chen Chen
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Anthony Kwesi Quarm
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Siyu Xi
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Tingkai Sun
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Dingqi Zhang
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jinjun Qian
- Department of Neurology, The Fourth People's Hospital of Zhenjiang, Zhenjiang, 212001, PR China
| | - Hongqun Ding
- Department of Clinical Laboratory Diagnostics, School of Medicine, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jing Gao
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
8
|
Kang E, Yim HE, Nam YJ, Jeong SH, Kim JA, Lee JH, Son MH, Yoo KH. Exposure to airborne particulate matter induces renal tubular cell injury in vitro: the role of vitamin D signaling and renin-angiotensin system. Heliyon 2022; 8:e10184. [PMID: 36033312 PMCID: PMC9403349 DOI: 10.1016/j.heliyon.2022.e10184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Background Exposure to air pollution can interfere with the vitamin D endocrine system. This study investigated the effects of airborne particulate matter (PM) on renal tubular cell injury in vitro and explored the underlying mechanisms. Methods HK-2 human renal proximal tubule cells were treated with PM with or without 1,25(OH)2D3 analog, 19-Nor-1,25(OH)2D2 (paricalcitol, 10 nM) for 48 h. The dose- and time-dependent cytotoxicity of PM with or without paricalcitol was determined via cell counting kit-8 assay. Cellular oxidative stress was assessed using commercially available enzyme-linked immunosorbent assay kits. The protein expression of vitamin D receptor (VDR), cytochrome P450(CYP)27B1, CYP24A1, renin, angiotensin converting enzyme (ACE), angiotensin II type 1 receptor (AT1), nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor-kB (NF-kB), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 was determined. Results PM exposure decreased HK-2 cell viability in a dose- and time-dependent manner. The activities of superoxide dismutase and malondialdehyde in HK-2 cells increased significantly in the group exposed to PM. PM exposure decreased VDR and Nrf2, while increasing CYP27B1, renin, ACE, AT1, NF-kB, TNF-α, and IL-6. The expression of VDR, CYP27B1, renin, ACE, AT1, and TNF-α was reversed by paricalcitol treatment. Paricalcitol also restored the cell viability of PM-exposed HK-2 cells. Conclusion Our findings indicate that exposure to PM induces renal proximal tubular cell injury, concomitant with alteration of vitamin D endocrine system and renin angiotensin system. Vitamin D could attenuate renal tubular cell damage following PM exposure by suppressing the renin-angiotensin system and by partially inhibiting the inflammatory response.
Collapse
Affiliation(s)
- Eungu Kang
- Department of Pediatrics, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do 15355, Republic of Korea
| | - Hyung Eun Yim
- Department of Pediatrics, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do 15355, Republic of Korea
| | - Yoon Jeong Nam
- Medical Science Research Center, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do 15355, Republic of Korea
| | - Sang Hoon Jeong
- Medical Science Research Center, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do 15355, Republic of Korea
| | - Joo-Ae Kim
- Department of Earth and Environmental Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, Gyeonggi 15355, South Korea
| | - Min Hwa Son
- Department of Pediatrics, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do 15355, Republic of Korea
| | - Kee Hwan Yoo
- Department of Pediatrics, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
| |
Collapse
|
9
|
Chaihongsa N, Maneesai P, Sangartit W, Rattanakanokchai S, Potue P, Khamseekaew J, Bunbupha S, Pakdeechote P. Cardiorenal dysfunction and hypertrophy induced by renal artery occlusion are normalized by galangin treatment in rats. Biomed Pharmacother 2022; 152:113231. [PMID: 35687907 DOI: 10.1016/j.biopha.2022.113231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
Galangin is a polyphenolic compound found in Alpinia officinarum and propolis. This study investigated the effect of galangin on blood pressure, the renin angiotensin system (RAS), cardiac and kidney alterations and oxidative stress in two-kidney one-clipped (2K-1C) hypertensive rats. Hypertension was induced in male Sprague Dawley rats (180-220 g), and the rats were given galangin (30 and 60 mg/kg) and losartan (10 mg/kg) for 4 weeks (n = 8/group). Galangin decreased hypertension and cardiac dysfunction and hypertrophy, which was related to the reducing circulation angiotensin converting enzyme (ACE) activity and angiotensin II concentration (p < 0.05). These effects were consistent with the reduced overexpression of angiotensin II receptor type 1 (AT1R), transforming growth factor beta 1 (TGF-β1) and collagen type I (Col I) protein in cardiac tissue (p < 0.05). Additionally, renal artery occlusion, procedure-induced kidney dysfunction and fibrosis were attenuated in the galangin-treated group. Galangin treatment normalized the overexpression of AT1R and NADPH oxidase 4 (Nox-4) protein and normalized the downregulation of nuclear factor-erythroid Factor 2-related Factor 2 (Nrf-2) and haem oxygenase 1 (HO-1) in 2K-1C rats (p < 0.05). Galangin exhibited antioxidative effects, as it reduced systemic and tissue oxidative stress markers and increased catalase activity in 2K-1C rats (p < 0.05). In conclusion, galangin attenuated hypertension, renin-angiotensin system activation, cardiorenal damage and oxidative stress induced by renal artery stenosis in rats. These effects might be associated with modulation of the expression of AT1R, TGF-β1 and Col I protein in the heart as well as AT1R/Nox-4 and Nrf-2/HO-1 protein in renal tissue in hypertensive rats.
Collapse
Affiliation(s)
- Nisita Chaihongsa
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Weerapon Sangartit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | - Prapassorn Potue
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Juthamas Khamseekaew
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand.
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
10
|
Mioc M, Milan A, Malița D, Mioc A, Prodea A, Racoviceanu R, Ghiulai R, Cristea A, Căruntu F, Șoica C. Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part I). Int J Mol Sci 2022; 23:ijms23147740. [PMID: 35887090 PMCID: PMC9322890 DOI: 10.3390/ijms23147740] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Triterpenic acids are phytocompounds with a widespread range of biological activities that have been the subject of numerous in vitro and in vivo studies. However, their underlying mechanisms of action in various pathologies are not completely elucidated. The current review aims to summarize the most recent literature, published in the last five years, regarding the mechanism of action of three triterpenic acids (asiatic acid, oleanolic acid, and ursolic acid), corelated with different biological activities such as anticancer, anti-inflammatory, antidiabetic, cardioprotective, neuroprotective, hepatoprotective, and antimicrobial. All three discussed compounds share several mechanisms of action, such as the targeted modulation of the PI3K/AKT, Nrf2, NF-kB, EMT, and JAK/STAT3 signaling pathways, while other mechanisms that proved to only be specific for a part of the triterpenic acids discussed, such as the modulation of Notch, Hippo, and MALAT1/miR-206/PTGS1 signaling pathway, were highlighted as well. This paper stands as the first part in our literature study on the topic, which will be followed by a second part focusing on other triterpenic acids of therapeutic value.
Collapse
Affiliation(s)
- Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Daniel Malița
- Department of Radiology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Correspondence: (D.M.); (A.M.); Tel.: +40-256-494-604 (D.M. & A.M.)
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Correspondence: (D.M.); (A.M.); Tel.: +40-256-494-604 (D.M. & A.M.)
| | - Alexandra Prodea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Andreea Cristea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
| | - Florina Căruntu
- Department of Medical Semiology II, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Street, 300041 Timisoara, Romania;
| | - Codruța Șoica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| |
Collapse
|
11
|
Iampanichakul M, Poasakate A, Potue P, Rattanakanokchai S, Maneesai P, Prachaney P, Settheetham-Ishida W, Pakdeechote P. Nobiletin resolves left ventricular and renal changes in 2K-1C hypertensive rats. Sci Rep 2022; 12:9289. [PMID: 35662276 PMCID: PMC9166784 DOI: 10.1038/s41598-022-13513-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/25/2022] [Indexed: 01/09/2023] Open
Abstract
This study investigated the effects of nobiletin on cardiorenal changes and the underlying mechanisms involved in two-kidney, one-clip (2K-1C) hypertension. 2K-1C rats were treated with nobiletin (15 or 30 mg/kg/day) or losartan (10 mg/kg/day) for 4 weeks (n = 8/group). Nobiletin (30 mg/kg) reduced high levels of blood pressure and circulating angiotensin II and angiotensin-converting enzyme activity in 2K-1C rats. Left ventricular (LV) dysfunction and remodelling in 2K-1C rats were alleviated in the nobiletin-treated group (P < 0.05). Nobiletin reduced the upregulation of Ang II type I receptor (AT1R)/JAK (Janus kinase)/STAT (signal transducer and activator of transcription) protein expression in cardiac tissue of 2K-1C rats (P < 0.05). The reduction in kidney function, and accumulation of renal fibrosis in 2K-1C rats were alleviated by nobiletin (P < 0.05). Overexpression of AT1R and NADPH oxidase 4 (Nox4) protein in nonclipped kidney tissue was suppressed in the nobiletin-treated group (P < 0.05). The elevations in oxidative stress parameters and the reductions in antioxidant enzymes were attenuated in 2K-1C rats treated with nobiletin (P < 0.05). In summary, nobiletin had renin-angiotensin system inhibitory and antioxidant effects and attenuated LV dysfunction and remodelling via restoration of the AT1R/JAK/STAT pathway. Nobiletin also resolved renal damage that was related to modulation of the AT1R/Nox4 cascade in 2K-1C hypertension.
Collapse
Affiliation(s)
- Metee Iampanichakul
- grid.9786.00000 0004 0470 0856Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Anuson Poasakate
- grid.9786.00000 0004 0470 0856Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Prapassorn Potue
- grid.9786.00000 0004 0470 0856Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Siwayu Rattanakanokchai
- grid.9786.00000 0004 0470 0856Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Putcharawipa Maneesai
- grid.9786.00000 0004 0470 0856Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Parichat Prachaney
- grid.9786.00000 0004 0470 0856Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Wannapa Settheetham-Ishida
- grid.9786.00000 0004 0470 0856Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Poungrat Pakdeechote
- grid.9786.00000 0004 0470 0856Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, 40002 Thailand
| |
Collapse
|
12
|
Maneesai P, Chaihongsa N, Iampanichakul M, Meephat S, Prasatthong P, Bunbupha S, Wunpathe C, Pakdeechote P. Clitoria ternatea (Linn.) flower extract attenuates vascular dysfunction and cardiac hypertrophy via modulation of Ang II/AT 1 R/TGF-β1 cascade in hypertensive rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2253-2261. [PMID: 34622460 DOI: 10.1002/jsfa.11563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/16/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Clitoria ternatea (CT) (the Fabaceae family) has been reported to elicit several biological responses, such as anti-inflammation and anti-depression effects. This study evaluated the effect of CT flower extract on blood pressure, vascular function, and left ventricular hypertrophy in a two-kidney, one-clip (2K-1C) rat model. Hypertensive rats were treated with CT extract at various doses (100, 300, or 500 mg kg-1 day-1 ) or losartan (10 mg kg-1 day-1 ) for 4 weeks (n = 8/group). RESULTS CT extract reduced blood pressure in a dose-dependent manner, and CT extract at a dose of 300 mg kg-1 was an effective concentration (P < 0.05). Augmentation of contractile responses to electrical field stimulation and impairment of vascular responses to acetylcholine in mesenteric vascular beds and aortic rings of 2K-1C rats were suppressed by treatment with CT extract or losartan (P < 0.05). Serum angiotensin-converting enzyme activity and plasma angiotensin II concentration were high in 2K-1C rats but alleviated by CT extract or losartan treatment (P < 0.05). Increases in superoxide production and lipid peroxidation were attenuated in 2K-1C rats treated with CT extract or losartan compared with the untreated group (P < 0.05). Increased plasma concentration of nitric oxide metabolites was found in hypertensive rats that received CT extract or losartan. CT extract or losartan suppressed the overexpression of Ang II receptor subtype I (AT1 -R) and transforming growth factor-β1 (TGF-β1) in 2K-1C rats. CONCLUSION CT extract had antihypertensive effects that were associated with improving vascular function and cardiac hypertrophy in 2K-1C rats. The mechanisms involved suppression of the renin-angiotensin system, of oxidative stress, and of the AT1 R/TGF-β1 cascade. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, Thailand
| | - Nisita Chaihongsa
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Metee Iampanichakul
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sariya Meephat
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Patoomporn Prasatthong
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Mahasarakham, Thailand
| | - Chutamas Wunpathe
- Department of Basic Medical Sciences, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
13
|
Genistein alleviates renin-angiotensin system mediated vascular and kidney alterations in renovascular hypertensive rats. Biomed Pharmacother 2022; 146:112601. [PMID: 35062067 DOI: 10.1016/j.biopha.2021.112601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/13/2022] Open
Abstract
Genistein is a bioflavonoid mainly found in soybean. This study evaluated the effect of genistein on vascular dysfunction and kidney damage in two-kidney, one-clipped (2K1C) hypertensive rats. Male Sprague-Dawley-2K1C hypertensive rats were treated with genistein (40 or 80 mg/kg) or losartan 10 mg/kg (n = 8/group). Genistein reduced blood pressure, attenuated the increase in sympathetic nerve-mediated contractile response and endothelial dysfunction in the mesenteric vascular beds and aorta of 2K1C rats. Increases in the intensity of tyrosine hydroxylase (TH) in the mesentery and plasma norepinephrine (NE) were alleviated in the genistein-treated group. Genistein also improved renal dysfunction, hypertrophy of the non-clipped kidney (NCK) and atrophy of the clipped kidney (CK) in 2K1C rats. Upregulation of angiotensin II receptor type I (AT1R), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit 4 (Nox4) and Bcl2-associated X protein (BAX) and downregulation of B-cell lymphoma 2 (Bcl2) protein found in CK were restored by genistein. It also suppressed the overexpression of AT1R, transforming growth factor beta I (TGF-β1), smad2/3 and p-smad3 in NCK. Genistein reduced serum angiotensin converting enzyme (ACE) activity and plasma angiotensin II (Ang II) in 2K1C rats. Low levels of catalase activity as well as high levels of superoxide generation and malondialdehyde (MDA) in 2K1C rats were restored by genistein treatment. In conclusion, genistein suppressed renin-angiotensin system-mediated sympathetic activation and oxidative stress in 2K1C rats. It alleviated renal atrophy in CK via modulation of AT1R/NADPH oxidase/Bcl-2/BAX pathways and hypertrophy in NCK via AT1R/TGF-β1/smad-dependent signalling pathways.
Collapse
|
14
|
Bunaim MK, Kamisah Y, Mohd Mustazil MN, Fadhlullah Zuhair JS, Juliana AH, Muhammad N. Centella asiatica (L.) Urb. Prevents Hypertension and Protects the Heart in Chronic Nitric Oxide Deficiency Rat Model. Front Pharmacol 2021; 12:742562. [PMID: 34925007 PMCID: PMC8678489 DOI: 10.3389/fphar.2021.742562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Hypertension is a major risk factor for cardiovascular disease (CVD), which is the number one cause of global mortality. The potential use of natural products to alleviate high blood pressure has been demonstrated to exert a cardioprotective effect. Centella asiatica (L.) Urb. belongs to the plant family Apiaceae (Umbelliferae). It contains a high amount of triterpenoid and flavonoid that have antioxidant properties and are involved in the renin-angiotensin-aldosterone system which is an important hormonal system for blood pressure regulation. Objective: This study aimed to investigate the effects of C. asiatica ethanolic extract on blood pressure and heart in a hypertensive rat model, which was induced using oral N(G)-nitro-l-arginine methyl ester (l-NAME). Methods: Male Sprague-Dawley rats were divided into five groups and were given different treatments for 8 weeks. Group 1 only received deionized water. Groups 2, 4, and 5 were given l-NAME (40 mg/kg, orally). Groups 4 and 5 concurrently received C. asiatica extract (500 mg/kg, orally) and captopril (5 mg/kg, orally), respectively. Group 3 only received C. asiatica extract (500 mg/kg body weight, orally). Systolic blood pressure (SBP) was measured at weeks 0, 4, and 8, while serum nitric oxide (NO) was measured at weeks 0 and 8. At necropsy, cardiac and aortic malondialdehyde (MDA) contents, cardiac angiotensin-converting enzyme (ACE) activity, and serum level of brain natriuretic peptide (BNP) were measured. Results: After 8 weeks, the administrations of C. asiatica extract and captopril showed significant (p < 0.05) effects on preventing the elevation of SBP, reducing the serum nitric oxide level, as well as increasing the cardiac and aortic MDA content, cardiac ACE activity, and serum brain natriuretic peptide level. Conclusion: C. asiatica extract can prevent the development of hypertension and cardiac damage induced by l-NAME, and these effects were comparable to captopril.
Collapse
Affiliation(s)
- Mohd Khairulanwar Bunaim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Noor Mohd Mustazil
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Abdul Hamid Juliana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norliza Muhammad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Pharmacological Effects of Centella asiatica on Skin Diseases: Evidence and Possible Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5462633. [PMID: 34845411 PMCID: PMC8627341 DOI: 10.1155/2021/5462633] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
The medicinal herb Centella asiatica (L.) Urban known as gotu kola has been reported to exhibit a wide range of pharmacological activities. In particular, a significant body of scientific research exists on the therapeutic properties of preparations of C. asiatica or its triterpenes in the treatment of skin diseases. The present study is aimed to provide a comprehensive overview of the beneficial effects of C. asiatica on skin diseases. Peer-reviewed articles on the potent dermatological effects of C. asiatica were acquired from PubMed, Web of Science, Scopus, ScienceDirect, and SciFinder. This review provides an understanding of pharmacological studies which confirm the potent dermatological effects and underlying molecular mechanisms of C. asiatica. This medicinal plant and its triterpenes include asiaticoside, madecassoside, and their aglycones, asiatic acid and madecassic acid. These compounds exert therapeutic effects on dermatological diseases such as acne, burns, atopic dermatitis, and wounds via NF-κB, TGF-β/Smad, MAPK, Wnt/β-catenin, and STAT signaling in in vitro and in vivo studies. However, additional rigorously controlled long-term clinical trials will be necessary to confirm the full potential of C. asiatica as a therapeutic agent.
Collapse
|
16
|
Hambali A, Kumar J, Hashim NFM, Maniam S, Mehat MZ, Cheema MS, Mustapha M, Adenan MI, Stanslas J, Hamid HA. Hypoxia-Induced Neuroinflammation in Alzheimer's Disease: Potential Neuroprotective Effects of Centella asiatica. Front Physiol 2021; 12:712317. [PMID: 34721056 PMCID: PMC8551388 DOI: 10.3389/fphys.2021.712317] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterised by the presence of extracellular beta-amyloid fibrillary plaques and intraneuronal neurofibrillary tau tangles in the brain. Recurring failures of drug candidates targeting these pathways have prompted research in AD multifactorial pathogenesis, including the role of neuroinflammation. Triggered by various factors, such as hypoxia, neuroinflammation is strongly linked to AD susceptibility and/or progression to dementia. Chronic hypoxia induces neuroinflammation by activating microglia, the resident immune cells in the brain, along with an increased in reactive oxygen species and pro-inflammatory cytokines, features that are common to many degenerative central nervous system (CNS) disorders. Hence, interests are emerging on therapeutic agents and plant derivatives for AD that target the hypoxia-neuroinflammation pathway. Centella asiatica is one of the natural products reported to show neuroprotective effects in various models of CNS diseases. Here, we review the complex hypoxia-induced neuroinflammation in the pathogenesis of AD and the potential application of Centella asiatica as a therapeutic agent in AD or dementia.
Collapse
Affiliation(s)
- Aqilah Hambali
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Nur Fariesha Md Hashim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Manraj Singh Cheema
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Johnson Stanslas
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
17
|
Meephat S, Prasatthong P, Potue P, Bunbupha S, Pakdeechote P, Maneesai P. Diosmetin Ameliorates Vascular Dysfunction and Remodeling by Modulation of Nrf2/HO-1 and p-JNK/p-NF-κB Expression in Hypertensive Rats. Antioxidants (Basel) 2021; 10:antiox10091487. [PMID: 34573119 PMCID: PMC8469706 DOI: 10.3390/antiox10091487] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Diosmetin is a citrus flavonoid that has antioxidant and anti-inflammatory effects. This study examined the effect of diosmetin on blood pressure and vascular alterations and its underlying mechanisms in experimentally hypertensive rats. Male Sprague rats were administered Nω-nitro-l-arginine methyl ester L-NAME for five weeks and were given diosmetin at doses of 20 or 40 mg/kg or captopril (5 mg/kg) for two weeks. Diosmetin alleviated hypertension, improved endothelial dysfunction, and suppressed the overactivity of sympathetic nerve-mediated vasoconstriction in aorta and mesentery hypertensive rats (p < 0.05). Increases in plasma and aortic tissue malondialdehyde (MDA) and carotid superoxide generations and reductions of plasma superoxide dismutase, catalase, and nitric oxide in hypertensive rats were ameliorated by diosmetin (p < 0.05). Diosmetin increased the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in hypertensive rats. Furthermore, diosmetin mitigated hypertrophy and collagen accumulation of the aortic wall in L-NAME rats. It exhibited an anti-inflammatory effect by reducing interleukin-6 (IL-6) accumulation and by overexpressing the phospho-c-Jun N-terminal kinases (p-JNK) and the phospho-nuclear factor-kappaB (p-NF-κB) proteins in the aorta (p < 0.05). Captopril was a positive control substance and had similar effects to diosmetin. In summary, diosmetin reduced blood pressure and alleviated vascular abnormalities in L-NAME-treated rats. These effects might be related to antioxidant and anti-inflammatory effects as well as to the modulation of the expression of the Nrf2/HO1 and p-JNK/NF-κB proteins.
Collapse
Affiliation(s)
- Sariya Meephat
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (P.P.); (P.P.); (P.P.)
| | - Patoomporn Prasatthong
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (P.P.); (P.P.); (P.P.)
| | - Prapassorn Potue
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (P.P.); (P.P.); (P.P.)
| | - Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand;
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (P.P.); (P.P.); (P.P.)
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (P.P.); (P.P.); (P.P.)
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: ; Tel.: +66-43348394
| |
Collapse
|
18
|
Meephat S, Prasatthong P, Rattanakanokchai S, Bunbupha S, Maneesai P, Pakdeechote P. Diosmetin attenuates metabolic syndrome and left ventricular alterations via the suppression of angiotensin II/AT 1 receptor/gp 91phox/p-NF-κB protein expression in high-fat diet fed rats. Food Funct 2021; 12:1469-1481. [PMID: 33449987 DOI: 10.1039/d0fo02744h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diosmetin, a monomethoxyflavone, is isolated from citrus fruits. The objective of this research was to test the biological role of diosmetin on parameters of metabolic syndrome (MS) and left ventricular (LV) alterations in rats fed with a high-fat (HF) diet. MS was induced by feeding male Sprague-Dawley rats with a HF diet plus 15% fructose in drinking water for 16 weeks. MS rats were given diosmetin (20 or 40 mg per kg per day) or metformin (100 mg per kg per day) for the final four weeks. Diosmetin attenuated signs of MS including, hypertension, hyperglycemia, insulin resistance, and dyslipidemia in rats that received the HF diet (p < 0.05). A decreased stroke volume, ejection fraction, fractional shortening, LV hypertrophy and fibrosis present in the MS group were alleviated by diosmetin treatment (p < 0.05). Diosmetin also suppressed angiotensin-converting enzyme activity, plasma angiotensin II (Ang II) levels and angiotensin II type 1 (AT1) receptor protein expression in MS rats. Increases in superoxide (O2˙-) formation, plasma malondialdehyde, plasma nitrate and nitrite and gp91phox expression induced by a HF diet were ameliorated in the diosmetin treated group. Inflammation indicated by an increased phospho nuclear factor kappa B (p-NF-κB) protein expression and cardiac TNF-α concentration was reduced in MS rats receiving diosmetin (p < 0.05). Metformin also attenuated MS, cardiac abnormalities relevant to decreasing the renin-angiotensin system stimulation, reactive oxygen species and inflammation in MS rats (p < 0.05). Diosmetin alleviated MS and LV dysfunction and remodeling in HF diet-induced MS rats. These results could be associated with the suppression of the Ang II/AT1 receptor/gp91phox/p-NF-κB protein pathway.
Collapse
Affiliation(s)
- Sariya Meephat
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Patoomporn Prasatthong
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | | | - Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Mahasarakham, 44000, Thailand.
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand. and Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
19
|
Maneesai P, Iampanichakul M, Chaihongsa N, Poasakate A, Potue P, Rattanakanokchai S, Bunbupha S, Chiangsaen P, Pakdeechote P. Butterfly Pea Flower ( Clitoria ternatea Linn.) Extract Ameliorates Cardiovascular Dysfunction and Oxidative Stress in Nitric Oxide-Deficient Hypertensive Rats. Antioxidants (Basel) 2021; 10:523. [PMID: 33801631 PMCID: PMC8065438 DOI: 10.3390/antiox10040523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
In this study, we examine whether Clitoria ternatea Linn. (CT) can prevent Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced cardiac and vascular dysfunction in rats. Male Sprague Dawley rats were given L-NAME (40 mg/kg, drinking water) and orally administered with CT extract (300 mg/kg/day) or lisinopril (2.5 mg/kg/day) for 5 weeks. The main phytochemical components of the CT extract were found to be flavonoids. The CT extract alleviated the high blood pressure in rats receiving L-NAME. Decreased vasorelaxation responses to acetylcholine and enhanced contractile responses to sympathetic nerve stimulation in aortic rings and mesenteric vascular beds of L-NAME treated rats were ameliorated by CT extract supplementation. Left ventricular hypertrophy and dysfunction were developed in L-NAME rats, which were partially prevented by CT extract treatment. The CT extract alleviated upregulated endothelial nitric oxide synthase expression, decreased plasma nitrate/nitrite levels, and increased oxidative stress in L-NAME rats. It suppressed high levels of serum angiotensin-converting enzyme activity, plasma angiotensin II, and cardiac angiotensin II type 1 receptor, NADPH oxidases 2, nuclear factor-kappa B, and tumor necrosis factor-alpha expression. The CT extract, therefore, partially prevented L-NAME-induced hypertension and cardiovascular alterations in rats. These effects might be related to a reduction in the oxidative stress and renin-angiotensin system activation due to L-NAME in rats.
Collapse
Affiliation(s)
- Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (M.I.); (N.C.); (A.P.); (P.P.)
| | - Metee Iampanichakul
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (M.I.); (N.C.); (A.P.); (P.P.)
| | - Nisita Chaihongsa
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (M.I.); (N.C.); (A.P.); (P.P.)
| | - Anuson Poasakate
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (M.I.); (N.C.); (A.P.); (P.P.)
| | - Prapassorn Potue
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (M.I.); (N.C.); (A.P.); (P.P.)
| | | | - Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand;
| | | | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (M.I.); (N.C.); (A.P.); (P.P.)
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
20
|
Fu Z, Wang F, Liu X, Hu J, Su J, Lu X, Lu A, Cho JM, Symons JD, Zou CJ, Yang T. Soluble (pro)renin receptor induces endothelial dysfunction and hypertension in mice with diet-induced obesity via activation of angiotensin II type 1 receptor. Clin Sci (Lond) 2021; 135:793-810. [PMID: 33625485 PMCID: PMC9215112 DOI: 10.1042/cs20201047] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
Until now, renin-angiotensin system (RAS) hyperactivity was largely thought to result from angiotensin II (Ang II)-dependent stimulation of the Ang II type 1 receptor (AT1R). Here we assessed the role of soluble (pro)renin receptor (sPRR), a product of site-1 protease-mediated cleavage of (pro)renin receptor (PRR), as a possible ligand of the AT1R in mediating: (i) endothelial cell dysfunction in vitro and (ii) arterial dysfunction in mice with diet-induced obesity. Primary human umbilical vein endothelial cells (HUVECs) treated with a recombinant histidine-tagged sPRR (sPRR-His) exhibited IκBα degradation concurrent with NF-κB p65 activation. These responses were secondary to sPRR-His evoked elevations in Nox4-derived H2O2 production that resulted in inflammation, apoptosis and reduced NO production. Each of these sPRR-His-evoked responses was attenuated by AT1R inhibition using Losartan (Los) but not ACE inhibition using captopril (Cap). Further mechanistic exploration revealed that sPRR-His activated AT1R downstream Gq signaling pathway. Immunoprecipitation coupled with autoradiography experiments and radioactive ligand competitive binding assays indicate sPRR directly interacts with AT1R via Lysine199 and Asparagine295. Important translational relevance was provided by findings from obese C57/BL6 mice that sPRR-His evoked endothelial dysfunction was sensitive to Los. Besides, sPRR-His elevated blood pressure in obese C57/BL6 mice, an effect that was reversed by concurrent treatment with Los but not Cap. Collectively, we provide solid evidence that the AT1R mediates the functions of sPRR during obesity-related hypertension. Inhibiting sPRR signaling should be considered further as a potential therapeutic intervention in the treatment and prevention of cardiovascular disorders involving elevated blood pressure.
Collapse
Affiliation(s)
- Ziwei Fu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Xiyang Liu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiajia Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiahui Su
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaohan Lu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Aihua Lu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jae Min Cho
- Department of Nutrition and Integrative Physiology; Division of Endocrinology, Metabolism, and Diabetes, Molecular Medicine Program; University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - J. David Symons
- Department of Nutrition and Integrative Physiology; Division of Endocrinology, Metabolism, and Diabetes, Molecular Medicine Program; University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Chang-Jiang Zou
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
21
|
Poasakate A, Maneesai P, Rattanakanokchai S, Bunbupha S, Tong-Un T, Pakdeechote P. Genistein Prevents Nitric Oxide Deficiency-Induced Cardiac Dysfunction and Remodeling in Rats. Antioxidants (Basel) 2021; 10:antiox10020237. [PMID: 33557258 PMCID: PMC7914683 DOI: 10.3390/antiox10020237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 12/16/2022] Open
Abstract
Genistein is an isoflavone found in soybeans. This study evaluates the protective effects of genistein on Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced hypertension, cardiac remodeling, and dysfunction in rats. Male Wistar rats were treated with L-NAME 40 mg/kg/day together for 5 weeks, with or without genistein at a dose of 40 or 80 mg/kg/day or lisinopril 5 mg/kg/day (n = 8 per group). Genistein prevented L-NAME-induced hypertension in rats. Increases in the left ventricular weight, metalloproteinase-2, metalloproteinase-9, and collagen type I intensity were observed in L-NAME rats, and these changes were attenuated in the genistein-treated group. Genistein reduced circulating angiotensin-converting enzyme activity and angiotensin II concentrations in L-NAME rats. L-NAME increased plasma and cardiac malondialdehyde and vascular superoxide generations, as well as reductions of serum and cardiac catalase activities in rats. Plasma nitrate/nitrite were protected in the genistein-treated group. Genistein prevented the L-NAME-induced overexpression of angiotensin II receptor type I (AT1R), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit 2 (gp91phox), and transforming growth factor beta I (TGF-β1) in hypertensive rats. In conclusion, genistein exhibited a cardioprotective effect in hypertensive rats in this study. The molecular mechanisms might be mediated by suppression of oxidative stress through the Ang II/AT1R/NADPH oxidase/TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Anuson Poasakate
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (A.P.); (P.M.); (T.T.-U.)
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (A.P.); (P.M.); (T.T.-U.)
| | | | - Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand;
| | - Terdthai Tong-Un
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (A.P.); (P.M.); (T.T.-U.)
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (A.P.); (P.M.); (T.T.-U.)
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: ; Tel.: +66-86-852-6060; Fax: +66-4334-8394
| |
Collapse
|
22
|
Meng YQ, Zhou Y, Li QW, Tong SM, Kuai ZY, Li XX. Synthesis of oleanolic acid analogues targeting PDGF receptor inhibitors and their antitumor biological activities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:150-162. [PMID: 32102552 DOI: 10.1080/10286020.2020.1717476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The PDGF receptor is mock-coupled with a known active compound, and 14 novel skeleton candidate compounds were designed and synthesized. The structure was confirmed by 1H NMR, 13C NMR and MS. The in vitro cytotoxicity of the two cancer cell lines (SGC-7901 and A549) was evaluated by MTT assay. PDGF receptor protein inhibition assays were performed on I6 and II4 using fluorescence polarization immunoassay (FPIA). [Formula: see text].
Collapse
Affiliation(s)
- Yan-Qiu Meng
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Ying Zhou
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Qian-Wen Li
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Si-Miao Tong
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Zheng-Yu Kuai
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xiao-Xiao Li
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
23
|
Torbati FA, Ramezani M, Dehghan R, Amiri MS, Moghadam AT, Shakour N, Elyasi S, Sahebkar A, Emami SA. Ethnobotany, Phytochemistry and Pharmacological Features of Centella asiatica: A Comprehensive Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:451-499. [PMID: 33861456 DOI: 10.1007/978-3-030-64872-5_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Centella asiatica (CA) or Gotu cola is an herbal plant from the Apiaceae family with a long history of usage in different traditional medicines. It has long been used for the treatment of various ailments such as central nervous system (CNS), skin and gastrointestinal disorders especially in the Southeast Asia. This chapter focused on the phytochemical constituent and pharmacological activities of CA based on preclinical and clinical studies. Additionally, botanical description and distribution, traditional uses, interactions, and safety issues are reviewed. Electronic databases of Google Scholar, Scopus, PubMed, and Web of Science were searched to obtain relevant studies on the pharmacological activities of CA. Approximately, 124 chemical compounds including triterpenoids, polyphenolic compounds, and essential oils have been isolated and identified from CA. Ethnomedicinal applications of CA mostly include treatment of gastrointestinal diseases, wounds, nervous system disorders, circulatory diseases, skin problems, respiratory ailments, diabetes and sleep disorders in various ethnobotanical practices. Pharmacological studies revealed a wide range of beneficial effects of CA on CNS, cardiovascular, lung, liver, kidney, gastrointestinal, skin, and endocrine system. Among them, neuroprotective activity, wound healing and treatment of venous insufficiency, as well as antidiabetic activity seem to be more frequently reported. At the moment, considering various health benefits of CA, it is marketed as an oral supplement as well as a topical ingredient in some cosmetic products. Additional preclinical studies and particularly randomized controlled trials are needed to clarify the therapeutic roles of CA.
Collapse
Affiliation(s)
- Farshad Abedi Torbati
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahin Ramezani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Dehghan
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ali Tafazoli Moghadam
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Hu WY, Li XX, Diao YF, Qi JJ, Wang DL, Zhang JB, Sun BX, Liang S. Asiatic acid protects oocytes against in vitro aging-induced deterioration and improves subsequent embryonic development in pigs. Aging (Albany NY) 2020; 13:3353-3367. [PMID: 33281118 PMCID: PMC7906213 DOI: 10.18632/aging.202184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
As a pentacyclic triterpene in Centella asiatica, asiatic acid (AA) is a powerful antioxidant with many bioactivities. In the present research, we investigated whether AA has the potential to rescue the decrease in porcine oocyte quality that occurs during in vitro aging (IVA). Mature porcine oocytes were collected and then continuously cultured for an additional 24 h or 48 h with or without AA in maturation medium as an IVA model. The results revealed that AA supplementation reduced the percentage of abnormal aged porcine oocytes during IVA. Furthermore, AA supplementation effectively maintained aged porcine oocyte developmental competence, both parthenogenetic activation and in vitro fertilization. The number of sperm that bound to the zona pellucida on aged porcine oocytes was higher in the AA-supplemented group than in the non-supplemented group. Moreover, AA supplementation not only blocked IVA-induced oxidative stress but also maintained intracellular GSH levels and reduced the percentage of early apoptosis aged porcine oocytes. Mitochondrial functions were disordered during the IVA process. The intracellular ATP levels and mitochondrial membrane potential in aged porcine oocytes were dramatically increased by AA supplementation. Therefore, AA has beneficial effects on porcine oocyte quality and developmental potential maintenance during IVA.
Collapse
Affiliation(s)
- Wei-Yi Hu
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Xiao Xia Li
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Changchun, China.,Jilin Province Key Laboratory of Preventive Veterinary Medicine, Jilin Agriculture Science and Technology University, Changchun, China
| | - Yun Fei Diao
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Changchun, China.,Jilin Province Key Laboratory of Preventive Veterinary Medicine, Jilin Agriculture Science and Technology University, Changchun, China
| | - Jia-Jia Qi
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Da-Li Wang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jia-Bao Zhang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Bo-Xing Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
25
|
Sun B, Wu L, Wu Y, Zhang C, Qin L, Hayashi M, Kudo M, Gao M, Liu T. Therapeutic Potential of Centella asiatica and Its Triterpenes: A Review. Front Pharmacol 2020; 11:568032. [PMID: 33013406 PMCID: PMC7498642 DOI: 10.3389/fphar.2020.568032] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Centella asiatica (also known as Centella asiatica (L.) Urb. or Gotu kola) is a traditional Chinese medicine with extensive medicinal value, which is commonly used in Southeast Asian countries. This study aimed to summarize the effects of C. asiatica and its main components on neurological diseases, endocrine diseases, skin diseases, cardiovascular diseases, gastrointestinal diseases, immune diseases, and gynecological diseases, as well as potential molecular mechanisms, to study the pathological mechanism of these diseases based on the changes at the molecular level. The results showed that C. asiatica and its triterpenoids had extensive beneficial effects on neurological and skin diseases, which were confirmed through clinical studies. They exhibited anti-inflammatory, anti-oxidative stress, anti-apoptotic effects, and improvement in mitochondrial function. However, further clinical studies are urgently required due to the low level of evidence and lack of patients.
Collapse
Affiliation(s)
- Boju Sun
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - You Wu
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Chengfei Zhang
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Qin
- Technology Department, Beijing University of Chinese Medicine, Beijing, China
| | - Misa Hayashi
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - Maya Kudo
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - Ming Gao
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - Tonghua Liu
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
26
|
Banu N, Panikar SS, Leal LR, Leal AR. Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to Macrophage Activation Syndrome: Therapeutic implications. Life Sci 2020; 256:117905. [PMID: 32504757 PMCID: PMC7832382 DOI: 10.1016/j.lfs.2020.117905] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023]
Abstract
In light of the outbreak of the 2019 novel coronavirus disease (COVID-19), the international scientific community has joined forces to develop effective treatment strategies. The Angiotensin-Converting Enzyme (ACE) 2, is an essential receptor for cell fusion and engulfs the SARS coronavirus infections. ACE2 plays an important physiological role, practically in all the organs and systems. Also, ACE2 exerts protective functions in various models of pathologies with acute and chronic inflammation. While ACE2 downregulation by SARS-CoV-2 spike protein leads to an overactivation of Angiotensin (Ang) II/AT1R axis and the deleterious effects of Ang II may explain the multiorgan dysfunction seen in patients. Specifically, the role of Ang II leading to the appearance of Macrophage Activation Syndrome (MAS) and the cytokine storm in COVID-19 is discussed below. In this review, we summarized the latest research progress in the strategies of treatments that mainly focus on reducing the Ang II-induced deleterious effects rather than attenuating the virus replication. Protective role of ACE2 in the organs and system Downregulation of ACE2 expression by SARS-CoV-2 leads to Ang II-induced organ damage. The appearance of MAS in COVID-19 patient Suggested treatment to diminish the deleterious effect of Ang II or appearance of MAS
Collapse
Affiliation(s)
- Nehla Banu
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sandeep Surendra Panikar
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autonoma de México (UNAM), Apartado Postal 1-1010, Queretaro, Queretaro 76000, Mexico
| | - Lizbeth Riera Leal
- Hospital General Regional número 45, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Annie Riera Leal
- UC DAVIS Institute for Regenerative Cure, Department of Dermatology, University of California, 2921 Stockton Blvd, Rm 1630, 95817 Sacramento, CA, USA.
| |
Collapse
|
27
|
de Souza P, da Silva LM, de Andrade SF, Gasparotto Junior A. Recent Advances in the Knowledge of Naturally-derived Bioactive Compounds as Modulating Agents of the Renin-angiotensin-aldosterone System: Therapeutic Benefits in Cardiovascular Diseases. Curr Pharm Des 2020; 25:670-684. [PMID: 30931846 DOI: 10.2174/1381612825666190329122443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND One of the biggest challenges to public health worldwide is to reduce the number of events and deaths related to the cardiovascular diseases. Numerous approaches have been applied to reach this goal, and drug treatment intervention has been indispensable along with an effective strategy for reducing both cardiovascular morbidity and mortality. Renin-angiotensin-aldosterone system (RAAS) blockade is currently one of the most important targets of cardiovascular drug therapy. Many studies have proven the valuable properties of naturally-derived bioactive compounds to treat cardiovascular diseases. METHODS The goal of this review, therefore, is to discuss the recent developments related to medicinal properties about natural compounds as modulating agents of the RAAS, which have made them an attractive alternative to be available to supplement the current therapy options. RESULTS Data has shown that bioactive compounds isolated from several natural products act either by inhibiting the angiotensin-converting enzyme or directly by modulating the AT1 receptors of angiotensin II, which consequently changes the entire classical axis of this system. CONCLUSION While there are a few evidence about the positive actions of different classes of secondary metabolites for the treatment of cardiovascular and renal diseases, data is scarce about the clinical assays established to demonstrate their value in humans.
Collapse
Affiliation(s)
- Priscila de Souza
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Nucleo de Investigacoes Quimico-Farmaceuticas (NIQFAR), Universidade do Vale do Itajai (UNIVALI), Rua Uruguai, 458, 88302-901 Itajai, SC, Brazil
| | - Luisa M da Silva
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Nucleo de Investigacoes Quimico-Farmaceuticas (NIQFAR), Universidade do Vale do Itajai (UNIVALI), Rua Uruguai, 458, 88302-901 Itajai, SC, Brazil
| | - Sérgio F de Andrade
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Nucleo de Investigacoes Quimico-Farmaceuticas (NIQFAR), Universidade do Vale do Itajai (UNIVALI), Rua Uruguai, 458, 88302-901 Itajai, SC, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratorio de Eletrofisiologia e Farmacologia Cardiovascular, Faculdade de Ciencias da Saude, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
28
|
Jan-On G, Sangartit W, Pakdeechote P, Kukongviriyapan V, Sattayasai J, Senaphan K, Kukongviriyapan U. Virgin rice bran oil alleviates hypertension through the upregulation of eNOS and reduction of oxidative stress and inflammation in L-NAME-induced hypertensive rats. Nutrition 2019; 69:110575. [PMID: 31585258 DOI: 10.1016/j.nut.2019.110575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/04/2019] [Accepted: 08/15/2019] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Endothelial dysfunction associated with reduction in nitric oxide (NO) bioavailability plays an important role in development of hypertension. Consumption of a diet rich in antioxidants appears to lower the risk for hypertension. Virgin rice bran oil (VRBO) possesses antioxidant, anti-inflammatory, and hypocholesterolemic activities. However, to our knowledge, the antihypertensive effect of VRBO has not been investigated. The aim of this study was to examine the antihypertensive effect of VRBO in Nω-nitro-l-arginine methyl ester (L-NAME)-induced hypertensive rats and its underlying mechanisms. METHODS Hypertension was induced in rats by administration of L-NAME, after which VRBO, lisinopril (Lis), or VRBO + Lis was administered. Studies were then conducted on the hemodynamics of vascular responses to vasoactive substances, plasma angiotensin-converting enzyme (ACE), plasma nitrate/nitrite, oxidative stress, and inflammatory markers. RESULTS L-NAME administration induced hemodynamic changes including elevation of blood pressure, increased peripheral vascular resistance, and endothelial dysfunction. Reduction in plasma nitrate/nitrite, overproduction of vascular superoxide, and increases in plasma ACE, malondialdehyde, protein carbonyl, and plasma tumor necrosis factor-α were observed in L-NAME hypertensive rats. The changes were associated with a marked decrease in endothelial NO synthase expression, increased expression of gp91phoxand vascular cell adhesion molecule-1, and activation of nuclear factor-κB in aortic tissues. Administration of either VRBO or Lis significantly mitigated all of these deleterious effects. The combination of VRBO and Lis was more effective than either treatment alone. CONCLUSIONS The antihypertensive effect of VRBO may be mediated by restoration of hemodynamics, increased NO bioavailability, and alleviation of oxidative stress and inflammation. VRBO has an additive effect on antihypertensive medication.
Collapse
Affiliation(s)
- Gulladawan Jan-On
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Weerapon Sangartit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
| | | | - Jintana Sattayasai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Ketmanee Senaphan
- Division of Physiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
29
|
Han S, Bal NB, Sadi G, Usanmaz SE, Uludag MO, Demirel-Yilmaz E. The effects of LXR agonist GW3965 on vascular reactivity and inflammation in hypertensive rat aorta. Life Sci 2018; 213:287-293. [PMID: 30366037 DOI: 10.1016/j.lfs.2018.10.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 11/17/2022]
Abstract
AIMS Liver X receptors (LXRs) play an important role in the regulation of cholesterol, fatty acid and glucose metabolisms together with inflammatory processes. In the present study, the effects of LXR agonist GW3965 on vascular reactivity and expression of functional proteins in DOCA-Salt induced hypertension were examined. MAIN METHODS Hypertension was induced through unilateral nephrectomy and deoxycorticosterone-acetate (DOCA) injection (20 mg/kg, twice a week) for 6 weeks in male Wistar albino rats (8 weeks old). An LXR agonist GW3965 (10 mg/kg/day, i.p.) was administered to animals for last seven days. KEY FINDINGS GW3965 treatment reduced systolic blood pressures in hypertensive rats. Acetylcholine-induced endothelium-dependent and sodium nitroprusside-induced endothelium-independent vasorelaxations were decreased in hypertensive rats but not affected by GW3965. GW3965 treatment enhanced plasma nitrite levels in normotensive rats. KCl and phenylephrine (Phe)-induced vasocontractions were reduced in hypertensive groups and increased with GW3965 treatment. Decreased sarco/endoplasmic reticulum Ca2+-ATPase2 (SERCA2) expression in the hypertensive aorta was not changed by GW3965 treatment. Expression of inositoltrisphosphate receptor1 (IP3R1) was increased by GW3965 in normotensive animals. The nuclear factor kappaB (NF-κB) and tumor necrosis factor alpha (TNF-α) expressions were increased in hypertensive rats and reduced by GW3965 treatment. SIGNIFICANCE The results of study indicate that the LXR agonist, GW3965, exhibited a beneficial effect on increased blood pressure and improved hypertension-induced impairment in contractile activity of vessel and inflammatory markers in vascular tissue. Therefore, these effects of LXR agonists on vessel should be taken into account in experimental or therapeutic approaches to hypertension.
Collapse
Affiliation(s)
- Sevtap Han
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey.
| | - Nur Banu Bal
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey
| | - Gökhan Sadi
- Karamanoglu Mehmetbey University, K.Ö. Faculty of Science, Department of Biology, Karaman, Turkey
| | - Suzan Emel Usanmaz
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Sıhhiye, 06100 Ankara, Turkey
| | - Mecit Orhan Uludag
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey
| | - Emine Demirel-Yilmaz
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Sıhhiye, 06100 Ankara, Turkey
| |
Collapse
|
30
|
Maneesai P, Bunbupha S, Potue P, Berkban T, Kukongviriyapan U, Kukongviriyapan V, Prachaney P, Pakdeechote P. Hesperidin Prevents Nitric Oxide Deficiency-Induced Cardiovascular Remodeling in Rats via Suppressing TGF-β1 and MMPs Protein Expression. Nutrients 2018; 10:E1549. [PMID: 30347737 PMCID: PMC6213402 DOI: 10.3390/nu10101549] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
Hesperidin is a major flavonoid isolated from citrus fruits that exhibits several biological activities. This study aims to evaluate the effect of hesperidin on cardiovascular remodeling induced by n-nitro l-arginine methyl ester (l-NAME) in rats. Male Sprague-Dawley rats were treated with l-NAME (40 mg/kg), l-NAME plus hesperidin (15 mg/kg), hesperidin (30 mg/kg), or captopril (2.5 mg/kg) for five weeks (n = 8/group). Hesperidin or captopril significantly prevented the development of hypertension in l-NAME rats. l-NAME-induced cardiac remodeling, i.e., increases in wall thickness, cross-sectional area (CSA), and fibrosis in the left ventricular and vascular remodeling, i.e., increases in wall thickness, CSA, vascular smooth muscle cells, and collagen deposition in the aorta were attenuated by hesperidin or captopril. These were associated with reduced oxidative stress markers, tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta 1 (TGF-β1), and enhancing plasma nitric oxide metabolite (NOx) in l-NAME treated groups. Furthermore, up-regulation of tumor necrosis factor receptor type 1 (TNF-R1) and TGF- β1 protein expression and the overexpression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) was suppressed in l-NAME rats treated with hesperidin or captopril. These data suggested that hesperidin had cardioprotective effects in l-NAME hypertensive rats. The possible mechanism may involve antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand.
| | - Prapassorn Potue
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Thewarid Berkban
- Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand.
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Parichat Prachaney
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen 40002, Thailand.
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
31
|
Nagoor Meeran MF, Goyal SN, Suchal K, Sharma C, Patil CR, Ojha SK. Pharmacological Properties, Molecular Mechanisms, and Pharmaceutical Development of Asiatic Acid: A Pentacyclic Triterpenoid of Therapeutic Promise. Front Pharmacol 2018; 9:892. [PMID: 30233358 PMCID: PMC6131672 DOI: 10.3389/fphar.2018.00892] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022] Open
Abstract
Asiatic acid (AA) is a naturally occurring aglycone of ursane type pentacyclic triterpenoids. It is abundantly present in many edible and medicinal plants including Centella asiatica that is a reputed herb in many traditional medicine formulations for wound healing and neuropsychiatric diseases. AA possesses numerous pharmacological activities such as antioxidant and anti-inflammatory and regulates apoptosis that attributes its therapeutic effects in numerous diseases. AA showed potent antihypertensive, nootropic, neuroprotective, cardioprotective, antimicrobial, and antitumor activities in preclinical studies. In various in vitro and in vivo studies, AA found to affect many enzymes, receptors, growth factors, transcription factors, apoptotic proteins, and cell signaling cascades. This review aims to represent the available reports on therapeutic potential and the underlying pharmacological and molecular mechanisms of AA. The review also also discusses the challenges and prospects on the pharmaceutical development of AA such as pharmacokinetics, physicochemical properties, analysis and structural modifications, and drug delivery. AA showed favorable pharmacokinetics and found bioavailable following oral or interaperitoneal administration. The studies demonstrate the polypharmacological properties, therapeutic potential and molecular mechanisms of AA in numerous diseases. Taken together the evidences from available studies, AA appears one of the important multitargeted polypharmacological agents of natural origin for further pharmaceutical development and clinical application. Provided the favorable pharmacokinetics, safety, and efficacy, AA can be a promising agent or adjuvant along with currently used modern medicines with a pharmacological basis of its use in therapeutics.
Collapse
Affiliation(s)
- Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Kapil Suchal
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Charu Sharma
- Department of Internal Meicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chandragouda R. Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
32
|
Fong LY, Ng CT, Yong YK, Hakim MN, Ahmad Z. Asiatic acid stabilizes cytoskeletal proteins and prevents TNF-α-induced disorganization of cell-cell junctions in human aortic endothelial cells. Vascul Pharmacol 2018; 117:15-26. [PMID: 30114509 DOI: 10.1016/j.vph.2018.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/12/2018] [Accepted: 08/11/2018] [Indexed: 12/22/2022]
Abstract
Endothelial hyperpermeability represents an initiating step in early atherosclerosis and it often occurs as a result of endothelial barrier dysfunction. Asiatic acid, a major triterpene isolated from Centella asiatica (L.) Urban, has previously been demonstrated to protect against tumor necrosis factor (TNF)-α-induced endothelial barrier dysfunction. The present study aimed to investigate the mechanisms underlying the barrier protective effect of asiatic acid in human aortic endothelial cells (HAECs). The localization of F-actin, diphosphorylated myosin light chain (diphospho-MLC), adherens junctions (AJs) and tight junctions (TJs) was studied using immunocytochemistry techniques and confocal microscopy. Their total protein expressions were examined using western blot analysis. The endothelial permeability was assessed using In Vitro Vascular Permeability Assay kits. In addition, intracellular redistribution of the junctional proteins was evaluated using subcellular fractionation kits. We show that asiatic acid stabilized F-actin and diphospho-MLC at the cell periphery and prevented their rearrangement stimulated by TNF-α. However, asiatic acid failed to attenuate cytochalasin D-induced increased permeability. Besides, asiatic acid abrogated TNF-α-induced structural reorganization of vascular endothelial (VE)-cadherin and β-catenin by preserving their reticulum structures at cell-cell contact areas. In addition, asiatic acid also inhibited TNF-α-induced redistribution of occludin and zona occludens (ZO)-1 in different subcellular fractions. In conclusion, the barrier-stabilizing effect of asiatic acid might be associated with preservation of AJs and prevention of TJ redistribution caused by TNF-α. This study provides evidence to support the potential use of asiatic acid in the prevention of early atherosclerosis, which is initiated by endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Lai Yen Fong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Pre-clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia.
| | - Chin Theng Ng
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Physiology Unit, Faculty of Medicine, AIMST University, 08100 Bedong, Kedah, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Muhammad Nazrul Hakim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Zuraini Ahmad
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
33
|
The Kidney Injury Induced by Short-Term PM 2.5 Exposure and the Prophylactic Treatment of Essential Oils in BALB/c Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9098627. [PMID: 30151074 PMCID: PMC6087578 DOI: 10.1155/2018/9098627] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/08/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022]
Abstract
PM2.5 is well known as a major environmental pollutant; it has been proved to be associated with kidney diseases. The kidney damage involves oxidative stress and/or inflammatory response. NOX4 is a major source of reactive oxygen species (ROS) generation in the kidney, and the excessive generation of ROS is recognized to be responsible for oxidative stress. To elucidate whether short-term PM2.5 exposure could induce kidney damage, we exposed BALB/c mice to PM2.5 intratracheally and measured the biomarkers of kidney injury (KIM-1, cystatin C), oxidative stress (MDA, SOD-1, and HO-1), and inflammatory response (NF-κB, TNF-α). Acute kidney damage and excessive oxidative stress as well as transient inflammatory response were observed after PM2.5 installation. The overexpression of some components of the angiotensin system (RAS) after PM2.5 exposure illustrated that RAS may be involved in PM2.5-induced acute kidney injury. CEOs (compound essential oils) have been widely used because of their antioxidant and anti-inflammation properties. Treatment with CEOs substantially attenuated PM2.5-induced acute kidney injury. The suppression of RAS activation was significant and earlier than the decrease of oxidative stress and inflammatory response after CEOs treatment. We hypothesized that CEOs could attenuate the acute kidney injury by suppressing the RAS activation and subsequently inhibit the oxidative stress and inflammatory response.
Collapse
|