1
|
Elvig SK, McGinn MA, Smith C, Arends MA, Koob GF, Vendruscolo LF. Tolerance to alcohol: A critical yet understudied factor in alcohol addiction. Pharmacol Biochem Behav 2021; 204:173155. [PMID: 33631255 DOI: 10.1016/j.pbb.2021.173155] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/06/2021] [Accepted: 02/18/2021] [Indexed: 11/19/2022]
Abstract
Alcohol tolerance refers to a lower effect of alcohol with repeated exposure. Although alcohol tolerance has been historically included in diagnostic manuals as one of the key criteria for a diagnosis of alcohol use disorder (AUD), understanding its neurobiological mechanisms has been neglected in preclinical studies. In this mini-review, we provide a theoretical framework for alcohol tolerance. We then briefly describe chronic tolerance, followed by a longer discussion of behavioral and neurobiological aspects that underlie rapid tolerance in rodent models. Glutamate/nitric oxide, γ-aminobutyric acid, opioids, serotonin, dopamine, adenosine, cannabinoids, norepinephrine, vasopressin, neuropeptide Y, neurosteroids, and protein kinase C all modulate rapid tolerance. Most studies have evaluated the ability of pharmacological manipulations to block the development of rapid tolerance, but only a few studies have assessed their ability to reverse already established tolerance. Notably, only a few studies analyzed sex differences. Neglected areas of study include the incorporation of a key element of tolerance that involves opponent process-like neuroadaptations. Compared with alcohol drinking models, models of rapid tolerance are relatively shorter in duration and are temporally defined, which make them suitable for combining with a wide range of classic and modern research tools, such as pharmacology, optogenetics, calcium imaging, in vivo electrophysiology, and DREADDs, for in-depth studies of tolerance. We conclude that studies of the neurobiology of alcohol tolerance should be revisited with modern conceptualizations of addiction and modern neurobiological tools. This may contribute to our understanding of AUD and uncover potential targets that can attenuate hazardous alcohol drinking.
Collapse
Affiliation(s)
- Sophie K Elvig
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - M Adrienne McGinn
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Caroline Smith
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
2
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Reid-Varley WB, Ponce Martinez C, Khurshid KA. Sleep disorders and disrupted sleep in addiction, withdrawal and abstinence with focus on alcohol and opioids. J Neurol Sci 2020; 411:116713. [PMID: 32087437 DOI: 10.1016/j.jns.2020.116713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/30/2019] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Affiliation(s)
- William-Bernard Reid-Varley
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Caridad Ponce Martinez
- Department of Psychiatry, Division of Addiction Psychiatry, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Khurshid A Khurshid
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, United States of America; Department of Psychiatry, Massachusetts Lung and Allergy Center, University of Massachusetts, United States of America.
| |
Collapse
|
4
|
Chen XT, Wang XG, Xie LY, Huang JW, Zhao W, Wang Q, Yao LM, Li WR. Effects of Xingnaojing Injection on Adenosinergic Transmission and Orexin Signaling in Lateral Hypothalamus of Ethanol-Induced Coma Rats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2389485. [PMID: 31346513 PMCID: PMC6620848 DOI: 10.1155/2019/2389485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/08/2019] [Accepted: 03/31/2019] [Indexed: 11/21/2022]
Abstract
Acute alcohol exposure induces unconscious condition such as coma whose main physical manifestation is the loss of righting reflex (LORR). Xingnaojing Injection (XNJI), which came from Chinese classic formula An Gong Niu Huang Pill, is widely used for consciousness disorders in China, such as coma. Although XNJI efficiently shortened the duration of LORR induced by acute ethanol, it remains unknown how XNJI acts on ethanol-induced coma (EIC). We performed experiments to examine the effects of XNJI on orexin and adenosine (AD) signaling in the lateral hypothalamic area (LHA) in EIC rats. Results showed that XNJI reduced the duration of LORR, which implied that XNJI promotes recovery form coma. Microdialysis data indicated that acute ethanol significantly increased AD release in the LHA but had no effect on orexin A levels. The qPCR results displayed a significant reduction in the Orexin-1 receptors (OX1R) expression with a concomitant increase in the A1 receptor (A1R) and equilibrative nucleoside transporter type 1 (ENT1) expression in EIC rats. In contrast, XNJI reduced the extracellular AD levels but orexin A levels remained unaffected. XNJI also counteracted the downregulation of the OX1R expression and upregulation of A1R and ENT1 expression caused by EIC. As for ADK expression, XNJI but not ethanol, displayed an upregulation in the LHA in EIC rats. Based on these results, we suggest that XNJI promotes arousal by inhibiting adenosine neurotransmission via reducing AD level and the expression of A1R and ENT1.
Collapse
Affiliation(s)
- Xiao-Tong Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China
| | - Xiao-Ge Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China
| | - Li-Yuan Xie
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China
| | - Jia-Wen Huang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China
| | - Wei Zhao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China
| | - Li-Mei Yao
- School of Traditional Chinese Medicine Healthcare, Guangdong Food and Drug Vocational College, 321 Longdong North Road, Tianhe District, Guangzhou 510520, China
| | - Wei-Rong Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China
| |
Collapse
|
5
|
Rivera-Oliver M, Moreno E, Álvarez-Bagnarol Y, Ayala-Santiago C, Cruz-Reyes N, Molina-Castro GC, Clemens S, Canela EI, Ferré S, Casadó V, Díaz-Ríos M. Adenosine A 1-Dopamine D 1 Receptor Heteromers Control the Excitability of the Spinal Motoneuron. Mol Neurobiol 2018; 56:797-811. [PMID: 29797183 DOI: 10.1007/s12035-018-1120-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/11/2018] [Indexed: 10/16/2022]
Abstract
While the role of the ascending dopaminergic system in brain function and dysfunction has been a subject of extensive research, the role of the descending dopaminergic system in spinal cord function and dysfunction is just beginning to be understood. Adenosine plays a key role in the inhibitory control of the ascending dopaminergic system, largely dependent on functional complexes of specific subtypes of adenosine and dopamine receptors. Combining a selective destabilizing peptide strategy with a proximity ligation assay and patch-clamp electrophysiology in slices from male mouse lumbar spinal cord, the present study demonstrates the existence of adenosine A1-dopamine D1 receptor heteromers in the spinal motoneuron by which adenosine tonically inhibits D1 receptor-mediated signaling. A1-D1 receptor heteromers play a significant control of the motoneuron excitability, represent main targets for the excitatory effects of caffeine in the spinal cord and can constitute new targets for the pharmacological therapy after spinal cord injury, motor aging-associated disorders and restless legs syndrome.
Collapse
Affiliation(s)
- Marla Rivera-Oliver
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| | - Estefanía Moreno
- Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED) and Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Yocasta Álvarez-Bagnarol
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| | - Christian Ayala-Santiago
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| | - Nicole Cruz-Reyes
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| | - Gian Carlo Molina-Castro
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Enric I Canela
- Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED) and Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Sergi Ferré
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Technology Building, 333 Cassell Drive, Baltimore, MD, 21224, USA.
| | - Vicent Casadó
- Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED) and Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Manuel Díaz-Ríos
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| |
Collapse
|
6
|
|
7
|
Abburi C, Wolfman SL, Metz RAE, Kamber R, McGehee DS, McDaid J. Tolerance to Ethanol or Nicotine Results in Increased Ethanol Self-Administration and Long-Term Depression in the Dorsolateral Striatum. eNeuro 2016; 3:ENEURO.0112-15.2016. [PMID: 27517088 PMCID: PMC4972936 DOI: 10.1523/eneuro.0112-15.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 06/22/2016] [Accepted: 07/13/2016] [Indexed: 01/27/2023] Open
Abstract
Ethanol (EtOH) and nicotine are the most widely coabused drugs. Tolerance to EtOH intoxication, including motor impairment, results in greater EtOH consumption and may result in a greater likelihood of addiction. Previous studies suggest that cross-tolerance between EtOH and nicotine may contribute to the abuse potential of these drugs. Here we demonstrate that repeated intermittent administration of either EtOH or nicotine in adult male Sprague Dawley rats results in tolerance to EtOH-induced motor impairment and increased EtOH self-administration. These findings suggest that nicotine and EtOH cross-tolerance results in decreased aversive and enhanced rewarding effects of EtOH. Endocannabinoid signaling in the dorsolateral striatum (DLS) has been implicated in both EtOH tolerance and reward, so we investigated whether nicotine or EtOH pretreatment might modulate endocannabinoid signaling in this region. Using similar EtOH and nicotine pretreatment methods resulted in increased paired-pulse ratios of evoked EPSCs in enkephalin-positive medium spiny neurons in DLS slices. Thus, EtOH and nicotine pretreatment may modulate glutamatergic synapses in the DLS presynaptically. Bath application of the CB1 receptor agonist Win 55,2-212 increased the paired-pulse ratio of evoked EPSCs in control slices, while Win 55,2-212 had no effect on paired-pulse ratio in slices from either EtOH- or nicotine-pretreated rats. Consistent with these effects, nicotine pretreatment occluded LTD induction by high-frequency stimulation of the corticostriatal inputs to the dorsolateral striatum. These results suggest that nicotine and EtOH pretreatment modulates striatal synapses to induce tolerance to the motor-impairing effects of EtOH, which may contribute to nicotine and EtOH coabuse.
Collapse
Affiliation(s)
- Chandrika Abburi
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637
| | - Shannon L. Wolfman
- Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - Ryan A. E. Metz
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637
| | - Rinya Kamber
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637
| | - Daniel S. McGehee
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637
- Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - John McDaid
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
8
|
Thakkar MM, Sharma R, Sahota P. Alcohol disrupts sleep homeostasis. Alcohol 2015; 49:299-310. [PMID: 25499829 DOI: 10.1016/j.alcohol.2014.07.019] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 01/14/2023]
Abstract
Alcohol is a potent somnogen and one of the most commonly used "over the counter" sleep aids. In healthy non-alcoholics, acute alcohol decreases sleep latency, consolidates and increases the quality (delta power) and quantity of NREM sleep during the first half of the night. However, sleep is disrupted during the second half. Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceeds $18 billion. Thus, although alcohol-associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, we have described our attempts to unravel the mechanism of alcohol-induced sleep disruptions. We have conducted a series of experiments using two different species, rats and mice, as animal models. We performed microdialysis, immunohistochemical, pharmacological, sleep deprivation and lesion studies which suggest that the sleep-promoting effects of alcohol may be mediated via alcohol's action on the mediators of sleep homeostasis: adenosine (AD) and the wake-promoting cholinergic neurons of the basal forebrain (BF). Alcohol, via its action on AD uptake, increases extracellular AD resulting in the inhibition of BF wake-promoting neurons. Since binge alcohol consumption is a highly prevalent pattern of alcohol consumption and disrupts sleep, we examined the effects of binge drinking on sleep-wakefulness. Our results suggest that disrupted sleep homeostasis may be the primary cause of sleep disruption observed following binge drinking. Finally, we have also shown that sleep disruptions observed during acute withdrawal, are caused due to impaired sleep homeostasis. In conclusion, we suggest that alcohol may disrupt sleep homeostasis to cause sleep disruptions.
Collapse
Affiliation(s)
- Mahesh M Thakkar
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA; Department of Neurology, University of Missouri, Columbia, MO 65201, USA.
| | - Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA; Department of Neurology, University of Missouri, Columbia, MO 65201, USA
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA; Department of Neurology, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
9
|
Fritz BM, Boehm SL. Adenosinergic regulation of binge-like ethanol drinking and associated locomotor effects in male C57BL/6J mice. Pharmacol Biochem Behav 2015; 135:83-9. [PMID: 26033424 DOI: 10.1016/j.pbb.2015.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/15/2015] [Accepted: 05/26/2015] [Indexed: 11/30/2022]
Abstract
We recently observed that the addition of caffeine (a nonselective adenosine receptor antagonist) to a 20% ethanol solution significantly altered the intoxication profile of male C57BL/6J (B6) mice induced by voluntary binge-like consumption in the 'Drinking-in-the-Dark' (DID) paradigm. In the current study, the roles of A1 and A2A adenosine receptor subtypes, specifically, in binge-like ethanol consumption and associated locomotor effects were explored. Adult male B6 mice (PND 60-70) were allowed to consume 20% ethanol (v/v) or 2% sucrose (w/v) for 6days via DID. On day 7, mice received a systemic administration (i.p.) of the A1 antagonist DPCPX (1, 3, 6mg/kg), the A2A antagonist MSX-3 (1, 2, 4mg/kg), or vehicle immediately prior to fluid access in DID. Antagonism of the A1 receptor via DPCPX was found to dose-dependently decrease binge-like ethanol intake and associated blood ethanol concentrations (p's<0.05), although no effect was observed on sucrose intake. Antagonism of A2A had no effect on ethanol or sucrose consumption, however, MSX-3 elicited robust locomotor stimulation in mice consuming either solution (p's<0.05). Together, these findings suggest unique roles for the A1 and A2A adenosine receptor subtypes in binge-like ethanol intake and its associated locomotor effects.
Collapse
Affiliation(s)
- Brandon M Fritz
- Indiana Alcohol Research Center, Department of Psychology, Indiana University-Purdue University Indianapolis, IN, United States.
| | - Stephen L Boehm
- Indiana Alcohol Research Center, Department of Psychology, Indiana University-Purdue University Indianapolis, IN, United States
| |
Collapse
|
10
|
Reno JM, Thakore N, Gonzales R, Schallert T, Bell RL, Maddox WT, Duvauchelle CL. Alcohol-preferring P rats emit spontaneous 22-28 kHz ultrasonic vocalizations that are altered by acute and chronic alcohol experience. Alcohol Clin Exp Res 2015; 39:843-52. [PMID: 25827842 DOI: 10.1111/acer.12706] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/19/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Emotional states are often thought to drive excessive alcohol intake and influence the development of alcohol use disorders. To gain insight into affective properties associated with excessive alcohol intake, we utilized ultrasonic vocalization (USV) detection and analyses to characterize the emotional phenotype of selectively bred alcohol-preferring (P) rats; an established animal model of excessive alcohol intake. USVs emitted by rodents have been convincingly associated with positive (50-55 kHz frequency-modulated [FM]) and negative (22-28 kHz) affective states. Therefore, we hypothesized that 50-55 and 22-28 kHz USV emission patterns in P rats would reveal a unique emotional phenotype sensitive to alcohol experience. METHODS 50-55 kHz FM and 22-28 kHz USVs elicited from male P rats were assessed during access to water, 15 and 30% EtOH (v/v). Ethanol (EtOH; n = 12) or water only (Control; n = 4) across 8 weeks of daily drinking-in-the-dark (DID) sessions. RESULTS Spontaneous 22-28 kHz USVs are emitted by alcohol-naïve P rats and are enhanced by alcohol experience. During DID sessions when alcohol was not available (e.g., "EtOH OFF" intervals), significantly more 22-28 kHz than 50-55 kHz USVs were elicited, while significantly more 50-55 kHz FM than 22-28 kHz USVs were emitted when alcohol was available (e.g., "EtOH ON" intervals). In addition, USV acoustic property analyses revealed chronic effects of alcohol experience on 22-28 kHz USV mean frequency, indicative of lasting alcohol-mediated alterations to neural substrates underlying emotional response. CONCLUSIONS Our findings demonstrate that acute and chronic effects of alcohol exposure are reflected in changes in 22-28 and 50-55 kHz FM USV counts and acoustic patterns. These data support the notion that initiation and maintenance of alcohol intake in P rats may be due to a unique, alcohol-responsive emotional phenotype and further suggest that spontaneous 22-28 kHz USVs serve as behavioral markers for excessive drinking vulnerability.
Collapse
Affiliation(s)
- James M Reno
- Department of Psychology, The University of Texas at Austin, Austin, Texas; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas
| | | | | | | | | | | | | |
Collapse
|
11
|
López-Cruz L, Pardo M, Salamone JD, Correa M. Differences between the nonselective adenosine receptor antagonists caffeine and theophylline in motor and mood effects: studies using medium to high doses in animal models. Behav Brain Res 2014; 270:213-22. [PMID: 24859174 DOI: 10.1016/j.bbr.2014.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/09/2014] [Accepted: 05/15/2014] [Indexed: 12/17/2022]
Abstract
RATIONALE Caffeine and theophylline are methylxanthines that are broadly consumed, sometimes at high doses, and act as minor psychostimulants. Both are nonselective adenosine antagonists for A1 and A2A receptors, which are colocalized with dopamine D1 and D2 receptors in striatal areas. Adenosine antagonists generally have opposite actions to those of dopamine antagonists. Although the effects of caffeine are widely known, theophylline has been much less well characterized, especially at high doses. METHODS Adult male CD1 mice were used to study the effect of a broad range of doses (25.0, 50.0 or 100.0mg/kg) of caffeine and theophylline on measures of spontaneous locomotion and coordination, as well as the pattern of c-Fos immunoreactivity in brain areas rich in adenosine and dopamine receptors. In addition, we evaluated possible anxiety and stress effects of these doses. RESULTS Caffeine, at these doses, impaired or suppressed locomotion in several paradigms. However, theophylline was less potent than caffeine at suppressing motor parameters, and even stimulated locomotion. Both drugs induced corticosterone release, however caffeine was more efficacious at intermediate doses. While caffeine showed an anxiogenic profile at all doses, theophylline only did so at the highest dose used (50mg/kg). Only theophylline increased c-Fos immunoreactivity in cortical areas. CONCLUSION Theophylline has fewer disruptive effects than caffeine on motor parameters and produces less stress and anxiety effects. These results are relevant for understanding the potential side effects of methylxanthines when consumed at high doses.
Collapse
Affiliation(s)
- Laura López-Cruz
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - Marta Pardo
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - John D Salamone
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Mercè Correa
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain; Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA.
| |
Collapse
|
12
|
Sharma R, Sahota P, Thakkar MM. Role of adenosine and the orexinergic perifornical hypothalamus in sleep-promoting effects of ethanol. Sleep 2014; 37:525-33. [PMID: 24587575 DOI: 10.5665/sleep.3490] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Strong clinical and preclinical evidence suggests that acute ethanol promotes sleep. However, very little is known about how and where ethanol acts to promote sleep. We hypothesized that ethanol may induce sleep by increasing extracellular levels of adenosine and inhibiting orexin neurons in the perifornical hypothalamus. DESIGN Experiments 1 and 2: Within-Subject Design; Experiment 3: Between-Subject Design. SETTING N/A. PATIENTS OR PARTICIPANTS N/A. INTERVENTIONS N/A. MEASUREMENTS AND RESULTS Using adult male Sprague-Dawley rats as our animal model, we performed three experiments to test our hypothesis. Our first experiment examined the effect of A1 receptor blockade in the orexinergic perifornical hypothalamus on sleep- promoting effects of ethanol. Bilateral microinjection of the selective A1 receptor antagonist 1,3-dipropyl-8-phenylxanthine (500 μM; 250 nL/side) into orexinergic perifornical hypothalamus significantly reduced nonrapid eye movement sleep with a concomitant increase in wakefulness, suggesting that blockade of adenosine A1 receptor attenuates ethanol-induced sleep promotion. Our second experiment examined adenosine release in the orexinergic perifornical hypothalamus during local ethanol infusion. Local infusion of pharmacologically relevant doses of ethanol significantly and dose-dependently increased adenosine release. Our final experiment used c-Fos immunohistochemistry to examine the effects of ethanol on the activation of orexin neurons. Acute ethanol exposure significantly reduced the number of orexin neurons containing c-Fos, suggesting an inhibition of orexin neurons after ethanol intake. CONCLUSIONS Based on our results, we believe that ethanol promotes sleep by increasing adenosine in the orexinergic perifornical hypothalamus, resulting in A1 receptor-mediated inhibition of orexin neurons.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans' Hospital and Department of Neurology, University of Missouri, Columbia, MO
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans' Hospital and Department of Neurology, University of Missouri, Columbia, MO
| | - Mahesh M Thakkar
- Harry S. Truman Memorial Veterans' Hospital and Department of Neurology, University of Missouri, Columbia, MO
| |
Collapse
|
13
|
Acute and chronic effects of ethanol on learning-related synaptic plasticity. Alcohol 2014; 48:1-17. [PMID: 24447472 DOI: 10.1016/j.alcohol.2013.09.045] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 11/23/2022]
Abstract
Alcoholism is associated with acute and long-term cognitive dysfunction including memory impairment, resulting in substantial disability and cost to society. Thus, understanding how ethanol impairs cognition is essential for developing treatment strategies to dampen its adverse impact. Memory processing is thought to involve persistent, use-dependent changes in synaptic transmission, and ethanol alters the activity of multiple signaling molecules involved in synaptic processing, including modulation of the glutamate and gamma-aminobutyric acid (GABA) transmitter systems that mediate most fast excitatory and inhibitory transmission in the brain. Effects on glutamate and GABA receptors contribute to ethanol-induced changes in long-term potentiation (LTP) and long-term depression (LTD), forms of synaptic plasticity thought to underlie memory acquisition. In this paper, we review the effects of ethanol on learning-related forms of synaptic plasticity with emphasis on changes observed in the hippocampus, a brain region that is critical for encoding contextual and episodic memories. We also include studies in other brain regions as they pertain to altered cognitive and mental function. Comparison of effects in the hippocampus to other brain regions is instructive for understanding the complexities of ethanol's acute and long-term pharmacological consequences.
Collapse
|
14
|
Franklin KM, Hauser SR, Bell RL, Engleman EA. Caffeinated Alcoholic Beverages - An Emerging Trend in Alcohol Abuse. JOURNAL OF ADDICTION RESEARCH & THERAPY 2013; Suppl 4. [PMID: 25419478 PMCID: PMC4238293 DOI: 10.4172/2155-6105.s4-012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alcohol use disorders are pervasive in society and their impact affects quality of life, morbidity and mortality, as well as individual productivity. Alcohol has detrimental effects on an individual’s physiology and nervous system, and is associated with disorders of many organ and endocrine systems impacting an individual’s health, behavior, and ability to interact with others. Youth are particularly affected. Unfortunately, adolescent usage also increases the probability for a progression to dependence. Several areas of research indicate that the deleterious effects of alcohol abuse may be exacerbated by mixing caffeine with alcohol. Some behavioral evidence suggests that caffeine increases alcohol drinking and binge drinking episodes, which in turn can foster the development of alcohol dependence. As a relatively new public health concern, the epidemiological focus has been to establish a need for investigating the effects of caffeinated alcohol. While the trend of co-consuming these substances is growing, knowledge of the central mechanisms associated with caffeinated ethanol has been lacking. Research suggests that caffeine and ethanol can have additive or synergistic pharmacological actions and neuroadaptations, with the adenosine and dopamine systems in particular implicated. However, the limited literature on the central effects of caffeinated ethanol provides an impetus to increase our knowledge of the neuroadaptive effects of this combination and their impact on cognition and behavior. Research from our laboratories indicates that an established rodent animal model of alcoholism can be extended to investigate the acute and chronic effects of caffeinated ethanol.
Collapse
Affiliation(s)
- Kelle M Franklin
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheketha R Hauser
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Richard L Bell
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eric A Engleman
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
15
|
Mizushige T, Kanegawa N, Yamada A, Ota A, Kanamoto R, Ohinata K. Aromatic amino acid-leucine dipeptides exhibit anxiolytic-like activity in young mice. Neurosci Lett 2013; 543:126-9. [DOI: 10.1016/j.neulet.2013.03.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/11/2013] [Accepted: 03/16/2013] [Indexed: 02/07/2023]
|
16
|
Sex differences in neuroadaptation to alcohol and withdrawal neurotoxicity. Pflugers Arch 2013; 465:643-54. [PMID: 23559099 DOI: 10.1007/s00424-013-1266-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/05/2013] [Accepted: 03/08/2013] [Indexed: 12/28/2022]
Abstract
Recent work suggests that sex differences exist with regard to both the nature of neuroadaptation to alcohol during the development of dependence, and possibly, the neurodegenerative consequences of alcohol dependence. Volumetric studies in human samples show that females may demonstrate increased volumetric brain loss with equal or lesser dependence histories than males. Furthermore, animal studies demonstrate sex differences in glutamatergic, GABAergic, and adenosinergic receptor signaling and endocrine responses following prolonged alcohol exposure. These differences may influence the development of dependence, neuronal function, and viability, particularly during alcohol withdrawal. The present review discusses the current state of knowledge in this regard. It is concluded that there exists a clear need for a more extensive examination of potential sex differences in neurodegenerative consequences of alcohol dependence in men and women, particularly with regard to the role that alterations in amino acid signaling and hypothalamic-pituitary-adrenal axis function may play. Furthermore, we note the need for expanded examination of the unique role that alcohol withdrawal-associated neuronal activity may have in the development of dependence-associated neurotoxicity.
Collapse
|
17
|
López-Cruz L, Salamone JD, Correa M. The Impact of Caffeine on the Behavioral Effects of Ethanol Related to Abuse and Addiction: A Review of Animal Studies. JOURNAL OF CAFFEINE RESEARCH 2013; 3:9-21. [PMID: 24761272 PMCID: PMC3643311 DOI: 10.1089/jcr.2013.0003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The impact of caffeine on the behavioral effects of ethanol, including ethanol consumption and abuse, has become a topic of great interest due to the rise in popularity of the so-called energy drinks. Energy drinks high in caffeine are frequently taken in combination with ethanol under the popular belief that caffeine can offset some of the intoxicating effects of ethanol. However, scientific research has not universally supported the idea that caffeine can reduce the effects of ethanol in humans or in rodents, and the mechanisms mediating the caffeine-ethanol interactions are not well understood. Caffeine and ethanol have a common biological substrate; both act on neurochemical processes related to the neuromodulator adenosine. Caffeine acts as a nonselective adenosine A1 and A2A receptor antagonist, while ethanol has been demonstrated to increase the basal adenosinergic tone via multiple mechanisms. Since adenosine transmission modulates multiple behavioral processes, the interaction of both drugs can regulate a wide range of effects related to alcohol consumption and the development of ethanol addiction. In the present review, we discuss the relatively small number of animal studies that have assessed the interactions between caffeine and ethanol, as well as the interactions between ethanol and subtype-selective adenosine receptor antagonists, to understand the basic findings and determine the possible mechanisms of action underlying the caffeine-ethanol interactions.
Collapse
Affiliation(s)
| | - John D. Salamone
- Department of Psychology, University of Connecticut, Storrs, Connecticut
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Castelló, Spain
- Department of Psychology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
18
|
Adenosinergic modulation of the imidazoline I1-receptor-dependent hypotensive effect of ethanol in acute renal failure. Food Chem Toxicol 2012; 50:2622-8. [DOI: 10.1016/j.fct.2012.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 03/23/2012] [Accepted: 05/02/2012] [Indexed: 11/20/2022]
|
19
|
Prendergast MA, Mulholland PJ. Glucocorticoid and polyamine interactions in the plasticity of glutamatergic synapses that contribute to ethanol-associated dependence and neuronal injury. Addict Biol 2012; 17:209-23. [PMID: 21967628 PMCID: PMC3254017 DOI: 10.1111/j.1369-1600.2011.00375.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stress contributes to the development of ethanol dependence and is also a consequence of dependence. However, the complexity of physiological interactions between activation of the hypothalamic-pituitary-adrenal (HPA) axis and ethanol itself is not well delineated. Emerging evidence derived from examination of corticotropin-releasing factor systems and glucocorticoid receptor systems in ethanol dependence suggests a role for pharmacological manipulation of the HPA axis in attenuating ethanol intake, though it is not clear how activation of the HPA axis may promote ethanol dependence or contribute to the neuroadaptative changes that accompany the development of dependence and the severity of ethanol withdrawal. This review examines the role that glucocorticoids, in particular, have in promoting ethanol-associated plasticity of glutamatergic synapses by influencing expression of endogenous linear polyamines and polyamine-sensitive polypeptide subunits of N-methyl-D-aspartate (NMDA)-type glutamate receptors. We provide evidence that interactions among glucocorticoid systems, polyamines and NMDA receptors are highly relevant to both the development of ethanol dependence and to behavioral and neuropathological sequelae associated with ethanol withdrawal. Examination of these issues is likely to be of critical importance not only in further elucidating the neurobiology of HPA axis dysregulation in ethanol dependence, but also with regard to identification of novel therapeutic targets that may be exploited in the treatment of ethanol dependence.
Collapse
Affiliation(s)
- Mark A. Prendergast
- University of Kentucky, Department of Psychology, 741 South Limestone Street, Lexington, KY 40536, U.S.A
- Spinal Cord and Brain Injury Research Center, B449 Biomedical and Biological Sciences Research Building, 741 South Limestone Street, Lexington, KY 40536, U.S.A
| | - Patrick J. Mulholland
- Departments of Neurosciences and Psychiatry & Behavioral Sciences, Medical University of South Carolina, 67 President Street, IOP 462 North Charleston, South Carolina 29425, U.S.A
| |
Collapse
|
20
|
Ferré S, O'Brien MC. Alcohol and Caffeine: The Perfect Storm. JOURNAL OF CAFFEINE RESEARCH 2011; 1:153-162. [PMID: 24761263 DOI: 10.1089/jcr.2011.0017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although it is widely believed that caffeine antagonizes the intoxicating effects of alcohol, the molecular mechanisms underlying their interaction are incompletely understood. It is known that both caffeine and alcohol alter adenosine neurotransmission, but the relationship is complex, and may be dose dependent. In this article, we review the available literature on combining caffeine and alcohol. Ethical constraints prohibit laboratory studies that would mimic the high levels of alcohol intoxication achieved by many young people in real-world settings, with or without the addition of caffeine. We propose a possible neurochemical mechanism for the increase in alcohol consumption and alcohol-related consequences that have been observed in persons who simultaneously consume caffeine. Caffeine is a nonselective adenosine receptor antagonist. During acute alcohol intake, caffeine antagonizes the "unwanted" effects of alcohol by blocking the adenosine A1 receptors that mediate alcohol's somnogenic and ataxic effects. The A1 receptor-mediated "unwanted" anxiogenic effects of caffeine may be ameliorated by alcohol-induced increase in the extracellular concentration of adenosine. Moreover, by means of interactions between adenosine A2A and dopamine D2 receptors, caffeine-mediated blockade of adenosine A2A receptors can potentiate the effects of alcohol-induced dopamine release. Chronic alcohol intake decreases adenosine tone. Caffeine may provide a "treatment" for the withdrawal effects of alcohol by blocking the effects of upregulated A1 receptors. Finally, blockade of A2A receptors by caffeine may contribute to the reinforcing effects of alcohol.
Collapse
Affiliation(s)
- Sergi Ferré
- CNS Receptor-Receptor Interactions Unit, National Institute on Drug Abuse , Intramural Research Program, Department of Health and Human Services, Baltimore, Maryland
| | - Mary Claire O'Brien
- Department of Emergency Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina. ; Department of Social Sciences & Health Policy, Wake Forest School of Medicine , Winston-Salem, North Carolina
| |
Collapse
|
21
|
Butler TR, Prendergast MA. Neuroadaptations in adenosine receptor signaling following long-term ethanol exposure and withdrawal. Alcohol Clin Exp Res 2011; 36:4-13. [PMID: 21762181 DOI: 10.1111/j.1530-0277.2011.01586.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ethanol affects the function of neurotransmitter systems, resulting in neuroadaptations that alter neural excitability. Adenosine is one such receptor system that is changed by ethanol exposure. The current review is focused on the A(1) and the A(2A) receptor subtypes in the context of ethanol-related neuroadaptations and ethanol withdrawal because these subtypes (i) are activated by basal levels of adenosine, (ii) have been most well-studied for their role in neuroprotection and ethanol-related phenomena, and (iii) are the primary site of action for caffeine in the brain, a substance commonly ingested with ethanol. It is clear that alterations in adenosinergic signaling mediate many of the effects of acute ethanol administration, particularly with regard to motor function and sedation. Further, prolonged ethanol exposure has been shown to produce adaptations in the cell surface expression or function of both A(1) and the A(2A) receptor subtypes, effects that likely promote neuronal excitability during ethanol withdrawal. As a whole, these findings demonstrate a significant role for ethanol-induced adaptations in adenosine receptor signaling that likely influence neuronal function, viability, and relapse to ethanol intake following abstinence.
Collapse
Affiliation(s)
- Tracy R Butler
- Department of Psychology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, USA.
| | | |
Collapse
|
22
|
Listos J, Talarek S, Poleszak E, Wróbel A, Fidecka S. Attenuating effect of adenosine receptor agonists on the development of behavioral sensitization induced by sporadic treatment with morphine. Pharmacol Biochem Behav 2011; 98:356-61. [DOI: 10.1016/j.pbb.2011.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 01/17/2011] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
|
23
|
Asatryan L, Nam HW, Lee MR, Thakkar MM, Saeed Dar M, Davies DL, Choi DS. Implication of the purinergic system in alcohol use disorders. Alcohol Clin Exp Res 2011; 35:584-94. [PMID: 21223299 DOI: 10.1111/j.1530-0277.2010.01379.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the central nervous system, adenosine and adenosine 5'-triphosphate (ATP) play an important role in regulating neuronal activity as well as controlling other neurotransmitter systems, such as, GABA, glutamate, and dopamine. Ethanol increases extracellular adenosine levels that regulate the ataxic and hypnotic/sedative effects of ethanol. Interestingly, ethanol is known to increase adenosine levels by inhibiting an ethanol-sensitive adenosine transporter, equilibrative nucleoside transporter type 1 (ENT1). Ethanol is also known to inhibit ATP-specific P2X receptors, which might result in such similar effects as those caused by an increase in adenosine. Adenosine and ATP exert their functions through P1 (metabotropic) and P2 (P2X-ionotropic and P2Y-metabotropic) receptors, respectively. Purinergic signaling in cortex-striatum-ventral tegmental area (VTA) has been implicated in regulating cortical glutamate signaling as well as VTA dopaminergic signaling, which regulates the motivational effect of ethanol. Moreover, several nucleoside transporters and receptors have been identified in astrocytes, which regulate not only adenosine-ATP neurotransmission, but also homeostasis of major inhibitory-excitatory neurotransmission (i.e., GABA or glutamate) through neuron-glial interactions. This review will present novel findings on the implications of adenosine and ATP neurotransmission in alcohol use disorders.
Collapse
Affiliation(s)
- Liana Asatryan
- Department of Clinical Pharmacy and Pharmaceutical Economics and Policy, University of Southern California, Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Sharma R, Engemann S, Sahota P, Thakkar MM. Role of adenosine and wake-promoting basal forebrain in insomnia and associated sleep disruptions caused by ethanol dependence. J Neurochem 2010; 115:782-94. [PMID: 20807311 PMCID: PMC2970767 DOI: 10.1111/j.1471-4159.2010.06980.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Insomnia is a severe symptom of alcohol withdrawal; however, the underlying neuronal mechanism is yet unknown. We hypothesized that chronic ethanol exposure will impair basal forebrain (BF) adenosinergic mechanism resulting in insomnia-like symptoms. We performed a series of experiments in Sprague-Dawley rats to test our hypothesis. We used Majchrowicz's chronic binge ethanol protocol to induce ethanol dependency. Our first experiment verified the effects of ethanol withdrawal on sleep-wakefulness. Significant increase in wakefulness was observed during ethanol withdrawal. Next, we examined c-Fos expression (marker of neuronal activation) in BF wake-promoting neurons during ethanol withdrawal. There was a significant increase in the number of BF wake-promoting neurons with c-Fos immunoreactivity. Our third experiment examined the effects of ethanol withdrawal on sleep deprivation induced increase in BF adenosine levels. Sleep deprivation did not increase BF adenosine levels in ethanol dependent rats. Our last experiment examined the effects of ethanol withdrawal on equilibrative nucleoside transporter 1 and A1 receptor expression in the BF. There was a significant reduction in A1 receptor and equilibrative nucleoside transporter 1 expression in the BF of ethanol dependent rats. Based on these results, we suggest that insomnia observed during ethanol withdrawal is caused because of impaired adenosinergic mechanism in the BF.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, Missouri 65210, USA
| | | | | | | |
Collapse
|
25
|
Thakkar MM, Engemann SC, Sharma R, Sahota P. Role of wake-promoting basal forebrain and adenosinergic mechanisms in sleep-promoting effects of ethanol. Alcohol Clin Exp Res 2010; 34:997-1005. [PMID: 20374215 PMCID: PMC2900438 DOI: 10.1111/j.1530-0277.2010.01174.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Ethanol intake has significant impact on sleep. However, the cellular substrates responsible for sleep promotion following ethanol intake are unknown. The purine nucleoside, adenosine, is responsible for mediating many neuronal and behavioral responses to ethanol. Studies performed in cell cultures suggest that ethanol inhibits equilibrative nucleoside transporter 1 to block the reuptake of adenosine resulting in increased extracellular adenosine. Adenosine also has a pivotal role in sleep regulation. Adenosine acts via A1 receptor to inhibit the wake-promoting neurons of the basal forebrain (BF) resulting in the promotion of sleep. Is ethanol-induced sleep associated with the inhibition of the BF wake-promoting neurons? Do adenosinergic mechanisms in the BF have a role in sleep-promoting effects of ethanol? METHODS To address these questions, we performed 3 experiments in Sprague-Dawley rats. First, we verified the effect of ethanol on sleep promotion. Second, we evaluated the effect of ethanol on c-Fos expression (a marker of neuronal activation) in the BF wake-promoting neurons and third we monitored the effects of A1 receptor blockade in the BF on ethanol-induced sleep. RESULTS Significant increase in non-rapid eye movement (NREM) sleep with a concomitant decrease in wakefulness was observed during the first 12 hours postethanol. REM sleep remained unaffected. Ethanol administration caused a significant decrease in the number of BF wake-promoting neurons with c-Fos immunoreactivity. Bilateral microinjections of a selective A1R receptor antagonist 8-cyclopentyl-1, 3-dipropylxanthine into the BF significantly attenuated sleep-promoting effects of ethanol. CONCLUSION These results suggest that the inhibition of BF wake-promoting neurons by adenosinergic mechanism may be responsible for the sleep promoting effects of ethanol. We believe our study is the first to investigate the cellular mechanisms responsible for the somnogenic effects of ethanol.
Collapse
Affiliation(s)
- Mahesh M Thakkar
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, Missouri, USA.
| | | | | | | |
Collapse
|
26
|
Sharma R, Engemann SC, Sahota P, Thakkar MM. Effects of ethanol on extracellular levels of adenosine in the basal forebrain: an in vivo microdialysis study in freely behaving rats. Alcohol Clin Exp Res 2010; 34:813-8. [PMID: 20184564 PMCID: PMC2884072 DOI: 10.1111/j.1530-0277.2010.01153.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Adenosine is implicated to play a pivotal role in mediating many neuronal responses to ethanol. While in vitro studies performed in cell culture have demonstrated that acute ethanol exposure increases extracellular adenosine levels, this effect has not been demonstrated, in vivo, in the brain. We performed an in vivo microdialysis study to examine the effects of local ethanol perfusion on extracellular levels of adenosine in the basal forebrain (BF). METHODS Under sterile conditions and using a standard surgical protocol, adult male Sprague-Dawley rats were implanted with unilateral microdialysis guide cannula targeted toward the BF. Following postoperative recovery, the microdialysis probe was inserted. After allowing at least 12 to 16 hours for probe insertion recovery, the experiment was begun. Artificial cerebrospinal fluid (aCSF) was perfused (0.7 microl/min) for 80 minutes, and 4 x 20-minute pre-ethanol baseline samples were collected. Subsequently, 30, 100, and 300 mM doses of ethanol were perfused. Each ethanol dose was perfused for 80 minutes, and 4 x 20-minute samples were collected. Finally, aCSF was perfused, and 4 x 20 postethanol samples were collected. Adenosine in the microdialysate was separated and measured with HPLC coupled with an UV detector. On completion, the animals were euthanized, brain removed and processed for histology. RESULTS Local ethanol perfusion in the BF produced a significant increase in extracellular adenosine with the highest dose of 300 mM ethanol producing a 4-fold increase. Cresyl violet (Nissl) staining did not indicate any toxic damage in the area surrounding the probe tip. Choline acetyltransferase immunohistochemistry revealed that all microdialysis probe sites were localized in the BF. CONCLUSION Our study is the first to demonstrate that ethanol acts directly in the brain to increase extracellular adenosine.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, USA
| | | | | | | |
Collapse
|
27
|
Listos J, Talarek S, Fidecka S. Adenosinergic system is involved in development of diazepam tolerance in mice. Pharmacol Biochem Behav 2010; 94:510-5. [DOI: 10.1016/j.pbb.2009.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 10/28/2009] [Accepted: 11/16/2009] [Indexed: 11/15/2022]
|
28
|
Aminophylline (a theophylline-ethylenediamine complex) blocks ethanol behavioral effects in mice. Behav Pharmacol 2009; 20:297-302. [PMID: 19617722 DOI: 10.1097/01.fbp.0000358355.88022.fa] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Aminophylline is a complex of theophylline-ethylenediamine, where theophylline is the main component. Theophylline is a methyxanthine and besides inhibiting phosphodiesterase enzymes, it is also a nonselective adenosine antagonist. Several reports suggested the involvement of the brain adenosinergic system in the ethanol-induced motor incoordination. Thus, the objective of this work was to study the effects of the interaction of ethanol with aminophylline as assessed by behavioral tests in mice. Eight groups of male Swiss mice were used. The animals were treated with either distilled water (control) or ethanol (E; 2, 4, and 6 g/kg, orally) for 5 days, or with distilled water for 4 days, and on the fifth day with aminophylline (A; 5 and 10 mg/kg, intraperitoneally). In the association groups (association protocols), the animals were treated with ethanol (E; 6 g/kg, orally) for 4 days, and on the fifth day received aminophylline (A; 10 mg/kg, intraperitoneally), 30 min after the last ethanol administration (first protocol, E/A). In the second association protocol (A/E), ethanol was administered for 4 days, and on the fifth day the animals received aminophylline (A; 10 mg/kg, intraperitoneally), followed again by ethanol (E; 6 g/kg, orally) administration, 30 min later. E (6 g/kg) evoked a central nervous system depressor effect, by decreasing both the locomotor activity and rearing in the open field test, and A (5 and 10 mg/kg) showed opposite effects. However, the E/A or A/E associations blocked the ethanol effect. In the rota rod test, ethanol presented a muscular relaxant effect, which was decreased in both association protocols. In the tail suspension test, while the E/A association decreased immobility, A/E association increased it, as compared with controls. In conclusion, the effects of ethanol were inhibited by its association with aminophylline, suggesting that ethanol acts on the adenosine neurotransmission.
Collapse
|
29
|
Varaschin RK, Morato GS. Selective mu- and kappa-opioid receptor antagonists administered into the nucleus accumbens interfere with rapid tolerance to ethanol in rats. Psychopharmacology (Berl) 2009; 206:85-96. [PMID: 19506836 DOI: 10.1007/s00213-009-1582-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Accepted: 05/24/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Previous findings have shown that intra-accumbens injection of naltrexone, a non-selective opioid antagonist, blocks the acquisition of rapid tolerance to ethanol in rats. This study investigates the effects of intra-accumbens injection of the selective mu-, delta-, and kappa-opioid antagonists, respectively, naloxonazine, naltrindole, and nor-binaltorphimine, on rapid tolerance to ethanol. METHODS Male Wistar rats with guide cannulae directed to the shell or the core portions of the nucleus accumbens received a microinjection of naloxonazine (2-4 microg), naltrindole (2-4 microg), nor-binaltorphimine (2.5-5 microg), or vehicle. After 5 min, each group was divided in two groups that received ethanol (2.7 g/kg i.p.) or saline. Rats were then tested for motor coordination on the tilting plane apparatus. Twenty four hours later, all rats received a challenge dose of ethanol (2.7 g/kg i.p.) and were tested on the tilt plane again. RESULTS Repeated injections of ethanol caused a reduction in motor impairment suggesting the development of tolerance. However, rats injected with 4 microg naloxonazine into either core or shell portions of the nucleus accumbens did not exhibit tolerance when challenged with ethanol on day 2. Rats treated with 5 microg nor-binaltorphimine into accumbens core plus intraperitoneal saline on day 1 showed reduced motor impairment when challenged with ethanol on day 2, suggesting cross-tolerance to ethanol. CONCLUSIONS Taken together, our results suggests that mu-opioid receptors in both shell and core portions of the nucleus accumbens, and possibly kappa-opioid in the core, participate in the modulation of rapid tolerance to ethanol.
Collapse
Affiliation(s)
- Rafael Koerich Varaschin
- Departamento de Farmacologia, Centro de Ciências Biológicas, CCB, Universidade Federal de Santa Catarina, Campus Universitário Trindade, 88049-900, Florianópolis, Santa Catarina, Brazil.
| | | |
Collapse
|
30
|
Abstract
The adenosine receptors (ARs) in the nervous system act as a kind of "go-between" to regulate the release of neurotransmitters (this includes all known neurotransmitters) and the action of neuromodulators (e.g., neuropeptides, neurotrophic factors). Receptor-receptor interactions and AR-transporter interplay occur as part of the adenosine's attempt to control synaptic transmission. A(2A)ARs are more abundant in the striatum and A(1)ARs in the hippocampus, but both receptors interfere with the efficiency and plasticity-regulated synaptic transmission in most brain areas. The omnipresence of adenosine and A(2A) and A(1) ARs in all nervous system cells (neurons and glia), together with the intensive release of adenosine following insults, makes adenosine a kind of "maestro" of the tripartite synapse in the homeostatic coordination of the brain function. Under physiological conditions, both A(2A) and A(1) ARs play an important role in sleep and arousal, cognition, memory and learning, whereas under pathological conditions (e.g., Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, stroke, epilepsy, drug addiction, pain, schizophrenia, depression), ARs operate a time/circumstance window where in some circumstances A(1)AR agonists may predominate as early neuroprotectors, and in other circumstances A(2A)AR antagonists may alter the outcomes of some of the pathological deficiencies. In some circumstances, and depending on the therapeutic window, the use of A(2A)AR agonists may be initially beneficial; however, at later time points, the use of A(2A)AR antagonists proved beneficial in several pathologies. Since selective ligands for A(1) and A(2A) ARs are now entering clinical trials, the time has come to determine the role of these receptors in neurological and psychiatric diseases and identify therapies that will alter the outcomes of these diseases, therefore providing a hopeful future for the patients who suffer from these diseases.
Collapse
Affiliation(s)
- Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Institute of Molecular Medicine, University of Lisbon, 1649-028 Lisbon, Portugal.
| | | |
Collapse
|
31
|
Butler TR, Smith KJ, Self RL, Braden BB, Prendergast MA. Sex differences in the neurotoxic effects of adenosine A1 receptor antagonism during ethanol withdrawal: reversal with an A1 receptor agonist or an NMDA receptor antagonist. Alcohol Clin Exp Res 2008; 32:1260-70. [PMID: 18482156 PMCID: PMC2662768 DOI: 10.1111/j.1530-0277.2008.00681.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Neuronal adaptations that occur during chronic ethanol (EtOH) exposure have been observed to sensitize the brain to excitotoxic insult during withdrawal. The adenosine receptor system warrants further examination in this regard, as recent evidence has implicated adenosine receptor involvement in the behavioral effects of both EtOH exposure and withdrawal. METHODS The current studies examined effects of adenosine A(1) receptor manipulation on neuronal injury in EtOH-naive and EtOH-withdrawn male and female rat hippocampal slice cultures. EtOH-naive and EtOH pretreated (43.1 to 26.9 mM from days 5 to 15 DIV) cultures were exposed to the A(1) receptor agonist 2-Chloro-N(6)-cyclopentyladenosine (CCPA; 10 nM), the A(1) receptor antagonist 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX;10 nM), or the N-methyl-D-aspartate (NMDA) receptor antagonist D,L,-2-amino-5-phosphovalerate (APV; 20 microM) at 15 days in vitro (DIV). Cytotoxicity was measured in the primary neuronal layers of the dentate gyrus, CA3 and CA1 hippocampal regions by quantification of propidium iodide (PI) fluorescence after 24 hours. Immunohistochemical analysis of A(1) receptor abundance was conducted in EtOH-naive and EtOH pretreated slice cultures at 15 DIV. RESULTS Twenty-four hour exposure to DPCPX in EtOH-naive slice cultures did not produced neurotoxicity in any region of slice cultures. Though withdrawal from 10 day EtOH exposure produced no toxicity in either male or female slice cultures, exposure to DPCPX during 24 hours of EtOH withdrawal produced a marked increase in PI uptake in all hippocampal culture subregions in female cultures (to approximately 160% of control values). A significant effect for sex was observed in the CA1 region such that toxicity in females cultures exposed to the A(1) antagonist during withdrawal was greater than that observed in male cultures. These effects of DPCPX in EtOH withdrawn female and male slices were prevented by co-exposure to either the A(1) agonist CCPA or the NMDA receptor antagonist APV for 24 hours. No differences in the abundance of A(1) receptors were observed in male and female EtOH-naive or EtOH pretreated cultures. CONCLUSIONS The current findings suggest that the female hippocampus possesses an innate sensitivity to effects of EtOH exposure and withdrawal on neuronal excitability that is independent of hormonal influences. Further, this sex difference is not related to effects of EtOH exposure on A(1) receptor abundance, but likely reflects increased NMDA receptor-mediated signaling downstream of A(1) inhibition in females.
Collapse
Affiliation(s)
- Tracy R Butler
- Department of Psychology, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | | | | | | | | |
Collapse
|
32
|
Listos J, Talarek S, Fidecka S. Adenosine receptor agonists attenuate the development of diazepam withdrawal-induced sensitization in mice. Eur J Pharmacol 2008; 588:72-7. [PMID: 18466897 DOI: 10.1016/j.ejphar.2008.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/19/2008] [Accepted: 04/02/2008] [Indexed: 10/22/2022]
Abstract
In the present study, the effects of adenosine agonists on the development of sensitization to withdrawal signs precipitated after sporadic treatment with diazepam, in mice, were investigated. To obtain the sensitization, the animals were divided into groups: continuously and sporadically treated with diazepam (15.0 mg/kg, s.c.). The adenosine receptor agonists (CPA, CGS 21,680 and NECA) were administered in sporadically diazepam treated mice during two diazepam-free periods. Concomitant administration of pentetrazole (55.0 mg/kg, s.c.) with flumazenil (5.0 mg/kg, i.p.) after the last injection of diazepam or vehicle, induced the withdrawal signs, such as clonic seizures, tonic convulsion and death episodes. The major finding of our experiments is attenuation of withdrawal signs in sensitized mice, inducing by all adenosine agonists. Only higher dose of CPA produced significantly decreased the number of withdrawal incidents, while both used doses of CGS 21,680 and NECA produced more clear effects. These results support the hypothesis that adenosinergic system is involved in the mechanisms of sensitization to the benzodiazepine withdrawal signs, and adenosine A(2A) receptors play more important role in that process.
Collapse
Affiliation(s)
- Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Staszica 4, 20-081 Lublin, Poland.
| | | | | |
Collapse
|
33
|
Adams CL, Cowen MS, Short JL, Lawrence AJ. Combined antagonism of glutamate mGlu5 and adenosine A2A receptors interact to regulate alcohol-seeking in rats. Int J Neuropsychopharmacol 2008; 11:229-41. [PMID: 17517168 DOI: 10.1017/s1461145707007845] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Adenosine and glutamate have been implicated as mediators involved in the self-administration of alcohol. In the present study we sought to determine whether adenosine receptors could interact with metabotropic glutamate receptors to regulate operant responding for alcohol and also the integration of the salience of alcohol-paired cues. Alcohol-preferring (iP) rats were trained to self-administer alcohol under operant conditions. The availability of alcohol was paired with an olfactory cue plus a stimulus light. Rats were examined under fixed ratio responding and also following extinction under a cue-induced reinstatement paradigm. Administration of the selective adenosine A2A receptor antagonist, SCH 58261, reduced fixed ratio responding for alcohol in iP rats in a dose-related manner. Furthermore, the combination of a subthreshold dose of SCH 58261 with a subthreshold dose of the mGlu5 receptor antagonist MTEP also reduced alcohol self-administration and increased the latency to the first reinforced response, suggesting a pre-ingestive effect. Moreover, this combination of SCH 58261 and MTEP also prevented the conditioned reinstatement of alcohol-seeking elicited by the re-presentation of cues previously paired with alcohol availability. In contrast, combinations of the selective adenosine A1 receptor antagonist, DPCPX, with either SCH 58261 or MTEP had no effect on alcohol responding. Collectively, these data suggest a functional interaction between adenosine A2A and mGlu5 receptors in relation to alcohol-seeking and the integration of the drug-related cues.
Collapse
MESH Headings
- Adenosine/metabolism
- Adenosine A1 Receptor Antagonists
- Adenosine A2 Receptor Antagonists
- Alcohol Drinking/metabolism
- Alcohol Drinking/prevention & control
- Animals
- Behavior, Animal/drug effects
- Central Nervous System Depressants/administration & dosage
- Conditioning, Operant/drug effects
- Cues
- Dose-Response Relationship, Drug
- Ethanol/administration & dosage
- Extinction, Psychological/drug effects
- Glutamic Acid/metabolism
- Models, Animal
- Motor Activity/drug effects
- Pyridines/pharmacology
- Pyrimidines/pharmacology
- Rats
- Rats, Inbred Strains
- Reaction Time/drug effects
- Receptor, Adenosine A1/metabolism
- Receptor, Adenosine A2A/metabolism
- Receptor, Metabotropic Glutamate 5
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/metabolism
- Self Administration
- Thiazoles/pharmacology
- Time Factors
- Triazoles/pharmacology
- Xanthines/pharmacology
Collapse
Affiliation(s)
- Cameron L Adams
- Department of Pharmaceutical Biology, Victorian College of Pharmacy, Monash University, Australia
| | | | | | | |
Collapse
|
34
|
Stimulation of adenosine A1 receptors decreases in vivo dopamine D1 receptor binding of [11C]SCH23390 in the cat striatum revealed by positron emission tomography. Ann Nucl Med 2007; 21:447-53. [PMID: 17952553 DOI: 10.1007/s12149-007-0048-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 06/08/2007] [Indexed: 10/22/2022]
|
35
|
Prediger RDS, da Silva GE, Batista LC, Bittencourt AL, Takahashi RN. Activation of adenosine A1 receptors reduces anxiety-like behavior during acute ethanol withdrawal (hangover) in mice. Neuropsychopharmacology 2006; 31:2210-20. [PMID: 16407902 DOI: 10.1038/sj.npp.1301001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Elevated signs of anxiety are observed in both humans and rodents during withdrawal from chronic as well as acute ethanol exposure, and it represents an important motivational factor for ethanol relapse. Several reports have suggested the involvement of brain adenosine receptors in different actions produced by ethanol such as motor incoordination and hypnotic effects. In addition, we have recently demonstrated that adenosine A1 receptors modulate the anxiolytic-like effect induced by ethanol in mice. In the present study, we evaluated the potential of adenosine A1 and A2A receptor agonists in reducing the anxiety-like behavior during acute ethanol withdrawal (hangover) in mice. Animals received a single intraperitoneal administration of saline or ethanol (4 g/kg) and were tested in the elevated plus maze after an interval of 0.5-24 h. The results indicated that hangover-induced anxiety was most pronounced between 12 and 18 h after ethanol administration, as indicated by a significant reduction in the exploration of the open arms of the maze. At this time interval, ethanol was completely cleared. The acute administration of 'nonanxiolytic' doses of adenosine and the selective adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA), but not the adenosine A2A receptor agonist N6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]adenosine (DPMA), at the onset of peak withdrawal (18 h), reduced this anxiogenic-like response. In addition, the effect of CCPA on the anxiety-like behavior of ethanol hangover was reversed by pretreatment with the selective adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). These results reinforce the notion of the involvement of adenosine receptors in the anxiety-like responses and indicate the potential of adenosine A1 receptor agonists to reduce the anxiogenic effects during ethanol withdrawal.
Collapse
Affiliation(s)
- Rui D S Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | | | | | | | | |
Collapse
|
36
|
Varaschin RK, Wazlawik E, Morato GS. Systemic and intra-accumbens microinjections of naltrexone interfere with tolerance to ethanol in rats. Psychopharmacology (Berl) 2005; 182:366-74. [PMID: 16025314 DOI: 10.1007/s00213-005-0095-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Evidence suggests a role for the opioid system in the control of ethanol reinforcement and drinking. Previous findings have shown that naltrexone, an opioid antagonist that decreases ethanol consumption in humans and experimental animals, reduces the acquisition of acute ethanol tolerance in rats. However, there are few data regarding the role of the opioid system in the acquisition of ethanol tolerance, particularly in brain areas involved in the rewarding actions of ethanol. OBJECTIVES This study investigates the effects of systemic and of intra-accumbens injections of naltrexone on the development of rapid tolerance to ethanol. METHODS Wistar rats received intraperitoneal injections of naltrexone (0.1-3.0 mg/kg) or microinjections into the core or shell portions of the nucleus accumbens (5-20 microg) before ethanol (2.7 g/kg i.p.). The animals were tested for motor coordination on the tilting plane apparatus. Tolerance was assessed 24 h later by administering the same dose of ethanol to all animals and retesting them on the tilting plane. RESULTS The second injection of ethanol resulted in less motor incoordination on Day 2, suggesting the development of rapid tolerance. Pretreatment with naltrexone, either i.p. (0.3 and 0.6 mg/kg) or intra-accumbens (5-20 microg), on Day 1, blocked the development of rapid tolerance to the motor-incoordinating effects of ethanol on Day 2 without affecting the motor performance of the animals on Day 1. CONCLUSIONS The results suggest that the opioid system may be involved in the development of ethanol tolerance, and that the nucleus accumbens may play a role in this phenomenon.
Collapse
Affiliation(s)
- R K Varaschin
- Departamento de Farmacologia, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Campus Universitario Trindade, CCB, 88049-900, Florianopolis, Santa Catarina, Brazil
| | | | | |
Collapse
|