1
|
Guindon GE, Anzalone A, Burke SG, Murphy CA, Milano ME, Price JC, Tadros S, McFarland AT, Contini FM, Seggio JA. Consumption of dopamine receptor 1 agonist SKF-38393 reduces constant-light-induced hyperactivity, depression-like, and anxiety-like behaviors in a sex specific manner in C57BL/6J mice. Front Behav Neurosci 2025; 19:1537048. [PMID: 40144749 PMCID: PMC11936926 DOI: 10.3389/fnbeh.2025.1537048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Artificial light exposure during nighttime, including constant light (LL), is an increasingly prevalent environmental occurrence linked to impaired mood and cognitive impairments in both humans and animal models. Dopamine and dopamine 1 receptors are well known to modulate circadian rhythms and mood. This study investigated the effects of LL on anxiety-like, depressive-like, and cognitive behaviors in male and female C57BL/6J mice and assessed whether consumption of SKF-38393, a dopamine 1 receptor agonist, can mitigate these negative behavioral outcomes. Mice were exposed to LL or a standard 12:12 light:dark cycle (LD) for 6 weeks, with subgroups receiving either SKF-38393 or water. All mice had their circadian rhythms continuously monitored and were placed within behavioral tests that assayed their anxiety-like, depressive-like, and learning and memory behaviors. Behavioral assays revealed that LL increased hyperactivity and anxiety-like behaviors, which were mitigated by SKF-38393 consumption in both sexes. In addition, male mice exhibited anhedonia under LL, which was alleviated by SKF-38393, whereas female mice were resistant to LL-induced anhedonia. Sex differences emerged in fluid consumption independent of lighting condition, with females consuming more SKF-38393, and in responses to DA on behavior, including novel object recognition and exploration. These results indicate that low dose oral consumption of dopamine 1 receptor agonists can ameliorate some of the negative behavioral effects of LL exposure. This study highlights the complex interplay between chronic light, dopamine, and sex in influencing mood and behavior, suggesting potential modulatory roles for dopamine 1 receptor agonists in regulating behavioral outcomes to circadian disturbances.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Joseph A. Seggio
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, United States
| |
Collapse
|
2
|
Pelletier OB, Brunori G, Wang Y, Robishaw JD. Post-transcriptional regulation and subcellular localization of G-protein γ7 subunit: implications for striatal function and behavioral responses to cocaine. Front Neuroanat 2024; 18:1394659. [PMID: 38764487 PMCID: PMC11100332 DOI: 10.3389/fnana.2024.1394659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024] Open
Abstract
The striatal D1 dopamine receptor (D1R) and A2a adenosine receptor (A2aR) signaling pathways play important roles in drug-related behaviors. These receptors activate the Golf protein comprised of a specific combination of αolfβ2γ7 subunits. During assembly, the γ7 subunit sets the cellular level of the Golf protein. In turn, the amount of Golf protein determines the collective output from both D1R and A2aR signaling pathways. This study shows the Gng7 gene encodes multiple γ7 transcripts differing only in their non-coding regions. In striatum, Transcript 1 is the predominant isoform. Preferentially expressed in the neuropil, Transcript 1 is localized in dendrites where it undergoes post-transcriptional regulation mediated by regulatory elements in its 3' untranslated region that contribute to translational suppression of the γ7 protein. Earlier studies on gene-targeted mice demonstrated loss of γ7 protein disrupts assembly of the Golf protein. In the current study, morphological analysis reveals the loss of the Golf protein is associated with altered dendritic morphology of medium spiny neurons. Finally, behavioral analysis of conditional knockout mice with cell-specific deletion of the γ7 protein in distinct populations of medium spiny neurons reveals differential roles of the Golf protein in mediating behavioral responses to cocaine. Altogether, these findings provide a better understanding of the regulation of γ7 protein expression, its impact on Golf function, and point to a new potential target and mechanisms for treating addiction and related disorders.
Collapse
Affiliation(s)
- Oliver B. Pelletier
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Gloria Brunori
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Yingcai Wang
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Janet D. Robishaw
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Shoji H, Ikeda K, Miyakawa T. Behavioral phenotype, intestinal microbiome, and brain neuronal activity of male serotonin transporter knockout mice. Mol Brain 2023; 16:32. [PMID: 36991468 PMCID: PMC10061809 DOI: 10.1186/s13041-023-01020-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
The serotonin transporter (5-HTT) plays a critical role in the regulation of serotonin neurotransmission. Mice genetically deficient in 5-HTT expression have been used to study the physiological functions of 5-HTT in the brain and have been proposed as a potential animal model for neuropsychiatric and neurodevelopmental disorders. Recent studies have provided evidence for a link between the gut-brain axis and mood disorders. However, the effects of 5-HTT deficiency on gut microbiota, brain function, and behavior remain to be fully characterized. Here we investigated the effects of 5-HTT deficiency on different types of behavior, the gut microbiome, and brain c-Fos expression as a marker of neuronal activation in response to the forced swim test for assessing depression-related behavior in male 5-HTT knockout mice. Behavioral analysis using a battery of 16 different tests showed that 5-HTT-/- mice exhibited markedly reduced locomotor activity, decreased pain sensitivity, reduced motor function, increased anxiety-like and depression-related behavior, altered social behavior in novel and familiar environments, normal working memory, enhanced spatial reference memory, and impaired fear memory compared to 5-HTT+/+ mice. 5-HTT+/- mice showed slightly reduced locomotor activity and impaired social behavior compared to 5-HTT+/+ mice. Analysis of 16S rRNA gene amplicons showed that 5-HTT-/- mice had altered gut microbiota abundances, such as a decrease in Allobaculum, Bifidobacterium, Clostridium sensu stricto, and Turicibacter, compared to 5-HTT+/+ mice. This study also showed that after exposure to the forced swim test, the number of c-Fos-positive cells was higher in the paraventricular thalamus and lateral hypothalamus and was lower in the prefrontal cortical regions, nucleus accumbens shell, dorsolateral septal nucleus, hippocampal regions, and ventromedial hypothalamus in 5-HTT-/- mice than in 5-HTT+/+ mice. These phenotypes of 5-HTT-/- mice partially recapitulate clinical observations in humans with major depressive disorder. The present findings indicate that 5-HTT-deficient mice serve as a good and valid animal model to study anxiety and depression with altered gut microbial composition and abnormal neuronal activity in the brain, highlighting the importance of 5-HTT in brain function and the mechanisms underlying the regulation of anxiety and depression.
Collapse
Affiliation(s)
- Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
4
|
Dopamine Receptor Expression and the Pathogenesis of Attention-Deficit Hyperactivity Disorder: a Scoping Review of the Literature. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2022. [DOI: 10.1007/s40474-022-00253-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Biochemical Neuroadaptations in the Rat Striatal Dopaminergic System after Prolonged Exposure to Methamphetamine Self-Administration. Int J Mol Sci 2022; 23:ijms231710092. [PMID: 36077488 PMCID: PMC9456063 DOI: 10.3390/ijms231710092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Perturbations in striatal dopamine (DA) homeostasis might underlie the behavioral and pathobiological consequences of METH use disorder in humans. To identify potential consequences of long-term METH exposure, we modeled the adverse consequence DSM criterion of substance use disorders by giving footshocks to rats that had escalated their intake of METH during a drug self-administration procedure. Next, DA D1 receptor antagonist, SCH23390 was injected. Thereafter, rats were euthanized to measure several indices of the striatal dopaminergic system. Footshocks split the METH rats into two phenotypes: (i) shock-sensitive that decreased their METH-intake and (ii) shock-resistant that continued their METH intake. SCH23390 caused substantial dose-dependent reduction of METH taking in both groups. Stopping SCH23390 caused re-emergence of compulsive METH taking in shock-resistant rats. Compulsive METH takers also exhibited greater incubation of METH seeking than non-compulsive rats during withdrawal from METH SA. Analyses of DA metabolism revealed non-significant decreases (about 35%) in DA levels in resistant and sensitive rats. However, striatal contents of the deaminated metabolites, DOPAL and DOPAC, were significantly increased in sensitive rats. VMAT2 and DAT protein levels were decreased in both phenotypes. Moreover, protein expression levels of the D1-like DA receptor, D5R, and D2-like DA receptors, D3R and D4R, were significantly decreased in the compulsive METH takers. Our results parallel findings in post-mortem striatal tissues of human METH users who develop Parkinsonism after long-term METH intake and support the use of this model to investigate potential therapeutic interventions for METH use disorder.
Collapse
|
6
|
Jordan CJ, Xi ZX. Identification of the Risk Genes Associated With Vulnerability to Addiction: Major Findings From Transgenic Animals. Front Neurosci 2022; 15:811192. [PMID: 35095405 PMCID: PMC8789752 DOI: 10.3389/fnins.2021.811192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Understanding risk factors for substance use disorders (SUD) can facilitate medication development for SUD treatment. While a rich literature exists discussing environmental factors that influence SUD, fewer articles have focused on genetic factors that convey vulnerability to drug use. Methods to identify SUD risk genes include Genome-Wide Association Studies (GWAS) and transgenic approaches. GWAS have identified hundreds of gene variants or single nucleotide polymorphisms (SNPs). However, few genes identified by GWAS have been verified by clinical or preclinical studies. In contrast, significant progress has been made in transgenic approaches to identify risk genes for SUD. In this article, we review recent progress in identifying candidate genes contributing to drug use and addiction using transgenic approaches. A central hypothesis is if a particular gene variant (e.g., resulting in reduction or deletion of a protein) is associated with increases in drug self-administration or relapse to drug seeking, this gene variant may be considered a risk factor for drug use and addiction. Accordingly, we identified several candidate genes such as those that encode dopamine D2 and D3 receptors, mGluR2, M4 muscarinic acetylcholine receptors, and α5 nicotinic acetylcholine receptors, which appear to meet the risk-gene criteria when their expression is decreased. Here, we describe the role of these receptors in drug reward and addiction, and then summarize major findings from the gene-knockout mice or rats in animal models of addiction. Lastly, we briefly discuss future research directions in identifying addiction-related risk genes and in risk gene-based medication development for the treatment of addiction.
Collapse
Affiliation(s)
- Chloe J. Jordan
- Division of Alcohol, Drugs and Addiction, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, United States
- *Correspondence: Chloe J. Jordan,
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
- Zheng-Xiong Xi,
| |
Collapse
|
7
|
Foster SL, Lustberg DJ, Harbin NH, Bramlett SN, Hepler JR, Weinshenker D. RGS14 modulates locomotor behavior and ERK signaling induced by environmental novelty and cocaine within discrete limbic structures. Psychopharmacology (Berl) 2021; 238:2755-2773. [PMID: 34184126 PMCID: PMC8455459 DOI: 10.1007/s00213-021-05892-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022]
Abstract
RATIONALE In rodents, exposure to novel environments or psychostimulants promotes locomotion. Indeed, locomotor reactivity to novelty strongly predicts behavioral responses to psychostimulants in animal models of addiction. RGS14 is a plasticity-restricting protein with unique functional domains that enable it to suppress ERK-dependent signaling as well as regulate G protein activity. Although recent studies show that RGS14 is expressed in multiple limbic regions implicated in psychostimulant- and novelty-induced hyperlocomotion, its function has been examined mostly in the context of hippocampal physiology and memory. OBJECTIVE We investigated whether RGS14 modulates novelty- and cocaine-induced locomotion (NIL and CIL, respectively) and neuronal activity. METHODS We assessed Rgs14 knockout (RGS14 KO) mice and wild-type (WT) littermate controls using NIL and CIL behavioral tests, followed by quantification of c-fos and phosphorylated ERK (pERK) induction in limbic regions that normally express RGS14. RESULTS RGS14 KO mice were less active than WT controls in the NIL test, driven by avoidance of the center of the novel environment. By contrast, RGS14 KO mice demonstrated augmented peripheral locomotion in the CIL test conducted in either a familiar or novel environment. RGS14 KO mice exhibited increased thigmotaxis, as well as greater c-fos and pERK induction in the central amygdala and dorsal hippocampus, when cocaine and novelty were paired. CONCLUSIONS RGS14 KO mice exhibited anti-correlated locomotor responses to novelty and cocaine, but displayed increased thigmotaxis in response to either stimuli which was augmented by their combination. Our findings also suggest RGS14 may reduce neuronal activity in limbic subregions by inhibiting ERK-dependent signaling.
Collapse
Affiliation(s)
- Stephanie L Foster
- , Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA
| | - Daniel J Lustberg
- , Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA
| | - Nicholas H Harbin
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA, 30322, USA
| | - Sara N Bramlett
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA, 30322, USA
| | - John R Hepler
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA, 30322, USA.
| | - David Weinshenker
- , Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA.
| |
Collapse
|
8
|
Abi-Dargham A, Javitch JA, Slifstein M, Anticevic A, Calkins ME, Cho YT, Fonteneau C, Gil R, Girgis R, Gur RE, Gur RC, Grinband J, Kantrowitz J, Kohler C, Krystal J, Murray J, Ranganathan M, Santamauro N, Van Snellenberg J, Tamayo Z, Wolf D, TRANSCENDS Group
D’SouzaDeepakSrihariVinodGueorguievaRalitzaPatelPrashantForselius-BielenKimberleeLuJingButlerAudreyFramGeenaAfriyie-AgyemangYvetteSelloniAlexandriaCadavidLauraGomez-LunaSandraGuptaAartiRadhakrishnanRajivRashidAliAkerRyanAbrahimPhilishaBassir NiaAnahitaSurtiToralKegelesLawrence SCarlsonMarleneGoldbergTerryGangwischJamesBenedictErinneGovilPreetikaBrazisStephanieMayerMegande la GarrigueNathalieFallonNatalkaBaumvollTopazAbeykoonSameeraPerlmanGregBobchinKellyElliottMarkSchmidtLyndsayRushSagePortAllisonHeffernanZacLaneyNinaKantorJennaHohingThomas, Gray D, Lieberman J. Dopamine D1R Receptor Stimulation as a Mechanistic Pro-cognitive Target for Schizophrenia. Schizophr Bull 2021; 48:199-210. [PMID: 34423843 PMCID: PMC8781338 DOI: 10.1093/schbul/sbab095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Decades of research have highlighted the importance of optimal stimulation of cortical dopaminergic receptors, particularly the D1R receptor (D1R), for prefrontal-mediated cognition. This mechanism is particularly relevant to the cognitive deficits in schizophrenia, given the abnormalities in cortical dopamine (DA) neurotransmission and in the expression of D1R. Despite the critical need for D1R-based therapeutics, many factors have complicated their development and prevented this important therapeutic target from being adequately interrogated. Challenges include determination of the optimal level of D1R stimulation needed to improve cognitive performance, especially when D1R expression levels, affinity states, DA levels, and the resulting D1R occupancy by DA, are not clearly known in schizophrenia, and may display great interindividual and intraindividual variability related to cognitive states and other physiological variables. These directly affect the selection of the level of stimulation necessary to correct the underlying neurobiology. The optimal mechanism for stimulation is also unknown and could include partial or full agonism, biased agonism, or positive allosteric modulation. Furthermore, the development of D1R targeting drugs has been complicated by complexities in extrapolating from in vitro affinity determinations to in vivo use. Prior D1R-targeted drugs have been unsuccessful due to poor bioavailability, pharmacokinetics, and insufficient target engagement at tolerable doses. Newer drugs have recently become available, and these must be tested in the context of carefully designed paradigms that address methodological challenges. In this paper, we discuss how a better understanding of these challenges has shaped our proposed experimental design for testing a new D1R/D5R partial agonist, PF-06412562, renamed CVL-562.
Collapse
Affiliation(s)
- Anissa Abi-Dargham
- Department of Psychiatry, Stony Brook Renaissance School of Medicine, Stony Brook, NY, USA,Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA,Department of Psychiatry, Yale University, New Haven, CT, USA,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Cerevel Therapeutics Research and Development, Boston, MA, USA,To whom correspondence should be addressed; Tel: +(631) 885-0814; e-mail:
| | - Jonathan A Javitch
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| | - Mark Slifstein
- Department of Psychiatry, Stony Brook Renaissance School of Medicine, Stony Brook, NY, USA
| | - Alan Anticevic
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Monica E Calkins
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Youngsun T Cho
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Clara Fonteneau
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Roberto Gil
- Department of Psychiatry, Stony Brook Renaissance School of Medicine, Stony Brook, NY, USA
| | - Ragy Girgis
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jack Grinband
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| | - Joshua Kantrowitz
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| | - Christian Kohler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Krystal
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - John Murray
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | | | | | - Jared Van Snellenberg
- Department of Psychiatry, Stony Brook Renaissance School of Medicine, Stony Brook, NY, USA
| | - Zailyn Tamayo
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Daniel Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - David Gray
- Cerevel Therapeutics Research and Development, Boston, MA, USA
| | - Jeffrey Lieberman
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| |
Collapse
|
9
|
Nakamura Y, Longueville S, Nishi A, Hervé D, Girault JA, Nakamura Y. Dopamine D1 receptor-expressing neurons activity is essential for locomotor and sensitizing effects of a single injection of cocaine. Eur J Neurosci 2021; 54:5327-5340. [PMID: 34273137 DOI: 10.1111/ejn.15394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022]
Abstract
Dopamine D1 receptors play an important role in the effects of cocaine. Here, we investigated the role of neurons which express these receptors (D1-neurons) in the acute locomotor effects of cocaine and the locomotor sensitization observed after a second injection of this drug, using the previously established two-injection protocol of sensitization. We inhibited D1-neurons using double transgenic mice conditionally expressing the inhibitory Gi-coupled designer receptor exclusively activated by designer drugs (Gi-DREADD) in D1-neurons. Chemogenetic inhibition of D1-neurons by a low dose of clozapine (0.1 mg/kg) decreased the cocaine-induced expression of Fos in striatal neurons. It diminished the basal locomotor activity and acute hyper-locomotion induced by cocaine (20 mg/kg). Clozapine 0.1 mg/kg had no effect by itself and did not alter cocaine effects in wild-type mice. Inhibition of D1-neurons during the first cocaine administration prevented the sensitization of the locomotor response in response to a second cocaine administration 10 days later. On Day 11, inhibition of D1-neurons by clozapine stimulation of Gi-DREADD blocked cocaine-induced locomotion including in sensitized mice, whereas on Day 12, in the absence of clozapine and D1-neurons inhibition, all mice displayed a sensitized response to cocaine. These results show that chemogenetic inhibition of D1-neurons decreases spontaneous and cocaine-induced locomotor activity. It prevents sensitization induction and blocks sensitized locomotion in a two-injection protocol of sensitization but does not reverse established sensitization. Our study further supports the central role of D1-neurons in mediating the acute locomotor effects of cocaine and its sensitization.
Collapse
Affiliation(s)
- Yukari Nakamura
- INSERM UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne University, Paris, France.,Institut du Fer à Moulin, Paris, France.,Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Sophie Longueville
- INSERM UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne University, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Denis Hervé
- INSERM UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne University, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Jean-Antoine Girault
- INSERM UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne University, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Yuki Nakamura
- INSERM UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne University, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
10
|
Olsen D, Wellner N, Kaas M, de Jong IEM, Sotty F, Didriksen M, Glerup S, Nykjaer A. Altered dopaminergic firing pattern and novelty response underlie ADHD-like behavior of SorCS2-deficient mice. Transl Psychiatry 2021; 11:74. [PMID: 33495438 PMCID: PMC7835366 DOI: 10.1038/s41398-021-01199-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/12/2020] [Accepted: 01/05/2021] [Indexed: 01/03/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most frequently diagnosed neurodevelopmental disorder worldwide. Affected individuals present with hyperactivity, inattention, and cognitive deficits and display a characteristic paradoxical response to drugs affecting the dopaminergic system. However, the underlying pathophysiology of ADHD and how this relates to dopaminergic transmission remains to be fully understood. Sorcs2-/- mice uniquely recapitulate symptoms reminiscent of ADHD in humans. Here, we show that lack of SorCS2 in mice results in lower sucrose intake, indicating general reward deficits. Using in-vivo recordings, we further find that dopaminergic transmission in the ventral tegmental area (VTA) is shifted towards a more regular firing pattern with marked reductions in the relative occurrence of irregular firing in Sorcs2-/- mice. This was paralleled by abnormal acute behavioral responses to dopamine receptor agonists, suggesting fundamental differences in dopaminergic circuits and indicating a perturbation in the balance between the activities of the postsynaptic dopamine receptor DRD1 and the presynaptic inhibitory autoreceptor DRD2. Interestingly, the hyperactivity and drug response of Sorcs2-/- mice were markedly affected by novelty. Taken together, our findings show how loss of a candidate ADHD-risk gene has marked effects on dopaminergic circuit function and the behavioral response to the environment.
Collapse
Affiliation(s)
- Ditte Olsen
- grid.7048.b0000 0001 1956 2722Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000 Aarhus C, Denmark ,grid.424580.f0000 0004 0476 7612Neurodegeneration and Biologics, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark ,grid.7048.b0000 0001 1956 2722Present Address: Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000 Aarhus C, Denmark
| | - Niels Wellner
- grid.7048.b0000 0001 1956 2722Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000 Aarhus C, Denmark ,grid.7048.b0000 0001 1956 2722Danish Research Institute of Translational Neuroscience DANDRITE Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000 Aarhus C, Denmark
| | - Mathias Kaas
- grid.7048.b0000 0001 1956 2722Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000 Aarhus C, Denmark
| | - Inge E. M. de Jong
- grid.424580.f0000 0004 0476 7612Neurodegeneration and Biologics, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Florence Sotty
- grid.424580.f0000 0004 0476 7612Neurodegeneration and Biologics, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Michael Didriksen
- grid.424580.f0000 0004 0476 7612Neurodegeneration and Biologics, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000, Aarhus C, Denmark.
| | - Anders Nykjaer
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000, Aarhus C, Denmark. .,Danish Research Institute of Translational Neuroscience DANDRITE Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000, Aarhus C, Denmark. .,The Danish National Research Foundation Center PROMEMO, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000, Aarhus C, Denmark. .,Department of Neurosurgery, Skejby University Hospital, Palle Juul-Jensens Blvd. 99, DK-8200, Aarhus N, Denmark.
| |
Collapse
|
11
|
Hempel BJ, Crissman ME, Imanalieva A, Melkumyan M, Winston CA, Riley AL. Cross-generational THC Exposure Weakly Attenuates Cocaine's Rewarding Effects in Adult Male Offspring. Physiol Behav 2020; 227:113164. [PMID: 32891609 DOI: 10.1016/j.physbeh.2020.113164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
Adolescents represent a large demographic of marijuana consumers. Regrettably, use during this developmental period has been associated with above average health risks. A growing body of evidence suggests that adolescent drug use in the lifetime of a parent can modify behavior and neurochemistry in descendants without direct exposure. The current study was designed to evaluate the effects of pre-conception THC during adolescence on vulnerability to cocaine in adult male offspring. Male and female rats were given an intermittent THC (0 or 1.5 mg/kg) exposure regimen during the adolescent window and mated with drug group conspecifics in adulthood. F1-THC and F1-Veh pups were cross fostered to drug naïve control dams. In Experiment 1, adult offspring underwent cocaine (0 or 15 mg/kg) locomotor sensitization procedures and showed no effect of parental THC exposure on locomotor activity. In Experiment 2, intravenous catheters were implanted and subjects were tested under a number of reinforcement schedules with cocaine (FR1, FR5, FR10, PR, dose-response, extinction, cue + stress induced reinstatement). F1-THC subjects exhibited a slight decrease in cocaine responding during acquisition and a more rapid extinction, but they failed to produce significant differences on any other measure. These findings indicate that adolescent cannabis use likely has minimal effects on cocaine abuse liability in the next generation.
Collapse
Affiliation(s)
- Briana J Hempel
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA.
| | - Madeline E Crissman
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Aikerim Imanalieva
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Mariam Melkumyan
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Chloe A Winston
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Anthony L Riley
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA.
| |
Collapse
|
12
|
Rivera P, Aranda J, Alén F, Vargas A, Serrano A, Pavón FJ, Orio L, Rubio L, Moratalla R, de Fonseca FR, Suárez J. Sex-specific behavioral and neurogenic responses to cocaine in mice lacking and blocking dopamine D1 or dopamine D2 receptors. J Comp Neurol 2020; 529:1724-1742. [PMID: 33047300 DOI: 10.1002/cne.25052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/21/2020] [Accepted: 10/03/2020] [Indexed: 12/22/2022]
Abstract
Adult neurogenesis in rodents is modulated by dopaminergic signaling and inhibited by cocaine. However, the sex-specific role of dopamine D1 and D2 receptors (D1R, D2R) in the deleterious effect of cocaine on adult neurogenesis has not been described yet. Here, we explored sex differences in (a) cell proliferation (5'-bromo-2'-deoxyuridine [BrdU]), (b) neural precursor (nestin), (c) neuronal phenotype (BrdU/β3-tubulin), and (d) neuronal maturity (NeuN) in the subventricular zone (SVZ) of the lateral ventricles and striatum of mice with genetic deletion (D1-/- , D2-/- ) or pharmacological blockage (SCH23390: 0.1 mg/kg/day/5 days; Raclopride: 0.3 mg/kg/day/5 days) of D1R and D2R, and treated (10 mg/kg/day/5 days) and then challenged (5 mg/kg, 48 hr later) with cocaine. Results indicated that hyperactivity responses to cocaine were absent in D1-/- mice and reduced in SCH23390-treated mice. Activity responses to cocaine were reduced in D2-/- males, but absent in D2-/- females and increased in Raclopride-treated females. D1R deletion blocked the deleterious effect of cocaine on SVZ cell proliferation in males. Cocaine-exposed D1-/- males also had reduced neuronal phenotype of SVZ newborn cells and increased striatal neuronal maturity. D2-/- mice had lower proliferative and neural precursor responses. Cocaine in D2-/- females or coadministered with Raclopride in wild-type females improved SVZ cell proliferation, an effect that positively correlated with plasma brain-derived neurotrophic factor (BDNF) concentrations. In conclusion, the sex-specific D1R and D2R signaling on SVZ cell proliferation, neural progenitor and neuronal maturity is differentially perturbed by cocaine, and BDNF may be required to link D2R to neuroplasticity in cocaine addiction in females.
Collapse
Affiliation(s)
- Patricia Rivera
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga, Málaga, Spain
| | - Jesús Aranda
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga, Málaga, Spain
| | - Francisco Alén
- Departamento de Psicobiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Vargas
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga, Málaga, Spain
| | - Francisco Javier Pavón
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga, Málaga, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; and UGC Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Laura Orio
- Departamento de Psicobiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Leticia Rubio
- Departamento de Anatomía Humana y Medicina Legal, Universidad de Málaga, Málaga, Spain
| | - Rosario Moratalla
- Instituto Cajal de Madrid, Consejo Superior de Investigaciones Científica, Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
13
|
Barr JL, Unterwald EM. Glycogen synthase kinase-3 signaling in cellular and behavioral responses to psychostimulant drugs. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118746. [PMID: 32454064 DOI: 10.1016/j.bbamcr.2020.118746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase implicated in numerous physiological processes and cellular functions through its ability to regulate the function of many proteins, including transcription factors and structural proteins. GSK-3β has been demonstrated to function as a regulator of multiple behavioral processes induced by drugs of abuse, particularly psychostimulant drugs. In this review, we provide an overview of the regulation of GSK-3β activity produced by psychostimulants, and the role of GSK-3β signaling in psychostimulant-induced behaviors including drug reward, associative learning and memory which play a role in the maintenance of drug-seeking. Evidence supports the conclusion that GSK-3β is an important component of the actions of psychostimulant drugs and that GSK-3β is a valid target for developing novel therapeutics. Additional studies are required to examine the role of GSK-3β in distinct cell types within the mesolimbic and memory circuits to further elucidate the mechanisms related to the acquisition, consolidation, and recall of drug-related memories, and potentially countering neuroadaptations that reinforce drug-seeking behaviors that maintain drug dependence.
Collapse
Affiliation(s)
- Jeffrey L Barr
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ellen M Unterwald
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
14
|
Castello J, Cortés M, Malave L, Kottmann A, Sibley DR, Friedman E, Rebholz H. The Dopamine D5 receptor contributes to activation of cholinergic interneurons during L-DOPA induced dyskinesia. Sci Rep 2020; 10:2542. [PMID: 32054879 PMCID: PMC7018760 DOI: 10.1038/s41598-020-59011-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 12/30/2019] [Indexed: 01/28/2023] Open
Abstract
The dopamine D5 receptor (D5R) is a Gαs-coupled dopamine receptor belonging to the dopamine D1-like receptor family. Together with the dopamine D2 receptor it is highly expressed in striatal cholinergic interneurons and therefore is poised to be a positive regulator of cholinergic activity in response to L-DOPA in the dopamine-depleted parkinsonian brain. Tonically active cholinergic interneurons become dysregulated during chronic L-DOPA administration and participate in the expression of L-DOPA induced dyskinesia. The molecular mechanisms involved in this process have not been elucidated, however a correlation between dyskinesia severity and pERK expression in cholinergic cells has been described. To better understand the function of the D5 receptor and how it affects cholinergic interneurons in L-DOPA induced dyskinesia, we used D5R knockout mice that were rendered parkinsonian by unilateral 6-OHDA injection. In the KO mice, expression of pERK was strongly reduced indicating that activation of these cells is at least in part driven by the D5 receptor. Similarly, pS6, another marker for the activity status of cholinergic interneurons was also reduced. However, mice lacking D5R exhibited slightly worsened locomotor performance in response to L-DOPA and enhanced LID scores. Our findings suggest that D5R can modulate L-DOPA induced dyskinesia and is a critical activator of CINs via pERK and pS6.
Collapse
Affiliation(s)
- Julia Castello
- Department of Molecular, Cellular & Biomedical Sciences, CUNY School of Medicine, New York, NY, USA
- Ph.D. Programs in Biochemistry and Biology, The Graduate Center, CUNY, New York, USA
| | - Marisol Cortés
- Department of Molecular, Cellular & Biomedical Sciences, CUNY School of Medicine, New York, NY, USA
| | - Lauren Malave
- Department of Molecular, Cellular & Biomedical Sciences, CUNY School of Medicine, New York, NY, USA
- Ph.D. Programs in Biochemistry and Biology, The Graduate Center, CUNY, New York, USA
| | - Andreas Kottmann
- Department of Molecular, Cellular & Biomedical Sciences, CUNY School of Medicine, New York, NY, USA
- Ph.D. Programs in Biochemistry and Biology, The Graduate Center, CUNY, New York, USA
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Eitan Friedman
- Department of Molecular, Cellular & Biomedical Sciences, CUNY School of Medicine, New York, NY, USA
- Ph.D. Programs in Biochemistry and Biology, The Graduate Center, CUNY, New York, USA
| | - Heike Rebholz
- Department of Molecular, Cellular & Biomedical Sciences, CUNY School of Medicine, New York, NY, USA.
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, INSERM, Université de Paris, 102-108 rue de la Santé, F-75014, Paris, France.
- GHU PARIS psychiatrie et neurosciences, Paris, France.
- Danube Private University (DPU), Krems, Austria.
| |
Collapse
|
15
|
Gilbert DL, Murphy TK, Jankovic J, Budman CL, Black KJ, Kurlan RM, Coffman KA, McCracken JT, Juncos J, Grant JE, Chipkin RE. Ecopipam, a D1 receptor antagonist, for treatment of tourette syndrome in children: A randomized, placebo-controlled crossover study. Mov Disord 2018; 33:1272-1280. [DOI: 10.1002/mds.27457] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 01/12/2023] Open
Affiliation(s)
- Donald L. Gilbert
- Cincinnati Children's Hospital Medical Center; Department of Pediatrics; Cincinnati Ohio USA
| | - Tanya K. Murphy
- University of South Florida; Departments of Pediatrics and Psychiatry; Tampa Florida USA
| | - Joseph Jankovic
- Baylor College of Medicine; Department of Neurology; Houston Texas USA
| | - Cathy L. Budman
- Zucker School of Medicine, Hofstra/Northwell Department of Psychiatry, Northwell Health; Hempstead New York USA
| | - Kevin J. Black
- Washington University School of Medicine; Departments of Psychiatry, Neurology, Radiology, and Neuroscience; St. Louis Missouri USA
| | - Roger M. Kurlan
- Center for Neurological and Neurodevelopmental Health; Voorhees New Jersey USA
| | | | | | - Jorge Juncos
- Emory University School of Medicine; Department of Neurology & Brain Health Center; Atlanta Georgia USA
| | - Jon E. Grant
- University of Chicago; Department of Psychiatry & Behavioral Neuroscience; Chicago Illinois USA
| | | |
Collapse
|
16
|
Lin L, Murphy JG, Karlsson RM, Petralia RS, Gutzmann JJ, Abebe D, Wang YX, Cameron HA, Hoffman DA. DPP6 Loss Impacts Hippocampal Synaptic Development and Induces Behavioral Impairments in Recognition, Learning and Memory. Front Cell Neurosci 2018; 12:84. [PMID: 29651237 PMCID: PMC5884885 DOI: 10.3389/fncel.2018.00084] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/08/2018] [Indexed: 11/13/2022] Open
Abstract
DPP6 is well known as an auxiliary subunit of Kv4-containing, A-type K+ channels which regulate dendritic excitability in hippocampal CA1 pyramidal neurons. We have recently reported, however, a novel role for DPP6 in regulating dendritic filopodia formation and stability, affecting synaptic development and function. These results are notable considering recent clinical findings associating DPP6 with neurodevelopmental and intellectual disorders. Here we assessed the behavioral consequences of DPP6 loss. We found that DPP6 knockout (DPP6-KO) mice are impaired in hippocampus-dependent learning and memory. Results from the Morris water maze and T-maze tasks showed that DPP6-KO mice exhibit slower learning and reduced memory performance. DPP6 mouse brain weight is reduced throughout development compared with WT, and in vitro imaging results indicated that DPP6 loss affects synaptic structure and motility. Taken together, these results show impaired synaptic development along with spatial learning and memory deficiencies in DPP6-KO mice.
Collapse
Affiliation(s)
- Lin Lin
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Jonathan G Murphy
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Rose-Marie Karlsson
- Section on Neuroplasticity, National Institute of Mental Health, Bethesda, MD, United States
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Jakob J Gutzmann
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Daniel Abebe
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Heather A Cameron
- Section on Neuroplasticity, National Institute of Mental Health, Bethesda, MD, United States
| | - Dax A Hoffman
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| |
Collapse
|
17
|
Carr GV, Maltese F, Sibley DR, Weinberger DR, Papaleo F. The Dopamine D5 Receptor Is Involved in Working Memory. Front Pharmacol 2017; 8:666. [PMID: 29056909 PMCID: PMC5635435 DOI: 10.3389/fphar.2017.00666] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/06/2017] [Indexed: 12/18/2022] Open
Abstract
Pharmacological studies indicate that dopamine D1-like receptors (D1 and D5) are critically involved in cognitive function. However, the lack of pharmacological ligands selective for either the D1 or D5 receptors has made it difficult to determine the unique contributions of the D1-like family members. To circumvent these pharmacological limitations, we used D5 receptor homozygous (-/-) and heterozygous (+/-) knockout mice, to identify the specific role of this receptor in higher order cognitive functions. We identified a novel role for D5 receptors in the regulation of spatial working memory and temporal order memory function. The D5 mutant mice acquired a discrete paired-trial variable-delay T-maze task at normal rates. However, both [Formula: see text] and [Formula: see text] mice exhibited impaired performance compared to [Formula: see text] littermates when a higher burden on working memory faculties was imposed. In a temporal order object recognition task, [Formula: see text] exhibited significant memory deficits. No D5-dependent differences in locomotor functions and interest in exploring objects were evident. Molecular biomarkers of dopaminergic functions within the prefrontal cortex (PFC) revealed a selective gene-dose effect on Akt phosphorylation at Ser473 with increased levels in [Formula: see text] knockout mice. A trend toward reduced levels in CaMKKbeta brain-specific band (64 kDa) in [Formula: see text] compared to [Formula: see text] was also evident. These findings highlight a previously unidentified role for D5 receptors in working memory function and associated molecular signatures within the PFC.
Collapse
Affiliation(s)
- Gregory V Carr
- Lieber Institute for Brain Development, Baltimore, MD, United States.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Federica Maltese
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, United States.,Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.,Departments of Psychiatry and Behavioral Sciences, Neurology, and Neuroscience, The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Francesco Papaleo
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.,Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
18
|
Selective Vulnerability of Striatal D2 versus D1 Dopamine Receptor-Expressing Medium Spiny Neurons in HIV-1 Tat Transgenic Male Mice. J Neurosci 2017; 37:5758-5769. [PMID: 28473642 DOI: 10.1523/jneurosci.0622-17.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 02/04/2023] Open
Abstract
Despite marked regional differences in HIV susceptibility within the CNS, there has been surprisingly little exploration into the differential vulnerability among neuron types and the circuits they underlie. The dorsal striatum is especially susceptible, harboring high viral loads and displaying marked neuropathology, with motor impairment a frequent manifestation of chronic infection. However, little is known about the response of individual striatal neuron types to HIV or how this disrupts function. Therefore, we investigated the morphological and electrophysiological effects of HIV-1 trans-activator of transcription (Tat) in dopamine subtype 1 (D1) and dopamine subtype 2 (D2) receptor-expressing striatal medium spiny neurons (MSNs) by breeding transgenic Tat-expressing mice to Drd1a-tdTomato- or Drd2-eGFP-reporter mice. An additional goal was to examine neuronal vulnerability early during the degenerative process to gain insight into key events underlying the neuropathogenesis. In D2 MSNs, exposure to HIV-1 Tat reduced dendritic spine density significantly, increased dendritic damage (characterized by swellings/varicosities), and dysregulated neuronal excitability (decreased firing at 200-300 pA and increased firing rates at 450 pA), whereas insignificant morphologic and electrophysiological consequences were observed in Tat-exposed D1 MSNs. These changes were concomitant with an increased anxiety-like behavioral profile (lower latencies to enter a dark chamber in a light-dark transition task, a greater frequency of light-dark transitions, and reduced rearing time in an open field), whereas locomotor behavior was unaffected by 2 weeks of Tat induction. Our findings suggest that D2 MSNs and a specific subset of neural circuits within the dorsal striatum are preferentially vulnerable to HIV-1.SIGNIFICANCE STATEMENT Despite combination antiretroviral therapy (cART), neurocognitive disorders afflict 30-50% of HIV-infected individuals and synaptodendritic injury remains evident in specific brain regions such as the dorsal striatum. A possible explanation for the sustained neuronal injury is that the neurotoxic HIV-1 regulatory protein trans-activator of transcription (Tat) continues to be expressed in virally suppressed patients on cART. Using inducible Tat-expressing transgenic mice, we found that dopamine subtype 2 (D2) receptor-expressing medium spiny neurons (MSNs) are selectively vulnerable to Tat exposure compared with D1 receptor-expressing MSNs. This includes Tat-induced reductions in D2 MSN dendritic spine density, increased dendritic damage, and disruptions in neuronal excitability, which coincide with elevated anxiety-like behavior. These data suggest that D2 MSNs and specific circuits within the basal ganglia are preferentially vulnerable to HIV-1.
Collapse
|
19
|
Johnson KA, Lovinger DM. Presynaptic G Protein-Coupled Receptors: Gatekeepers of Addiction? Front Cell Neurosci 2016; 10:264. [PMID: 27891077 PMCID: PMC5104741 DOI: 10.3389/fncel.2016.00264] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022] Open
Abstract
Drug abuse and addiction cause widespread social and public health problems, and the neurobiology underlying drug actions and drug use and abuse is an area of intensive research. Drugs of abuse alter synaptic transmission, and these actions contribute to acute intoxication as well as the chronic effects of abused substances. Transmission at most mammalian synapses involves neurotransmitter activation of two receptor subtypes, ligand-gated ion channels that mediate fast synaptic responses and G protein-coupled receptors (GPCRs) that have slower neuromodulatory actions. The GPCRs represent a large proportion of neurotransmitter receptors involved in almost all facets of nervous system function. In addition, these receptors are targets for many pharmacotherapeutic agents. Drugs of abuse directly or indirectly affect neuromodulation mediated by GPCRs, with important consequences for intoxication, drug taking and responses to prolonged drug exposure, withdrawal and addiction. Among the GPCRs are several subtypes involved in presynaptic inhibition, most of which are coupled to the Gi/o class of G protein. There is increasing evidence that these presynaptic Gi/o-coupled GPCRs have important roles in the actions of drugs of abuse, as well as behaviors related to these drugs. This topic will be reviewed, with particular emphasis on receptors for three neurotransmitters, Dopamine (DA; D1- and D2-like receptors), Endocannabinoids (eCBs; CB1 receptors) and glutamate (group II metabotropic glutamate (mGlu) receptors). The focus is on recent evidence from laboratory animal models (and some evidence in humans) implicating these receptors in the acute and chronic effects of numerous abused drugs, as well as in the control of drug seeking and taking. The ability of drugs targeting these receptors to modify drug seeking behavior has raised the possibility of using compounds targeting these receptors for addiction pharmacotherapy. This topic is also discussed, with emphasis on development of mGlu2 positive allosteric modulators (PAMs).
Collapse
Affiliation(s)
- Kari A. Johnson
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | - David M. Lovinger
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
20
|
Abraham AD, Neve KA, Lattal KM. Effects of D1 receptor knockout on fear and reward learning. Neurobiol Learn Mem 2016; 133:265-273. [PMID: 27423521 DOI: 10.1016/j.nlm.2016.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 01/11/2023]
Abstract
Dopamine signaling is involved in a variety of neurobiological processes that contribute to learning and memory. D1-like dopamine receptors (including D1 and D5 receptors) are thought to be involved in memory and reward processes, but pharmacological approaches have been limited in their ability to distinguish between D1 and D5 receptors. Here, we examine the effects of a specific knockout of D1 receptors in associative learning tasks involving aversive (shock) or appetitive (cocaine) unconditioned stimuli. We find that D1 knockout mice show similar levels of cued and contextual fear conditioning to WT controls following conditioning protocols involving one, two, or four shocks. D1 knockout mice show increased generalization of fear conditioning and extinction across contexts, revealed as increased freezing to a novel context following conditioning and decreased freezing to an extinguished cue during a contextual renewal test. Further, D1 knockout mice show mild enhancements in extinction following an injection of SKF81297, a D1/D5 receptor agonist, suggesting a role for D5 receptors in extinction enhancements induced by nonspecific pharmacological agonists. Finally, although D1 knockout mice show decreased locomotion induced by cocaine, they are able to form a cocaine-induced conditioned place preference. We discuss these findings in terms of the role of dopamine D1 receptors in general learning and memory processes.
Collapse
Affiliation(s)
- Antony D Abraham
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States
| | - Kim A Neve
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States; Research Service, VA Portland Health Care System, Portland, OR 97239, United States
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| |
Collapse
|
21
|
Prenatal immune activation in mice blocks the effects of environmental enrichment on exploratory behavior and microglia density. Prog Neuropsychopharmacol Biol Psychiatry 2016; 67:10-20. [PMID: 26776071 DOI: 10.1016/j.pnpbp.2016.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/21/2015] [Accepted: 01/12/2016] [Indexed: 02/01/2023]
Abstract
Adverse environmental factors including prenatal maternal infection are capable of inducing long-lasting behavioral and neural alterations which can enhance the risk to develop schizophrenia. It is so far not clear whether supportive postnatal environments are able to modify such prenatally-induced alterations. In rodent models, environmental enrichment influences behavior and cognition, for instance by affecting endocrinologic, immunologic, and neuroplastic parameters. The current study was designed to elucidate the influence of postnatal environmental enrichment on schizophrenia-like behavioral alterations induced by prenatal polyI:C immune stimulation at gestational day 9 in mice. Adult offspring were tested for amphetamine-induced locomotion, social interaction, and problem-solving behavior as well as expression of dopamine D1 and D2 receptors and associated molecules, microglia density and adult neurogenesis. Prenatal polyI:C treatment resulted in increased dopamine sensitivity and dopamine D2 receptor expression in adult offspring which was not reversed by environmental enrichment. Prenatal immune activation prevented the effects of environmental enrichment which increased exploratory behavior and microglia density in NaCl treated mice. Problem-solving behavior as well as the number of immature neurons was affected by neither prenatal immune stimulation nor postnatal environmental enrichment. The behavioral and neural alterations that persist into adulthood could not generally be modified by environmental enrichment. This might be due to early neurodevelopmental disturbances which could not be rescued or compensated for at a later developmental stage.
Collapse
|
22
|
Fiorentini C, Savoia P, Savoldi D, Bono F, Busi C, Barbon A, Missale C. Shp-2 knockdown prevents l-dopa-induced dyskinesia in a rat model of Parkinson's disease. Mov Disord 2016; 31:512-20. [PMID: 26898243 DOI: 10.1002/mds.26581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/18/2016] [Accepted: 01/26/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Dyskinesia, the major side effect of l-dopa therapy in PD, is mainly associated with nonphysiological stimulation of denervated receptors in the striatum. In particular, DA D1 receptor-mediated aberrant extracellular signal-regulated protein kinases 1 and 2 activation have been associated with striatal changes leading to dyskinesia. We recently identified the tyrosine phosphatase Shp-2 as a crucial effector transmitting D1 receptor signaling to extracellular signal-regulated protein kinases 1 and 2 activation and reported the involvement of the D1 receptor/Shp-2/extracellular signal-regulated protein kinases 1 and 2 pathway in the development of l-dopa-induced dyskinesia. OBJECTIVES In this study, the role of Shp-2 in l-dopa-induced dyskinesia development was investigated by in vivo silencing of Shp-2 in the striatum of the 6-hydroxy-dopamine rat model of PD. METHODS Lentiviral particles delivering short hairpin RNA were used to obtain long-term striatal Shp-2 downregulation. Rats were then treated with l-dopa and analyzed for both the improvement of akinesia and the development of l-dopa-induced dyskinesia. RESULTS The results show that Shp-2 knockdown remarkably decreased extracellular signal-regulated protein kinases 1 and 2 phosphorylation and attenuated the severity of l-dopa-induced dyskinesia likely without compromising the therapeutic efficacy of l-dopa. CONCLUSION These data suggest that the striatal D1 receptor/Shp-2 complex may represent a promising novel target for the development of antidyskinetic drugs.
Collapse
Affiliation(s)
- Chiara Fiorentini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paola Savoia
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daria Savoldi
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Federica Bono
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Busi
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Barbon
- Section of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Missale
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
23
|
Hallgren S, Viberg H. Postnatal exposure to PFOS, but not PBDE 99, disturb dopaminergic gene transcription in the mouse CNS. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:121-6. [PMID: 26686188 DOI: 10.1016/j.etap.2015.11.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 05/03/2023]
Abstract
The CNS of breast feeding infants and toddlers may be exposed to persistent organic pollutants via lactational transfer. Here, 10 days old mice were exposed to single oral doses of either PFOS, PBDE99 or vehicle control and were examined for changes in dopaminergic gene transcription in CNS tissue collected at 24h or 2 months post exposure.qPCR analyses of brain tissue from mice euthanized 24h post exposure revealed that PFOS affected transcription of Dopamine receptor-D5 (DRD5) in cerebral cortex and Tyrosine hydroxylase (TH) in the hippocampus. At 2 months of age, mice neonatally exposed to PFOS displayed decreased transcription of Dopamine receptor-D2 (DRD2) and TH in hippocampus. No significant changes in any of the tested genes were observed in PBDE99 exposed mice. This indicates that PFOS, but not PBDE99, affects the developing cerebral dopaminergic system at gene transcriptional level in cortex and hippocampus, which may account for some of the mechanistic effects behind the aetiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Stefan Hallgren
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, S-752 36 Uppsala, Sweden.
| | - Henrik Viberg
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, S-752 36 Uppsala, Sweden
| |
Collapse
|
24
|
Ye Q, Kim J. Effect of olfactory manganese exposure on anxiety-related behavior in a mouse model of iron overload hemochromatosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:333-41. [PMID: 26189056 PMCID: PMC4522346 DOI: 10.1016/j.etap.2015.06.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 05/09/2023]
Abstract
Manganese in excess promotes unstable emotional behavior. Our previous study showed that olfactory manganese uptake into the brain is altered in Hfe(-/-) mice, a model of iron overload hemochromatosis, suggesting that Hfe deficiency could modify the neurotoxicity of airborne manganese. We determined anxiety-related behavior and monoaminergic protein expression after repeated intranasal instillation of MnCl2 to Hfe(-/-) mice. Compared with manganese-instilled wild-type mice, Hfe(-/-) mice showed decreased manganese accumulation in the cerebellum. Hfe(-/-) mice also exhibited increased anxiety with decreased exploratory activity and elevated dopamine D1 receptor and norepinephrine transporter in the striatum. Moreover, Hfe deficiency attenuated manganese-associated impulsivity and modified the effect of manganese on the expression of tyrosine hydroxylase, vesicular monoamine transporter and serotonin transporter. Together, our data indicate that loss of HFE function alters manganese-associated emotional behavior and further suggest that HFE could be a potential molecular target to alleviate affective disorders induced by manganese inhalation.
Collapse
Affiliation(s)
- Qi Ye
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Tobón KE, Catuzzi JE, Cote SR, Sonaike A, Kuzhikandathil EV. Post-transcriptional regulation of dopamine D1 receptor expression in caudate-putamen of cocaine-sensitized mice. Eur J Neurosci 2015; 42:1849-57. [PMID: 25900179 DOI: 10.1111/ejn.12933] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 11/30/2022]
Abstract
The dopamine D1 receptor is centrally involved in mediating the effects of cocaine and is essential for cocaine-induced locomotor sensitization. Changes in D1 receptor expression have been reported in various models of cocaine addiction; however, the mechanisms that mediate these changes in D1 receptor expression are not well understood. Using preadolescent drd1a-EGFP mice and a binge cocaine treatment protocol we demonstrate that the D1 receptor is post-transcriptionally regulated in the caudate-putamen of cocaine-sensitized animal. While cocaine-sensitized mice express high levels of steady-state D1 receptor mRNA, the expression of D1 receptor protein is not elevated. We determined that the post-transcriptional regulation of D1 receptor mRNA is rapidly attenuated and D1 receptor protein levels increase within 30 min when the sensitized mice are challenged with cocaine. The rapid increase in D1 receptor protein levels requires de novo protein synthesis and correlates with the cocaine-induced hyperlocomotor activity in the cocaine-sensitized mice. The increase in D1 receptor protein levels in the caudate-putamen inversely correlated with the levels of microRNA 142-3p and 382, both of which regulate D1 receptor protein expression. The levels of these two microRNAs decreased significantly within 5 min of cocaine challenge in sensitized mice. The results provide novel insights into the previously unknown rapid kinetics of D1 receptor protein expression which occurs in a time scale that is comparable to the expression of immediate early genes. Furthermore, the results suggest a potential novel role for inherently labile microRNAs in regulating the rapid expression of D1 receptor protein in cocaine-sensitized animals.
Collapse
Affiliation(s)
- Krishna E Tobón
- Department of Pharmacology and Physiology, Rutgers-New Jersey Medical School, 185 South Orange Avenue, MSB, I-647, Newark, NJ, 07103, USA
| | - Jennifer E Catuzzi
- Department of Pharmacology and Physiology, Rutgers-New Jersey Medical School, 185 South Orange Avenue, MSB, I-647, Newark, NJ, 07103, USA
| | - Samantha R Cote
- Department of Pharmacology and Physiology, Rutgers-New Jersey Medical School, 185 South Orange Avenue, MSB, I-647, Newark, NJ, 07103, USA
| | - Adenike Sonaike
- Department of Pharmacology and Physiology, Rutgers-New Jersey Medical School, 185 South Orange Avenue, MSB, I-647, Newark, NJ, 07103, USA
| | - Eldo V Kuzhikandathil
- Department of Pharmacology and Physiology, Rutgers-New Jersey Medical School, 185 South Orange Avenue, MSB, I-647, Newark, NJ, 07103, USA
| |
Collapse
|
26
|
Domínguez-Salazar E, Naser HF, Velázquez-Moctezuma J. D1-like antagonist blocks conditioned place preference induced by ejaculation in male rats. Behav Brain Res 2014; 269:15-9. [DOI: 10.1016/j.bbr.2014.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 03/07/2014] [Accepted: 04/14/2014] [Indexed: 11/28/2022]
|
27
|
Xu W, Wang Y, Ma Z, Chiu YT, Huang P, Rasakham K, Unterwald E, Lee DYW, Liu-Chen LY. L-isocorypalmine reduces behavioral sensitization and rewarding effects of cocaine in mice by acting on dopamine receptors. Drug Alcohol Depend 2013; 133:693-703. [PMID: 24080315 PMCID: PMC3954112 DOI: 10.1016/j.drugalcdep.2013.08.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND We previously reported isolation of l-isocorypalmine (l-ICP), a mono-demethylated analog of l-tetrahydropalmatine (l-THP), from the plant Corydalis yanhusuo. Here we characterized its in vitro pharmacological properties and examined its effects on cocaine-induced behaviors in mice. METHODS Receptor binding, cAMP and [(35)S]GTPγS assays were used to examine pharmacological actions of l-ICP in vitro. Effects of l-ICP on cocaine-induced locomotor hyperactivity and sensitization and conditioned place preference (CPP) in mice were investigated. HPLC was employed to analyze metabolites of l-ICP in mouse serum. RESULTS Among more than 40 targets screened, l-ICP and l-THP bound only to dopamine (DA) receptors. l-ICP was a high-affinity partial agonist of D1 and D5 receptors and a moderate-affinity antagonist of D2, D3 and D4 receptors, whereas l-THP bound to only D1 and D5 receptors, with lower affinities than l-ICP. At 10mg/kg (i.p.), l-ICP inhibited spontaneous locomotor activity for a shorter time than l-THP. Pretreatment with l-ICP reduced cocaine-induced locomotor hyperactivities. Administration of l-ICP before cocaine once a day for 5 days reduced cocaine-induced locomotor sensitization on days 5 and 13 after 7 days of withdrawal. Pretreatment with l-ICP before cocaine daily for 6 days blocked cocaine-induced CPP, while l-ICP itself did not cause preference or aversion. HPLC analysis showed that l-ICP was the main compound in mouse serum following i.p. injection of l-ICP. CONCLUSIONS l-ICP likely acts as a D1 partial agonist and a D2 antagonist to produce its in vivo effects and may be a promising agent for treatment of cocaine addiction.
Collapse
Affiliation(s)
- Wei Xu
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - Yujun Wang
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - Zhongze Ma
- Bio-Organic and Natural Products Laboratory, McLean Hospital,
Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | - Yi-Ting Chiu
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - Peng Huang
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - Khampaseuth Rasakham
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - Ellen Unterwald
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - David Y.-W. Lee
- Bio-Organic and Natural Products Laboratory, McLean Hospital,
Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA,Correspondence should be sent to Dr. Lee-Yuan Liu-Chen,
Center for Substance Abuse Research and Department of Pharmacology, Temple
University School of Medicine, Philadelphia, PA 19140, USA. Tel: +1 215
707 4188; Fax: +1 215 707 7068.
| |
Collapse
|
28
|
Methamphetamine increases locomotion and dopamine transporter activity in dopamine d5 receptor-deficient mice. PLoS One 2013; 8:e75975. [PMID: 24155877 PMCID: PMC3796526 DOI: 10.1371/journal.pone.0075975] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 08/19/2013] [Indexed: 11/24/2022] Open
Abstract
Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behavioral response to methamphetamine. Interestingly, D5 dopamine receptor-deficient mice displayed increased ambulation in response to methamphetamine. Furthermore, dopamine transporter threonine phosphorylation levels, which regulate amphetamine-induced dopamine release, were elevated in D5 dopamine receptor-deficient mice. The increase in methamphetamine-induced locomotor activity was eliminated by pretreatment with the dopamine transporter blocker GBR12909. Taken together, these results suggest that dopamine transporter activity and threonine phosphorylation levels are regulated by D5 dopamine receptors.
Collapse
|
29
|
Baik JH. Dopamine signaling in reward-related behaviors. Front Neural Circuits 2013; 7:152. [PMID: 24130517 PMCID: PMC3795306 DOI: 10.3389/fncir.2013.00152] [Citation(s) in RCA: 319] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/11/2013] [Indexed: 12/20/2022] Open
Abstract
Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA mesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural reward such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specific genetic manipulations have improved our understanding of DA signaling in the reward circuit, and provided a means to identify the neural substrates of complex behaviors such as drug addiction and eating disorders. This review focuses on the role of the DA system in drug addiction and food motivation, with an overview of the role of D1 and D2 receptors in the control of reward-associated behaviors.
Collapse
Affiliation(s)
- Ja-Hyun Baik
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University Seoul, South Korea
| |
Collapse
|
30
|
Convergent effects of mouse Pet-1 deletion and human PET-1 variation on amygdala fear and threat processing. Exp Neurol 2013; 250:260-9. [PMID: 24100022 DOI: 10.1016/j.expneurol.2013.09.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/10/2013] [Accepted: 09/24/2013] [Indexed: 12/31/2022]
Abstract
Serotonin is critical for shaping the development of neural circuits regulating emotion. Pet-1 (FEV-1) is an ETS-domain transcription factor essential for differentiation and forebrain targeting of serotonin neurons. Constitutive Pet-1 knockout (KO) causes major loss of serotonin neurons and forebrain serotonin availability, and behavioral abnormalities. We phenotyped Pet-1 KO mice for fear conditioning and extinction, and on a battery of assays for anxiety- and depression-related behaviors. Morphology of Golgi-stained neurons in basolateral amygdala (BLA) and prelimbic cortex was examined. Using human imaging genetics, a common variant (rs860573) in the PET-1 (FEV) gene was tested for effects on threat-related amygdala reactivity and psychopathology in 88 Asian-ancestry subjects. Pet-1 KO mice exhibited increased acquisition and expression of fear, and elevated fear recovery following extinction, relative to wild-type (WT). BLA dendrites of Pet-1 KO mice were significantly longer than in WT. Human PET-1 variation associated with differences in amygdala threat processing and psychopathology. This novel evidence for the role of Pet-1 in fear processing and dendritic organization of amygdala neurons and in human amygdala threat processing extends a growing literature demonstrating the influence of genetic variation in the serotonin system on emotional regulation via effects on structure and function of underlying corticolimbic circuitry.
Collapse
|
31
|
Tobón KE, Kuzhikandathil EV. Preadolescent drd1-EGFP mice exhibit cocaine-induced behavioral sensitization. Neurosci Lett 2013; 558:20-5. [PMID: 24095672 DOI: 10.1016/j.neulet.2013.09.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 12/31/2022]
Abstract
In adult mice, repeated cocaine administration induces behavioral sensitization measured as increased horizontal locomotor activity. Cocaine-induced locomotor sensitization has been well characterized in adult mice. In adult animals, the D1 dopamine receptor is important for mediating effects of cocaine. The effect of cocaine on D1 receptor expression and function in preadolescent animals is less understood. The recently described drd1-enhanced green fluorescent protein (drd1-EGFP) reporter mouse is a useful model for performing such mechanistic studies; however, preadolescent drd1-EGFP mice have not been characterized previously. Here we studied cocaine-induced locomotor sensitization in preadolescent drd1-EGFP reporter mice. We administered 15mg/kg cocaine three times daily at 1h intervals for seven consecutive days beginning on postnatal day 23 to drd1-EGFP reporter mice and the commonly used C57BL/6 mice. Under this regimen, preadolescent mice of both strains exhibited cocaine-induced locomotor sensitization; however, by day 7 the cocaine-induced locomotor activity in the drd1-EGFP mice was maintained for a longer duration compared to the C57BL/6 mice. The preadolescent drd1-EGFP mice also exhibited elevated basal locomotor activity in a novel environment and had higher D1 and D2 dopamine receptor mRNA levels in the caudate nucleus compared to the C57BL/6 mice. The cocaine-induced locomotor sensitization was not retained when the drd1-EGFP mice were maintained cocaine-free for two weeks suggesting that in preadolescent drd1-EGFP mice the cocaine-induced changes do not persist.
Collapse
Affiliation(s)
- Krishna E Tobón
- Department of Pharmacology and Physiology, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Eldo V Kuzhikandathil
- Department of Pharmacology and Physiology, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
32
|
Jung ES, Lee HJ, Sim HR, Baik JH. Cocaine-induced behavioral sensitization in mice: effects of microinjection of dopamine d2 receptor antagonist into the nucleus accumbens. Exp Neurobiol 2013; 22:224-31. [PMID: 24167417 PMCID: PMC3807009 DOI: 10.5607/en.2013.22.3.224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 11/25/2022] Open
Abstract
To determine the role of dopamine D2 receptor (D2R) in the nucleus accumbens (NAc) core in cocaine-induced behavioral sensitization, D2R antagonist, raclopride was bilaterally microinjected (2.5 or 5 nmol) into the NAc core of WT and D2R-/- mice and the initiation and expression phase of cocaine-mediated locomotor sensitization were analyzed. WT and D2R knockout (D2R-/-) mice received bilateral injections of either saline, or raclopride at the NAc core 30 min before each of five daily repeated injections of saline or cocaine (15 mg/kg i.p.). Following 2 weeks of withdrawal after repeated exposure to cocaine, the animals were pre-treated with an intra-accumbal injection of vehicle or raclopride before receiving a systemic cocaine challenge for the expression of sensitization. Animals which had been microinjected raclopride into NAc core displayed the enhancement of cocaine-induced behavioral response for the initiation but also for the expression of sensitization in WT as well as in D2R-/- mice, which was thus unaltered as compared to vehicle-injected control group. These results suggest that D2R in NAc core is not involved in cocaine-induced behavioral sensitization.
Collapse
Affiliation(s)
- Eun-Sol Jung
- Molecular Neurobiology Laboratory, College of Life Sciences and Biotechnology, Department of Life Sciences, Korea University, Seoul 136-701, Korea
| | | | | | | |
Collapse
|
33
|
Genetic reconstruction of dopamine D1 receptor signaling in the nucleus accumbens facilitates natural and drug reward responses. J Neurosci 2013; 33:8640-9. [PMID: 23678109 DOI: 10.1523/jneurosci.5532-12.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dopamine D1 receptor (D1R) facilitates reward acquisition and its alteration leads to profound learning deficits. However, its minimal functional circuit requirement is unknown. Using conditional reconstruction of functional D1R signaling in D1R knock-out mice, we define distinct requirements of D1R in subregions of the nucleus accumbens (NAc) for specific dimensions of reward. We demonstrate that D1R expression in the core region of the NAc (NAc(Core)), but not the shell (NAc(Shell)), enhances selectively a unique form of pavlovian conditioned approach and mediates D1R-dependent cocaine sensitization. However, D1R expression in either the NAc(Core) or the NAc(Shell) improves instrumental responding for reward. In contrast, neither NAc(Core) nor NAc(Shell) D1R is sufficient to promote motivation to work for reward in a progressive ratio task or for motor learning. These results highlight dissociated circuit requirements of D1R for dopamine-dependent behaviors.
Collapse
|
34
|
Ma XM, Huang JP, Xin X, Yan Y, Mains RE, Eipper BA. A role for kalirin in the response of rat medium spiny neurons to cocaine. Mol Pharmacol 2012; 82:738-45. [PMID: 22828798 PMCID: PMC3463218 DOI: 10.1124/mol.112.080044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/23/2012] [Indexed: 12/21/2022] Open
Abstract
Kalirin-7 (Kal7), the major kalirin isoform in adult brain, plays a key role in the formation of dendritic spines in hippocampal/cortical neurons. Its role in the GABAergic medium spiny neurons (MSNs) of the nucleus accumbens (NAc) and striatum, the areas known to play a key role in the common reward pathway, is not as well understood. Although Kal7 expression in mouse NAc increased in response to cocaine, MSN dendritic spine density did not differ from that for the wild type in Kal7-null mice. Unlike wild-type mice, Kal7-null mice did not respond to cocaine with an increase in MSN dendritic spine density. To explore further the role of Kal7 in cocaine-induced alterations in MSN morphology, we turned to the rat. Based on immunostaining, both Kal7 and Kal12 are expressed at moderate levels in the MSNs of the NAc and striatum. Expression of Kal7 and Kal12 in MSNs of both areas increases after repeated cocaine treatments. Overexpression of Kal7 in cultured MSN neurons increases dendritic spine density, as observed in rats after long-term cocaine administration. Reducing endogenous expression of all major kalirin isoforms in cultured MSN neurons causes a decrease in total dendritic length and dendritic spine density. These data suggest that kalirin is essential for maintaining spine density in NAc MSNs under normal conditions and that Kal7 is an obligatory intermediate in the response of MSNs to repeated exposure to cocaine.
Collapse
Affiliation(s)
- Xin-Ming Ma
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Ave., MC-3401, Farmington, CT, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Wu J, Xiao H, Sun H, Zou L, Zhu LQ. Role of dopamine receptors in ADHD: a systematic meta-analysis. Mol Neurobiol 2012; 45:605-20. [PMID: 22610946 DOI: 10.1007/s12035-012-8278-5] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 05/07/2012] [Indexed: 01/11/2023]
Abstract
The dopaminergic system plays a pivotal role in the central nervous system via its five diverse receptors (D1-D5). Dysfunction of dopaminergic system is implicated in many neuropsychological diseases, including attention deficit hyperactivity disorder (ADHD), a common mental disorder that prevalent in childhood. Understanding the relationship of five different dopamine (DA) receptors with ADHD will help us to elucidate different roles of these receptors and to develop therapeutic approaches of ADHD. This review summarized the ongoing research of DA receptor genes in ADHD pathogenesis and gathered the past published data with meta-analysis and revealed the high risk of DRD5, DRD2, and DRD4 polymorphisms in ADHD.
Collapse
Affiliation(s)
- Jing Wu
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | |
Collapse
|
36
|
Differential regulation of motor control and response to dopaminergic drugs by D1R and D2R neurons in distinct dorsal striatum subregions. EMBO J 2011; 31:640-53. [PMID: 22068054 DOI: 10.1038/emboj.2011.400] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/12/2011] [Indexed: 12/17/2022] Open
Abstract
The dorsal striatum is critically involved in a variety of motor behaviours, including regulation of motor activity, motor skill learning and motor response to psychostimulant and neuroleptic drugs, but contribution of D(2)R-striatopallidal and D(1)R-striatonigral neurons in the dorsomedial (DMS, associative) and dorsolateral (DLS, sensorimotor) striatum to distinct functions remains elusive. To delineate cell type-specific motor functions of the DMS or the DLS, we selectively ablated D(2)R- and D(1)R-expressing striatal neurons with spatial resolution. We found that associative striatum exerts a population-selective control over locomotion and reactivity to novelty, striatopallidal and striatonigral neurons inhibiting and stimulating exploration, respectively. Further, DMS-striatopallidal neurons are involved only in early motor learning whereas gradual motor skill acquisition depends on striatonigral neurons in the sensorimotor striatum. Finally, associative striatum D(2)R neurons are required for the cataleptic effect of the typical neuroleptic drug haloperidol and for amphetamine motor response sensitization. Altogether, these data provide direct experimental evidence for cell-specific topographic functional organization of the dorsal striatum.
Collapse
|
37
|
Abstract
Relative to intravenous drug self-administration, locomotor activity is easier to measure with high throughput, particularly in mice. Therefore its potential to predict differences in self-administration between genotypes (e.g., targeted mutations, recombinant inbred strains) is appealing, but such predictive value is unverified. The main goal of this study was to evaluate the utility of the locomotor assay for accurately predicting differences in cocaine self-administration. A second goal was to evaluate any correlation between activity in a novel environment, and cocaine-induced hyperactivity, between strains. We evaluated locomotor activity in male and female Sprague-Dawley rats and 15 mouse strains (129S1/SvImJ, 129S6/SvEvTac, 129X1/SvJ, A/J, BALB/cByJ, BALB/cJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, SJL/J, SPRET/EiJ, and outbred Swiss Webster and CD-1/ICR), as well as cocaine self-administration in BALB substrains. All but BALB/cJ mice showed locomotor habituation and significant cocaine-induced hyperactivity. BALB/cJ mice also failed to self-administer cocaine. BALB/cByJ mice showed modest locomotor habituation, cocaine-induced locomotion, and cocaine self-administration. As previously reported, female rats showed greater cocaine-induced locomotion than males, but this was only observed in one of 15 mouse strains (FVB/NJ), and the reverse was observed in two strains (129X1/SvJ, BALB/cByJ). The intriguing phenotype of the BALB/cJ strain may indicate some correlation between all-or-none locomotion in a novel environment, and stimulant and reinforcing effects of cocaine. However, neither novelty- nor cocaine-induced activity offered a clear prediction of relative reinforcing effects among strains. Additionally, these results should aid in selecting mouse strains for future studies in which relative locomotor responsiveness to psychostimulants is a necessary consideration.
Collapse
MESH Headings
- Animals
- Central Nervous System Stimulants/metabolism
- Central Nervous System Stimulants/pharmacology
- Cocaine/metabolism
- Cocaine/pharmacology
- Conditioning, Operant
- Dose-Response Relationship, Drug
- Female
- Hyperkinesis/chemically induced
- Locomotion/drug effects
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Inbred Strains
- Models, Animal
- Motor Activity/drug effects
- Phenotype
- Predictive Value of Tests
- Rats
- Rats, Sprague-Dawley
- Reinforcement, Psychology
- Self Administration
- Sex Factors
- Substance-Related Disorders
Collapse
Affiliation(s)
- Morgane Thomsen
- Alcohol and Drug Abuse Research Center, Harvard Medical School and McLean Hospital, Mail Stop 214,115 Mill Street, Belmont, MA 02478, USA.
| | | |
Collapse
|
38
|
Camp MC, Feyder M, Ihne J, Palachick B, Hurd B, Karlsson RM, Noronha B, Chen YC, Coba MP, Grant SGN, Holmes A. A novel role for PSD-95 in mediating ethanol intoxication, drinking and place preference. Addict Biol 2011; 16:428-39. [PMID: 21309945 PMCID: PMC3150485 DOI: 10.1111/j.1369-1600.2010.00282.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The synaptic signaling mechanisms mediating the behavioral effects of ethanol (EtOH) remain poorly understood. Post-synaptic density 95 (PSD-95, SAP-90, Dlg4) is a key orchestrator of N-methyl-D-aspartate receptors (NMDAR) and glutamatergic synapses, which are known to be major sites of EtOH's behavioral actions. However, the potential contribution of PSD-95 to EtOH-related behaviors has not been established. Here, we evaluated knockout (KO) mice lacking PSD-95 for multiple measures of sensitivity to the acute intoxicating effects of EtOH (ataxia, hypothermia, sedation/hypnosis), EtOH drinking under conditions of free access and following deprivation, acquisition and long-term retention of EtOH conditioned place preference (CPP) (and lithium chloride-induced conditioned taste aversion), and intoxication-potentiating responses to NMDAR antagonism. PSD-95 KO exhibited increased sensitivity to the sedative/hypnotic, but not ataxic or hypothermic, effects of acute EtOH relative to wild-type controls (WT). PSD-95 KO consumed less EtOH than WT, particularly at higher EtOH concentrations, although increases in KO drinking could be induced by concentration-fading and deprivation. PSD-95 KO showed normal EtOH CPP 1 day after conditioning, but showed significant aversion 2 weeks later. Lithium chloride-induced taste aversion was impaired in PSD-95 KO at both time points. Finally, the EtOH-potentiating effects of the NMDAR antagonist MK-801 were intact in PSD-95 KO at the dose tested. These data reveal a major, novel role for PSD-95 in mediating EtOH behaviors, and add to growing evidence that PSD-95 is a key mediator of the effects of multiple abused drugs.
Collapse
Affiliation(s)
- Marguerite C Camp
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism/NIH, 5625 Fishers Ln., Rockville, MD 20852-1798, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nucleus accumbens dopamine D₁ receptors regulate the expression of ethanol-induced behavioural sensitization. Int J Neuropsychopharmacol 2011; 14:175-85. [PMID: 20426882 DOI: 10.1017/s1461145710000441] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Repeated ethanol administration may induce behavioural sensitization, defined as a progressive potentiation of locomotor stimulant effects. This process is associated with neuroadaptations in the mesolimbic pathway and the nucleus accumbens. The aim of the present study was to analyse dopamine D₁ receptor (D₁R) participation in locomotor response to an agonist and an antagonist of the D₁R in mice with different levels of sensitization to ethanol. In three separate experiments, mice received administrations of 2.2 g/kg ethanol or saline every other day for 10 d. According to their locomotor response on the last day, ethanol-treated animals were classified into two groups: sensitized or non-sensitized. After the treatment, mice were challenged with 4 or 8 mg/kg SKF-38393 (i.p.), a D₁R agonist (expt 1); or with 0.01 or 0.1 mg/kg SCH-23390 (i.p.), a D₁R antagonist, followed by 2.2 g/kg ethanol (i.p.) administration (expt 2). In expt 3, mice were challenged with intra-accumbens (intra-NAc) SKF-38393 (1 μg/side, in 0.2 μl), and with intra-NAc SCH-23390 (3 μg/side, in 0.2 μl) followed by 2.2 g/kg ethanol (i.p.). Although the i.p. administration of SKF-38393 did not affect the locomotion of mice, the intra-NAc administration of SKF-38393 significantly increased the locomotor activity in sensitized mice, suggesting that sensitized mice present functionally hyperresponsive D₁Rs in the NAc. Both i.p. and intra-NAc administration of SCH-23390 blocked the expression of ethanol sensitization, suggesting that the activation of NAc D₁Rs seems to be essential for the expression of ethanol sensitization.
Collapse
|
40
|
Asico L, Zhang X, Jiang J, Cabrera D, Escano CS, Sibley DR, Wang X, Yang Y, Mannon R, Jones JE, Armando I, Jose PA. Lack of renal dopamine D5 receptors promotes hypertension. J Am Soc Nephrol 2010; 22:82-9. [PMID: 21051739 DOI: 10.1681/asn.2010050533] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Disruption of the dopamine D(5) receptor gene in mice increases BP and causes salt sensitivity. To determine the role of renal versus extrarenal D(5) receptors in BP regulation, we performed cross-renal transplantation experiments. BP was similar between wild-type mice and wild-type mice transplanted with wild-type kidneys, indicating that the transplantation procedure did not affect BP. BP was lower among D(5)(-/-) mice transplanted with wild-type kidneys than D(5)(-/-) kidneys, demonstrating that the renal D(5) receptors are important in BP control. BP was higher in wild-type mice transplanted with D(5)(-/-) kidneys than wild-type kidneys but not significantly different from syngenic transplanted D(5)(-/-) mice, indicating the importance of the kidney in the development of hypertension. On a high-salt diet, all mice with D(5)(-/-) kidneys excreted less sodium than mice with wild-type kidneys. Transplantation of a wild-type kidney into a D(5)(-/-) mouse decreased the renal expression of AT(1) receptors and Nox-2. Conversely, transplantation of a D(5)(-/-) kidney into a wild-type mouse increased the expression of both, suggesting that both renal and extrarenal factors are important in the regulation of AT(1) receptor and Nox-2 expression. These results highlight the role of renal D(5) receptors in BP homeostasis and the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Laureano Asico
- Children's National Medical Center, Children's Research Institute, 111 Michigan Avenue NW, Washington, D.C., USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sora I, Li B, Igari M, Hall FS, Ikeda K. Transgenic mice in the study of drug addiction and the effects of psychostimulant drugs. Ann N Y Acad Sci 2010; 1187:218-46. [PMID: 20201856 DOI: 10.1111/j.1749-6632.2009.05276.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The first transgenic models used to study addiction were based upon a priori assumptions about the importance of particular genes in addiction, including the main target molecules of morphine, amphetamine, and cocaine. This consequently emphasized the importance of monoamine transporters, opioid receptors, and monoamine receptors in addiction. Although the effects of opiates were largely eliminated by mu opioid receptor gene knockout, the case for psychostimulants was much more complex. Research using transgenic models supported the idea of a polygenic basis for psychostimulant effects and has associated particular genes with different behavioral consequences of psychostimulants. Phenotypic analysis of transgenic mice, especially gene knockout mice, has been instrumental in identifying the role of specific molecular targets of addictive drugs in their actions. In this article, we summarize studies that have provided insight into the polygenic determination of drug addiction phenotypes in ways that are not possible with other methods, emphasizing research into the effects of psychostimulant drugs in gene knockouts of the monoamine transporters and monoamine receptors.
Collapse
Affiliation(s)
- Ichiro Sora
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | |
Collapse
|
42
|
van den Buuse M. Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull 2010; 36:246-70. [PMID: 19900963 PMCID: PMC2833124 DOI: 10.1093/schbul/sbp132] [Citation(s) in RCA: 284] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, there have been huge advances in the use of genetically modified mice to study pathophysiological mechanisms involved in schizophrenia. This has allowed rapid progress in our understanding of the role of several proposed gene mechanisms in schizophrenia, and yet this research has also revealed how much still remains unresolved. Behavioral studies in genetically modified mice are reviewed with special emphasis on modeling psychotic-like behavior. I will particularly focus on observations on locomotor hyperactivity and disruptions of prepulse inhibition (PPI). Recommendations are included to address pharmacological and methodological aspects in future studies. Mouse models of dopaminergic and glutamatergic dysfunction are then discussed, reflecting the most important and widely studied neurotransmitter systems in schizophrenia. Subsequently, psychosis-like behavior in mice with modifications in the most widely studied schizophrenia susceptibility genes is reviewed. Taken together, the available studies reveal a wealth of available data which have already provided crucial new insight and mechanistic clues which could lead to new treatments or even prevention strategies for schizophrenia.
Collapse
Affiliation(s)
- Maarten van den Buuse
- Mental Health Research Institute of Victoria, Parkville, Melbourne, Victoria 3052, Australia.
| |
Collapse
|
43
|
El-Ghundi MB, Fan T, Karasinska JM, Yeung J, Zhou M, O’Dowd BF, George SR. Restoration of amphetamine-induced locomotor sensitization in dopamine D1 receptor-deficient mice. Psychopharmacology (Berl) 2010; 207:599-618. [PMID: 19830406 PMCID: PMC3518283 DOI: 10.1007/s00213-009-1690-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 09/28/2009] [Indexed: 11/25/2022]
Abstract
RATIONALE AND OBJECTIVES Amphetamine-induced sensitization is thought to involve dopamine D(1) receptors. Using mice lacking dopamine D(1) receptors (D (1) (-/-) ), we found that they exhibited blunted sensitization to low doses of amphetamine, while others using different treatment and testing regimens reported inconsistent results. We investigated whether experimental variables, alteration in gene expression or cholinergic input played a role in amphetamine-induced responses. METHODS D (1) (-/-) and wild-type (D (1) (+/+) ) mice pretreated with amphetamine (1 mg/kg, 3-7 days) or various doses of nicotine (chronically but intermittently) were challenged with amphetamine (0.7 and/or 1 mg/kg) after short and long abstinence periods. Expression of brain-derived neurotrophic factor (BDNF) and phosphorylated c-AMP response element binding protein (p-CREB) genes were measured under basal conditions and after acute or repeated amphetamine treatments. RESULTS D (1) (-/-) mice failed to exhibit amphetamine-induced sensitization following short-term treatments and long abstinence periods, but expressed sensitization following prolonged amphetamine treatment or a shorter abstinence period. Basal expression of p-CREB (but not BDNF) was higher in D (1) (-/-) than D (1) (+/+) mice and was reduced after amphetamine treatment. Prolonged nicotine pretreatment augmented locomotor responses to amphetamine in both genotypes and restored sensitization in D (1) (-/-) mice. CONCLUSIONS D(1) receptors were necessary for induction, but may not be necessary for expression of amphetamine-induced sensitization at low doses. The manifestation of amphetamine sensitization depended on the duration of treatment and length of the withdrawal period. Cholinergic-nicotinic stimulation restored amphetamine-induced sensitization in D (1) (-/-) mice. Enhanced basal expression of p-CREB in D (1) (-/-) mice may represent an adaptive mechanism related to lack of D(1) receptors.
Collapse
Affiliation(s)
- Mufida B. El-Ghundi
- Department of Pharmacology, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - Theresa Fan
- Department of Pharmacology, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - Joanna M. Karasinska
- Department of Pharmacology, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - John Yeung
- Department of Pharmacology, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - Millee Zhou
- Department of Pharmacology, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - Brian F. O’Dowd
- Department of Pharmacology, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8. Centre for Addiction and Mental Health, Toronto, ON, Canada M5T 1R8
| | - Susan R. George
- Department of Pharmacology, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8. Department of Medicine, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8. Centre for Addiction and Mental Health, Toronto, ON, Canada M5T 1R8. Department of Pharmacology and Medicine, University of Toronto, Medical Sciences Building, Room 4358, 1 Kings College Circle, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
44
|
Valjent E, Bertran-Gonzalez J, Aubier B, Greengard P, Hervé D, Girault JA. Mechanisms of locomotor sensitization to drugs of abuse in a two-injection protocol. Neuropsychopharmacology 2010; 35:401-15. [PMID: 19759531 PMCID: PMC2794893 DOI: 10.1038/npp.2009.143] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A single exposure to psychostimulants or morphine is sufficient to induce persistent locomotor sensitization, as well as neurochemical and electrophysiological changes in rodents. Although it provides a unique model to study the bases of long-term behavioral plasticity, sensitization mechanisms remain poorly understood. We investigated in the mouse, a species suited for transgenic studies, the mechanisms of locomotor sensitization showed by the increased response to a second injection of drug (two-injection protocol of sensitization, TIPS). The first cocaine injection induced a locomotor sensitization that was completely context-dependent, increased during the first week, and persisted 3 months later. The induction of sensitized responses to cocaine required dopamine D1 and glutamate NMDA receptors. A single injection of the selective dopamine transporter blocker GBR12783 was sufficient to activate extracellular signal-regulated kinase (ERK) in the striatum to the same level as cocaine and to induce sensitization to cocaine, but not to itself. The induction of sensitization was sensitive to protein synthesis inhibition by anisomycin after cocaine administration. Morphine induced a pronounced context-dependent sensitization that crossed with cocaine. Sensitization to morphine injection was prevented in knockin mutant mice bearing a Thr-34-Ala mutation of DARPP-32, which suppresses its ability to inhibit protein phosphatase-1 (PP1), but not mutation of Thr-75 or Ser-130. These results combined with previous ones show that TIPS in mouse is a context-dependent response, which involves an increase in extracellular dopamine, stimulation of D1 and NMDA receptors, regulation of the cAMP-dependent and ERK pathways, inhibition of PP1, and protein synthesis. It provides a simple and sensitive paradigm to study the mechanisms of long-term effects of drugs of abuse.
Collapse
Affiliation(s)
- Emmanuel Valjent
- Inserm UMR-S 839, Paris, France,Université Pierre et Marie Curie (UPMC-Paris 6), Paris, France,Institut du Fer à Moulin, Paris, France
| | - Jesus Bertran-Gonzalez
- Inserm UMR-S 839, Paris, France,Université Pierre et Marie Curie (UPMC-Paris 6), Paris, France,Institut du Fer à Moulin, Paris, France
| | - Benjamin Aubier
- Inserm UMR-S 839, Paris, France,Université Pierre et Marie Curie (UPMC-Paris 6), Paris, France,Institut du Fer à Moulin, Paris, France
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Denis Hervé
- Inserm UMR-S 839, Paris, France,Université Pierre et Marie Curie (UPMC-Paris 6), Paris, France,Institut du Fer à Moulin, Paris, France
| | - Jean-Antoine Girault
- Inserm UMR-S 839, Paris, France,Université Pierre et Marie Curie (UPMC-Paris 6), Paris, France,Institut du Fer à Moulin, Paris, France,Inserm UMR-S 839, Institut du Fer à Moulin, 17 rue du Fer à Moulin, 75005 Paris, France, Tel: +33 1 45 87 61 52, Fax: +33 1 45 87 61 59, E-mail:
| |
Collapse
|
45
|
Kruusmägi M, Kumar S, Zelenin S, Brismar H, Aperia A, Scott L. Functional differences between D(1) and D(5) revealed by high resolution imaging on live neurons. Neuroscience 2009; 164:463-9. [PMID: 19723560 DOI: 10.1016/j.neuroscience.2009.08.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 08/21/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
Abstract
The interaction between the dopaminergic and glutamatergic systems governs normal behavior and is perturbed in many psychiatric disorders including schizophrenia. Hypofunction of the D1 family of receptors, to which the D(1) and D(5) subtypes belong, is a typical feature of schizophrenia. Here we have used confocal live cell imaging of neurons to examine the distinct roles of the D(1) and D(5) receptors in the intra-neuronal interaction with the glutamatergic system. Using fluorescently tagged D(1) or D(5) expressed in cultured striatal neurons, we show that both receptor subtypes are primarily transported via lateral diffusion in the dendritic tree. D(1) is to a much larger extent than D(5) expressed in spines. D(1) is primarily expressed in the head whereas D(5) is largely localized to the neck of the spine. Activation of N-methyl-D-aspartic acid (NMDA) receptors slowed the diffusion rate and increased the number of D(1) positive spines, while no effect on D(5) diffusion or spine localization could be observed. The observed differences between D(1) and D(5) can be attributed to structural differences in the C-terminus and its capacity to interact with NMDA receptors and PSD-95. Identification of a unique role of D(1) for the intra-neuronal interaction between the dopaminergic and glutamatergic systems will have implications for the development of more specific treatments in many neuropsychiatric disorders.
Collapse
Affiliation(s)
- M Kruusmägi
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Yang HS, Vitaterna MH, Laposky AD, Shimomura K, Turek FW. Genetic analysis of daily physical activity using a mouse chromosome substitution strain. Physiol Genomics 2009; 39:47-55. [PMID: 19567786 DOI: 10.1152/physiolgenomics.00066.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is considerable evidence for a genetic basis underlying individual differences in spontaneous physical activity in humans and animals. Previous publications indicate that the physical activity level and pattern vary among inbred strains of mice and identified a genomic region on chromosome 13 as quantitative trait loci (QTL) for physical activity. To confirm and further characterize the role of chromosome 13 in regulating daily physical activity level and pattern, we conducted a comprehensive phenotypic study in the chromosome 13 substitution strain (CSS-13) in which the individual chromosome 13 from the A/J strain was substituted into an otherwise complete C57BL/6J (B6) genome. The B6 and A/J parental strains exhibited pronounced differences in daily physical activity, sleep-wake structure, circadian period and body weight. Here we report that a single A/J chromosome 13 in the context of a B6 genetic background conferred a profound reduction in both total cage activity and wheel-running activity under a 14:10-h light-dark cycle, as well as in constant darkness, compared with B6 controls. Additionally, CSS-13 mice differed from B6 controls in the diurnal distribution of activity and the day-to-day variability in activity onset. We further performed a linkage analysis and mapped a significant QTL on chromosome 13 regulating the daily wheel running activity level in mice. Taken together, our findings indicate a QTL on chromosome 13 with dramatic and specific effects on daily voluntary physical activity, but not on circadian period, sleep, or other aspects of activity that are different between B6 and A/J strains.
Collapse
Affiliation(s)
- He S Yang
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, Illinois 60208-3520, USA
| | | | | | | | | |
Collapse
|
47
|
Miller JS, Tallarida RJ, Unterwald EM. Cocaine-induced hyperactivity and sensitization are dependent on GSK3. Neuropharmacology 2009; 56:1116-23. [PMID: 19328817 PMCID: PMC2721824 DOI: 10.1016/j.neuropharm.2009.03.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/18/2009] [Accepted: 03/19/2009] [Indexed: 10/21/2022]
Abstract
Glycogen synthase kinase 3 (GSK3) is a critical mediator of many intracellular signaling systems. The activity of GSK3 is regulated by several kinases, with inactivation occurring via phosphorylation of the inhibitory serine-21 (alpha-isoform) and serine-9 (beta-isoform) residues. Here, we investigated whether acute cocaine administration regulates GSK3 activity and if inhibition of GSK3 by valproate or the selective GSK3 inhibitor SB 216763 would attenuate cocaine-induced behaviors in mice. Mice injected with cocaine (20 mg/kg, i.p.) showed a reduction in the phosphorylation of GSK3beta in the caudate putamen, reflecting an increase in the activity of the kinase. To assess the role of GSK3 in cocaine-induced hyperactivity, mice were pretreated with valproate (50-300 mg/kg, i.p.), SB 216763 (0.25-7.5 mg/kg, i.p.), or the appropriate vehicle prior to saline or cocaine (20 mg/kg, i.p.). Valproate or SB 216763 produced significant dose-dependent reductions in cocaine-induced ambulatory and stereotypic activity. Repeated administration of cocaine can result in an augmentation of the locomotor-stimulatory effects of the drug, a phenomenon referred to as sensitization. Mice pretreated with SB 216763 (2.5 mg/kg, i.p.) prior to daily cocaine (20 mg/kg, i.p.) for 5 days showed a significant attenuation of the development of cocaine-induced behavioral sensitization following a cocaine challenge on day 13. These results indicate that cocaine activated GSK3beta in the caudate putamen and that pharmacological inhibition of GSK3 reduced both the acute behavioral responses to cocaine and the long-term neuroadaptations produced by repeated cocaine, therefore suggesting a role for GSK3 in the behavioral and neurochemical manifestations associated with cocaine exposure.
Collapse
Affiliation(s)
- Jonathan S Miller
- Department of Pharmacology and, Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | |
Collapse
|