1
|
Dutra-Tavares AC, Couto LA, Souza TP, Bandeira-Martins A, Silva JO, Filgueiras CC, Ribeiro-Carvalho A, Manhães AC, Abreu-Villaça Y. Nicotine's Effects on Schizophrenia-like Symptoms in a Mice Model: Time Matters. Brain Sci 2024; 14:855. [PMID: 39335351 PMCID: PMC11430416 DOI: 10.3390/brainsci14090855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/30/2024] Open
Abstract
Tobacco consumption in schizophrenia (SCHZ) patients is highly prevalent. Data support the occurrence of sequential events during comorbidity establishment, and both smoking first, SCHZ second and SCHZ first, smoking second sequences have been proposed. To investigate whether these two possibilities lead to distinct outcomes of comorbidity, we used a phencyclidine-induced SCHZ model and nicotine exposure as a surrogate of smoking. C57Bl/6 mice were submitted to a protocol that either began with 4 days of phencyclidine exposure or 4 days of nicotine exposure. This period was followed by 5 days of combined phencyclidine + nicotine exposure. Locomotor sensitization and pre-pulse inhibition (PPI) were assessed due to their well-known associations with SCHZ as opposed to rearing, an unrelated behavior. Nicotine priming potentiated phencyclidine-evoked sensitization. However, nicotine exposure after SCHZ modeling did not interfere with phencyclidine's effects. In the PPI test, nicotine after SCHZ modeling worsened the phencyclidine-evoked deficiency in males. In contrast, nicotine priming had no effects. Regarding rearing, nicotine priming failed to interfere with phencyclidine-mediated inhibition. Similarly, phencyclidine priming did not modify nicotine-mediated inhibition. The present results indicate that the sequence, either SCHZ-first or nicotine-first, differentially impacts comorbidity outcomes, a finding that is relevant for the identification of mechanisms of nicotine interference in the neurobiology of SCHZ.
Collapse
Affiliation(s)
- Ana Carolina Dutra-Tavares
- Departamento de Ciências Biomédicas e Saúde, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Cabo Frio 28905-320, RJ, Brazil;
| | - Luciana Araújo Couto
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro 20550-170, RJ, Brazil (T.P.S.); (A.B.-M.); (J.O.S.); (C.C.F.); (Y.A.-V.)
| | - Thainá P. Souza
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro 20550-170, RJ, Brazil (T.P.S.); (A.B.-M.); (J.O.S.); (C.C.F.); (Y.A.-V.)
| | - Anais Bandeira-Martins
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro 20550-170, RJ, Brazil (T.P.S.); (A.B.-M.); (J.O.S.); (C.C.F.); (Y.A.-V.)
| | - Juliana Oliveira Silva
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro 20550-170, RJ, Brazil (T.P.S.); (A.B.-M.); (J.O.S.); (C.C.F.); (Y.A.-V.)
| | - Claudio C. Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro 20550-170, RJ, Brazil (T.P.S.); (A.B.-M.); (J.O.S.); (C.C.F.); (Y.A.-V.)
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores, UERJ, São Gonçalo 24435-005, RJ, Brazil;
| | - Alex C. Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro 20550-170, RJ, Brazil (T.P.S.); (A.B.-M.); (J.O.S.); (C.C.F.); (Y.A.-V.)
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro 20550-170, RJ, Brazil (T.P.S.); (A.B.-M.); (J.O.S.); (C.C.F.); (Y.A.-V.)
| |
Collapse
|
2
|
Zhu XH, Zhang JL, Li DH, Wang ZQ, Liu YK, Fan JX, Jiang SR, Li XR, He XY. Processed Polygonatum cyrtonema Hua attenuates postpartum depression in rat model by regulating monoamines and hormones. Heliyon 2024; 10:e26895. [PMID: 38449668 PMCID: PMC10915386 DOI: 10.1016/j.heliyon.2024.e26895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
Background Polygonatum cyrtonema Hua is a traditional Chinese medicinal food herb which can regulate the liver and Qi, nourish the heart and blood, moisten the lungs and nourish the kidneys with the potential to treat emotional diseases. However, few studies have explored the effects of Polygonatum cyrtonema Hua on postpartum depression. Therefore, we investigated whether processed Polygonatum cyrtonema Hua could improve postpartum depression in rat models by regulating monoamines and hormones. Methods Female Sprague-Dawley rats were randomized into normal control (0.9%Nacl), Sham operation (0.9%Nacl), postpartum depression model (0.9%Nacl), fluoxetine (2.5 mg/kg Fluoxetine), low, medium and high dose of processed Polygonatum cyrtonema Hua (2.5 g/kg, 5 g/kg, 10 g/kg) groups. Rats in these groups received drug intervention, and then subjected to Open-field test and Forced swimming test. Brain tissues and serum samples were collected and used to quantify levels of monoamines, hypothalamic-pituitary-adrenal axis and serum Estradiol. The status of neuronal cells in hippocampus 1 region was examined through hematoxylin-eosin staining, whereas expression of estrogen receptor α and β was detected by immunohistochemistry. Results Rats in the model group showed decreased mobility time, the disorder of neuronal cells in hippocampus 1 area, and decreased concentration of 5-hydroxytryptamine and dopamine in brain tissue, norepinephrine and estradiol in serum as well as estrogen receptor α and β expression. They also exhibited increased adrenocorticotropic hormone, corticosterone and corticotropin releasing hormone in serum. However, the treatment with processed Polygonatum cyrtonem Hua or fluoxetine reversed the above abnormalities. Conclusion The H group showed significant improvement in postpartum depression in rats, and processed Polygonatum cyrtonema Hua can be used as a developing drug for the prevention or treatment of depression.
Collapse
Affiliation(s)
- Xiao-hong Zhu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Jia-li Zhang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - De-hua Li
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Zhong-qiang Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Yan-ku Liu
- Discipline of Pediatrics, Chongqing Medical University, Chongqing, China
| | - Jing-xian Fan
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Shang-ren Jiang
- Discipline of Pediatrics, Chongqing Medical University, Chongqing, China
| | - Xin-ran Li
- Key Laboratory of Metabolism and Metabolism of Traditional Chinese Medicine in Chongqing, Chongqing Medical University, Chongqing, China
| | - Xian-yuan He
- Key Laboratory of Metabolism and Metabolism of Traditional Chinese Medicine in Chongqing, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Hong SW, Teesdale-Spittle P, Page R, Truman P. A review of monoamine oxidase (MAO) inhibitors in tobacco or tobacco smoke. Neurotoxicology 2022; 93:163-172. [PMID: 36155069 DOI: 10.1016/j.neuro.2022.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022]
Abstract
Tobacco smoking is reputed to be the most difficult addiction of all to give up, and nicotine has been noted as the major addictive agent in tobacco smoke. However, research shows that nicotine addiction is due to more than nicotine alone. One hypothesis is that monoamine oxidase (MAO) inhibition from non-nicotinic components in, or derived from, tobacco smoke contributes to nicotine addiction. Harman and norharman, have been recognised as major and potent MAO inhibitors in tobacco smoke, but these two inhibitors together comprise perhaps less than 10% of the total MAO A inhibitory activity in cigarette smoke suggesting other unidentified components may make significant contributions to total inhibitory activity. Therefore, we reviewed an index of the chemical components of tobacco and tobacco smoke and identified those known to be MAO inhibitors. Amongst these inhibitors, phenols and phenolic acids with MAO inhibitory activity are commonly reversible and selective MAO A inhibitors, whereas trans,trans-farnesol, 2-methyl-1,4-naphthoquinone (menadione), 1,4-naphthoquinone, scopoletin, and diosmetin with MAO inhibitory activity are reversible and selective MAO B inhibitors. The compound, 1,4-benzoquinone is an irreversible MAO A inhibitor and to the best of our knowledge, this is the first irreversible MAO A inhibitor to be reported in tobacco smoke. MAO inhibitors have been used clinically to treat depression, anxiety, and Parkinson's disease. The MAO inhibitors identified from tobacco and tobacco smoke and summarized in this review, are potential pharmacological candidates to be investigated further. This review will enhance our knowledge of the way tobacco smoke affects MAO activity in smokers and will also be important in helping to understand nicotine addiction.
Collapse
Affiliation(s)
- Sa Weon Hong
- School of Health Sciences, Massey University, Wellington 6021, New Zealand.
| | - Paul Teesdale-Spittle
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Rachel Page
- School of Health Sciences, Massey University, Wellington 6021, New Zealand
| | - Penelope Truman
- School of Health Sciences, Massey University, Wellington 6021, New Zealand
| |
Collapse
|
4
|
Sved AF, Weeks JJ, Grace AA, Smith TT, Donny EC. Monoamine oxidase inhibition in cigarette smokers: From preclinical studies to tobacco product regulation. Front Neurosci 2022; 16:886496. [PMID: 36051642 PMCID: PMC9424897 DOI: 10.3389/fnins.2022.886496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Monoamine oxidase (MAO) activity is reduced in cigarette smokers and this may promote the reinforcing actions of nicotine, thereby enhancing the addictive properties of cigarettes. At present, it is unclear how cigarette smoking leads to MAO inhibition, but preclinical studies in rodents show that MAO inhibition increases nicotine self-administration, especially at low doses of nicotine. This effect of MAO inhibition develops slowly, likely due to plasticity of brain monoamine systems; studies relying on acute MAO inhibition are unlikely to replicate what happens with smoking. Given that MAO inhibition may reduce the threshold level at which nicotine becomes reinforcing, it is important to consider this in the context of very low nicotine content (VLNC) cigarettes and potential tobacco product regulation. It is also important to consider how this interaction between MAO inhibition and the reinforcing actions of nicotine may be modified in populations that are particularly vulnerable to nicotine dependence. In the context of these issues, we show that the MAO-inhibiting action of cigarette smoke extract (CSE) is similar in VLNC cigarettes and cigarettes with a standard nicotine content. In addition, we present evidence that in a rodent model of schizophrenia the effect of MAO inhibition to enhance nicotine self-administration is absent, and speculate how this may relate to brain serotonin systems. These issues are relevant to the MAO-inhibiting effect of cigarette smoking and its implications to tobacco product regulation.
Collapse
Affiliation(s)
- Alan F. Sved
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jillian J. Weeks
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tracy T. Smith
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Eric C. Donny
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, United States
| |
Collapse
|
5
|
Casarrubea M, Davies C, Pierucci M, Colangeli R, Deidda G, Santangelo A, Aiello S, Crescimanno G, Di Giovanni G. The impact of chronic daily nicotine exposure and its overnight withdrawal on the structure of anxiety-related behaviors in rats: Role of the lateral habenula. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110131. [PMID: 33039434 DOI: 10.1016/j.pnpbp.2020.110131] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/17/2020] [Accepted: 10/04/2020] [Indexed: 01/03/2023]
Abstract
Tobacco smoking is a serious health problem worldwide and a leading cause of mortality. Nicotine, the addictive component of tobacco, affects a range of emotional responses, including anxiety-related behaviors. Although perceived by smokers to be anxiolytic, evidence suggests that smoking increases anxiety and that mood fluctuates with nicotine intake. Thus, nicotine addiction may depend on easing the psychobiological distress caused by its abuse. The lateral habenula (LHb) has been implicated as a neural substrate for acute nicotine-induced anxiety, but its role in anxiety-like behaviors associated with chronic nicotine exposure has not been explored. Here, we assessed the effect of chronic nicotine exposure and its subsequent overnight withdrawal on anxiety-like behavior using both quantitative and multivariate T-pattern analysis in rats tested using the hole-board apparatus. Additionally, we explored the role of the LHb by comparing the behavioral effects of short-term nicotine withdrawal in chronically treated LHb-lesioned rats. Quantitative analysis revealed increased anxiety-like behavior in chronically treated overnight nicotine-deprived rats, as manifested in reduced general and focused exploratory behaviors, which was eased in animals that received nicotine. Quantitative analysis failed to reveal a role of the LHb in overnight nicotine deprivation-induced anxiety. Conversely, T-pattern analysis of behavioral outcomes revealed that chronic nicotine-treated rats still show anxiety-like behavior following nicotine challenge. Moreover, it demonstrated that the LHb lesion induced a stronger anxiolytic-like response to the acute challenge of nicotine in chronically nicotine-exposed animals, implicating the LHb in the anxiogenic effect of chronic nicotine exposure. These data further highlight the LHb as a promising target for smoking cessation therapies and support the importance of T-pattern analysis for behavioral analysis.
Collapse
Affiliation(s)
- Maurizio Casarrubea
- Laboratory of Behavioral Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Human Physiology Section "Giuseppe Pagano", University of Palermo, Palermo, Italy.
| | - Caitlin Davies
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK
| | - Massimo Pierucci
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Roberto Colangeli
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Gabriele Deidda
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | - Stefania Aiello
- Laboratory of Behavioral Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Human Physiology Section "Giuseppe Pagano", University of Palermo, Palermo, Italy
| | - Giuseppe Crescimanno
- Laboratory of Behavioral Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Human Physiology Section "Giuseppe Pagano", University of Palermo, Palermo, Italy
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
6
|
Fitzgerald PJ, Hale PJ, Ghimire A, Watson BO. Repurposing Cholinesterase Inhibitors as Antidepressants? Dose and Stress-Sensitivity May Be Critical to Opening Possibilities. Front Behav Neurosci 2021; 14:620119. [PMID: 33519395 PMCID: PMC7840590 DOI: 10.3389/fnbeh.2020.620119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
When stress becomes chronic it can trigger lasting brain and behavioral changes including Major Depressive Disorder (MDD). There is conflicting evidence regarding whether acetylcholinesterase inhibitors (AChEIs) may have antidepressant properties. In a recent publication, we demonstrated a strong dose-dependency of the effect of AChEIs on antidepressant-related behavior in the mouse forced swim test: whereas the AChEI donepezil indeed promotes depression-like behavior at a high dose, it has antidepressant-like properties at lower doses in the same experiment. Our data therefore suggest a Janus-faced dose-response curve for donepezil in depression-related behavior. In this review, we investigate the mood-related properties of AChEIs in greater detail, focusing on both human and rodent studies. In fact, while there have been many studies showing pro-depressant activity by AChEIs and this is a major concept in the field, a variety of other studies in both humans and rodents show antidepressant effects. Our study was one of the first to systematically vary dose to include very low concentrations while measuring behavioral effects, potentially explaining the apparent disparate findings in the field. The possibility of antidepressant roles for AChEIs in rodents may provide hope for new depression treatments. Importantly, MDD is a psychosocial stress-linked disorder, and in rodents, stress is a major experimental manipulation for studying depression mechanisms, so an important future direction will be to determine the extent to which these depression-related effects are stress-sensitive. In sum, gaining a greater understanding of the potentially therapeutic mood-related effects of low dose AChEIs, both in rodent models and in human subjects, should be a prioritized topic in ongoing translational research.
Collapse
Affiliation(s)
- Paul J Fitzgerald
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Pho J Hale
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Anjesh Ghimire
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Brendon O Watson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Sex- and age-dependent differences in nicotine susceptibility evoked by developmental exposure to tobacco smoke and/or ethanol in mice. J Dev Orig Health Dis 2020; 12:940-951. [PMID: 33292889 DOI: 10.1017/s2040174420001191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Either tobacco smoking or alcohol consumption during pregnancy sex-selectively increases susceptibility to drugs of abuse later in life. Considering that pregnant smoking women are frequently intermittent consumers of alcoholic beverages, here, we investigated whether a short-term ethanol exposure restricted to the brain growth spurt period when combined with chronic developmental exposure to tobacco smoke aggravates susceptibility to nicotine in adolescent and adult mice. Swiss male and female mice were exposed to tobacco smoke (SMK; research cigarettes 3R4F, whole-body exposure, 8 h/daily) or ambient air during the gestational period and until the tenth postnatal day (PN). Ethanol (ETOH, 2 g/Kg, 25%, i.p.) or saline was injected in the pups every other day from PN2 to PN10. There were no significant differences in cotinine (nicotine metabolite) and ethanol serum levels among SMK, ETOH and SMK + ETOH groups. During adolescence (PN30) and adulthood (PN90), nicotine (NIC, 0.5 mg/Kg) susceptibility was evaluated in the conditioned place preference and open field tests. NIC impact was more evident in females: SMK, ETOH and SMK + ETOH adolescent females were equally more susceptible to nicotine-induced place preference than control animals. At adulthood, SMK and SMK + ETOH adult females exhibited a nicotine-evoked hyperlocomotor profile in the open field, with a stronger effect in the SMK + ETOH group. Our results indicate that ethanol exposure during the brain growth spurt, when combined to developmental exposure to tobacco smoke, increases nicotine susceptibility with stronger effects in adult females. This result represents a worsened outcome from the early developmental dual exposure and may predispose nicotine use/abuse later in life.
Collapse
|
8
|
The MAO Inhibitor Tranylcypromine Alters LPS- and Aβ-Mediated Neuroinflammatory Responses in Wild-type Mice and a Mouse Model of AD. Cells 2020; 9:cells9091982. [PMID: 32872335 PMCID: PMC7563969 DOI: 10.3390/cells9091982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Monoamine oxidase (MAO) has been implicated in neuroinflammation, and therapies targeting MAO are of interest for neurodegenerative diseases. The small-molecule drug tranylcypromine, an inhibitor of MAO, is currently used as an antidepressant and in the treatment of cancer. However, whether tranylcypromine can regulate LPS- and/or Aβ-induced neuroinflammation in the brain has not been well-studied. In the present study, we found that tranylcypromine selectively altered LPS-induced proinflammatory cytokine levels in BV2 microglial cells but not primary astrocytes. In addition, tranylcypromine modulated LPS-mediated TLR4/ERK/STAT3 signaling to alter neuroinflammatory responses in BV2 microglial cells. Importantly, tranylcypromine significantly reduced microglial activation as well as proinflammatory cytokine levels in LPS-injected wild-type mice. Moreover, injection of tranylcypromine in 5xFAD mice (a mouse model of AD) significantly decreased microglial activation but had smaller effects on astrocyte activation. Taken together, our results suggest that tranylcypromine can suppress LPS- and Aβ-induced neuroinflammatory responses in vitro and in vivo.
Collapse
|
9
|
The cholinesterase inhibitor donepezil has antidepressant-like properties in the mouse forced swim test. Transl Psychiatry 2020; 10:255. [PMID: 32712627 PMCID: PMC7382650 DOI: 10.1038/s41398-020-00928-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 11/08/2022] Open
Abstract
Finding new antidepressant agents is of high clinical priority given that many cases of major depressive disorder (MDD) do not respond to conventional monoaminergic antidepressants such as the selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants, and monoamine oxidase inhibitors. Recent findings of effective fast-acting antidepressants indicate that there are biological substrates to be taken advantage of for fast relief of depression and that we may find further treatments in this category. In this vein, the cholinergic system may be a relatively overlooked target for antidepressant medications, given its major role in motivation and attention. Furthermore, the classically engaged monoaminergic neurotransmitter systems in depression treatment-serotonin, norepinephrine, and dopamine-interact directly at times with cholinergic signaling. Here we investigate in greater detail how the cholinergic system may impact depression-related behavior, by administering widely ranging doses of the cholinesterase inhibitor drug, donepezil, to C57BL/6J mice in the forced swim test. First, we confirm prior findings that this drug, which is thought to boost synaptic acetylcholine, promotes depression-like behavior at a high dose (2.0 mg/kg, i.p.). But we also find paradoxically that it has an antidepressant-like effect at lower doses (0.02 and 0.2 mg/kg). Further this antidepressant-like effect is not due to generalized hyperactivity, since we did not observe increased locomotor activity in the open field test. These data support a novel antidepressant-like role for donepezil at lower doses as part of an overall u-shaped dose-response curve. This raises the possibility that donepezil could have antidepressant properties in humans suffering from MDD.
Collapse
|
10
|
Dulawa SC, Janowsky DS. Cholinergic regulation of mood: from basic and clinical studies to emerging therapeutics. Mol Psychiatry 2019; 24:694-709. [PMID: 30120418 PMCID: PMC7192315 DOI: 10.1038/s41380-018-0219-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/06/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
Mood disorders are highly prevalent and are the leading cause of disability worldwide. The neurobiological mechanisms underlying depression remain poorly understood, although theories regarding dysfunction within various neurotransmitter systems have been postulated. Over 50 years ago, clinical studies suggested that increases in central acetylcholine could lead to depressed mood. Evidence has continued to accumulate suggesting that the cholinergic system has a important role in mood regulation. In particular, the finding that the antimuscarinic agent, scopolamine, exerts fast-onset and sustained antidepressant effects in depressed humans has led to a renewal of interest in the cholinergic system as an important player in the neurochemistry of major depression and bipolar disorder. Here, we synthesize current knowledge regarding the modulation of mood by the central cholinergic system, drawing upon studies from human postmortem brain, neuroimaging, and drug challenge investigations, as well as animal model studies. First, we describe an illustrative series of early discoveries which suggest a role for acetylcholine in the pathophysiology of mood disorders. Then, we discuss more recent studies conducted in humans and/or animals which have identified roles for both acetylcholinergic muscarinic and nicotinic receptors in different mood states, and as targets for novel therapies.
Collapse
Affiliation(s)
- Stephanie C. Dulawa
- Department of Psychiatry, University of California at San Diego,Corresponding author: Stephanie Dulawa, Ph.D., Associate Professor in Psychiatry, University of California San Diego, 9500 Gilman Drive, Mailcode 0804, La Jolla, CA 92093-0804, USA ()
| | | |
Collapse
|
11
|
Abreu-Villaça Y, Guimarães VMS, Nunes-Freitas A, Dutra-Tavares AC, Manhães AC, Filgueiras CC, Ribeiro-Carvalho A. Tobacco smoke and ethanol during adolescence: Both combined- and single-drug exposures lead to short- and long-term disruption of the serotonergic system in the mouse brain. Brain Res Bull 2019; 146:94-103. [PMID: 30584905 DOI: 10.1016/j.brainresbull.2018.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/15/2018] [Accepted: 12/18/2018] [Indexed: 01/30/2023]
Abstract
The impairment of the serotonergic system contributes to nicotine and ethanol effects on mood, suggesting that this system is targeted by each of these drugs and that co-exposure possibly worsens the disruption. Here, we tested this hypothesis in an adolescent mice model of tobacco smoke and/or ethanol exposure. From postnatal day (PN) 30-45, Swiss mice were exposed to one of the following: 1) tobacco smoke (SMK; research cigarettes 2R1F, whole-body exposure, 8 h/daily); 2) ethanol (ETOH; 2 g/kg i.p., every other day); 3) SMK + ETOH; 4) Control (VEH). At PN45 (end-of-exposure), hippocampal serotonin transporter (5 H TT) binding was increased in SMK and decreased in ETOH male mice. At PN50 (short-term deprivation), cortical 5 H TT was reduced in all drug-exposed mice. In the hippocampus, similar deficits were identified in females. In both brain regions, the effects of SMK + ETOH deprivation on 5 H TT were equivalent to the damage caused by either drug. At PN50, hippocampal 5 H T1A receptor binding was reduced in ETOH and SMK + ETOH mice. Similar results were observed in the male cortex. In females, deficits were identified in SMK mice. In both brain regions, SMK + ETOH 5 H T1A deficits reflected the summation of SMK and ETOH outcomes. At PN75 (long-term deprivation), there was a late-emergent increase in cortical 5 H T1A binding in SMK mice, while cortical 5 H T2 receptor binding was similarly increased in SMK and SMK + ETOH groups. Adolescent SMK and/or ETOH serotonergic impairment is sex-dependent and most evident during short-term deprivation. SMK + ETOH deprivation evokes serotonergic disruption that is at least equivalent to that caused by either drug alone.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- YA-V, VMSG, AN-F, ACD-T, ACM, CCF - Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil; AR-C - Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, 24435-005, Brazil.
| | - Vinicius M S Guimarães
- YA-V, VMSG, AN-F, ACD-T, ACM, CCF - Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil; AR-C - Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, 24435-005, Brazil
| | - André Nunes-Freitas
- YA-V, VMSG, AN-F, ACD-T, ACM, CCF - Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil; AR-C - Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, 24435-005, Brazil
| | - Ana Carolina Dutra-Tavares
- YA-V, VMSG, AN-F, ACD-T, ACM, CCF - Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil; AR-C - Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, 24435-005, Brazil
| | - Alex C Manhães
- YA-V, VMSG, AN-F, ACD-T, ACM, CCF - Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil; AR-C - Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, 24435-005, Brazil
| | - Claudio C Filgueiras
- YA-V, VMSG, AN-F, ACD-T, ACM, CCF - Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil; AR-C - Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, 24435-005, Brazil
| | - Anderson Ribeiro-Carvalho
- YA-V, VMSG, AN-F, ACD-T, ACM, CCF - Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil; AR-C - Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, 24435-005, Brazil
| |
Collapse
|
12
|
Abreu-Villaça Y, Manhães AC, Krahe TE, Filgueiras CC, Ribeiro-Carvalho A. Tobacco and alcohol use during adolescence: Interactive mechanisms in animal models. Biochem Pharmacol 2017; 144:1-17. [DOI: 10.1016/j.bcp.2017.06.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022]
|
13
|
Abstract
OBJECTIVE Preclinical abuse liability assessment is an essential component of tobacco regulatory science. The goal of this project was to evaluate the relative abuse liability of smokeless tobacco products in rats using aqueous extracts of those products. These extracts provide exposure to an extensive range of nicotine and non-nicotine tobacco constituents as occurs in humans. METHODS Rats were trained to self-administer either nicotine alone or extracts of Camel Snus or Kodiak smokeless tobacco at an equivalent nicotine unit dose. In Experiment 1, the relative reinforcing efficacy of these formulations was assessed in adults and adolescents using a progressive ratio schedule under limited-access conditions. In Experiment 2, relative reinforcing efficacy was assessed in adolescents under unlimited-access conditions using behavioral economic demand curve analysis. RESULTS The reinforcing efficacy of nicotine formulations was higher in adolescents than adults, but no difference was observed between formulations in either age group. Similarly, there was no difference in elasticity of demand between formulations in adolescents. CONCLUSIONS The present findings suggest that the abuse liability of these smokeless tobacco products is similar to nicotine alone, and that nicotine dose is the primary determinant of the reinforcing efficacy of systemic exposure to these products.
Collapse
|
14
|
Abreu-Villaça Y, Correa-Santos M, Dutra-Tavares AC, Paes-Branco D, Nunes-Freitas A, Manhães AC, Filgueiras CC, Ribeiro-Carvalho A. A ten fold reduction of nicotine yield in tobacco smoke does not spare the central cholinergic system in adolescent mice. Int J Dev Neurosci 2016; 52:93-103. [PMID: 27287270 DOI: 10.1016/j.ijdevneu.2016.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/25/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022] Open
Abstract
The tobacco industry has gradually decreased nicotine content in cigarette smoke but the impact of this reduction on health is still controversial. Since the central cholinergic system is the primary site of action of nicotine, here, we investigated the effects of exposure of adolescent mice to tobacco smoke containing either high or low levels of nicotine on the central cholinergic system and the effects associated with cessation of exposure. From postnatal day (PN) 30 to 45, male and female Swiss mice were exposed to tobacco smoke (whole body exposure, 8h/day, 7 days/week) generated from 2R1F (HighNic group: 1.74mg nicotine/cigarette) or 4A1 (LowNic group: 0.14mg nicotine/cigarette) research cigarettes, whereas control mice were exposed to ambient air. Cholinergic biomarkers were assessed in the cerebral cortex and midbrain by the end of exposure (PN45), at short- (PN50) and long-term (PN75) deprivation. In the cortex, nicotinic cholinergic receptor upregulation was observed with either type of cigarette. In the midbrain, upregulation was detected only in HighNic mice and remained significant in females at short-term deprivation. The high-affinity choline transporter was reduced in the cortex: of HighNic mice by the end of exposure; of both HighNic and LowNic females at short-term deprivation; of LowNic mice at long-term deprivation. These decrements were separable from effects on choline acetyltransferase and acetylcholinesterase activities, suggesting cholinergic synaptic impairment. Here, we demonstrated central cholinergic alterations in an animal model of tobacco smoke exposure during adolescence. This system was sensitive even to tobacco smoke with very low nicotine content.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar-Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil.
| | - Monique Correa-Santos
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar-Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Ana C Dutra-Tavares
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar-Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Danielle Paes-Branco
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar-Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Andre Nunes-Freitas
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar-Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Alex C Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar-Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Cláudio C Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar-Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, Rua Dr. Francisco Portela 1470-Patronato, São Gonçalo, RJ 24435-005, Brazil
| |
Collapse
|
15
|
Besson M, Forget B. Cognitive Dysfunction, Affective States, and Vulnerability to Nicotine Addiction: A Multifactorial Perspective. Front Psychiatry 2016; 7:160. [PMID: 27708591 PMCID: PMC5030478 DOI: 10.3389/fpsyt.2016.00160] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 09/06/2016] [Indexed: 11/17/2022] Open
Abstract
Although smoking prevalence has declined in recent years, certain subpopulations continue to smoke at disproportionately high rates and show resistance to cessation treatments. Individuals showing cognitive and affective impairments, including emotional distress and deficits in attention, memory, and inhibitory control, particularly in the context of psychiatric conditions, such as attention-deficit hyperactivity disorder, schizophrenia, and mood disorders, are at higher risk for tobacco addiction. Nicotine has been shown to improve cognitive and emotional processing in some conditions, including during tobacco abstinence. Self-medication of cognitive deficits or negative affect has been proposed to underlie high rates of tobacco smoking among people with psychiatric disorders. However, pre-existing cognitive and mood disorders may also influence the development and maintenance of nicotine dependence, by biasing nicotine-induced alterations in information processing and associative learning, decision-making, and inhibitory control. Here, we discuss the potential forms of contribution of cognitive and affective deficits to nicotine addiction-related processes, by reviewing major clinical and preclinical studies investigating either the procognitive and therapeutic action of nicotine or the putative primary role of cognitive and emotional impairments in addiction-like features.
Collapse
Affiliation(s)
- Morgane Besson
- Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, Department of Neuroscience, CNRS UMR 3571, Institut Pasteur , Paris , France
| | - Benoît Forget
- Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, Department of Neuroscience, CNRS UMR 3571, Institut Pasteur , Paris , France
| |
Collapse
|
16
|
Liu X, Guo H, Sayed MDS, Lu Y, Yang T, Zhou D, Chen Z, Wang H, Wang C, Xu J. cAMP/PKA/CREB/GLT1 signaling involved in the antidepressant-like effects of phosphodiesterase 4D inhibitor (GEBR-7b) in rats. Neuropsychiatr Dis Treat 2016; 12:219-27. [PMID: 26855578 PMCID: PMC4725689 DOI: 10.2147/ndt.s90960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES GEBR-7b, a potential phosphodiesterase 4D inhibitor, has been shown to have memory-enhancing effects in rodents. However, it is still unknown whether GEBR-7b also has the antidepressant-like effects in rats. Herein, we examined the potential of GEBR-7b to attenuate depression-like behaviors in the rat model of depression induced by chronic unpredictable stress (CUS). Next, we also investigated the alterations of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA) catalytic subunit (PKAca), cAMP response element-binding (CREB), and glutamate transporter 1 (GLT1) levels produced by GEBR-7b in the rats model of depression. METHODS Effects of GEBR-7b on CUS (35 days)-induced depression-like behaviors were examined by measuring immobility time in the forced swimming test (FST). Hippocampal cAMP levels were examined by enzyme-linked immunosorbent assay, whereas PKAca, phosphorylation of CREB (pCREB), CREB, and GLT1 in the hippocampus of rats were subjected to Western blot analysis. RESULTS CUS exposure caused a depression-like behavior evidenced by the increased immobility time in FST. Depression-like behavior induced by CUS was accompanied by a significant increased GLT, decreased cAMP, PKAca, pCREB activities in hippocampus. However, repeated GEBR-7b administration significantly reversed CUS-induced depression-like behavior and changes of cAMP/PKA/CREB/GLT1 signaling. No alteration was observed in locomotor activity in open field test. CONCLUSION These findings indicate that GEBR-7b reversed the depression-like behaviors induced by CUS in rats, which is at least in part mediated by modulating cAMP, PKAca, pCREB, and GLT1 levels in the hippocampus of rats, supporting its neuroprotective potential against behavioral and biochemical dysfunctions induced by CUS.
Collapse
Affiliation(s)
- Xu Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China; Department of Pharmacy, General Hospital of Chinese People's Armed Police Forces, Beijing, Zhejiang, People's Republic of China
| | - Haibiao Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Mohammad Daud Som Sayed
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University, Ningbo, Zhejiang, People's Republic of China; Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Yang Lu
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University, Ningbo, Zhejiang, People's Republic of China; Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Ting Yang
- Department of Pediatrics, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Dongsheng Zhou
- Department of Geriatric Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Zhongming Chen
- Department of Geriatric Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Haitao Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University, Ningbo, Zhejiang, People's Republic of China; Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Jiangping Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
17
|
Abreu-Villaça Y, Filgueiras CC, Correa-Santos M, Cavina CC, Naiff VF, Krahe TE, Manhães AC, Ribeiro-Carvalho A. Tobacco smoke containing high or low levels of nicotine during adolescence: effects on novelty-seeking and anxiety-like behaviors in mice. Psychopharmacology (Berl) 2015; 232:1693-703. [PMID: 25401170 DOI: 10.1007/s00213-014-3801-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/31/2014] [Indexed: 01/11/2023]
Abstract
RATIONALE Thousands of adolescents start smoking daily but information on the effects of tobacco exposure on this age group is scarce. Moreover, the available animal models rely on the effects of nicotine, neglecting other neuroactive components of tobacco. OBJECTIVES We investigated the effects of exposure of adolescent mice to tobacco smoke generated from cigarettes containing either high or low levels of nicotine on novelty seeking and anxiety-like behaviors. METHODS From postnatal day (PN) 30 to 45, male and female Swiss mice were exposed to tobacco smoke (whole body exposure, 8 h/day, 7 days/week) generated from 2R1F (HighNic group: 1.74 mg nicotine/cigarette) or 4A1 (LowNic group: 0.14 mg nicotine/cigarette) research cigarettes, whereas control mice were exposed to ambient air. By the end (PN44-45), shortly (PN49-50), or long after (PN74-75) exposure, mice were tested on the elevated plus maze and on the hole board. RESULTS While HighNic mice presented an increased number of head-dips (increased novelty-seeking) and decreased grooming (increased anxiety-like behavior) by the end of adolescent exposure, only the latter effect persisted shortly after its end. Distinctively, LowNic mice presented reduced head-dips both by the end and shortly after exposure as well as decreased grooming shortly and long after the end of exposure. Interestingly, only HighNic mice presented detectable cotinine (nicotine metabolite) serum levels (109.1 ± 24.0 ng/ml). CONCLUSION Our results demonstrate that even adolescent exposure to tobacco smoke with very low nicotine content can have significant short- and long-term behavioral effects, supporting the hypothesis that adolescents can be particularly vulnerable to the effects of cigarette consumption.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil,
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Le Foll B, Ng E, Di Ciano P, Trigo JM. Psychiatric disorders as vulnerability factors for nicotine addiction: what have we learned from animal models? Curr Top Behav Neurosci 2015; 24:155-170. [PMID: 25638337 DOI: 10.1007/978-3-319-13482-6_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Epidemiological studies indicate a high prevalence of tobacco smoking in subjects with psychiatric disorders. Notably, there is a high prevalence of smoking among those with dependence to other substances, schizophrenia, mood, or anxiety disorders. It has been difficult to understand how these phenomena interact with clinical populations as it is unclear what preceded what in most of the studies. These comorbidities may be best understood by using experimental approaches in well-controlled conditions. Notably, animal models represent advantageous approaches as the parameters under study can be controlled perfectly. This review will focus on evidence collected so far exploring how behavioral effects of nicotine are modified in animal models of psychiatric conditions. Notably, we will focus on behavioral responses induced by nicotine that are relevant for its addictive potential. Despite the clinical relevance and frequency of the comorbidity between psychiatric issues and tobacco smoking, very few studies have been done to explore this issue in animals. The available data suggest that the behavioral and reinforcing effects of nicotine are enhanced in animal models of these comorbidities, although much more experimental work would be required to provide certainty in this domain.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON, M5S 2S1, Canada,
| | | | | | | |
Collapse
|
19
|
Common effects of fat, ethanol, and nicotine on enkephalin in discrete areas of the brain. Neuroscience 2014; 277:665-78. [PMID: 25086310 DOI: 10.1016/j.neuroscience.2014.07.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 01/27/2023]
Abstract
Fat, ethanol, and nicotine share a number of properties, including their ability to reinforce behavior and produce overconsumption. To test whether these substances act similarly on the same neuronal populations in specific brain areas mediating these behaviors, we administered the substances short-term, using the same methods and within the same experiment, and measured their effects, in areas of the hypothalamus (HYPO), amygdala (AMYG), and nucleus accumbens (NAc), on mRNA levels of the opioid peptide, enkephalin (ENK), using in situ hybridization and on c-Fos immunoreactivity (ir) to indicate neuronal activity, using immunofluorescence histochemistry. In addition, we examined for comparison another reinforcing substance, sucrose, and also took measurements of stress-related behaviors and circulating corticosterone (CORT) and triglycerides (TG), to determine if they contribute to these substances' behavioral and physiological effects. Adult Sprague-Dawley rats were gavaged three times daily over 5 days with 3.5 mL of water, Intralipid (20% v/v), ethanol (12% v/v), nicotine (0.01% w/v) or sucrose (22% w/v) (approximately 7 kcal/dose), and tail vein blood was collected for measurements of circulating CORT and TG. On day five, animals were sacrificed, brains removed, and the HYPO, AMYG, and NAc processed for single- or double-labeling of ENK mRNA and c-Fos-ir. Fat, ethanol, and nicotine, but not sucrose, increased the single- and double-labeling of ENK and c-Fos-ir in precisely the same brain areas, the middle parvocellular but not lateral area of the paraventricular nucleus, central but not basolateral nucleus of the AMYG, and core but not shell of the NAc. While having little effect on stress-related behaviors or CORT levels, fat, ethanol, and nicotine all increased circulating levels of TG. These findings suggest that the overconsumption of these three substances and their potential for abuse are mediated by the same populations of ENK-expressing neurons in specific nuclei of the hypothalamus and limbic system.
Collapse
|
20
|
Combined exposure to tobacco smoke and ethanol during adolescence leads to short- and long-term modulation of anxiety-like behavior. Drug Alcohol Depend 2013; 133:52-60. [PMID: 23810373 DOI: 10.1016/j.drugalcdep.2013.05.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/10/2013] [Accepted: 05/30/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND Tobacco smoking is associated with alcohol drinking and consumption of both drugs typically begins during adolescence. Since anxiety is considered a relevant factor for both smoking and drinking due to its motivating force for a continued consumption, anxiety alterations shared by these two drugs could explain their co-use and co-abuse. METHODS Here, we investigated the short- and long-term effects of adolescent tobacco smoke and/or ethanol exposure on anxiety levels. From postnatal day 30-45, Swiss mice were exposed to tobacco smoke (SMK--whole body exposure, 8 h/day) and/or ethanol (ETOH--25% solution, 2g/kg i.p. injected every other day) as follows: (1) SMK+ETOH exposure; (2) SMK exposure; (3) ETOH exposure; (4) Control. Anxiety levels were assessed with the elevated plus maze and open field tests. RESULTS By the end of exposure, SMK female mice presented an anxiolytic response in the elevated plus maze and this response was intensified by co-exposure to ethanol. A short-term deprivation from SMK elicited an anxiogenic state in females in this maze. Although neither smoke nor ethanol effects persisted one month post-exposure, SMK+ETOH male and female mice exhibited an anxiogenic response in the open field. CONCLUSION Adolescent female mice are more susceptible to the anxiolytic effects of SMK. The stronger effect in SMK+ETOH group suggests that, in females, the combined exposure leads to lower anxiety levels. Anxiety levels do not seem to be relevant during a short-term SMK+ETOH deprivation, however, increased anxiety during long-term smoking and drinking deprivation demonstrate late-emergent effects both in males and females.
Collapse
|
21
|
Inhibition of monoamine oxidase isoforms modulates nicotine withdrawal syndrome in the rat. Life Sci 2013; 93:448-53. [PMID: 23988853 DOI: 10.1016/j.lfs.2013.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/02/2013] [Accepted: 08/12/2013] [Indexed: 11/20/2022]
Abstract
AIMS There have been many reports of monoamine oxidase (MAO) inhibition by non-nicotine ingredients in tobacco smoke, persisting for days after smoking cessation. This study determined the effect of inhibiting MAO and its isoforms on nicotine withdrawal syndrome. MAIN METHODS Rats were rendered nicotine-dependent by seven days of subcutaneous (s.c.) 9 mg/kg/day infusion of nicotine bitartrate. Twenty-two hours after termination of infusion, they were observed over 20 min for somatically expressed nicotine withdrawal signs. Three hours before observation, rats were injected intraperitoneally (i.p.) with 4 mg/kg each of the MAO A antagonist clorgyline and the MAO B antagonist deprenyl, or with saline alone. A similar experiment was performed with non-dependent, saline-infused rats. Another experiment compared nicotine-dependent rats that received injections of either saline or 4 mg/kg clorgyline alone. A further experiment compared rats receiving either saline or 4 mg/kg deprenyl alone. KEY FINDINGS Combined treatment with both MAO inhibitors markedly and significantly exacerbated somatically expressed nicotine withdrawal signs in nicotine infused rats, while having no significant effects in saline-infused rats. Rats injected s.c. with 4 mg/kg clorgyline alone had significantly more withdrawal signs than saline-injected rats, while deprenyl-injected rats had significantly fewer signs than saline controls. Assays confirmed that clorgyline thoroughly reduced MAO A enzymatic activity and deprenyl thoroughly reduced MAO B activity. SIGNIFICANCE The results suggest that inhibition of MAO A may contribute to the intensity of withdrawal syndrome in smoking cessation.
Collapse
|
22
|
Brennan KA, Putt F, Truman P. Nicotine-, tobacco particulate matter- and methamphetamine-produced locomotor sensitisation in rats. Psychopharmacology (Berl) 2013; 228:659-72. [PMID: 23519574 DOI: 10.1007/s00213-013-3071-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 03/08/2013] [Indexed: 12/18/2022]
Abstract
RATIONALE Repeated nicotine exposure produces a weak and transient sensitised locomotor response in rats. Since tobacco smoke contains thousands of non-nicotine chemical constituents, these could alter the sensitised response. OBJECTIVES This study aims to compare the magnitude, persistence and spatial distribution of locomotor sensitisation produced by repeated doses of nicotine, aqueous tobacco particulate matter (TPM) and a positive methamphetamine control. METHODS Male Sprague-Dawley rats received five nicotine (0.0, 0.2 or 0.4 mg/kg), TPM (containing 0.2 or 0.4 mg/kg nicotine) or methamphetamine (0.5 mg/kg) injections every second day, followed by a 4-day withdrawal before the first challenge (Challenge 1, C1). The animals were re-challenged again at 15 days post C1 to test for the persistence of sensitisation (Challenge 2, C2). RESULTS There were no major differences in sensitisation profile between nicotine and TPM. At the lowest 0.2 mg/kg nicotine/TPM dose, however, small differences emerged on select test days. CONCLUSIONS The results indicated that the non-nicotinic agents in TPM did not greatly impact the nicotine-produced locomotor-sensitised response. These findings might suggest that the differential pharmacological properties of TPM do not have major clinical significance. Alternatively, the locomotor model might not expose effects of non-nicotinic constituents, and furthermore, might not closely relate to human tobacco dependence. Different reward-related behavioural models should also be utilised to assess potential effects of non-nicotinic constituents before a role in dependence is discounted.
Collapse
Affiliation(s)
- Katharine A Brennan
- School of Psychology, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand.
| | | | | |
Collapse
|
23
|
A mechanistic hypothesis of the factors that enhance vulnerability to nicotine use in females. Neuropharmacology 2013; 76 Pt B:566-80. [PMID: 23684991 DOI: 10.1016/j.neuropharm.2013.04.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 01/23/2023]
Abstract
Women are particularly more vulnerable to tobacco use than men. This review proposes a unifying hypothesis that females experience greater rewarding effects of nicotine and more intense stress produced by withdrawal than males. We also provide a neural framework whereby estrogen promotes greater rewarding effects of nicotine in females via enhanced dopamine release in the nucleus accumbens (NAcc). During withdrawal, we suggest that corticotropin-releasing factor (CRF) stress systems are sensitized and promote a greater suppression of dopamine release in the NAcc of females versus males. Taken together, females display enhanced nicotine reward via estrogen and amplified effects of withdrawal via stress systems. Although this framework focuses on sex differences in adult rats, it is also applied to adolescent females who display enhanced rewarding effects of nicotine, but reduced effects of withdrawal from this drug. Since females experience strong rewarding effects of nicotine, a clinical implication of our hypothesis is that specific strategies to prevent smoking initiation among females are critical. Also, anxiolytic medications may be more effective in females that experience intense stress during withdrawal. Furthermore, medications that target withdrawal should not be applied in a unilateral manner across age and sex, given that nicotine withdrawal is lower during adolescence. This review highlights key factors that promote nicotine use in females, and future studies on sex-dependent interactions of stress and reward systems are needed to test our mechanistic hypotheses. Future studies in this area will have important translational value toward reducing health disparities produced by nicotine use in females. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
|
24
|
Abreu-Villaça Y, de Carvalho Graça AC, Ribeiro-Carvalho A, Naiff VF, Manhães AC, Filgueiras CC. Combined Exposure to Tobacco Smoke and Ethanol in Adolescent Mice Elicits Memory and Learning Deficits Both During Exposure and Withdrawal. Nicotine Tob Res 2012; 15:1211-21. [DOI: 10.1093/ntr/nts250] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Abstract
It is well established that the continued intake of drugs of abuse is reinforcing-that is repeated consumption increases preference. This has been shown in some studies to extend to other drugs of abuse; use of one increases preference for another. In particular, the present review deals with the interaction of nicotine and alcohol as it has been shown that smoking is a risk factor for alcoholism and alcohol use is a risk factor to become a smoker. The review discusses changes in the brain caused by chronic nicotine and chronic alcohol intake to approach the possible mechanisms by which one drug increases the preference for another. Chronic nicotine administration was shown to affect nicotine receptors in the brain, affecting not only receptor levels and distribution, but also receptor subunit composition, thus affecting affinity to nicotine. Other receptor systems are also affected among others catecholamine, glutamate, GABA levels and opiate and cannabinoid receptors. In addition to receptor systems and transmitters, there are endocrine, metabolic and neuropeptide changes as well induced by nicotine. Similarly chronic alcohol intake results in changes in the brain, in multiple receptors, transmitters and peptides as discussed in this overview and also illustrated in the tables. The changes are sex and age-dependent-some changes in males are different from those in females and in general adolescents are more sensitive to drug effects than adults. Although nicotine and alcohol interact-not all the changes induced by the combined intake of both are additive-some are opposing. These opposing effects include those on locomotion, acetylcholine metabolism, nicotine binding, opiate peptides, glutamate transporters and endocannabinoid content among others. The two compounds lower the negative withdrawal symptoms of each other which may contribute to the increase in preference, but the mechanism by which preference increases-most likely consists of multiple components that are not clear at the present time. As the details of induced changes of nicotine and alcohol differ, it is likely that the mechanisms of increasing nicotine preference may not be identical to that of increasing alcohol preference. Stimulation of preference of yet other drugs may again be different -representing one aspect of drug specificity of reward mechanisms.
Collapse
Affiliation(s)
- A Lajtha
- Nathan Kline Institute, Orangeburg, NY 10962, USA
| | | |
Collapse
|