1
|
Khatri SN, Ulangkaya H, Maher EE, Sadek S, Hong M, Woodcox AM, Stoops WW, Gipson CD. Oxycodone withdrawal is associated with increased cocaine self-administration and aberrant accumbens glutamate plasticity in rats. Neuropharmacology 2024; 242:109773. [PMID: 37865136 PMCID: PMC10842432 DOI: 10.1016/j.neuropharm.2023.109773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Individuals with opioid use disorder (OUD) frequently use other substances, including cocaine. Opioid withdrawal is associated with increased likelihood of cocaine use, which may represent an attempt to ameliorate opioid withdrawal effects. Clinically, 30% of co-using individuals take opioids and cocaine exclusively in a sequential manner. Preclinical studies evaluating mechanisms of drug use typically study drugs in isolation. However, polysubstance use is a highly prevalent clinical issue and thus, we established a novel preclinical model of sequential oxycodone and cocaine self-administration (SA) whereby rats acquired oxycodone and cocaine SA in an A-B-A-B design. Somatic signs of withdrawal were evaluated at 0, 22, and 24h following oxycodone SA, with the 24h timepoint representing somatic signs immediately following cocaine SA. Preclinically, aberrant glutamate signaling within the nucleus accumbens core (NAcore) occurs following use of cocaine or opioids, whereby medium spiny neurons (MSNs) rest in a potentiated or depotentiated state, respectively. Further, NAcore glial glutamate transport via GLT-1 is downregulated following SA of either drug alone. However, it is not clear if cocaine can exacerbate opioid-induced changes in glutamate signaling. In this study, NAcore GLT-1 protein and glutamate plasticity were measured (via AMPA/NMDA ratio) following SA. Rats acquired SA of both oxycodone and cocaine regardless of sex, and the acute oxycodone-induced increase in somatic signs at 22h was positively correlated with cocaine consumption during the cocaine testing phase. Cocaine use following oxycodone SA downregulated GLT-1 and reduced AMPA/NMDA ratios compared to cocaine use following food SA. Further, oxycodone SA alone was associated with reduced AMPA/NMDA ratio. Together, behavioral signs of oxycodone withdrawal may drive cocaine use and further dysregulate NAcore glutamate signaling.
Collapse
Affiliation(s)
- Shailesh N Khatri
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Hanaa Ulangkaya
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Erin E Maher
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Safiyah Sadek
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Mei Hong
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Andrea M Woodcox
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - William W Stoops
- Department of Behavioral Science, University of Kentucky, Lexington, KY, USA
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Kamens HM, Flarend G, Wickenheisser A, Horton WJ, Cavigelli SA. The effect of stress on opioid addiction-related behaviors: A review of preclinical literature. Exp Clin Psychopharmacol 2023; 31:523-540. [PMID: 35834183 PMCID: PMC10117442 DOI: 10.1037/pha0000588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Opioid misuse is a critical public health crisis in the United States that results in over 50,000 deaths per year and a substantial economic burden to society. Human epidemiological data suggest that exposure to stress is one of many risk factors for opioid misuse; however, opioid abusers tend to have multiple risk factors and use other drugs in addition to opioids. To identify causal mechanisms by which stress may increase risk, preclinical animal experiments provide a means to conduct experimental manipulations and maintain precise controls over environmental and drug exposures. The current review examines how stressful experiences alter opioid addiction-related behaviors in animal models, with a focus on how age of stress exposure affects drug outcomes. The findings summarized here suggest that neonatal or adult stress increase behaviors indicative of opioid intake and reward in rodent models, but that adolescent social stress may protect against later opioid addiction-related behaviors, which contradicts human epidemiological literature. We highlight three important areas to consider across this body of literature: the species and/or strain used, stressor type, and inclusion of both sexes. Finally, we suggest areas where additional research is warranted. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Helen M. Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America
| | - Geneva Flarend
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America
| | - Anna Wickenheisser
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America
| | - William J. Horton
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America
| | - Sonia A. Cavigelli
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America
| |
Collapse
|
3
|
Mathieson E, Irving C, Koberna S, Nicholson M, Otto MW, Kantak KM. Role of preexisting inhibitory control deficits vs. drug use history in mediating insensitivity to aversive consequences in a rat model of polysubstance use. Psychopharmacology (Berl) 2022; 239:2377-2394. [PMID: 35391547 PMCID: PMC8989405 DOI: 10.1007/s00213-022-06134-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/30/2022] [Indexed: 10/26/2022]
Abstract
RATIONALE The nature and predictors of insensitivity to aversive consequences of heroin + cocaine polysubstance use are not well characterized. OBJECTIVES Translational methods incorporating a tightly controlled animal model of drug self-administration and measures of inhibitory control and avoidance behavior might be helpful for clarifying this issue. METHODS The key approach for distinguishing potential contributions of pre-existing inhibitory control deficits vs. drug use history in meditating insensitivity to aversive consequences was comparison of two rat strains: Wistar (WIS/Crl), an outbred strain, and the spontaneously hypertensive rat (SHR/NCrl), an inbred strain shown previously to exhibit heightened cocaine and heroin self-administration and poor inhibitory control relative to WIS/Crl. RESULTS In separate tasks, SHR/NCrl displayed greater impulsive action and compulsive-like behavior than WIS/Crl prior to drug exposure. Under two different schedules of drug delivery, SHR/NCrl self-administered more cocaine than WIS/Crl, but self-administered a similar amount of heroin + cocaine as WIS/Crl. When half the session cycles were punished by random foot shock, SHR/NCrl initially were less sensitive to punishment than WIS/Crl when self-administering cocaine, but were similarly insensitive to punishment when self-administering heroin + cocaine. Based on correlation analyses, only trait impulsivity predicted avoidance capacity in rats self-administering cocaine and receiving yoked-saline. In contrast, only amount of drug use predicted avoidance capacity in rats self-administering heroin + cocaine. Additionally, baseline drug seeking and taking predicted punishment insensitivity in rats self-administering cocaine or heroin + cocaine. CONCLUSIONS Based on the findings revealed in this animal model, human laboratory research concerning the nature and predictors of insensitivity to aversive consequences in heroin and cocaine polysubstance vs. monosubstance users is warranted.
Collapse
Affiliation(s)
- Elon Mathieson
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Carolyn Irving
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Sarah Koberna
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Megan Nicholson
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Michael W Otto
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Kathleen M Kantak
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
| |
Collapse
|
4
|
Cattane N, Vernon AC, Borsini A, Scassellati C, Endres D, Capuron L, Tamouza R, Benros ME, Leza JC, Pariante CM, Riva MA, Cattaneo A. Preclinical animal models of mental illnesses to translate findings from the bench to the bedside: Molecular brain mechanisms and peripheral biomarkers associated to early life stress or immune challenges. Eur Neuropsychopharmacol 2022; 58:55-79. [PMID: 35235897 DOI: 10.1016/j.euroneuro.2022.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Animal models are useful preclinical tools for studying the pathogenesis of mental disorders and the effectiveness of their treatment. While it is not possible to mimic all symptoms occurring in humans, it is however possible to investigate the behavioral, physiological and neuroanatomical alterations relevant for these complex disorders in controlled conditions and in genetically homogeneous populations. Stressful and infection-related exposures represent the most employed environmental risk factors able to trigger or to unmask a psychopathological phenotype in animals. Indeed, when occurring during sensitive periods of brain maturation, including pre, postnatal life and adolescence, they can affect the offspring's neurodevelopmental trajectories, increasing the risk for mental disorders. Not all stressed or immune challenged animals, however, develop behavioral alterations and preclinical animal models can explain differences between vulnerable or resilient phenotypes. Our review focuses on different paradigms of stress (prenatal stress, maternal separation, social isolation and social defeat stress) and immune challenges (immune activation in pregnancy) and investigates the subsequent alterations in several biological and behavioral domains at different time points of animals' life. It also discusses the "double-hit" hypothesis where an initial early adverse event can prime the response to a second negative challenge. Interestingly, stress and infections early in life induce the activation of the hypothalamic-pituitary-adrenal (HPA) axis, alter the levels of neurotransmitters, neurotrophins and pro-inflammatory cytokines and affect the functions of microglia and oxidative stress. In conclusion, animal models allow shedding light on the pathophysiology of human mental illnesses and discovering novel molecular drug targets for personalized treatments.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, United Kingdom
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lucile Capuron
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Ryad Tamouza
- Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Laboratoire Neuro-psychiatrie translationnelle, AP-HP, UniversitéParis Est Créteil, INSERM U955, IMRB, Hôpital Henri Mondor, Fondation FondaMental, F-94010 Créteil, France
| | - Michael Eriksen Benros
- Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Copenhagen University Hospital, Gentofte Hospitalsvej 15, 4th floor, 2900 Hellerup, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Juan C Leza
- Department of Pharmacology & Toxicology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Hospital 12 de Octubre (i+12), IUIN-UCM. Spain
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, United Kingdom
| | - Marco A Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy.
| |
Collapse
|
5
|
Tretyak V, Huffman A, Lippard ET. Peer victimization and associated alcohol and substance use: Prospective pathways for negative outcomes. Pharmacol Biochem Behav 2022; 218:173409. [DOI: 10.1016/j.pbb.2022.173409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 03/07/2022] [Accepted: 05/25/2022] [Indexed: 01/14/2023]
|
6
|
Franco D, Wulff AB, Lobo MK, Fox ME. Chronic Physical and Vicarious Psychosocial Stress Alter Fentanyl Consumption and Nucleus Accumbens Rho GTPases in Male and Female C57BL/6 Mice. Front Behav Neurosci 2022; 16:821080. [PMID: 35221946 PMCID: PMC8867005 DOI: 10.3389/fnbeh.2022.821080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Chronic stress can increase the risk of developing a substance use disorder in vulnerable individuals. Numerous models have been developed to probe the underlying neurobiological mechanisms, however, most prior work has been restricted to male rodents, conducted only in rats, or introduces physical injury that can complicate opioid studies. Here we sought to establish how chronic psychosocial stress influences fentanyl consumption in male and female C57BL/6 mice. We used chronic social defeat stress (CSDS), or the modified vicarious chronic witness defeat stress (CWDS), and used social interaction to stratify mice as stress-susceptible or resilient. We then subjected mice to a 15 days fentanyl drinking paradigm in the home cage that consisted of alternating forced and choice periods with increasing fentanyl concentrations. Male mice susceptible to either CWDS or CSDS consumed more fentanyl relative to unstressed mice. CWDS-susceptible female mice did not differ from unstressed mice during the forced periods, but showed increased preference for fentanyl over time. We also found decreased expression of nucleus accumbens Rho GTPases in male, but not female mice following stress and fentanyl drinking. We also compare fentanyl drinking behavior in mice that had free access to plain water throughout. Our results indicate that stress-sensitized fentanyl consumption is dependent on both sex and behavioral outcomes to stress.
Collapse
Affiliation(s)
- Daniela Franco
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andreas B. Wulff
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Megan E. Fox
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States,*Correspondence: Megan E. Fox,
| |
Collapse
|
7
|
Lemon C, Del Arco A. Intermittent social stress produces different short- and long-term effects on effort-based reward-seeking behavior. Behav Brain Res 2022; 417:113613. [PMID: 34600962 PMCID: PMC8670294 DOI: 10.1016/j.bbr.2021.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/26/2023]
Abstract
Previous studies show that intermittent social defeat (ISD) stress increases self-administration of psychostimulants, which suggests that ISD promotes reward-seeking behavior and, ultimately, increases vulnerability to develop drug abuse. The present study investigates whether ISD alters cost/benefit evaluations to promote reward-seeking behavior and whether these alterations are time-dependent. Male rats performed two different tasks that assessed their motivation to seek and consume food rewards. An effort-discounting task in which rats chose between less and more effortful options (i.e., 1 lever-press versus 2, 5, 10 or 20 lever-presses) associated with low- and high-reward (i.e., 1 sugar pellet versus 3 sugar pellets), respectively; and a progressive ratio task in which rats had to increase their effort (more lever presses) to obtain a sugar pellet. ISD consisted of exposing animals to social defeat once every three days for ten days (4 stress episodes). Rats were tested 24-48 h after stress episodes, and 1 week and 6 weeks after the last stress episode. In the effort-discounting task, stressed animals showed a decrease in their preference for high rewards associated with more effort (i.e., 10 and 20 lever-presses). These effects were transient and not maintained one week after stress. In the progressive ratio task, stressed animals showed an increase in the number of lever presses to obtain rewards that emerged six weeks after the last stress episode. These results suggest different short- and long-term effects on the motivation for rewards after ISD and indicate temporal dynamic adaptations in the function of the brain reward system.
Collapse
Affiliation(s)
- Christopher Lemon
- HSERM, School of Applied Sciences, University of Mississippi, Oxford, MS
| | - Alberto Del Arco
- HSERM, School of Applied Sciences, University of Mississippi, Oxford, MS,Neurobiology and Anatomical Sciences, Medical School, University of Mississippi Medical Center, Jackson, MS,Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS
| |
Collapse
|
8
|
Poisson CL, Engel L, Saunders BT. Dopamine Circuit Mechanisms of Addiction-Like Behaviors. Front Neural Circuits 2021; 15:752420. [PMID: 34858143 PMCID: PMC8631198 DOI: 10.3389/fncir.2021.752420] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
Addiction is a complex disease that impacts millions of people around the world. Clinically, addiction is formalized as substance use disorder (SUD), with three primary symptom categories: exaggerated substance use, social or lifestyle impairment, and risky substance use. Considerable efforts have been made to model features of these criteria in non-human animal research subjects, for insight into the underlying neurobiological mechanisms. Here we review evidence from rodent models of SUD-inspired criteria, focusing on the role of the striatal dopamine system. We identify distinct mesostriatal and nigrostriatal dopamine circuit functions in behavioral outcomes that are relevant to addictions and SUDs. This work suggests that striatal dopamine is essential for not only positive symptom features of SUDs, such as elevated intake and craving, but also for impairments in decision making that underlie compulsive behavior, reduced sociality, and risk taking. Understanding the functional heterogeneity of the dopamine system and related networks can offer insight into this complex symptomatology and may lead to more targeted treatments.
Collapse
Affiliation(s)
- Carli L. Poisson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Liv Engel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
| | - Benjamin T. Saunders
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
9
|
The Role of Social Stress in the Development of Inhibitory Control Deficit: A Systematic Review in Preclinical Models. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094953. [PMID: 34066570 PMCID: PMC8124175 DOI: 10.3390/ijerph18094953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
Inhibitory control deficit and impulsivity and compulsivity behaviours are present in different psychopathological disorders such as addiction, obsessive-compulsive disorders and schizophrenia, among others. Social relationships in humans and animals are governed by social organization rules, which modulate inhibitory control and coping strategies against stress. Social stress is associated with compulsive alcohol and drug use, pointing towards a determining factor in an increased vulnerability to inhibitory control deficit. The goal of the present review is to assess the implication of social stress and dominance on the vulnerability to develop impulsive and/or compulsive spectrum disorders, with the aid of the information provided by animal models. A systematic search strategy was carried out on the PubMed and Web of Science databases, and the most relevant information was structured in the text and tables. A total of 34 studies were recruited in the qualitative synthesis. The results show the role of social stress and dominance in increased drug and alcohol use, aggressive and impulsive behaviour. Moreover, the revised studies support the role of Dopaminergic (DA) activity and the alterations in the dopaminergic D1/D2 receptors as key factors in the development of inhibitory control deficit by social stress.
Collapse
|
10
|
Acquisition of remifentanil self-administration: Enhanced in female rats but no effect of adolescent stress exposure. Pharmacol Biochem Behav 2020; 199:173038. [PMID: 32910927 DOI: 10.1016/j.pbb.2020.173038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 11/23/2022]
Abstract
Animal models of acquisition have been vital in shaping our understanding of vulnerability factors that influence susceptibility to drugs of abuse. Decades of research substantiates a number of biological, environmental, and behavioral factors that predict vulnerability - many of which have been important in the development of early intervention efforts in humans. The goal of the present study was to examine the acquisition of a synthetic opioid derivative in 66 adult male and female Long-Evans rats following histories of stress exposure during adolescence. Stress-exposed rats were subjected to a mild stress paradigm, which included alternating exposure to synthetic fox feces and physical restraint for eight days. Following stress induction and assessment, all rats were implanted with intravenous catheters in order to self-administer remifentanil (1 μm/kg/infusion) with no prior operant training. Acquisition of remifentanil self-administration was measured over 15 days. Findings indicate that regardless of stress condition, female rats acquired remifentanil self-administration sooner and emitted more active lever presses than males. Stress exposed animals exhibited increased anxiety-like response compared to the control group following exposure to stress, operationalized as decreased exploratory behavior on an Elevated Plus Maze. However, these effects were not expressed as significant differences in self-administration by stress. Together, these findings indicate that sex differences are evident in remifentanil self-administration.
Collapse
|
11
|
Müller CP. Drug instrumentalization. Behav Brain Res 2020; 390:112672. [PMID: 32442549 DOI: 10.1016/j.bbr.2020.112672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022]
Abstract
Psychoactive drugs with addiction potential are widely used by people of virtually all cultures in a non-addictive way. In order to understand this behaviour, its population penetrance, and its persistence, drug instrumentalization was suggested as a driving force for this consumption. Drug instrumentalization theory holds that psychoactive drugs are consumed in a very systematic way in order to make other, non-drug-related behaviours more efficient. Here, we review the evolutionary origin of this behaviour and its psychological mechanisms and explore the neurobiological and neuropharmacological mechanisms underlying them. Instrumentalization goals are discussed, for which an environmentally selective and mental state-dependent consumption of psychoactive drugs can be learned and maintained in a non-addictive way. A small percentage of people who regularly instrumentalize psychoactive drugs make a transition to addiction, which often starts with qualitative and quantitative changes in the instrumentalization goals. As such, addiction is proposed to develop from previously established long-term drug instrumentalization. Thus, preventing and treating drug addiction in an individualized medicine approach may essentially require understanding and supporting personal instrumentalization goals.
Collapse
Affiliation(s)
- Christian P Müller
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| |
Collapse
|
12
|
Ahmed SH, Badiani A, Miczek KA, Müller CP. Non-pharmacological factors that determine drug use and addiction. Neurosci Biobehav Rev 2020; 110:3-27. [PMID: 30179633 PMCID: PMC6395570 DOI: 10.1016/j.neubiorev.2018.08.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/26/2018] [Accepted: 08/28/2018] [Indexed: 12/26/2022]
Abstract
Based on their pharmacological properties, psychoactive drugs are supposed to take control of the natural reward system to finally drive compulsory drug seeking and consumption. However, psychoactive drugs are not used in an arbitrary way as pure pharmacological reinforcement would suggest, but rather in a highly specific manner depending on non-pharmacological factors. While pharmacological effects of psychoactive drugs are well studied, neurobiological mechanisms of non-pharmacological factors are less well understood. Here we review the emerging neurobiological mechanisms beyond pharmacological reinforcement which determine drug effects and use frequency. Important progress was made on the understanding of how the character of an environment and social stress determine drug self-administration. This is expanded by new evidence on how behavioral alternatives and opportunities for drug instrumentalization generate different patterns of drug choice. Emerging evidence suggests that the neurobiology of non-pharmacological factors strongly determines pharmacological and behavioral drug action and may, thus, give rise for an expanded system's approach of psychoactive drug use and addiction.
Collapse
Affiliation(s)
- Serge H Ahmed
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France
| | - Aldo Badiani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Sussex Addiction Research and Intervention Centre (SARIC), School of Psychology, University of Sussex, BN1 9RH Brighton, UK
| | - Klaus A Miczek
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA 02155, USA; Department of Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| |
Collapse
|
13
|
Conditioned taste avoidance induced by the combination of heroin and cocaine: Implications for the use of speedball. Pharmacol Biochem Behav 2019; 187:172801. [PMID: 31678611 DOI: 10.1016/j.pbb.2019.172801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 11/30/2022]
Abstract
Speedball (heroin + cocaine) is a prevalent drug combination among intravenous drug users. Although its use is generally discussed to be a function of changes in the rewarding effects of either or both drugs, changes in the aversive effects of either drug may also be impacted (weakened) by the combination. To address this latter possibility and its potential role in the use of speedball, the present studies examined the interaction of cocaine and heroin in taste avoidance conditioning. In Experiment 1, male Sprague-Dawley rats were given access to a novel saccharin solution and then injected with either vehicle or heroin (3.2 mg/kg, IP) followed immediately by various doses of cocaine (10, 18 or 32 mg/kg, SC). At the two lowest doses of cocaine, only animals injected with the drug combination (H + C) displayed a taste avoidance relative to control subjects (taste avoidance was induced with both the combination and the high dose of cocaine). At no dose did animals injected with the combination of heroin and cocaine drink more than animals injected with cocaine alone. In Experiment 2, male Sprague-Dawley rats were similarly treated but injected with vehicle or cocaine (10 mg/kg) followed by injections of various doses of heroin (1.8, 3.2, 5.6 or 10 mg/kg). At the three highest doses of heroin, only animals injected with the drug combination (C + H) displayed significant avoidance relative to control subjects (no avoidance was evident with the combination of cocaine and the low dose of heroin). At no dose did animals injected with the combination of cocaine and heroin drink more than animals injected with heroin alone. Together, these results suggest that the aversive effects of heroin and cocaine are not attenuated by co-administration by cocaine and heroin, respectively. The importance of this for the use of speedball was discussed.
Collapse
|
14
|
Blouin AM, Pisupati S, Hoffer CG, Hafenbreidel M, Jamieson SE, Rumbaugh G, Miller CA. Social stress-potentiated methamphetamine seeking. Addict Biol 2019; 24:958-968. [PMID: 30105771 PMCID: PMC6375809 DOI: 10.1111/adb.12666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/17/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
Abstract
Human studies of substance use disorder show that psychological stress and drug availability interact following rehabilitation, contributing to the high relapse potential. Social stressors trigger particularly strong motivation for drug, but how this affects neuronal function to increase relapse is unknown. Animal models, which allow for the dissection of neural mechanisms, primarily utilize physical stressors to trigger relapse. To recapitulate psychosocial post-rehabilitation challenges in animals, we developed a model of social stress-potentiated methamphetamine (METH) seeking. Rats receive a single social defeat (SD) session after completion of self-administration and extinction of lever pressing. While a reminder of the SD was insufficient to reinstate METH seeking on its own, rats that received a reminder of SD followed by a METH-priming injection displayed potentiated reinstatement over METH-priming alone. Examination of neuronal activation patterns of the METH-primed reinstatement session identified c-Fos-immunoreactivity in the basolateral amygdala (BLA) as correlated with SD score, a measure of defeat latency. Rapidly defeated rats showed potentiated METH-primed reinstatement and elevated BLA c-Fos compared with controls. Conversely, rats that were undefeated during the social stress did not show potentiated METH-primed reinstatement or elevated BLA c-Fos. Interestingly, inactivation of the BLA with baclofen/muscimol prior to the stress reminder and METH-priming generated a potentiation of METH seeking in the undefeated rats, suggesting the BLA may mediate resilience to the stressor. This model provides a tool for the further dissection of neural mechanisms mediating social stress-potentiated relapse and for the development of relapse-reducing therapeutics.
Collapse
Affiliation(s)
- Ashley M. Blouin
- Department of Molecular Medicine
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | - Swathi Pisupati
- Department of Molecular Medicine
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | - Colton G. Hoffer
- Department of Molecular Medicine
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | - Madalyn Hafenbreidel
- Department of Molecular Medicine
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | - Sarah E. Jamieson
- Department of Molecular Medicine
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | - Courtney A. Miller
- Department of Molecular Medicine
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| |
Collapse
|
15
|
Consequence of Two Protocols of Social Defeat Stress on Nicotine-Induced Psychomotor Effects in Mice. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5404251. [PMID: 31179329 PMCID: PMC6507117 DOI: 10.1155/2019/5404251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/23/2019] [Accepted: 04/04/2019] [Indexed: 11/24/2022]
Abstract
Exposure to stress may contribute to enhanced vulnerability to drug use disorders, by altering sensitivity to drug-related reward and psychomotor effects. This study aimed to characterize the psychomotor effects of nicotine administration and then investigate the consequences of two types of repeated social defeat stress (episodic and continuous) on nicotine-induced psychomotor effects in mice. Adult male Swiss mice were treated for 13 days with daily injections of nicotine (0.1, 0.4, or 1.0 mg/kg, s.c.) and received saline and nicotine challenges (0, 0.1 and 0.4 mg/kg) after a withdrawal period. Dose-dependent effects were observed in locomotor response to nicotine, with trends for locomotor stimulation after intermittent (but not acute) administration of 0.1 mg/kg. Higher nicotine doses caused acute locomotor suppression (0.4 and 1.0 mg/kg) and tolerance after intermittent administration (0.4 mg/kg dose). In separate cohorts, experimental mice were daily defeated by aggressive mice, using the resident-intruder model, for 10 days. After brief confrontations, intruders returned to their home cage (episodic stress) or were continuously exposed to the aggressive resident for 24 h (continuous stress), until the following defeat. After the 10-day stress protocol, mice received saline and nicotine challenges (0 and 0.1 mg/kg, s.c.) in locomotor tests. Mice were also tested for methamphetamine-induced locomotor response (1.0 mg/kg, i.p.). Both defeat protocols induced short-term locomotor suppression (24h after stress), which was further suppressed by nicotine only in mice exposed to continuous defeat stress. Ten days after stress, locomotor behavior was no longer suppressed in defeated mice of either stress protocol. Mice exposed to continuous defeat stress showed a reduced stimulant response to methamphetamine, 12 days after termination of stress. Our findings indicate that exposure to continuous defeat stress facilitates nicotine-induced locomotor suppression shortly after stress and reduces methamphetamine-induced stimulation in the long term.
Collapse
|
16
|
Role of N-methyl-D-aspartate receptors in the long-term effects of repeated social defeat stress on the rewarding and psychomotor properties of cocaine in mice. Behav Brain Res 2019; 361:95-103. [DOI: 10.1016/j.bbr.2018.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023]
|
17
|
Bisagno V, Cadet JL. Expression of immediate early genes in brain reward circuitries: Differential regulation by psychostimulant and opioid drugs. Neurochem Int 2018; 124:10-18. [PMID: 30557593 DOI: 10.1016/j.neuint.2018.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/27/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
Abstract
Although some of the clinical manifestations of substance use disorders might be superficially similar, it is highly likely that different classes of abused drugs including opioids (heroin, morphine, and oxycodone, other opioids) and psychostimulants (cocaine and amphetamines) cause different neuroadaptations in various brain regions dependent in the distribution and concentration of their biochemical sites of actions. In fact, different molecular networks are indeed impacted by acute and chronic administration of addictive substances. Some of the genes whose expression is influenced by the administration of these substances are immediate-early genes (IEGs). IEGs include classes of low expression genes that can become very highly induced within seconds or minutes of activation by endogenous or exogenous stimuli. These IEGs might play important roles in activating target genes that regulate adaptations implicated in the behavioral manifestations diagnosed as addiction. Therefore, the purpose of this review is to provide an overview of recent data on the effects of psychostimulants and opioids on IEG expression in the brain. The review documents some contrasting effects of these classes of drugs on gene expression and indicates that further studies are necessary to identify the specific effects of each drug class when trying to predict clinical responses to therapeutic agents.
Collapse
Affiliation(s)
- Veronica Bisagno
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Junín 956, piso 5, C1113, Buenos Aires, Argentina
| | - Jean Lud Cadet
- NIDA Intramural Program, Molecular Neuropsychiatry Research Branch, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
18
|
Newman EL, Leonard MZ, Arena DT, de Almeida RMM, Miczek KA. Social defeat stress and escalation of cocaine and alcohol consumption: Focus on CRF. Neurobiol Stress 2018; 9:151-165. [PMID: 30450381 PMCID: PMC6236516 DOI: 10.1016/j.ynstr.2018.09.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022] Open
Abstract
Both the ostensibly aversive effects of unpredictable episodes of social stress and the intensely rewarding effects of drugs of abuse activate the mesocorticolimbic dopamine systems. Significant neuroadaptations in interacting stress and reward neurocircuitry may underlie the striking connection between stress and substance use disorders. In rodent models, recurring intermittent exposure to social defeat stress appears to produce a distinct profile of neuroadaptations that translates most readily to the repercussions of social stress in humans. In the present review, preclinical rodent models of social defeat stress and subsequent alcohol, cocaine or opioid consumption are discussed with regard to: (1) the temporal pattern of social defeat stress, (2) male and female protocols of social stress-escalated drug consumption, and (3) the neuroplastic effects of social stress, which may contribute to escalated drug-taking. Neuroadaptations in corticotropin-releasing factor (CRF) and CRF modulation of monoamines in the ventral tegmental area and the bed nucleus of the stria terminalis are highlighted as potential mechanisms underlying stress-escalated drug consumption. However, the specific mechanisms that drive CRF-mediated increases in dopamine require additional investigation as do the stress-induced neuroadaptations that may contribute to the development of compulsive patterns of drug-taking.
Collapse
Affiliation(s)
- Emily L Newman
- Psychology Dept., Tufts University, Medford, MA, 02155, USA
| | | | | | - Rosa M M de Almeida
- Institute of Psychology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Klaus A Miczek
- Psychology Dept., Tufts University, Medford, MA, 02155, USA.,Dept. of Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA, 02111, USA
| |
Collapse
|
19
|
Shimamoto A. Social Defeat Stress, Sex, and Addiction-Like Behaviors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 140:271-313. [PMID: 30193707 DOI: 10.1016/bs.irn.2018.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Social confrontation is a form of social interaction in animals where two conspecific individuals confront each other in dispute over territory, during the formation of hierarchies, and during breeding seasons. Typically, a social confrontation involves a prevailing individual and a yielding individual. The prevailing individual often exhibits aggressive postures and launches attacks, whereas the yielding individual often adopts postures of defeat. The yielding or defeated animals experience a phenomenon known as social defeat stress, in which they show exaggerated stress as well as autonomic and endocrine responses that cause impairment of both the brain and body. In laboratory settings, one can reliably generate social defeat stress by allowing a naïve (or already defeated) animal to intrude into a home cage in which its resident has already established a territory or is nursing. This resident-intruder paradigm has been widely used in both males and females to study mechanisms in the brain that underlie the stress responses. Stress has profound effects on drug reward for cocaine, methamphetamine, alcohol, and opioids. Particularly, previous experiences with social defeat can exaggerate subsequent addiction-like behaviors. The extent of these addiction-like behaviors depends on the intensity, duration, frequency, and intermittency of the confrontation episodes. This chapter describes four types of social defeat stress: acute, repeated, intermittent, and chronic. Specifically, it focuses on social defeat stress models used in laboratories to study individual, sex, and animal strain differences in addiction-like behaviors.
Collapse
Affiliation(s)
- Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, Meharry Medical College, Nashville, TN, United States.
| |
Collapse
|
20
|
Manz KM, Levine WA, Seckler JC, Iskander AN, Reich CG. A novel adolescent chronic social defeat model: reverse-Resident-Intruder Paradigm (rRIP) in male rats. Stress 2018; 21:169-178. [PMID: 29307250 PMCID: PMC6137812 DOI: 10.1080/10253890.2017.1423285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Psychosocial stress is linked to the etiology of several neuropsychiatric disorders, including Major Depressive Disorder and Post-Traumatic-Stress-Disorder. Adolescence is a critical neurobehavioral developmental period wherein the maturing nervous system is sensitive to stress-related psychosocial events. The effects of social defeat stress, an animal model of psychosocial stress, on adolescent neurobehavioral phenomena are not well explored. Using the standard Resident-Intruder-Paradigm (RIP), adolescent Long-Evans (LE, residents, n = 100) and Sprague-Dawley (SD, intruders, n = 100) rats interacted for five days to invoke chronic social stress. Tests of depressive behavior (forced-swim-test (FST)), fear conditioning, and long-term synaptic plasticity are affected in various adult rodent chronic stress models, thus we hypothesized that these phenomena would be similarly affected in adolescent rats. Serendipitously, we observed the Intruders became the dominant rats and the Residents were the defeated/submissive rats. This robust and reliable role-reversal resulted in defeated LE-Residents showing a depressive-like state (increased time spent immobile in the FST), enhanced fear conditioning in both hippocampal-dependent and hippocampal-independent fear paradigms and altered hippocampal long-term synaptic plasticity, measured electrophysiologically in vitro in hippocampal slices. Importantly, SD-Intruders, SD and LE controls did not significantly differ from each other in any of these assessments. This reverse-Resident-Intruder-Paradigm (rRIP) represents a novel animal model to study the effects of stress on adolescent neurobehavioral phenomenon.
Collapse
Affiliation(s)
- Kevin M Manz
- a Program in Psychology , Ramapo College of New Jersey , Mahwah , NJ , USA
| | - Wendy A Levine
- a Program in Psychology , Ramapo College of New Jersey , Mahwah , NJ , USA
| | - Joshua C Seckler
- a Program in Psychology , Ramapo College of New Jersey , Mahwah , NJ , USA
| | - Anthony N Iskander
- a Program in Psychology , Ramapo College of New Jersey , Mahwah , NJ , USA
| | - Christian G Reich
- a Program in Psychology , Ramapo College of New Jersey , Mahwah , NJ , USA
| |
Collapse
|
21
|
Cooper SE, Kechner M, Caraballo-Pérez D, Kaska S, Robison AJ, Mazei-Robison MS. Comparison of chronic physical and emotional social defeat stress effects on mesocorticolimbic circuit activation and voluntary consumption of morphine. Sci Rep 2017; 7:8445. [PMID: 28814751 PMCID: PMC5559445 DOI: 10.1038/s41598-017-09106-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/20/2017] [Indexed: 12/19/2022] Open
Abstract
Chronic social defeat stress (CSDS) is a well-established rodent model of depression that induces persistent social avoidance. CSDS triggers molecular adaptations throughout the mesocorticolimbic reward circuit, including changes in the activity of dopamine neurons in the ventral tegmental area (VTA), that may also influence drug reward. One limitation of traditional, physical CSDS (PS) is that injury complicates the study of opiate drugs like morphine. Thus, we sought to characterize a variation of CSDS, termed emotional CSDS (ES), that eliminates this confound. We assessed the effect of PS and ES on mesocorticolimbic circuit activation, VTA gene expression, and morphine intake. We found that PS and ES similarly induced ΔFosB in the hippocampus, but only PS significantly increased ΔFosB expression in the prefrontal cortex and striatum. In contrast, cFos expression was similarly reduced by both PS and ES. Interestingly, we found that PS and ES similarly increased voluntary morphine consumption immediately following stress, despite differences in the magnitude of the depressive phenotype and striatal ΔFosB expression at this time point. Combined, these data suggest that both stress paradigms may be useful for investigation of stress-induced changes in drug behavior.
Collapse
Affiliation(s)
- S E Cooper
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - M Kechner
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - D Caraballo-Pérez
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - S Kaska
- Dept. of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - A J Robison
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
- Dept. of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - M S Mazei-Robison
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA.
- Dept. of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
22
|
Reconsidering depression as a risk factor for substance use disorder: Insights from rodent models. Neurosci Biobehav Rev 2017; 77:303-316. [DOI: 10.1016/j.neubiorev.2017.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/25/2017] [Accepted: 04/01/2017] [Indexed: 12/21/2022]
|
23
|
Montagud-Romero S, Montesinos J, Pascual M, Aguilar MA, Roger-Sanchez C, Guerri C, Miñarro J, Rodríguez-Arias M. `Up-regulation of histone acetylation induced by social defeat mediates the conditioned rewarding effects of cocaine. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:39-48. [PMID: 27180319 DOI: 10.1016/j.pnpbp.2016.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/24/2016] [Accepted: 04/28/2016] [Indexed: 12/16/2022]
Abstract
Social defeat (SD) induces a long-lasting increase in the rewarding effects of psychostimulants measured using the self-administration and conditioned place procedures (CPP). However, little is known about the epigenetic changes induced by social stress and about their role in the increased response to the rewarding effects of psychostimulants. Considering that histone acetylation regulates transcriptional activity and contributes to drug-induced behavioral changes, we addressed the hypothesis that SD induces transcriptional changes by histone modifications associated with the acquisition of place conditioning. After a fourth defeat, H3(K9) acetylation was decreased in the hippocampus, while there was an increase of HAT and a decrease of HDAC levels in the cortex. Three weeks after the last defeat, mice displayed an increase in histone H4(K12) acetylation and an upregulation of histone acetyl transferase (HAT) activity in the hippocampus. In addition, H3(K4)me3, which is closely associated with transcriptional initiation, was also augmented in the hippocampus three weeks after the last defeat. Inhibition of HAT by curcumin (100mg/kg) before each SD blocked the increase in the conditioned reinforcing effects of 1mg/kg of cocaine, while inhibition of HDAC by valproic acid (500mg/kg) before social stress potentiated cocaine-induced CPP. Preference was reinstated when animals received a priming dose of 0.5mg/kg of cocaine, an effect that was absent in untreated defeated mice. These results suggest that the experience of SD induces chromatin remodeling, alters histone acetylation and methylation, and modifies the effects of cocaine on place conditioning. They also point to epigenetic mechanisms as potential avenues leading to new treatments for the long-term effects of social stress on drug addiction.
Collapse
Affiliation(s)
- S Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - J Montesinos
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - M Pascual
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - M A Aguilar
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - C Roger-Sanchez
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - C Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - J Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - M Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain.
| |
Collapse
|
24
|
Carneiro de Oliveira PE, Leão RM, Bianchi PC, Marin MT, Planeta CDS, Cruz FC. Stress-Induced Locomotor Sensitization to Amphetamine in Adult, but not in Adolescent Rats, Is Associated with Increased Expression of ΔFosB in the Nucleus Accumbens. Front Behav Neurosci 2016; 10:173. [PMID: 27672362 PMCID: PMC5018519 DOI: 10.3389/fnbeh.2016.00173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/30/2016] [Indexed: 12/18/2022] Open
Abstract
While clinical and pre-clinical evidence suggests that adolescence is a risk period for the development of addiction, the underlying neural mechanisms are largely unknown. Stress during adolescence has a huge influence on drug addiction. However, little is known about the mechanisms related to the interaction among stress, adolescence and addiction. Studies point to ΔFosB as a possible target for this phenomenon. In the present study, adolescent and adult rats (postnatal day 28 and 60, respectively) were restrained for 2 h once a day for 7 days. Three days after their last exposure to stress, the animals were challenged with saline or amphetamine (1.0 mg/kg i.p.) and amphetamine-induced locomotion was recorded. Immediately after the behavioral tests, rats were decapitated and the nucleus accumbens was dissected to measure ΔFosB protein levels. We found that repeated restraint stress increased amphetamine-induced locomotion in both the adult and adolescent rats. Furthermore, in adult rats, stress-induced locomotor sensitization was associated with increased expression of ΔFosB in the nucleus accumbens. Our data suggest that ΔFosB may be involved in some of the neuronal plasticity changes associated with stress induced-cross sensitization with amphetamine in adult rats.
Collapse
Affiliation(s)
- Paulo E Carneiro de Oliveira
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University-UNESP Araraquara, Brazil
| | - Rodrigo M Leão
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University-UNESP Araraquara, Brazil
| | - Paula C Bianchi
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University-UNESPAraraquara, Brazil; Joint Graduate Program in Physiological Sciences, UFSCar/UNESP, Faculdade de Odontologia de AraraquaraAraraquara, Brazil
| | - Marcelo T Marin
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University-UNESPAraraquara, Brazil; Joint Graduate Program in Physiological Sciences, UFSCar/UNESP, Faculdade de Odontologia de AraraquaraAraraquara, Brazil
| | - Cleopatra da Silva Planeta
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University-UNESPAraraquara, Brazil; Joint Graduate Program in Physiological Sciences, UFSCar/UNESP, Faculdade de Odontologia de AraraquaraAraraquara, Brazil
| | - Fábio C Cruz
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University-UNESP Araraquara, Brazil
| |
Collapse
|
25
|
Ng E, Browne CJ, Samsom JN, Wong AHC. Depression and substance use comorbidity: What we have learned from animal studies. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 43:456-474. [PMID: 27315335 DOI: 10.1080/00952990.2016.1183020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Depression and substance use disorders are often comorbid, but the reasons for this are unclear. In human studies, it is difficult to determine how one disorder may affect predisposition to the other and what the underlying mechanisms might be. Instead, animal studies allow experimental induction of behaviors relevant to depression and drug-taking, and permit direct interrogation of changes to neural circuits and molecular pathways. While this field is still new, here we review animal studies that investigate whether depression-like states increase vulnerability to drug-taking behaviors. Since chronic psychosocial stress can precipitate or predispose to depression in humans, we review studies that use psychosocial stressors to produce depression-like phenotypes in animals. Specifically, we describe how postweaning isolation stress, repeated social defeat stress, and chronic mild (or unpredictable) stress affect behaviors relevant to substance abuse, especially operant self-administration. Potential brain changes mediating these effects are also discussed where available, with an emphasis on mesocorticolimbic dopamine circuits. Postweaning isolation stress and repeated social defeat generally increase acquisition or maintenance of drug self-administration, and alter dopamine sensitivity in various brain regions. However, the effects of chronic mild stress on drug-taking have been much less studied. Future studies should consider standardizing stress-induction protocols, including female subjects, and using multi-hit models (e.g. genetic vulnerabilities and environmental stress).
Collapse
Affiliation(s)
- Enoch Ng
- a Lunenfeld-Tanenbaum Research Institute , Mount Sinai Hospital , Toronto , Canada.,b Institute of Medical Science, University of Toronto , Toronto , Canada
| | - Caleb J Browne
- c Department of Psychology , University of Toronto , Toronto , Canada.,d Campbell Family Health Institute , Centre for Addiction and Mental Health , Toronto , Canada
| | - James N Samsom
- d Campbell Family Health Institute , Centre for Addiction and Mental Health , Toronto , Canada.,e Department of Pharmacology , University of Toronto , Toronto , Canada
| | - Albert H C Wong
- b Institute of Medical Science, University of Toronto , Toronto , Canada.,d Campbell Family Health Institute , Centre for Addiction and Mental Health , Toronto , Canada.,e Department of Pharmacology , University of Toronto , Toronto , Canada.,f Department of Psychiatry , University of Toronto , Toronto , Canada
| |
Collapse
|
26
|
García-Pardo MP, Blanco-Gandía MC, Valiente-Lluch M, Rodríguez-Arias M, Miñarro J, Aguilar MA. Long-term effects of repeated social stress on the conditioned place preference induced by MDMA in mice. Prog Neuropsychopharmacol Biol Psychiatry 2015; 63:98-109. [PMID: 26093344 DOI: 10.1016/j.pnpbp.2015.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/26/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023]
Abstract
Previous studies have demonstrated that social defeat stress increases the rewarding effects of psychostimulant drugs such as cocaine and amphetamine. In the present study we evaluated the long-term effects of repeated social defeat (RSD) on the rewarding effects of ±3,4-methylenedioxymethamphetamine (MDMA) hydrochloride in the conditioned place preference (CPP) paradigm. Adolescent and young adult mice were exposed to four episodes of social defeat (on PND 29-40 and PND 47-56, respectively) and were conditioned three weeks later with 1.25 or 10mg/kg i.p. of MDMA (experiment 1). The long-term effects of RSD on anxiety, social behavior and cognitive processes were also evaluated in adult mice (experiment 2). RSD during adolescence enhanced vulnerability to priming-induced reinstatement in animals conditioned with 1.25mg/kg of MDMA and increased the duration of the CPP induced by the 10mg/kg of MDMA. The latter effect was also observed after RSD in young adult mice, as well as an increase in anxiety-like behavior, an alteration in social interaction (reduction in attack and increase in avoidance/flee and defensive/submissive behaviors) and an impairment of maze learning. These results support the idea that RSD stress increases the rewarding effects of MDMA and induces long-term alterations in anxiety, learning and social behavior in adult mice. Thus, exposure to stress may increase the vulnerability of individuals to developing MDMA dependence, which is a factor to be taken into account in relation to the prevention and treatment of this disorder.
Collapse
Affiliation(s)
- M P García-Pardo
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain
| | - M C Blanco-Gandía
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain
| | - M Valiente-Lluch
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain
| | - M Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain
| | - J Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain
| | - M A Aguilar
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain.
| |
Collapse
|
27
|
Defeat stress in rodents: From behavior to molecules. Neurosci Biobehav Rev 2015; 59:111-40. [DOI: 10.1016/j.neubiorev.2015.10.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022]
|
28
|
Acute social defeat stress increases the conditioned rewarding effects of cocaine in adult but not in adolescent mice. Pharmacol Biochem Behav 2015; 135:1-12. [DOI: 10.1016/j.pbb.2015.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 04/27/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023]
|
29
|
Yap JJ, Chartoff EH, Holly EN, Potter DN, Carlezon WA, Miczek KA. Social defeat stress-induced sensitization and escalated cocaine self-administration: the role of ERK signaling in the rat ventral tegmental area. Psychopharmacology (Berl) 2015; 232:1555-69. [PMID: 25373870 PMCID: PMC4397167 DOI: 10.1007/s00213-014-3796-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/21/2014] [Indexed: 01/20/2023]
Abstract
RATIONALE Intermittent social defeat stress can induce neuroadaptations that promote compulsive drug taking. Within the mesocorticolimbic circuit, repeated cocaine administration activates extracellular signal-regulated kinase (ERK). OBJECTIVE The present experiments examine whether changes in ERK phosphorylation are necessary for the behavioral and neural adaptations that occur as a consequence of intermittent defeat stress. MATERIALS AND METHODS Rats were exposed to four brief intermittent defeats over the course of 10 days. Ten days after the last defeat, rats were challenged with cocaine (10 mg/kg, i.p.) or saline, and ERK activity was examined in mesocorticolimbic regions. To determine the role of ERK in defeat stress-induced behavioral sensitization, we bilaterally microinjected the MAPK/ERK kinase inhibitor U0126 (1 μg/side) or vehicle (20 % DMSO) into the ventral tegmental area (VTA) prior to each of four defeats. Ten days following the last defeat, locomotor activity was assessed for the expression of behavioral cross-sensitization to cocaine (10 mg/kg, i.p.). Thereafter, rats self-administered cocaine under fixed and progressive ratio schedules of reinforcement, including a 24-h continuous access "binge" (0.3 mg/kg/infusion). RESULTS We found that repeated defeat stress increased ERK phosphorylation in the VTA. Inhibition of VTA ERK prior to each social defeat attenuated the development of stress-induced sensitization and prevented stress-induced enhancement of cocaine self-administration during a continuous access binge. CONCLUSIONS These results suggest that enhanced activation of ERK in the VTA due to brief defeats is critical in the induction of sensitization and escalated cocaine taking.
Collapse
Affiliation(s)
- Jasmine J Yap
- Department of Psychology, Tufts University, Medford, MA, 02155, USA,
| | | | | | | | | | | |
Collapse
|
30
|
Han X, Albrechet-Souza L, Doyle MR, Shimamoto A, DeBold JF, Miczek KA. Social stress and escalated drug self-administration in mice II. Cocaine and dopamine in the nucleus accumbens. Psychopharmacology (Berl) 2015; 232:1003-10. [PMID: 25216798 PMCID: PMC4339460 DOI: 10.1007/s00213-014-3734-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/26/2014] [Indexed: 01/15/2023]
Abstract
RATIONALE Social defeat stress results in escalation of cocaine taking and long-term neural adaptations in rats. How the intensity and timing of social defeat stress determine these effects, particularly in mice, have not been well characterized. OBJECTIVE This study investigated the effects of mild vs. moderate intensities and durations of social stress on intravenous cocaine self-administration as well as on dopamine (DA) release in the nucleus accumbens shell (NAcSh) by using in vivo microdialysis. METHODS Adult male Swiss Webster (CFW) mice experienced 10 days of social defeat stress, either mild (15 attack bites in ca. 1.8 min) or moderate (30 attack bites in ca. 3.6 min), and compared to controls that were handled daily. Subsequently, the socially stressed mice were assessed for either (1) intravenous cocaine self-administration, using several unit doses (0, 0.3, 0.6, 1.0 mg/kg/infusion) under limited access conditions, or (2) neural sensitization, as determined by in vivo microdialysis of DA in the NAcSh in response to acute d-amphetamine challenge. RESULTS Social defeat stress resulted in escalated cocaine self-administration in both mild and moderate socially stressed groups. In addition, social defeat stress led to increased DA release after d-amphetamine challenge. CONCLUSIONS These data suggest that both mild and moderate socially stressed mice exhibit increased cocaine taking compared to controls, and this increase is associated with escalated dopaminergic responses in the NAcSh.
Collapse
Affiliation(s)
- Xiao Han
- Department of Psychology, Tufts University, 530 Boston Ave. (Bacon Hall), Medford, MA, 02155, USA
| | | | | | | | | | | |
Collapse
|
31
|
Effects of acute social stress on the conditioned place preference induced by MDMA in adolescent and adult mice. Behav Pharmacol 2014; 25:532-46. [DOI: 10.1097/fbp.0000000000000065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Homberg JR, Karel P, Verheij MMM. Individual differences in cocaine addiction: maladaptive behavioural traits. Addict Biol 2014; 19:517-28. [PMID: 24835358 DOI: 10.1111/adb.12036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cocaine use leads to addiction in only a subset of individuals. Understanding the mechanisms underlying these individual differences in the transition from cocaine use to cocaine abuse is important to develop treatment strategies. There is agreement that specific behavioural traits increase the risk for addiction. As such, both high impulsivity and high anxiety have been reported to predict (compulsive) cocaine self-administration behaviour. Here, we set out a new view explaining how these two behavioural traits may affect addictive behaviour. According to psychological and psychiatric evolutionary views, organisms flourish well when they fit (match) their environment by trait and genotype. However, under non-fit conditions, the need to compensate the failure to deal with this environment increases, and, as a consequence, the functional use of rewarding drugs like cocaine may also increase. It suggests that neither impulsivity nor anxiety are bad per se, but that the increased risk to develop cocaine addiction is dependent on whether behavioural traits are adaptive or maladaptive in the environment to which the animals are exposed. This 'behavioural (mal)adaptation view' on individual differences in vulnerability to cocaine addiction may help to improve therapies for addiction.
Collapse
Affiliation(s)
- Judith R. Homberg
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience; Nijmegen The Netherlands
| | - Peter Karel
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience; Nijmegen The Netherlands
| | - Michel M. M. Verheij
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience; Nijmegen The Netherlands
| |
Collapse
|
33
|
Zou S, Funk D, Shram MJ, Lê AD. Effects of stressors on the reinforcing efficacy of nicotine in adolescent and adult rats. Psychopharmacology (Berl) 2014; 231:1601-14. [PMID: 24510175 DOI: 10.1007/s00213-013-3314-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/04/2013] [Indexed: 11/25/2022]
Abstract
RATIONALE AND OBJECTIVES Stress increases drug intake. This depends on the stressor, drug, and aspect of drug seeking assessed. The objectives of these experiments done in adolescent and adult male rats were to (1) examine social defeat effects on acquisition of nicotine self-administration (SA) and the reinforcing efficacy of nicotine and (2) determine the effects of acute exposure to intermittent footshock (FS) or yohimbine on the reinforcing efficacy of nicotine. METHODS In experiment 1, rats received four defeat exposures prior to nicotine SA acquisition and progressive ratio (PR) SA sessions (30 μg/kg nicotine/infusion). Exposure to an olfactory cue previously paired with defeat was also tested on responding maintained by nicotine on the PR schedule. In experiments 2 and 3, the effects of FS (5 and 10 min) or yohimbine (0.625 and 1.25 mg/kg, i.p.) on PR responding for nicotine (15, 30, or 60 μg/kg/infusion) were assessed. Adolescents were aged PD34-36 and adults PD81-85 at the beginning of nicotine SA training. RESULTS Defeat did not affect nicotine SA acquisition. Prior exposure to defeat or a defeat-paired olfactory cue did not affect PR responding for nicotine. FS modestly decreased PR responding in adolescents at the middle nicotine infusion dose. Yohimbine increased PR responding independent of nicotine infusion dose and age. CONCLUSIONS Together with previous work with other drugs, our data indicate that the effects of stress on the reinforcing efficacy of nicotine are stressor- and drug-dependent. This suggests that there is heterogeneity among stressors on how they affect neuronal systems underlying drug intake.
Collapse
Affiliation(s)
- Sheng Zou
- Neurobiology of Alcohol Laboratory, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, M5S 2S1, Canada
| | | | | | | |
Collapse
|
34
|
Chaijale NN, Curtis AL, Wood SK, Zhang XY, Bhatnagar S, Reyes BAS, Van Bockstaele EJ, Valentino RJ. Social stress engages opioid regulation of locus coeruleus norepinephrine neurons and induces a state of cellular and physical opiate dependence. Neuropsychopharmacology 2013; 38:1833-43. [PMID: 23660707 PMCID: PMC3746692 DOI: 10.1038/npp.2013.117] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 05/08/2013] [Accepted: 05/08/2013] [Indexed: 12/20/2022]
Abstract
Stress is implicated in diverse psychiatric disorders including substance abuse. The locus coeruleus-norepinephrine (LC-NE) system is a major stress response system that is also a point of intersection between stress neuromediators and endogenous opioids and so may be a site at which stress can influence drug-taking behaviors. As social stress is a common stressor for humans, this study characterized the enduring impact of repeated social stress on LC neuronal activity. Rats were exposed to five daily consecutive sessions of social stress using the resident-intruder model or control manipulation. LC discharge rate recorded 2 days after the last manipulation was decreased in stressed rats compared with controls. By 10 days after the last manipulation, LC rates were comparable between groups. Systemic administration of the opiate antagonist, naloxone, robustly increased LC discharge rate in a manner suggestive of opiate withdrawal, selectively in stressed rats when administered 2 or 10 days after the last manipulation. This was accompanied by behavioral signs of mild opiate withdrawal. Western blot and electron microscopic studies indicated that repeated social stress decreased corticotropin-releasing factor type 1 receptor and increased μ-opioid receptor levels in the LC. Together, the results suggest that repeated social stress engages endogenous opioid modulation of LC activity and induces signs of cellular and physical opiate dependence that endure after the stress. These cellular effects may predispose individuals with a history of repeated social stress to substance abuse behaviors.
Collapse
Affiliation(s)
- Nayla N Chaijale
- Division of Stress Neurobiology, Department of Anesthesiology, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Andre L Curtis
- Division of Stress Neurobiology, Department of Anesthesiology, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Susan K Wood
- Division of Stress Neurobiology, Department of Anesthesiology, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiao-Yan Zhang
- Division of Stress Neurobiology, Department of Anesthesiology, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Seema Bhatnagar
- Division of Stress Neurobiology, Department of Anesthesiology, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Beverly AS Reyes
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Rita J Valentino
- Division of Stress Neurobiology, Department of Anesthesiology, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
35
|
Kumar J, Chuang JC, Na ES, Kuperman A, Gillman AG, Mukherjee S, Zigman JM, McClung CA, Lutter M. Differential effects of chronic social stress and fluoxetine on meal patterns in mice. Appetite 2013; 64:81-8. [PMID: 23318656 DOI: 10.1016/j.appet.2012.12.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 11/09/2012] [Accepted: 12/14/2012] [Indexed: 01/03/2023]
Abstract
Both chronic stress and antidepressant medications have been associated with changes in body weight. In the current study, we investigate mechanisms by which stress and antidepressants interact to affect meal patterns. A group of mice was subjected to the chronic social defeat stress model of major depression followed by fluoxetine treatment and was subsequently analyzed for food intake using metabolic cages. We report that chronic social defeat stress increases food intake by specifically increasing meal size, an effect that is reversed by fluoxetine treatment. In an attempt to gain mechanistic insight into changes in meal patterning induced by stress and fluoxetine, fasting serum samples were collected every 4h over a 24-h period, and acyl-ghrelin, leptin, and corticosterone levels were measured. Chronic stress induces a peak in acyl-ghrelin levels just prior to the onset of the dark phase, which is shifted in mice treated with fluoxetine. Taken together, these results indicate that stress increases food intake by decreasing satiation, and that fluoxetine can reverse stress-induced changes in meal patterns.
Collapse
Affiliation(s)
- Jaswinder Kumar
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bardo MT, Neisewander JL, Kelly TH. Individual differences and social influences on the neurobehavioral pharmacology of abused drugs. Pharmacol Rev 2013; 65:255-90. [PMID: 23343975 PMCID: PMC3565917 DOI: 10.1124/pr.111.005124] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The interaction of drugs with biologic targets is a critical area of research, particularly for the development of medications to treat substance use disorders. In addition to understanding these drug-target interactions, however, there is a need to understand more fully the psychosocial influences that moderate these interactions. The first section of this review introduces some examples from human behavioral pharmacology that illustrate the clinical importance of this research. The second section covers preclinical evidence to characterize some of the key individual differences that alter drug sensitivity and abuse vulnerability, related primarily to differences in response to novelty and impulsivity. Evidence is presented to indicate that critical neuropharmacological mechanisms associated with these individual differences involve integrated neurocircuits underlying stress, reward, and behavioral inhibitory processes. The third section covers social influences on drug abuse vulnerability, including effects experienced during infancy, adolescence, and young adulthood, such as maternal separation, housing conditions, and social interactions (defeat, play, and social rank). Some of the same neurocircuits involved in individual differences also are altered by social influences, although the precise neurochemical and cellular mechanisms involved remain to be elucidated fully. Finally, some speculation is offered about the implications of this research for the prevention and treatment of substance abuse.
Collapse
Affiliation(s)
- M T Bardo
- Department of Psychology, University of Kentucky, BBSRB Room 447, 741 S. Limestone, Lexington, KY 40536-0509, USA.
| | | | | |
Collapse
|
37
|
Planeta CS. Animal models of alcohol and drug dependence. BRAZILIAN JOURNAL OF PSYCHIATRY 2013; 35 Suppl 2:S140-6. [DOI: 10.1590/1516-4446-2013-1149] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
39
|
Neisewander J, Peartree N, Pentkowski N. Emotional valence and context of social influences on drug abuse-related behavior in animal models of social stress and prosocial interaction. Psychopharmacology (Berl) 2012; 224:33-56. [PMID: 22955569 PMCID: PMC4071609 DOI: 10.1007/s00213-012-2853-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 08/18/2012] [Indexed: 02/07/2023]
Abstract
RATIONALE Social factors are important determinants of drug dependence and relapse. OBJECTIVES We reviewed pre-clinical literature examining the role of social experiences from early life through the development of drug dependence and relapse, emphasizing two aspects of these experiences: (1) whether the social interaction is appetitive or aversive and (2) whether the social interaction occurs within or outside of the drug-taking context. METHODS The models reviewed include neonatal care, isolation, social defeat, chronic subordination, and prosocial interactions. We review results from these models in regard to effects on self-administration and conditioned place preference established with alcohol, psychostimulants, and opiates. RESULTS We suggest that in general, when the interactions occur outside of the drug-taking context, prosocial interactions are protective against drug abuse-related behaviors, whereas social stressors facilitate these behaviors. By contrast, positive or negative social interactions occurring within the drug-taking context may interact with other risk factors to enhance or inhibit these behaviors. CONCLUSIONS Despite differences in the nature and complexity of human social behavior compared to other species, the evolving animal literature provides useful models for understanding social influences on drug abuse-related behavior that will allow for research on the behavioral and biological mechanisms involved. The models have contributed to understanding social influences on initiation and maintenance of drug use, but more research is needed to understand social influences on drug relapse.
Collapse
Affiliation(s)
- J.L. Neisewander
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501,Corresponding author: Janet Neisewander, Ph.D., School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, , Phone: 480-965-0209, Fax: 480-965-6899
| | - N.A. Peartree
- Department of Psychology, Arizona State University, PO Box 871104, Tempe, AZ 85287-1104
| | - N.S. Pentkowski
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501
| |
Collapse
|
40
|
Lenoir M, Guillem K, Koob GF, Ahmed SH. Drug specificity in extended access cocaine and heroin self-administration. Addict Biol 2012; 17:964-76. [PMID: 21995515 DOI: 10.1111/j.1369-1600.2011.00385.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Increased drug availability can precipitate a rapid escalation of drug consumption in both vulnerable humans and laboratory animals. Drug intake escalation is observed across a broad spectrum of drugs of abuse, including stimulants, opiates, ethanol and phencyclidine. Whether and to what extent the processes underlying escalated levels of drug intake vary across different substances is poorly understood. The present study sought to address this question in rats self-administering both cocaine and heroin-two addictive drugs with both common and different neurobiological effects. In experiment 1, we determined how cocaine intake is initially related to heroin intake in non-escalated rats with a limited access to both drugs. In experiment 2, two groups of rats were initially allowed to self-administer either cocaine or heroin for 1 hour per day and then after behavioral stabilization, for 6 hours per day to precipitate drug intake escalation. In each group, dose-injection functions for cocaine and heroin self-administration were generated. In experiment 1, regardless of the dose, rats with a high intake of one drug did not necessarily have a high intake of the alternate drug. In experiment 2, escalated levels of heroin or cocaine self-administration did not generalize to the other drug. This outcome was confirmed in a third drug substitution experiment following different access lengths to cocaine self-administration (i.e. 1, 4 and 8 hours). The processes underlying spontaneous and escalated drug overconsumption appear thus to vary across different drugs of abuse. More research should be devoted in the future to these differences.
Collapse
Affiliation(s)
- Magalie Lenoir
- Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, NIH, Baltimore, MD, USA
| | | | | | | |
Collapse
|
41
|
High anxiety is a predisposing endophenotype for loss of control over cocaine, but not heroin, self-administration in rats. Psychopharmacology (Berl) 2012; 222:89-97. [PMID: 22245944 DOI: 10.1007/s00213-011-2626-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/17/2011] [Indexed: 12/16/2022]
Abstract
RATIONALE Although high anxiety is commonly associated with drug addiction, its causal role in this disorder is unclear. OBJECTIVES In light of strong evidence for dissociable neural mechanisms underlying heroin and cocaine addiction, the present study investigated whether high anxiety predicts the propensity of rats to lose control over intravenous cocaine or heroin self-administration. METHODS Sixty-four rats were assessed for anxiety in the elevated plus-maze, prior to extended access to intravenous cocaine or heroin self-administration. RESULTS High-anxious rats, identified in the lower quartile of the population, showed a greater escalation of cocaine, but not heroin, self-administration compared with low-anxious rats selected in the upper quartile of the population. Anxiety scores were also positively correlated with the extent of escalation of cocaine self-administration. CONCLUSIONS The present data suggest that high anxiety predisposes rats to lose control over cocaine-but not heroin-intake. High anxiety may therefore be a vulnerability trait for the escalation of stimulant but not opiate self-administration.
Collapse
|
42
|
Leão RM, Cruz FC, Marin MT, Planeta CDS. Stress induces behavioral sensitization, increases nicotine-seeking behavior and leads to a decrease of CREB in the nucleus accumbens. Pharmacol Biochem Behav 2012; 101:434-42. [PMID: 22330674 DOI: 10.1016/j.pbb.2012.01.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 12/17/2022]
Abstract
Experimental evidence shows that exposure to stress engenders behavioral sensitization and increases drug-seeking and leads to intense drug taking. However the molecular mechanisms involved in these processes is not well known yet. The present experiments examined the effects of exposure to variable stress on nicotine-induced locomotor activation, cAMP-response element-binding protein (CREB) and extracellular signal-regulated kinase (ERK) activity and nicotine intravenous self-administration in rats. Male Wistar rats were exposed to variable stress that consisted of the exposure to different stressors twice a day in random order for 10 days. During this period the control group was left undisturbed except for cage cleaning. Ten days after the last stress episode, rats were challenged with either saline or nicotine (0.4 mg/kgs.c.) and the locomotor activity was recorded for 20 min. Immediately after behavioral recordings rats were sacrificed and their brains were removed to posterior western blotting analysis of CREB, phosphoCREB, ERK and phosphoERK in the nucleus accumbens. An independent set of control and stressed animals were subjected to an intravenous nicotine self-administration protocol. The break point during a progressive ratio schedule and nicotine intake patterns during a 24-hour binge was analyzed. Repeated variable stress caused a sensitized motor response to a single challenge of nicotine and decreased CREB in the nucleus accumbens. Furthermore, in the self-administration experiments previous stress exposure caused an increase in the break point and nicotine intake.
Collapse
Affiliation(s)
- Rodrigo Molini Leão
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista-UNESP, Rod. Araraquara-Jaú Km 1, 14801-902, Araraquara, São Paulo, Brazil
| | | | | | | |
Collapse
|
43
|
Burke AR, Watt MJ, Forster GL. Adolescent social defeat increases adult amphetamine conditioned place preference and alters D2 dopamine receptor expression. Neuroscience 2011; 197:269-79. [PMID: 21933700 PMCID: PMC3248592 DOI: 10.1016/j.neuroscience.2011.09.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/23/2011] [Accepted: 09/01/2011] [Indexed: 12/12/2022]
Abstract
Components of the brain's dopaminergic system, such as dopamine receptors, undergo final maturation in adolescence. Exposure to social stress during human adolescence contributes to substance abuse behaviors. We utilized a rat model of adolescent social stress to investigate the neural mechanisms underlying this correlation. Rats exposed to repeated social defeat in adolescence (P35-P39) exhibited increased conditioned place preference (CPP) for amphetamine (1 mg/kg) in adulthood (P70). In contrast, rats experiencing foot-shock during the same developmental period exhibited amphetamine CPP levels similar to non-stressed controls. Our previous experiments suggested adolescent defeat alters dopamine activity in the mesocorticolimbic system. Furthermore, dopamine receptors have been implicated in the expression of amphetamine CPP. Therefore, we hypothesized that alteration to dopamine receptor expression in the mesocorticolimbic system may be associated with to heightened amphetamine CPP of adult rats exposed to adolescence defeat. We measured D1 and D2 dopamine receptor protein content in the medial prefrontal cortex, nucleus accumbens (NAc), and dorsal striatum following either adolescent social defeat or foot-shock stress and then adult amphetamine CPP. In controls, amphetamine CPP training reduced D2 receptor protein content in the NAc core. However, this down-regulation of NAc core D2 receptors was blocked by exposure to social defeat but not foot-shock stress in adolescence. These results suggest social defeat stress in adolescence alters the manner in which later amphetamine exposure down-regulates D2 receptors. Furthermore, persistent alterations to adult D2 receptor expression and amphetamine responses may depend on the type of stress experienced in adolescence.
Collapse
Affiliation(s)
- Andrew R. Burke
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark St., Vermillion, SD, USA 57069
| | - Michael J. Watt
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark St., Vermillion, SD, USA 57069
| | - Gina L. Forster
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark St., Vermillion, SD, USA 57069
| |
Collapse
|
44
|
Badiani A, Belin D, Epstein D, Calu D, Shaham Y. Opiate versus psychostimulant addiction: the differences do matter. Nat Rev Neurosci 2011; 12:685-700. [PMID: 21971065 DOI: 10.1038/nrn3104] [Citation(s) in RCA: 355] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The publication of the psychomotor stimulant theory of addiction in 1987 and the finding that addictive drugs increase dopamine concentrations in the rat mesolimbic system in 1988 have led to a predominance of psychobiological theories that consider addiction to opiates and addiction to psychostimulants as essentially identical phenomena. Indeed, current theories of addiction - hedonic allostasis, incentive sensitization, aberrant learning and frontostriatal dysfunction - all argue for a unitary account of drug addiction. This view is challenged by behavioural, cognitive and neurobiological findings in laboratory animals and humans. Here, we argue that opiate addiction and psychostimulant addiction are behaviourally and neurobiologically distinct and that the differences have important implications for addiction treatment, addiction theories and future research.
Collapse
Affiliation(s)
- Aldo Badiani
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | |
Collapse
|
45
|
Logrip ML, Zorrilla EP, Koob GF. Stress modulation of drug self-administration: implications for addiction comorbidity with post-traumatic stress disorder. Neuropharmacology 2011; 62:552-64. [PMID: 21782834 DOI: 10.1016/j.neuropharm.2011.07.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/11/2011] [Accepted: 07/06/2011] [Indexed: 12/27/2022]
Abstract
Drug abuse and dependence present significant health burdens for our society, affecting roughly 10% of the population. Stress likely contributes to the development and persistence of drug use; for example, rates of substance dependence are elevated among individuals diagnosed with post-traumatic stress disorder (PTSD). Thus, understanding the interaction between stress and drug use, and associated neuroadaptations, is key for developing therapies to combat substance use disorders. For this purpose, many rodent models of the effects of stress exposure on substance use have been developed; the models can be classified according to three categories of stress exposure: developmental, adult nonsocial, and adult social. The present review addresses preclinical findings on the effect of each type of trauma on responses to and self-administration of drugs of abuse by focusing on a key exemplar for each category. In addition, the potential efficacy of targeting neuropeptide systems that have been implicated in stress responses and stress system neuroadaptation in order to treat comorbid PTSD and substance abuse will be discussed. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- Marian L Logrip
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|