1
|
Thapa R, Afzal M, Goyal A, Gupta G, Bhat AA, Almalki WH, Kazmi I, Alzarea SI, Shahwan M, Kukreti N, Ali H, Dureja H, Kumar P, Singh TG, Kuppusamy G, Singh SK, Dua K. Exploring ncRNA-mediated regulation of EGFR signalling in glioblastoma: From mechanisms to therapeutics. Life Sci 2024; 345:122613. [PMID: 38582393 DOI: 10.1016/j.lfs.2024.122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Glioblastoma (GBM) is the most prevalent and deadly primary brain tumor type, with a discouragingly low survival rate and few effective treatments. An important function of the EGFR signalling pathway in the development of GBM is to affect tumor proliferation, persistence, and treatment resistance. Advances in molecular biology in the last several years have shown how important ncRNAs are for controlling a wide range of biological activities, including cancer progression and development. NcRNAs have become important post-transcriptional regulators of gene expression, and they may affect the EGFR pathway by either directly targeting EGFR or by modifying important transcription factors and downstream signalling molecules. The EGFR pathway is aberrantly activated in response to the dysregulation of certain ncRNAs, which has been linked to GBM carcinogenesis, treatment resistance, and unfavourable patient outcomes. We review the literature on miRNAs, circRNAs and lncRNAs that are implicated in the regulation of EGFR signalling in GBM, discussing their mechanisms of action, interactions with the signalling pathway, and implications for GBM therapy. Furthermore, we explore the potential of ncRNA-based strategies to overcome resistance to EGFR-targeted therapies, including the use of ncRNA mimics or inhibitors to modulate the activity of key regulators within the pathway.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, 7, United Arab Emirates
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
2
|
Deng Y, Ma L, Du Z, Ma H, Xia Y, Ping L, Chen Z, Zhang Y. The Notch1/Hes1 pathway regulates Neuregulin 1/ErbB4 and participates in microglial activation in rats with VPA-induced autism. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110947. [PMID: 38242426 DOI: 10.1016/j.pnpbp.2024.110947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The core clinical characteristics of autism, which is a neurodevelopmental disease, involve repetitive behavior and impaired social interactions. Studies have shown that the Notch and Neuregulin1 (NRG1) signaling pathways are abnormally activated in autism, but the mechanism by which these two signaling pathways interact to contribute to the progression of autism has not been determined. Our results suggest that the levels of Notch1, Hes1, NRG1, and phosphorylated ErbB4 in the cerebellum (CB), hippocampus (HC), and prefrontal cortex (PFC) were increased in rats with valproic acid (VPA)-induced autism compared to those in the Con group. However, 3, 5-difluorophenyl-L-alanyl-L-2-phenylglycine tert-butyl (DAPT), which is a Notch pathway inhibitor, ameliorated autism-like behavioral abnormalities and decreased the protein levels of NRG1 and phosphorylated ErbB4 in rats with VPA-induced autism; these results demonstrated that the Notch1/Hes1 pathway could participate in the pathogenesis of autism by regulating the NRG1/ErbB4 signaling pathway. Studies have shown that the Notch pathway regulates microglial differentiation and activation during the onset of neurological disorders and that microglia affect autism-like behavior via synaptic pruning. Therefore, we hypothesized that the Notch1/Hes1 pathway could regulate the NRG1/ErbB4 pathway and thus participate in the development of autism by regulating microglial functions. The present study showed that AG1478, which is an ErbB4 inhibitor, ameliorated the autism-like behaviors in a VPA-induced autism rat model, reduced abnormal microglial activation, and decreased NRG1 and Iba-1 colocalization; however, AG1478 did not alter Notch1/Hes1 activity. These results demonstrated that Notch1/Hes1 may participate in the microglial activation in autism by regulating NRG1/ErbB4, revealing a new mechanism underlying the pathogenesis of autism.
Collapse
Affiliation(s)
- Yanan Deng
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China
| | - Liping Ma
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China
| | - Ziwei Du
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China
| | - Huixin Ma
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China
| | - Yuxi Xia
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China
| | - Liran Ping
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China
| | - Zhaoxing Chen
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China
| | - Yinghua Zhang
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China.
| |
Collapse
|
3
|
Li L, Fang H, Li F, Xie K, Zhou P, Zhu H, Jin X, Song R, Yang P, Liping D. Regulation mechanisms of disulfidptosis-related genes in ankylosing spondylitis and inflammatory bowel disease. Front Immunol 2024; 15:1326354. [PMID: 38433839 PMCID: PMC10904683 DOI: 10.3389/fimmu.2024.1326354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Disulfidptosis is a recently identified form of cell death that contributes to maintaining the internal environment balance of an organism. However, the molecular basis of disulfidptosis in ulcerative colitis (UC), ankylosing spondylitis (AS), and Crohn's disease (CD) has not been thoroughly explored. Methods Firstly, the differentially expressed genes (DEGs) and disulfidptosis-associated genes (DAGs) were obtained through differential analysis between diseases (AS, CD, and UC) and control groups. After the disulfidptosis score was acquired using the single-sample gene set enrichment analysis (ssGSEA) algorithm, the DE-DAGs were screened by overlapping DAGs and DEGs of the three diseases. Next, the feature genes were selected through a combination of machine learning algorithms, receiver operating characteristic (ROC) curves, and expression analysis. Based on these feature genes, nomograms were created for AS, CD and UC. The co-feature genes were then identified by taking the intersections of the genes featured in all three diseases. Meanwhile, single-gene set enrichment analysis (GSEA) and the TF-mRNA-miRNA network were utilized to investigate the molecular mechanisms of the co-feature genes. To validate the expression differences of the co-feature genes between healthy controls and patients (AS and IBD), RT-PCR was performed. Lastly, mendelian randomization (MR) analysis was utilized to explore the causality between genetic variants of S100A12 with AS, UC and CD. Results In this study, 11 DE-DAGs were obtained. Functional enrichment analysis revealed their involvement in cytokine production and fatty acid biosynthesis. Latterly, AS/CD/UC -feature genes were derived, and they all had decent diagnostic performance. Through evaluation, the performance of the nomogram was decent for three diseases. Then, 2 co-feature genes (S100A12 and LILRA5) were obtained. The GSEA enrichment results indicated that the co-feature genes were mainly enriched in the cytokine-cytokine receptor interaction and drug metabolism cytochrome P450. As shown by functional experiments, there was a correlation between the mRNA expression of S100A12 with AS, UC and CD. Additionally, a causal connection between S100A12 and IBD was detected through MR analysis. Discussion In this study, 2 co-feature genes (S100A12 and LILRA5) were screened, and their functions were investigated in AS, CD and UC, providing a basis for further research into diagnosis and treatment.
Collapse
Affiliation(s)
- Lin Li
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Zhengzhou, Henan, China
| | - Haixin Fang
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Zhengzhou, Henan, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Fuzhen Li
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Zhengzhou, Henan, China
| | - Kunpeng Xie
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Zhengzhou, Henan, China
| | - Pengyi Zhou
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Zhengzhou, Henan, China
| | - Haiyan Zhu
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Zhengzhou, Henan, China
| | - Xuemin Jin
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Zhengzhou, Henan, China
| | - Ruifeng Song
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peizeng Yang
- Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Du Liping
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Yi Y, Zhang Y, Song Y, Lu Y. Treadmill Running Regulates Adult Neurogenesis, Spatial and Non-spatial Learning, Parvalbumin Neuron Activity by ErbB4 Signaling. Cell Mol Neurobiol 2024; 44:17. [PMID: 38285192 PMCID: PMC11407172 DOI: 10.1007/s10571-023-01439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/06/2023] [Indexed: 01/30/2024]
Abstract
Exercise can promote adult neurogenesis and improve symptoms associated with schizophrenia and other mental disorders via parvalbumin (PV)-positive GABAergic interneurons in the dentate gyrus ErbB4 is the receptor of neurotrophic factor neuregulin 1, expressed mostly in PV-positive interneurons. Whether ErbB4 in PV-positive neurons mediates the beneficial effect of exercise and adult neurogenesis on mental disorder needs to be further investigation. Here, we first conducted a four-week study on the effects of AG1478, an ErbB4 inhibitor, on memory and neurogenesis. AG1478 significantly impaired the performance in several memory tasks, including the T-maze, Morris water maze, and contextual fear conditioning, downregulated the expression of total ErbB4 (T-ErbB4) and the ratio of phosphate-ErbB4 (p-ErbB4) to T-ErbB4, and associated with neurogenesis impairment. Interestingly, AG1478 also appeared to decrease intracellular calcium levels in PV neurons, which could be reversed by exercise. These results suggest exercise may regulate adult neurogenesis and PV neuron activity through ErbB4 signaling. Overall, these findings provide further evidence of the importance of exercise for neurogenesis and suggest that targeting ErbB4 may be a promising strategy for improving memory and other cognitive functions in individuals with mental disorders.
Collapse
Affiliation(s)
- Yandong Yi
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuejin Zhang
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanlong Song
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Pawlak A, Kaczmarek B, Wysokiński A, Strzelecki D. Sarcosine May Induce EGF Production or Inhibit the Decline in EGF Concentrations in Patients with Chronic Schizophrenia (Results of the PULSAR Study). Pharmaceuticals (Basel) 2023; 16:1557. [PMID: 38004423 PMCID: PMC10674361 DOI: 10.3390/ph16111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Sarcosine (N-methylglycine), a glutamatergic modulator, reduces the primary negative symptoms of schizophrenia. These beneficial changes might be mediated by trophic factors such as epidermal growth factor (EGF). We assessed associations between initial serum EGF levels or changes in serum EGF levels and symptom severity during the addition of sarcosine to stable antipsychotic treatment and thereby evaluated the associations between glutamatergic modulation, clinical changes and peripheral EGF concentrations. Fifty-eight subjects with a diagnosis of chronic schizophrenia with dominant negative symptoms, stably treated with antipsychotics, completed a prospective 6-month, randomized, double-blind, placebo-controlled study. Subjects received orally 2 g of sarcosine (n = 28) or placebo (n = 30) daily. Serum EGF levels and symptom severity (using the Positive and Negative Syndrome Scale (PANSS) and the Calgary Depression Scale for Schizophrenia (CDSS)) were assessed at baseline, 6-week and 6-month follow-up. Augmentation antipsychotic treatment with sarcosine had no effect on EGF serum levels at any time points. Only the sarcosine group showed a significant improvement in negative symptoms, general psychopathology subscales and the overall PANSS score. We found a reduction in serum EGF levels in the placebo group, but levels in the sarcosine remained stable during the study. Our data indicate that improvement in negative symptoms due to sarcosine augmentation is not directly mediated by EGF, but effective treatment may induce the production or block the decrease in EGF concentrations, which indicates the neuroprotective effect of treatment and confirms the relationship between neuroprotection and EGF levels.
Collapse
Affiliation(s)
- Agnieszka Pawlak
- Department of Affective and Psychotic Disorders, Medical University of Łódź, ul. Czechosłowacka 8/10, 92-216 Łódź, Poland;
| | - Bartosz Kaczmarek
- Department of Affective and Psychotic Disorders, Medical University of Łódź, ul. Czechosłowacka 8/10, 92-216 Łódź, Poland;
| | - Adam Wysokiński
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Łódź, ul. Czechosłowacka 8/10, 92-216 Łódź, Poland;
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Łódź, ul. Czechosłowacka 8/10, 92-216 Łódź, Poland;
| |
Collapse
|
6
|
Moody TW, Ramos-Alvarez I, Jensen RT. Peptide G-Protein-Coupled Receptors and ErbB Receptor Tyrosine Kinases in Cancer. BIOLOGY 2023; 12:957. [PMID: 37508387 PMCID: PMC10376828 DOI: 10.3390/biology12070957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
The ErbB RTKs (EGFR, HER2, HER3, and HER4) have been well-studied in cancer. EGFR, HER2, and HER3 stimulate cancer proliferation, principally by activating the phosphatidylinositol-3-kinase and extracellular signal-regulated kinase (ERK) pathways, resulting in increased cancer cell survival and proliferation. Cancer cells have high densities of the EGFR, HER2, and HER3 causing phosphorylation of tyrosine amino acids on protein substrates and tyrosine amino acids near the C-terminal of the RTKs. After transforming growth factor (TGF) α binds to the EGFR, homodimers or EGFR heterodimers form. HER2 forms heterodimers with the EGFR, HER3, and HER4. The EGFR, HER2, and HER3 are overexpressed in lung cancer patient tumors, and monoclonal antibodies (mAbs), such as Herceptin against HER2, are used to treat breast cancer patients. Patients with EGFR mutations are treated with tyrosine kinase inhibitors, such as gefitinib or osimertinib. Peptide GPCRs, such as NTSR1, are present in many cancers, and neurotensin (NTS) stimulates the growth of cancer cells. Lung cancer proliferation is impaired by SR48692, an NTSR1 antagonist. SR48692 is synergistic with gefitinib at inhibiting lung cancer growth. Adding NTS to lung cancer cells increases the shedding of TGFα, which activates the EGFR, or neuregulin-1, which activates HER3. The transactivation process is impaired by SRC, matrix metalloprotease, and reactive oxygen species inhibitors. While the transactivation process is complicated, it is fast and occurs within minutes after adding NTS to cancer cells. This review emphasizes the use of tyrosine kinase inhibitors and SR48692 to impair transactivation and cancer growth.
Collapse
Affiliation(s)
- Terry W Moody
- Center for Cancer Training, NCI, and Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Irene Ramos-Alvarez
- Center for Cancer Training, NCI, and Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Robert T Jensen
- Center for Cancer Training, NCI, and Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Xu S, Yao X, Li B, Cui R, Zhu C, Wang Y, Yang W. Uncovering the Underlying Mechanisms of Ketamine as a Novel Antidepressant. Front Pharmacol 2022; 12:740996. [PMID: 35872836 PMCID: PMC9301111 DOI: 10.3389/fphar.2021.740996] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Major depressive disorder (MDD) is a devastating psychiatric disorder which exacts enormous personal and social-economic burdens. Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has been discovered to exert rapid and sustained antidepressant-like actions on MDD patients and animal models. However, the dissociation and psychotomimetic propensities of ketamine have limited its use for psychiatric indications. Here, we review recently proposed mechanistic hypotheses regarding how ketamine exerts antidepressant-like actions. Ketamine may potentiate α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR)-mediated transmission in pyramidal neurons by disinhibition and/or blockade of spontaneous NMDAR-mediated neurotransmission. Ketamine may also activate neuroplasticity- and synaptogenesis-relevant signaling pathways, which may converge on key components like brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) and mechanistic target of rapamycin (mTOR). These processes may subsequently rebalance the excitatory/inhibitory transmission and restore neural network integrity that is compromised in depression. Understanding the mechanisms underpinning ketamine’s antidepressant-like actions at cellular and neural circuit level will drive the development of safe and effective pharmacological interventions for the treatment of MDD.
Collapse
Affiliation(s)
- Songbai Xu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Cuilin Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| | - Yao Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| |
Collapse
|
8
|
Effects of Risperidone and Prenatal Poly I:C Exposure on GABA A Receptors and AKT-GSK3β Pathway in the Ventral Tegmental Area of Female Juvenile Rats. Biomolecules 2022; 12:biom12050732. [PMID: 35625659 PMCID: PMC9139019 DOI: 10.3390/biom12050732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
The ventral tegmental area (VTA) in the ventral midbrain is the origin of the dopaminergic neurotransmission pathways. Although GABAA receptors and AKT-GSK3β signaling are involved in the pathophysiology of mental disorders and are modulated by antipsychotics, an unmet task is to reveal the pathological changes in these biomarkers and antipsychotic modulations in the VTA. Using a juvenile polyriboinosinic-polyribocytidylic acid (Poly I:C) psychiatric rat model, this study investigated the effects of adolescent risperidone treatment on GABAA receptors and AKT/GSK3β in the VTA. Pregnant female Sprague-Dawley rats were administered Poly I:C (5mg/kg; i.p) or saline at gestational day 15. Juvenile female offspring received risperidone (0.9 mg/kg, twice per day) or a vehicle from postnatal day 35 for 25 days. Poly I:C offspring had significantly decreased mRNA expression of GABAA receptor β3 subunits and glutamic acid decarboxylase (GAD2) in the VTA, while risperidone partially reversed the decreased GAD2 expression. Prenatal Poly I:C exposure led to increased expression of AKT2 and GSK3β. Risperidone decreased GABAA receptor β2/3, but increased AKT2 mRNA expression in the VTA of healthy rats. This study suggests that Poly I:C-elicited maternal immune activation and risperidone differentially modulate GABAergic neurotransmission and AKT-GSK3β signaling in the VTA of adolescent rats.
Collapse
|
9
|
Talarico F, Costa GO, Ota VK, Santoro ML, Noto C, Gadelha A, Bressan R, Azevedo H, Belangero SI. Systems-Level Analysis of Genetic Variants Reveals Functional and Spatiotemporal Context in Treatment-resistant Schizophrenia. Mol Neurobiol 2022; 59:3170-3182. [DOI: 10.1007/s12035-022-02794-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/06/2022] [Indexed: 10/18/2022]
|
10
|
Nawaz R, Gul S, Amin R, Huma T, Al Mughairbi F. Overview of schizophrenia research and treatment in Pakistan. Heliyon 2020; 6:e05545. [PMID: 33294688 PMCID: PMC7695967 DOI: 10.1016/j.heliyon.2020.e05545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/12/2020] [Accepted: 11/16/2020] [Indexed: 11/26/2022] Open
Abstract
Mental health is the most neglected health sector in Pakistan, and the majority of citizens have limited or no access to primary and secondary psychiatric services. The incidence of schizophrenia (SCZ) has increased at an alarming rate in Pakistan, relative to that of other psychiatric disorders. While numerous studies have investigated SCZ, few have addressed the issue about the Pakistani population. In the present review, the researchers discuss current data integral to the prevalence, pathophysiology, and molecular genetics of SCZ; treatment approaches to the disease; and patient responses to drugs prescribed for SCZ in Pakistan. Most Pakistani patients exhibit poor responses to antipsychotic drugs. Based on our review, the researchers hypothesize that genetic dissimilarities between Pakistani and Western populations contribute to such poor responses. Consequently, an understanding of such genetic differences and the provision of personalized treatment may simultaneously aid in improving SCZ treatment in Pakistan.
Collapse
Affiliation(s)
- Rukhsana Nawaz
- Department of Clinical Psychology, College of Medicine & Health Sciences, UAE University 15551 Al Ain, United Arab Emirates
| | - Saima Gul
- Department of Rehabilitation Science, Faculty of Pharmacy & Allied Health Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Rafat Amin
- Department of Pathology, Institute of Biological, Biochemical and Pharmaceutical Sciences, Dow University of Health Sciences, Ojha Campus, Karachi, Pakistan
| | | | - Fadwa Al Mughairbi
- Department of Clinical Psychology, College of Medicine & Health Sciences, UAE University 15551 Al Ain, United Arab Emirates
| |
Collapse
|
11
|
Segers VFM, Dugaucquier L, Feyen E, Shakeri H, De Keulenaer GW. The role of ErbB4 in cancer. Cell Oncol (Dordr) 2020; 43:335-352. [PMID: 32219702 DOI: 10.1007/s13402-020-00499-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The epidermal growth factor receptor family consists of four members, ErbB1 (epidermal growth factor receptor-1), ErbB2, ErbB3, and ErbB4, which all have been found to play important roles in tumor development. ErbB4 appears to be unique among these receptors, because it is the only member with growth inhibiting properties. ErbB4 plays well-defined roles in normal tissue development, in particular the heart, the nervous system, and the mammary gland system. In recent years, information on the role of ErbB4 in a number of tumors has emerged and its general direction points towards a tumor suppressor role for ErbB4. However, there are some controversies and conflicting data, warranting a review on this topic. CONCLUSIONS Here, we discuss the role of ErbB4 in normal physiology and in breast, lung, colorectal, gastric, pancreatic, prostate, bladder, and brain cancers, as well as in hepatocellular carcinoma, cholangiocarcinoma, and melanoma. Understanding the role of ErbB4 in cancer is not only important for the treatment of tumors, but also for the treatment of other disorders in which ErbB4 plays a major role, e.g. cardiovascular disease.
Collapse
Affiliation(s)
- Vincent F M Segers
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium. .,Department of Cardiology, University Hospital Antwerp, Edegem, Belgium.
| | - Lindsey Dugaucquier
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Eline Feyen
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Hadis Shakeri
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.,Department of Cardiology, ZNA Hospital, Antwerp, Belgium
| |
Collapse
|
12
|
Younis RM, Taylor RM, Beardsley PM, McClay JL. The ANKS1B gene and its associated phenotypes: focus on CNS drug response. Pharmacogenomics 2019; 20:669-684. [PMID: 31250731 PMCID: PMC6912848 DOI: 10.2217/pgs-2019-0015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
The ANKS1B gene was a top finding in genome-wide association studies (GWAS) of antipsychotic drug response. Subsequent GWAS findings for ANKS1B include cognitive ability, educational attainment, body mass index, response to corticosteroids and drug dependence. We review current human association evidence for ANKS1B, in addition to functional studies that include two published mouse knockouts. The several GWAS findings in humans indicate that phenotypically relevant variation is segregating at the ANKS1B locus. ANKS1B shows strong plausibility for involvement in CNS drug response because it encodes a postsynaptic effector protein that mediates long-term changes to neuronal biology. Forthcoming data from large biobanks should further delineate the role of ANKS1B in CNS drug response.
Collapse
Affiliation(s)
- Rabha M Younis
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, VA 23298, USA
| | - Rachel M Taylor
- Center for Military Psychiatry & Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MA 20910, USA
| | - Patrick M Beardsley
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Center for Biomarker Research & Personalized Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Joseph L McClay
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, VA 23298, USA
| |
Collapse
|
13
|
Zai CC, Tiwari AK, Chowdhury NI, Yilmaz Z, de Luca V, Müller DJ, Potkin SG, Lieberman JA, Meltzer HY, Voineskos AN, Remington G, Kennedy JL. Genetic study of neuregulin 1 and receptor tyrosine-protein kinase erbB-4 in tardive dyskinesia. World J Biol Psychiatry 2019; 20:91-95. [PMID: 28394697 DOI: 10.1080/15622975.2017.1301681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Tardive dyskinesia (TD) is a movement disorder that may develop as a side effect of antipsychotic medication. The aetiology underlying TD is unclear, but a number of mechanisms have been proposed. METHODS We investigated single-nucleotide polymorphisms (SNPs) in the genes coding for neuregulin-1 and erbB-4 receptor in our sample of 153 European schizophrenia patients for possible association with TD. RESULTS We found the ERBB4 rs839523 CC genotype to be associated with risk for TD occurrence and increased severity as measured by the Abnormal Involuntary Movement Scale (AIMS) (P = .003). CONCLUSIONS This study supports a role for the neuregulin signalling pathway in TD, although independent replications are warranted.
Collapse
Affiliation(s)
- Clement C Zai
- a Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada.,b Department of Psychiatry , University of Toronto , Toronto , ON , Canada.,c Laboratory Medicine and Pathophysiology , University of Toronto , ON , Canada
| | - Arun K Tiwari
- a Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada.,b Department of Psychiatry , University of Toronto , Toronto , ON , Canada
| | - Nabilah I Chowdhury
- a Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada
| | - Zeynep Yilmaz
- a Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada.,d Center of Excellence for Eating Disorders at the University of North Carolina at Chapel Hill , NC , USA
| | - Vincenzo de Luca
- a Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada.,b Department of Psychiatry , University of Toronto , Toronto , ON , Canada.,e Institute of Medical Science , University of Toronto , Toronto , ON , Canada
| | - Daniel J Müller
- a Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada.,b Department of Psychiatry , University of Toronto , Toronto , ON , Canada.,e Institute of Medical Science , University of Toronto , Toronto , ON , Canada
| | - Steven G Potkin
- f Department of Psychiatry and Human Behavior , University of California , Irvine, Irvine , CA , USA
| | - Jeffrey A Lieberman
- g Department of Psychiatry , Columbia University College of Physicians and Surgeons , NY , USA
| | - Herbert Y Meltzer
- h Psychiatry and Behavioral Sciences, Pharmacology and Physiology, Chemistry of Life Processes Institute , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Aristotle N Voineskos
- a Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada.,b Department of Psychiatry , University of Toronto , Toronto , ON , Canada.,e Institute of Medical Science , University of Toronto , Toronto , ON , Canada
| | - Gary Remington
- b Department of Psychiatry , University of Toronto , Toronto , ON , Canada.,e Institute of Medical Science , University of Toronto , Toronto , ON , Canada
| | - James L Kennedy
- a Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada.,b Department of Psychiatry , University of Toronto , Toronto , ON , Canada.,e Institute of Medical Science , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
14
|
Cespedes JC, Liu M, Harbuzariu A, Nti A, Onyekaba J, Cespedes HW, Bharti PK, Solomon W, Anyaoha P, Krishna S, Adjei A, Botchway F, Ford B, Stiles JK. Neuregulin in Health and Disease. INTERNATIONAL JOURNAL OF BRAIN DISORDERS AND TREATMENT 2018; 4:024. [PMID: 31032468 PMCID: PMC6483402 DOI: 10.23937/2469-5866/1410024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Juan Carlos Cespedes
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, USA
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, USA
| | - Adriana Harbuzariu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, USA
| | - Annette Nti
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, USA
| | - John Onyekaba
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, USA
| | - Hanna Watson Cespedes
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, USA
| | | | - Wesley Solomon
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, USA
| | - Precious Anyaoha
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, USA
| | - Sri Krishna
- ICMR-National Institute for Research in Tribal Health, India
| | - Andrew Adjei
- Department of Pathology, Korle-Bu Teaching Hospital, University of Ghana Medical School, Ghana
| | - Felix Botchway
- Department of Pathology, Korle-Bu Teaching Hospital, University of Ghana Medical School, Ghana
| | - Byron Ford
- Division of Biomedical Sciences, University of California-Riverside School of Medicine, USA
| | - Jonathan K Stiles
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, USA
| |
Collapse
|
15
|
Abbasy S, Shahraki F, Haghighatfard A, Qazvini MG, Rafiei ST, Noshadirad E, Farhadi M, Rezvani Asl H, Shiryazdi AA, Ghamari R, Tabrizi Z, Mehrfard R, Esmaili Kakroudi F, Azarnoosh M, Younesi F, Parsamehr N, Garaei N, Abyari S, Salehi M, Gholami M, Zolfaghari P, Bagheri SM, Pourmehrabi M, Rastegarimogaddam E, Nobakht E, Nobakht E, Partovi R. Neuregulin1 types mRNA level changes in autism spectrum disorder, and is associated with deficit in executive functions. EBioMedicine 2018; 37:483-488. [PMID: 30415889 PMCID: PMC6284419 DOI: 10.1016/j.ebiom.2018.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a pediatric heterogeneous psychiatric and neurodevelopmental disorder with social and communication deficits, language impairment and ritualistic or repetitive behaviors. ASD has significant genetic bases but candidate genes and molecular mechanisms of disorder are not clarified. Neuregulin1 (NRG1) gene, located in 8p12 is involved in development of central nervous system and was indicated as candidate gene in schizophrenia. METHODS mRNA level of types I, II and III of NRG1 gene were studied in peripheral blood of 1540 ASD patients (IQ > 70) and 1490 control children by quantitative Real Time PCR. Also three domains of executive functions (working memory, response inhibition and vigilance) were examined in all subjects. FINDINGS All three types were significantly down regulated in ASD patients. Significant deficiencies in executive functions (EF) were found in ASD patients. EF deficiencies mostly were associated with down expression of mRNA level of types I and III. Also correlations were found between NRG1 expression with gender and severity of ASD symptoms. INTERPRETATIONS Findings primarily have been suggested involvement of NRG1 in etiology of ASD. Also correlation of NRG1 mRNA level with EF deficiencies could shed lights on EF mechanisms and may suggest targeted treatments to improve particular executive functions. FUND: Young researchers and elites club funded the project due to the annual grant of special talents of Club that gave to Arvin Haghighatfard.
Collapse
Affiliation(s)
- Samane Abbasy
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Sarem Cell Research Center, Sarem Women's Hospital, Tehran, Iran
| | - Fazlollah Shahraki
- Department of Mind- Brain-Education, Institute for Cognitive Science Studies, Tehran, Iran
| | - Arvin Haghighatfard
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | | | - Sahel Towfigh Rafiei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elnaz Noshadirad
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Farhadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Rana Ghamari
- Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Zeinab Tabrizi
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Rashed Mehrfard
- Department of Microbiology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | | - Mahsima Azarnoosh
- Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Faeghe Younesi
- Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Narges Parsamehr
- Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Nooriyeh Garaei
- Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Soroush Abyari
- Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Maede Salehi
- Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Gholami
- Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Pardis Zolfaghari
- Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Seyede Mahsa Bagheri
- Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Melika Pourmehrabi
- Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | | | - Elnaz Nobakht
- Department of Microbiology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Elmira Nobakht
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Rayan Partovi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
16
|
Jagannath V, Gerstenberg M, Walitza S, Franscini M, Heekeren K, Rössler W, Theodoridou A, Grünblatt E. Neuregulin 1 (NRG1) gene expression predicts functional outcomes in individuals at clinical high-risk for psychosis. Psychiatry Res 2018; 266:143-146. [PMID: 29864613 DOI: 10.1016/j.psychres.2018.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/07/2018] [Accepted: 05/10/2018] [Indexed: 01/09/2023]
Abstract
Little is known about valid predictive markers for functional outcomes in an at-risk for psychosis population. In a cohort of 185 individuals (age: 13-35 years) at high risk (HR) and ultra-high risk (UHR), we assessed pan-NRG1 mRNA levels across good functional status (GFS) and poor functional status (PFS) at baseline, and good functional outcome (GFO) and poor functional outcome (PFO) at 12-month follow-up. NRG1 mRNA levels were significantly higher in individuals with PFO than individuals with GFO at 12-month follow-up. Our findings suggest that NRG1 might emerge as a predictive marker for functional outcomes in at-risk for psychosis population.
Collapse
Affiliation(s)
- Vinita Jagannath
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Miriam Gerstenberg
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland; The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Maurizia Franscini
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Karsten Heekeren
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Anastasia Theodoridou
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Jha MK, Kim JH, Song GJ, Lee WH, Lee IK, Lee HW, An SSA, Kim S, Suk K. Functional dissection of astrocyte-secreted proteins: Implications in brain health and diseases. Prog Neurobiol 2017; 162:37-69. [PMID: 29247683 DOI: 10.1016/j.pneurobio.2017.12.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/23/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
Astrocytes, which are homeostatic cells of the central nervous system (CNS), display remarkable heterogeneity in their morphology and function. Besides their physical and metabolic support to neurons, astrocytes modulate the blood-brain barrier, regulate CNS synaptogenesis, guide axon pathfinding, maintain brain homeostasis, affect neuronal development and plasticity, and contribute to diverse neuropathologies via secreted proteins. The identification of astrocytic proteome and secretome profiles has provided new insights into the maintenance of neuronal health and survival, the pathogenesis of brain injury, and neurodegeneration. Recent advances in proteomics research have provided an excellent catalog of astrocyte-secreted proteins. This review categorizes astrocyte-secreted proteins and discusses evidence that astrocytes play a crucial role in neuronal activity and brain function. An in-depth understanding of astrocyte-secreted proteins and their pathways is pivotal for the development of novel strategies for restoring brain homeostasis, limiting brain injury/inflammation, counteracting neurodegeneration, and obtaining functional recovery.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jong-Heon Kim
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Gyun Jee Song
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seong Soo A An
- Department of BioNano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
18
|
|
19
|
Disrupted hippocampal neuregulin-1/ErbB3 signaling and dentate gyrus granule cell alterations in suicide. Transl Psychiatry 2017; 7:e1161. [PMID: 28675388 PMCID: PMC5538115 DOI: 10.1038/tp.2017.132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 12/29/2022] Open
Abstract
Neuregulin-1 (NRG1) and ErbB receptors have been associated with psychopathology, and NRG1-ErbB3 signaling has been shown to increase hippocampal neurogenesis and induce antidepressant-like effects. In this study, we aimed to determine whether deficits in NRG1 or ErbBs might be present in the hippocampus of suicide completers. In well-characterized postmortem hippocampal samples from suicides and matched sudden-death controls, we assessed gene expression and methylation using qRT-PCR and EpiTYPER, respectively. Moreover, in hippocampal tissues stained with cresyl violet, stereology was used to quantify numbers of granule cells and of glia. Granule cell body size was examined with a nucleator probe, and granule cell layer volume with a Cavalieri probe. Unmedicated suicides showed sharply decreased hippocampal ErbB3 expression and decreased numbers of ErbB3-expressing granule cell neurons in the anterior dentate gyrus; a phenomenon seemingly reversed by antidepressant treatment. Furthermore, we found ErbB3 expression to be significantly decreased in the dentate gyrus of adult mice exposed to chronic social defeat stress. Taken together, these results reveal novel suicidal endophenotypes in the hippocampus, as well as a putative etiological mechanism underlying suicidality, and suggest that antidepressant or NRG1 treatment may reverse a potential deficit in anterior dentate gyrus granule cell neurons in individuals at risk of dying by suicide.
Collapse
|
20
|
Al-Eitan L, Al-Habahbeh S, Alkhatib R. Genetic association analysis of ERBB4 polymorphisms with the risk ofschizophrenia susceptibility in a Jordanian population of Arab descent. Turk J Med Sci 2017; 47:542-553. [PMID: 28425244 DOI: 10.3906/sag-1603-25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/11/2016] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND/AIM The ERBB4 gene encodes a transmembrane tyrosine kinase and is considered to be one of the risk genes of schizophrenia. Although there is evidence of the roles of genes and the environment in the etiology of schizophrenia, a comprehensive biological and genetic background of the disease is still lacking. The aim of this study is to assess whether genetic variation in the human ERBB4 gene is associated with vulnerability to schizophrenia in the Jordanian Arab population. MATERIALS AND METHODS A total of 185 inpatients with schizophrenia participated in this study and 195 healthy genetically homogeneous individuals were also used as controls. Two genetic variants, rs839523 (G/A, intron 2) and rs3748962 (A/G, exon 27), encompassing the ERBB4 gene were genotyped using DNA sequencing. RESULTS The results revealed a strong and statistically significant genetic association of rs839523 with schizophrenia (P = 0.002 for allele and P = 0.006 for genotype). CONCLUSION This study provides strong statistical evidence that there is an association between the ERBB4 gene and schizophrenia in a Jordanian population of Arab descent.
Collapse
Affiliation(s)
- Laith Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan.,Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Sahar Al-Habahbeh
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Rami Alkhatib
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan.,Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
21
|
Feng Y, Cheng D, Zhang C, Li Y, Zhang Z, Wang J, Feng X. Association between ErbB4 single nucleotide polymorphisms and susceptibility to schizophrenia: A meta-analysis of case-control studies. Medicine (Baltimore) 2017; 96:e5920. [PMID: 28225484 PMCID: PMC5569411 DOI: 10.1097/md.0000000000005920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Accumulating studies have reported inconsistent association between ErbB4 single nucleotide polymorphisms (SNPs) and predisposition to schizophrenia. To better interpret this issue, here we conducted a meta-analysis using published case-control studies. METHODS We conducted a systematic search of MEDLINE (Pubmed), Embase (Ovid), Web of Science (Thomson-Reuters) to identify relevant references. The association between ErbB4 SNPs and schizophrenia was assessed by odds ratios (ORs) and 95% confidence intervals (CIs). Between-study heterogeneity was evaluated by I squared (I) statistics and Cochran's Q test. To appraise the stability of results, we employed sensitivity analysis by omitting 1 single study each time. To assess the potential publication bias, we conducted trim and fill analysis. RESULTS Seven studies published in English comprising 3162 cases and 4264 controls were included in this meta-analysis. Meta-analyses showed that rs707284 is statistically significantly associated with schizophrenia susceptibility among Asian and Caucasian populations under the allelic model (OR = 0.91, 95% CI: 0.83-0.99, P = 0.035). Additionally, a marginal association (P < 0.1) was observed between rs707284 and schizophrenia risk among Asian and Caucasian populations under the recessive (OR = 0.85, 95% CI: 0.72-1.01, P = 0.065) and homozygous (OR = 0.84, 95% CI: 0.68-1.03, P = 0.094) models. In the Asian subgroup, rs707284 was also noted to be marginally associated with schizophrenia under the recessive model (OR = 0.84, 95% CI: 0.70-1.00, P = 0.053). However, no statistically significant association was found between rs839523, rs7598440, rs3748962, and rs2371276 and schizophrenia risk. CONCLUSION This meta-analysis suggested that rs707284 may be a potential ErbB4 SNP associated with susceptibility to schizophrenia. Nevertheless, due to the limited sample size in this meta-analysis, more large-scale association studies are still needed to confirm the results.
Collapse
Affiliation(s)
- Yanguo Feng
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang
| | - Dejun Cheng
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang
| | - Chaofeng Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang
| | - Yuchun Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang
| | - Zhiying Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang
| | - Juan Wang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang
| | - Xiao Feng
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Kassenbrock A, Vasdev N, Liang SH. Selected PET Radioligands for Ion Channel Linked Neuroreceptor Imaging: Focus on GABA, NMDA and nACh Receptors. Curr Top Med Chem 2017; 16:1830-42. [PMID: 26975506 DOI: 10.2174/1568026616666160315142457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022]
Abstract
Positron emission tomography (PET) neuroimaging of ion channel linked receptors is a developing area of preclinical and clinical research. The present review focuses on recent advances with radiochemistry, preclinical and clinical PET imaging studies of three receptors that are actively pursued in neuropsychiatric drug discovery: namely the γ-aminobutyric acid-benzodiazapine (GABA) receptor, nicotinic acetylcholine receptor (nAChR), and N-methyl-D-aspartate (NMDA) receptor. Recent efforts to develop new PET radioligands for these targets with improved brain uptake, selectivity, stability and pharmacokinetics are highlighted.
Collapse
Affiliation(s)
| | | | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Dang R, Guo Y, Cai H, Yang R, Liang D, Lv C, Jiang P. Effects of prolonged antipsychotic administration on neuregulin-1/ErbB signaling in rat prefrontal cortex and myocardium: implications for the therapeutic action and cardiac adverse effect. J Toxicol Sci 2016; 41:303-9. [PMID: 26961615 DOI: 10.2131/jts.41.303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Patients with schizophrenia (SCZ) are at higher risk for developing cardiovascular disease (CVD) and neuregulin-1 (NRG1)/ErbB signaling has been identified as a common susceptibility pathway for the comorbidity. Antipsychotic treatment can change NRG1/ErbB signaling in the brain, which has been implicated in their therapeutic actions, whereas the drug-induced alterations of NRG1/ErbB pathway in cardiovascular system might be associated with the prominent cardiac side-effects of antipsychotic medication. To test this hypothesis, we examined NRG1/ErbB system in rat prefrontal cortex (PFC) and myocardium following 4-week intraperitoneal administration of haloperidol, risperidone or clozapine. Generally, the antipsychotics significantly enhanced NRG1/ErbB signaling with increased expression of NRG1 and phosphorylation of ErbB4 and ErbB2 in the brain and myocardium, except that clozapine partly blocked the cardiac NRG1/ErbB2 activation, which could be associated with its more severe cardiac adverse actions. Combined, our data firstly showed evidence of the effect of antipsychotic exposure on myocardial NRG1/ErbB signaling, along with the activated NRG1/ErbB system in brain, providing a potential link between the therapeutic actions and cardiotoxicity.
Collapse
Affiliation(s)
- Ruili Dang
- Institute of Clinical Pharmacy, Jining First People's Hospital of Jining Medical University, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Asada M, Mizutani S, Takagi M, Suzuki H. Antipsychotics promote neural differentiation of human iPS cell-derived neural stem cells. Biochem Biophys Res Commun 2016; 480:615-621. [DOI: 10.1016/j.bbrc.2016.10.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022]
|
25
|
Neuregulin 1 Attenuates Neuronal Apoptosis Induced by Deep Hypothermic Circulatory Arrest Through ErbB4 Signaling in Rats. J Cardiovasc Pharmacol 2016; 66:551-7. [PMID: 26647012 DOI: 10.1097/fjc.0000000000000303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mounting evidence suggests that neurological injury occurs after deep hypothermic circulatory arrest (DHCA), a protocol widely used in surgery for congenital heart diseases and aortic repair. Neuregulin 1 (NRG1), a neurotrophic factor highly expressed in the central nervous system, is crucial for neuronal survival. However, whether NRG1 is protective against apoptosis induced by DHCA is still unclear, as are the putative mechanisms involved. In this study, exogenous human NRG1 pretreatment (2.5 and 3.75 ng/kg, intracarotid injection) significantly inhibited neuronal apoptosis in DHCA-treated male rats, and notably, endogenous NRG1 expression was also increased. Bcl-2, as well as phosphorylated phosphatidylinositol-3-kinase, Akt, and cAMP-response element binding protein, were all increased, resulting in phosphorylation and subsequent activation of the ErbB4 receptor. Finally, expression of the apoptosis-related protein cleaved-caspase-3 was decreased, resulting in the inhibition of neuronal apoptosis induced by DHCA. Thus, our data indicate that NRG1 treatment inhibited DHCA-induced neuronal apoptosis by activating ErbB4 signaling, providing a potential therapeutic pathway for the prevention of neurological injury induced by DHCA.
Collapse
|
26
|
Mostaid MS, Lloyd D, Liberg B, Sundram S, Pereira A, Pantelis C, Karl T, Weickert CS, Everall IP, Bousman CA. Neuregulin-1 and schizophrenia in the genome-wide association study era. Neurosci Biobehav Rev 2016; 68:387-409. [DOI: 10.1016/j.neubiorev.2016.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/30/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022]
|
27
|
A systematic review comparing sex differences in cognitive function in schizophrenia and in rodent models for schizophrenia, implications for improved therapeutic strategies. Neurosci Biobehav Rev 2016; 68:979-1000. [DOI: 10.1016/j.neubiorev.2016.06.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 06/11/2016] [Accepted: 06/20/2016] [Indexed: 01/07/2023]
|
28
|
Dang R, Guo Y, Zhang L, Chen L, Yang R, Jiang P. Chronic stress and excessive glucocorticoid exposure both lead to altered Neuregulin-1/ErbB signaling in rat myocardium. Steroids 2016; 112:47-53. [PMID: 27133902 DOI: 10.1016/j.steroids.2016.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/21/2016] [Accepted: 04/22/2016] [Indexed: 11/20/2022]
Abstract
Exposure to chronic stress or excess glucocorticoids is associated with the development of depression and heart disease, but the underlying mechanisms remain equivocal. While recent evidence has indicated that Neuregulin-1 (NRG1) and its ErbB receptors play an essential role in cardiac function, much is still unknown concerning the biological link between NRG1/ErbB pathway and the stress-induced comorbidity of depression and cardiac dysfunction. Therefore, we examined the protein expression of NRG1 and ErbB receptors in the myocardium of rats following chronic unpredictable mild stress (CUMS) or rats treated with two different doses (0.2 and 2mg/kg/day, respectively) of dexamethasone (Dex). The stressed rats showed elevated expression of NRG1 and phosphorylated ErbB4 (pErbB4) in the myocardium, whereas ErbB2 and pErbB2 were inhibited. The lower dose of Dex enhanced myocardial NRG1/ErbB signaling, but as the dose is increased, while ErbB4 remained activated, the expression of ErbB2 and pErbB2 became compromised. Both CUMS and 2mg/kg of Dex suppressed the downstream Akt and ERK phosphorylation. Although the lower dose of Dex increased myocardial antiapoptotic Bcl-xl expression, a significant decrease of Bcl-xl expression was found in rats treated with the higher dose. Meanwhile, both CUMS and two different doses of Dex induced proapoptotic Bax level. Combined, our data firstly showed (mal)adaptive responses of NRG1/ErbB system in the stressed heart, indicating the potential involvement of NRG1/ErbB pathway in the stress-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Ruili Dang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Ling Zhang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Lei Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410010, China
| | - Ranyao Yang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Pei Jiang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| |
Collapse
|
29
|
Wen Z, Chen J, Khan RAW, Song Z, Wang M, Li Z, Shen J, Li W, Shi Y. Genetic association between NRG1 and schizophrenia, major depressive disorder, bipolar disorder in Han Chinese population. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:468-78. [PMID: 26888291 DOI: 10.1002/ajmg.b.32428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/29/2016] [Indexed: 12/14/2022]
Abstract
Schizophrenia, major depressive disorder, and bipolar disorder are three major psychiatric disorders affecting around 0.66%, 3.3%, and 1.5% of the Han Chinese population respectively. Several genetic linkage analyses and genome wide association studies identified NRG1 as a susceptibility gene of schizophrenia, which was validated by its role in neurodevelopment, glutamate, and other neurotransmitter receptor expression regulation. To further investigate whether NRG1 is a shared risk gene for major depressive disorder, bipolar disorder as well as schizophrenia, we performed an association study among 1,248 schizophrenia cases, 1,056 major depression cases, 1,344 bipolar disorder cases, and 1,248 controls. Totally 15 tag SNPs were genotyped and analyzed, and no population stratification was found in our sample set. Among the sites, rs4236710 (corrected Pgenotye = 0.015) and rs4512342 (Pallele = 0.03, Pgenotye = 0.045 after correction) were associated with schizophrenia, and rs2919375 (corrected Pgenotye = 0.004) was associated with major depressive disorder. The haplotype rs4512342-rs6982890 showed association with schizophrenia (P = 0.03 for haplotype "TC" after correction), and haplotype rs4531002-rs11989919 proved to be a shared risk factor for both major depressive disorder ("CC": corrected P = 0.009) and bipolar disorder ("CT": corrected P = 0.003). Our results confirmed that NRG1 was a shared common susceptibility gene for major mental disorders in Han Chinese population.
Collapse
Affiliation(s)
- Zujia Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Raja Amjad Waheed Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhijian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Meng Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jiawei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Wenjin Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China.,Shanghai Changning Mental Health Center, Shanghai, P.R. China.,Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
30
|
Colaianna M, Ilmjärv S, Peterson H, Kern I, Julien S, Baquié M, Pallocca G, Bosgra S, Sachinidis A, Hengstler JG, Leist M, Krause KH. Fingerprinting of neurotoxic compounds using a mouse embryonic stem cell dual luminescence reporter assay. Arch Toxicol 2016; 91:365-391. [PMID: 27015953 PMCID: PMC5225183 DOI: 10.1007/s00204-016-1690-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/10/2016] [Indexed: 02/05/2023]
Abstract
Identification of neurotoxic drugs and environmental chemicals is an important challenge. However, only few tools to address this topic are available. The aim of this study was to develop a neurotoxicity/developmental neurotoxicity (DNT) test system, using the pluripotent mouse embryonic stem cell line CGR8 (ESCs). The test system uses ESCs at two differentiation stages: undifferentiated ESCs and ESC-derived neurons. Under each condition, concentration–response curves were obtained for three parameters: activity of the tubulin alpha 1 promoter (typically activated in early neurons), activity of the elongation factor 1 alpha promoter (active in all cells), and total DNA content (proportional to the number of surviving cells). We tested 37 compounds from the ESNATS test battery, which includes polypeptide hormones, environmental pollutants (including methylmercury), and clinically used drugs (including valproic acid and tyrosine kinase inhibitors). Different classes of compounds showed distinct concentration–response profiles. Plotting of the lowest observed adverse effect concentrations (LOAEL) of the neuronal promoter activity against the general promoter activity or against cytotoxicity, allowed the differentiation between neurotoxic/DNT substances and non-neurotoxic controls. Reporter activity responses in neurons were more susceptible to neurotoxic compounds than the reporter activities in ESCs from which they were derived. To relate the effective/toxic concentrations found in our study to relevant in vivo concentrations, we used a reverse pharmacokinetic modeling approach for three exemplary compounds (teriflunomide, geldanamycin, abiraterone). The dual luminescence reporter assay described in this study allows high-throughput, and should be particularly useful for the prioritization of the neurotoxic potential of a large number of compounds.
Collapse
Affiliation(s)
- Marilena Colaianna
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland
| | - Sten Ilmjärv
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland
| | | | - Ilse Kern
- Department of Pediatrics, Geneva University Hospital, Geneva, Switzerland.,Department of Genetic and Laboratory Medicine, Geneva University Hospital, Centre Medical Universitaire, Rue Michel-Servet, 1211, Geneva 4, Switzerland
| | - Stephanie Julien
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland
| | | | - Giorgia Pallocca
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Sieto Bosgra
- TNO, Zeist, The Netherlands.,BioMarin Pharmaceutical Inc., Leiden, The Netherlands
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Marcel Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland. .,Department of Genetic and Laboratory Medicine, Geneva University Hospital, Centre Medical Universitaire, Rue Michel-Servet, 1211, Geneva 4, Switzerland.
| |
Collapse
|
31
|
Zhu WY, Jiang P, He X, Cao LJ, Zhang LH, Dang RL, Tang MM, Xue Y, Li HD. Contribution of NRG1 Gene Polymorphisms in Temporal Lobe Epilepsy. J Child Neurol 2016; 31:271-6. [PMID: 26071373 DOI: 10.1177/0883073815589757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/11/2015] [Indexed: 02/04/2023]
Abstract
The purpose of the present study was to investigate the possible association between temporal lobe epilepsy and NRG1 gene polymorphisms. A total of 73 patients and 69 controls were involved in this study. Genomic DNAs from the patients and controls were genotyped by polymerase chain reaction-ligase detection reaction method. There was an association of rs35753505 (T>C) with temporal lobe epilepsy (χ(2) = 6.730, P = .035). The frequency of risk allele C of rs35753505 was significantly higher (69.9%) in patients compared to controls (55.8%) (χ(2) = 6.023, P = .014). Interestingly, the significant difference of NRG1 genotype and allele frequency only existed among males, but not females. In addition, no statistically significant association was found between rs6994992, rs62510682 polymorphisms, and temporal lobe epilepsy. These data indicate that rs35753505 of NRG1 plays an important role in conferring susceptibility to the temporal lobe epilepsy in a Chinese Han population.
Collapse
Affiliation(s)
- Wen-Ye Zhu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Pei Jiang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Xin He
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Ling-Juan Cao
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Li-Hong Zhang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Rui-Li Dang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Mi-Mi Tang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Ying Xue
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Huan-De Li
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
32
|
Chen X, Zhang W, Li T, Guo Y, Tian Y, Wang F, Liu S, Shen HY, Feng Y, Xiao L. Impairment of Oligodendroglia Maturation Leads to Aberrantly Increased Cortical Glutamate and Anxiety-Like Behaviors in Juvenile Mice. Front Cell Neurosci 2015; 9:467. [PMID: 26696827 PMCID: PMC4678193 DOI: 10.3389/fncel.2015.00467] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/16/2015] [Indexed: 01/19/2023] Open
Abstract
Adolescence is the critical time for developing proper oligodendrocyte (OL)-neuron interaction and the peak of onset for many cognitive diseases, among which anxiety disorders display the highest prevalence. However, whether impairment of de novo OL development causes neuronal abnormalities and contributes to the early onset of anxiety phenotype in childhood still remains unexplored. In this study, we tested the hypothesis that defects in OL maturation manifests cortical neuron function and leads to anxiety-like behaviors in juvenile mice. We report here that conditional knockout of the Olig2 gene (Olig2 cKO) specifically in differentiating OLs in the mouse brain preferentially impaired OL maturation in the gray matter of cerebral cortex. Interestingly, localized proton magnetic resonance spectroscopy revealed that Olig2 cKO mice displayed abnormally elevated cortical glutamate levels. In addition, transmission electron microscopy demonstrated increased vesicle density in excitatory glutamatergic synapses in the cortex of the Olig2 cKO mice. Moreover, juvenile Olig2 cKO mice exhibited anxiety-like behaviors and impairment in behavioral inhibition. Taken together, our results suggest that impaired OL development affects glutamatergic neuron function in the cortex and causes anxiety-related behaviors in juvenile mice. These discoveries raise an intriguing possibility that OL defects may be a contributing mechanism for the onset of anxiety in childhood.
Collapse
Affiliation(s)
- Xianjun Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University Chongqing, China
| | - Weiguo Zhang
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University Chongqing, China
| | - Tao Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University Chongqing, China
| | - Yu Guo
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University Chongqing, China
| | - Yanping Tian
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University Chongqing, China
| | - Fei Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University Chongqing, China
| | - Shubao Liu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University Chongqing, China
| | - Hai-Ying Shen
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland OR, USA
| | - Yue Feng
- Department of Pharmacology, Emory University School of Medicine, Atlanta GA, USA
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University Chongqing, China
| |
Collapse
|
33
|
Dang R, Cai H, Zhang L, Liang D, Lv C, Guo Y, Yang R, Zhu Y, Jiang P. Dysregulation of Neuregulin-1/ErbB signaling in the prefrontal cortex and hippocampus of rats exposed to chronic unpredictable mild stress. Physiol Behav 2015; 154:145-50. [PMID: 26626816 DOI: 10.1016/j.physbeh.2015.11.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 12/24/2022]
Abstract
Exposure to chronic stress increases the likelihood of developing depression, but the underlying mechanisms remain equivocal. While recent evidence has indicated that Neuregulin-1 (NRG1) and its ErbB receptors play an essential role in neural development and function, and NRG1 has emerged as a novel modulator involved in the response of brain to stress, there is limited evidence concerning the effects of chronic stress exposure on NRG1/ErbB signaling. To fill this critical gap, we examined the protein expression of NRG1 and ErbB receptors in the brain of rats following chronic unpredictable mild stress (CUMS) exposure. After 6weeks of CUMS procedures, the rats were induced to a depression-like state. The stressed rats displayed elevated expression of NRG1 and phosphorylated ErbB4 (pErbB4) in the prefrontal cortex, whereas ErbB2 and pErbB2 were inhibited. In the hippocampus, CUMS also attenuated activation of the both ErbB receptors and suppressed the downstream Akt and ERK phosphorylation. Meanwhile, administration of sertraline enhanced NRG1/ErbB signaling and partly normalized the stress-induced behavioral changes and the disturbances of NRG1/ErbB system in CUMS rats. Combined, our data firstly showed the aberrant changes of NRG1/ErbB system in the brain of the animal model of depression, providing new evidence for the involvement of NRG1/ErbB pathway in the development and treatment of depression.
Collapse
Affiliation(s)
- Ruili Dang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China; Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410010, China
| | - Hualin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410010, China
| | - Ling Zhang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Donglou Liang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Chuanfeng Lv
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| | - Ranyao Yang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Yungui Zhu
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410010, China
| | - Pei Jiang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| |
Collapse
|
34
|
Hemmerle AM, Ahlbrand R, Bronson SL, Lundgren KH, Richtand NM, Seroogy KB. Modulation of schizophrenia-related genes in the forebrain of adolescent and adult rats exposed to maternal immune activation. Schizophr Res 2015; 168. [PMID: 26206493 PMCID: PMC4591187 DOI: 10.1016/j.schres.2015.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Maternal immune activation (MIA) is an environmental risk factor for schizophrenia, and may contribute to other developmental disorders including autism and epilepsy. Activation of pro-inflammatory cytokine systems by injection of the synthetic double-stranded RNA polyriboinosinic-polyribocytidilic acid (Poly I:C) mediates important neurochemical and behavioral corollaries of MIA, which have relevance to deficits observed in schizophrenia. We examined the consequences of MIA on forebrain expression of neuregulin-1 (NRG-1), brain-derived neurotrophic factor (BDNF) and their receptors, ErbB4 and trkB, respectively, genes associated with schizophrenia. On gestational day 14, pregnant rats were injected with Poly I:C or vehicle. Utilizing in situ hybridization, expression of NRG-1, ErbB4, BDNF, and trkB was examined in male rat offspring at postnatal day (P) 14, P30 and P60. ErbB4 mRNA expression was significantly increased at P30 in the anterior cingulate (AC Ctx), frontal, and parietal cortices, with increases in AC Ctx expression continuing through P60. ErbB4 expression was also elevated in the prefrontal cortex (PFC) at P14. In contrast, NRG-1 mRNA was decreased in the PFC at P60. Expression of BDNF mRNA was significantly upregulated in the PFC at P60 and decreased in the AC Ctx at P14. Expression of trkB was increased in two regions, the piriform cortex at P14 and the striatum at P60. These findings demonstrate developmentally and regionally selective alterations in the expression of schizophrenia-related genes as a consequence of MIA. Further study is needed to determine contributions of these effects to the development of alterations of relevance to neuropsychiatric diseases.
Collapse
Affiliation(s)
- Ann M. Hemmerle
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Rebecca Ahlbrand
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Stefanie L. Bronson
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kerstin H. Lundgren
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Neil M. Richtand
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA,San Diego Veterans Affairs Healthcare System, San Diego, CA 92161USA,Department of Psychiatry, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Kim B. Seroogy
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA,Corresponding Author: Kim B. Seroogy, PhD, The Selma Schottenstein Harris Laboratory for Research in Parkinson’s, Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati College of Medicine, Medical Sciences Building, ML0536, 231 Albert Sabin Way, Cincinnati, OH 45267-0536, USA. Telephone: 513-558-7086; Fax: 513-558-7009;
| |
Collapse
|
35
|
Jajodia A, Kaur H, Kumari K, Kanojia N, Gupta M, Baghel R, Sood M, Jain S, Chadda RK, Kukreti R. Evaluation of genetic association of neurodevelopment and neuroimmunological genes with antipsychotic treatment response in schizophrenia in Indian populations. Mol Genet Genomic Med 2015; 4:18-27. [PMID: 26788534 PMCID: PMC4707035 DOI: 10.1002/mgg3.169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/10/2015] [Indexed: 12/14/2022] Open
Abstract
Neurodevelopmental and neuroimmunological genes critically regulate antipsychotic treatment outcome. We report genetic associations of antipsychotic response in 742 schizophrenia patients from Indian populations of Indo‐European and Dravidian ancestry, segregated by disease severity. Meta‐analysis comparing the two populations identified CCL2 [rs4795893: OR (95% CI) = 1.79 (1.27–2.52), P = 7.62 × 10−4; rs4586: OR (95% CI) = 1.74 (1.24–2.43), P = 1.13 × 10−3] and GRIA4 [rs2513265: OR (95% CI) = 0.53 (0.36–0.78), P = 1.44 × 10−3] in low severity group; and, ADCY2 [rs1544938: OR (95% CI) = 0.36 (0.19–0.65), P = 7.68 × 10−4] and NRG1 [rs13250975, OR (95% CI) = 0.42 (0.23–0.79), P = 6.81 × 10−3; rs17716295, OR (95% CI) = 1.78 (1.15–2.75), P = 8.71 × 10−3] in high severity group, with incomplete response toward antipsychotics. To our knowledge, this is the first study to identify genetic polymorphisms associated with the efficacy of antipsychotic treatment of schizophrenia patients from two major India populations.
Collapse
Affiliation(s)
- Ajay Jajodia
- Genomics and Molecular Medicine CSIR-Institute of Genomics and Integrative Biology Mall Road Delhi 110007 India
| | - Harpreet Kaur
- Genomics and Molecular Medicine CSIR-Institute of Genomics and Integrative Biology Mall Road Delhi 110007 India
| | - Kalpana Kumari
- Department of Psychiatry All India Institute of Medical Sciences Ansari Nagar New Delhi 110029 India
| | - Neha Kanojia
- Genomics and Molecular Medicine CSIR-Institute of Genomics and Integrative Biology Mall Road Delhi 110007 India
| | - Meenal Gupta
- Genomics and Molecular Medicine CSIR-Institute of Genomics and Integrative Biology Mall Road Delhi 110007 India
| | - Ruchi Baghel
- Genomics and Molecular Medicine CSIR-Institute of Genomics and Integrative Biology Mall Road Delhi 110007 India
| | - Mamta Sood
- Department of Psychiatry All India Institute of Medical Sciences Ansari Nagar New Delhi 110029 India
| | - Sanjeev Jain
- Molecular Genetic Laboratory Department of Psychiatry National Institute of Mental Health and Neuro Sciences Hosur Road Bengaluru 560029 India
| | - Rakesh K Chadda
- Department of Psychiatry All India Institute of Medical Sciences Ansari Nagar New Delhi 110029 India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine CSIR-Institute of Genomics and Integrative Biology Mall Road Delhi 110007 India
| |
Collapse
|
36
|
Effects of genetic variations in NRG1 on cognitive domains in patients with schizophrenia and healthy individuals. Psychiatr Genet 2015; 25:147-54. [DOI: 10.1097/ypg.0000000000000087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Zhu XW, Deng FY, Wu LF, Tang ZX, Lei SF. Functional mechanisms for type 2 diabetes-associated genetic variants. J Diabetes Complications 2015; 29:497-501. [PMID: 25754502 DOI: 10.1016/j.jdiacomp.2015.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/22/2015] [Accepted: 02/12/2015] [Indexed: 10/24/2022]
Abstract
AIMS Type 2 diabetes (T2D) is a complex endocrine and metabolic disorder, characterized by hyperglycemia due to insulin resistance and relative lack of insulin. Several recent studies have identified a large number of genetic loci associated with T2D without exploring functional mechanisms underlying the associations. This study established integrative analyses to detect the functional mechanisms for T2D-related associations. METHODS Based on the public available datasets and resources, this study performed integrative analyses (gene relationships among implicated loci (GRAIL), expression quantitative trait loci (eQTL) analysis, differential gene expression analysis and functional prediction analysis) to detect the molecular functional mechanisms underlying the associations. RESULTS Two single nucleotide polymorphisms (SNPs) (rs7593730, rs2439312) have been found to act as cis-effect regulators of two corresponding eQTL genes (RBMS1, NRG1) among 252 selected (P<E-4) genetic associations that were archived in the public databases. These two non-HLA genes were also differentially expressed in T2D-related cell groups. The two SNPs were predicted as regulatory sites by utilizing online prediction tools. CONCLUSIONS This study detected potential regulatory mechanisms underlying the associations between T2D and two identified SNPs. Integrative analysis can be used to provide suggestive clues for the molecular functional mechanisms in T2D.
Collapse
Affiliation(s)
- Xiao-Wei Zhu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Long-Fei Wu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Zai-Xiang Tang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| |
Collapse
|
38
|
Large-scale candidate gene study to identify genetic risk factors predictive of paliperidone treatment response in patients with schizophrenia. Pharmacogenet Genomics 2015; 25:173-85. [DOI: 10.1097/fpc.0000000000000122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Williamson VS, Mamdani M, McMichael GO, Kim AH, Lee D, Bacanu S, Vladimirov VI. Expression quantitative trait loci (eQTLs) in microRNA genes are enriched for schizophrenia and bipolar disorder association signals. Psychol Med 2015; 45:2557-2569. [PMID: 25817407 PMCID: PMC4845662 DOI: 10.1017/s0033291715000483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Schizophrenia (SZ) and bipolar disorder (BD) have substantial negative impact on the quality of human life. Both, microRNA (miRNA) expression profiling in SZ and BD postmortem brains [and genome-wide association studies (GWAS)] have implicated miRNAs in disease etiology. Here, we aim to determine whether significant GWAS signals observed in the Psychiatric Genetic Consortium (PGC) are enriched for miRNAs. METHOD A two-stage approach was used to determine whether association signals from PGC affect miRNAs: (i) statistical assessment of enrichment using a Simes test and sum of squares test (SST) and (ii) biological evidence that quantitative trait loci (eQTL) mapping to known miRNA genes affect their expression in an independent sample of 78 postmortem brains from the Stanley Medical Research Institute. RESULTS A total of 2567 independent single nucleotide polymorphisms (SNPs) (R2 > 0.8) were mapped locally, within 1 Mb, to all known miRNAs (miRBase v. 21). We show robust enrichment for SZ- and BD-related SNPs with miRNAs using Simes (SZ: p ≤ 0.0023, BD: p ≤ 0.038), which remained significant after adjusting for background inflation in SZ (empirical p = 0.018) and approached significance in BD (empirical p = 0.07). At a false discovery rate of 10%, we identified a total of 32 eQTLs to influence miRNA expression; 11 of these overlapped with BD. CONCLUSIONS Our approach of integrating PGC findings with eQTL results can be used to generate specific hypotheses regarding the role of miRNAs in SZ and BD.
Collapse
Affiliation(s)
- V. S. Williamson
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, VA, USA
| | - M. Mamdani
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, VA, USA
| | - G. O. McMichael
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, VA, USA
| | - A. H. Kim
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, VA, USA
| | - D. Lee
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, VA, USA
| | - S. Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, VA, USA
- Department of Psychiatry, Virginia Commonwealth University, VA, USA
| | - V. I. Vladimirov
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, VA, USA
- Department of Psychiatry, Virginia Commonwealth University, VA, USA
- Center for Biomarker Research and Personalized Medicine, Virginia Commonwealth University, VA, USA
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
40
|
Deng C, Pan B, Hu CH, Han M, Huang XF. Differential effects of short- and long-term antipsychotic treatment on the expression of neuregulin-1 and ErbB4 receptors in the rat brain. Psychiatry Res 2015; 225:347-54. [PMID: 25576368 DOI: 10.1016/j.psychres.2014.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 10/08/2014] [Accepted: 12/03/2014] [Indexed: 01/09/2023]
Abstract
Neuregulin-1 (NRG1) and ErbB4 genes have been identified as candidate genes for schizophrenia. Post-mortem studies indicated that NRG1-ErbB4 signalling is impaired in schizophrenia subjects. This study investigated whether short- or long-term antipsychotic treatment has different effects on the expression of NRG1 and ErbB4 receptors. Female Sprague-Dawley rats were treated orally with either aripiprazole (0.75 mg/kg), haloperidol (0.1 mg/kg), olanzapine (0.5 mg/kg), or vehicle, 3 times/day for 1 or 12 weeks. Western blotting was performed to examine the expression of NRG1 isoforms (135 kDa, 70 kDa and 40 kDa) and ErbB4 receptors. Both 1-week haloperidol and olanzapine treatment increased NRG1-70kDa expression in the hippocampus; haloperidol also up-regulated ErbB4 levels in the prefrontal cortex (PFC). In the 12-week group, aripiprazole decreased the expression of all three NRG1 isoforms and ErbB4 receptors in the PFC, NRG1-70 kDa and -40 kDa in the cingulate cortex (Cg), and NRG1-135 kDa, -70 kDa and ErbB4 receptors in the hippocampus; haloperidol reduced NRG1-135 kDa in the PFC, NRG1-40 kDa in all three brain regions, and ErbB4 receptor levels in the PFC and hippocampus; NRG1-40 kDa in the PFC and Cg was also down-regulated by olanzapine. These results suggest that the time-dependent and region-specific effects of antipsychotics on NRG1-ErbB4 signalling may contribute to the efficacy of antipsychotics to treat schizophrenia.
Collapse
Affiliation(s)
- Chao Deng
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Schizophrenia Research Institute, 384 Victoria Street, Darlinghurst, NSW, Australia.
| | - Bo Pan
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Chang-Hua Hu
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Institute of Modern Biopharmaceuticals, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing, People׳s Republic of China
| | - Mei Han
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Schizophrenia Research Institute, 384 Victoria Street, Darlinghurst, NSW, Australia
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Schizophrenia Research Institute, 384 Victoria Street, Darlinghurst, NSW, Australia
| |
Collapse
|
41
|
Engel M, Snikeris P, Jenner A, Karl T, Huang XF, Frank E. Neuregulin 1 Prevents Phencyclidine-Induced Behavioral Impairments and Disruptions to GABAergic Signaling in Mice. Int J Neuropsychopharmacol 2015; 18:pyu114. [PMID: 26478928 PMCID: PMC4540095 DOI: 10.1093/ijnp/pyu114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Substantial evidence from human post-mortem and genetic studies has linked the neurotrophic factor neuregulin 1 (NRG1) to the pathophysiology of schizophrenia. Genetic animal models and in vitro experiments have suggested that altered NRG1 signaling, rather than protein changes, contributes to the symptomatology of schizophrenia. However, little is known about the effect of NRG1 on schizophrenia-relevant behavior and neurotransmission (particularly GABAergic and glutamatergic) in adult animals. METHOD To address this question, we treated adult mice with the extracellular signaling domain of NRG1 and assessed spontaneous locomotor activity and acoustic startle response, as well as extracellular GABA, glutamate, and glycine levels in the prefrontal cortex and hippocampus via microdialysis. Furthermore, we asked whether the effect of NRG1 would differ under schizophrenia-relevant impairments in mice and therefore co-treated mice with NRG1 and phencyclidine (PCP) (3 mg/kg). RESULTS Acute intraventricularly- or systemically-injected NRG1 did not affect spontaneous behavior, but prevented PCP induced hyperlocomotion and deficits of prepulse inhibition. NRG1 retrodialysis (10 nM) reduced extracellular glutamate and glycine levels in the prefrontal cortex and hippocampus, and prevented PCP-induced increase in extracellular GABA levels in the hippocampus. CONCLUSION With these results, we provide the first compelling in vivo evidence for the involvement of NRG1 signaling in schizophrenia-relevant behavior and neurotransmission in the adult nervous system, which highlight its treatment potential. Furthermore, the ability of NRG1 treatment to alter GABA, glutamate, and glycine levels in the presence of PCP also suggests that NRG1 signaling has the potential to alter disrupted neurotransmission in patients with schizophrenia.
Collapse
|
42
|
Repunte-Canonigo V, Lefebvre C, George O, Kawamura T, Morales M, Koob GF, Califano A, Masliah E, Sanna PP. Gene expression changes consistent with neuroAIDS and impaired working memory in HIV-1 transgenic rats. Mol Neurodegener 2014; 9:26. [PMID: 24980976 PMCID: PMC4107468 DOI: 10.1186/1750-1326-9-26] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/19/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A thorough investigation of the neurobiology of HIV-induced neuronal dysfunction and its evolving phenotype in the setting of viral suppression has been limited by the lack of validated small animal models to probe the effects of concomitant low level expression of multiple HIV-1 products in disease-relevant cells in the CNS. RESULTS We report the results of gene expression profiling of the hippocampus of HIV-1 Tg rats, a rodent model of HIV infection in which multiple HIV-1 proteins are expressed under the control of the viral LTR promoter in disease-relevant cells including microglia and astrocytes. The Gene Set Enrichment Analysis (GSEA) algorithm was used for pathway analysis. Gene expression changes observed are consistent with astrogliosis and microgliosis and include evidence of inflammation and cell proliferation. Among the genes with increased expression in HIV-1 Tg rats was the interferon stimulated gene 15 (ISG-15), which was previously shown to be increased in the cerebrospinal fluid (CSF) of HIV patients and to correlate with neuropsychological impairment and neuropathology, and prostaglandin D2 (PGD2) synthase (Ptgds), which has been associated with immune activation and the induction of astrogliosis and microgliosis. GSEA-based pathway analysis highlighted a broad dysregulation of genes involved in neuronal trophism and neurodegenerative disorders. Among the latter are genesets associated with Huntington's disease, Parkinson's disease, mitochondrial, peroxisome function, and synaptic trophism and plasticity, such as IGF, ErbB and netrin signaling and the PI3K signal transduction pathway, a mediator of neural plasticity and of a vast array of trophic signals. Additionally, gene expression analyses also show altered lipid metabolism and peroxisomes dysfunction. Supporting the functional significance of these gene expression alterations, HIV-1 Tg rats showed working memory impairments in spontaneous alternation behavior in the T-Maze, a paradigm sensitive to prefrontal cortex and hippocampal function. CONCLUSIONS Altogether, differentially regulated genes and pathway analysis identify specific pathways that can be targeted therapeutically to increase trophic support, e.g. IGF, ErbB and netrin signaling, and reduce neuroinflammation, e.g. PGD2 synthesis, which may be beneficial in the treatment of chronic forms of HIV-associated neurocognitive disorders in the setting of viral suppression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pietro Paolo Sanna
- Molecular and Cellular Neuroscience Department, La Jolla, CA 92037, USA.
| |
Collapse
|
43
|
Iasevoli F, Tomasetti C, Buonaguro EF, de Bartolomeis A. The glutamatergic aspects of schizophrenia molecular pathophysiology: role of the postsynaptic density, and implications for treatment. Curr Neuropharmacol 2014; 12:219-38. [PMID: 24851087 PMCID: PMC4023453 DOI: 10.2174/1570159x12666140324183406] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/14/2014] [Accepted: 03/14/2014] [Indexed: 01/23/2023] Open
Abstract
Schizophrenia is one of the most debilitating psychiatric diseases with a lifetime prevalence of approximately
1%. Although the specific molecular underpinnings of schizophrenia are still unknown, evidence has long linked its
pathophysiology to postsynaptic abnormalities.
The postsynaptic density (PSD) is among the molecular structures suggested to be potentially involved in schizophrenia.
More specifically, the PSD is an electron-dense thickening of glutamatergic synapses, including ionotropic and
metabotropic glutamate receptors, cytoskeletal and scaffolding proteins, and adhesion and signaling molecules. Being
implicated in the postsynaptic signaling of multiple neurotransmitter systems, mostly dopamine and glutamate, the PSD
constitutes an ideal candidate for studying dopamine-glutamate disturbances in schizophrenia. Recent evidence suggests
that some PSD proteins, such as PSD-95, Shank, and Homer are implicated in severe behavioral disorders, including
schizophrenia. These findings, further corroborated by genetic and animal studies of schizophrenia, offer new insights for
the development of pharmacological strategies able to overcome the limitations in terms of efficacy and side effects of
current schizophrenia treatment. Indeed, PSD proteins are now being considered as potential molecular targets against this
devastating illness.
The current paper reviews the most recent hypotheses on the molecular mechanisms underlying schizophrenia
pathophysiology. First, we review glutamatergic dysfunctions in schizophrenia and we provide an update on postsynaptic
molecules involvement in schizophrenia pathophysiology by addressing both human and animal studies. Finally, the
possibility that PSD proteins may represent potential targets for new molecular interventions in psychosis will be
discussed.
Collapse
Affiliation(s)
- Felice Iasevoli
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| | - Andrea de Bartolomeis
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| |
Collapse
|
44
|
Bernstein HG, Bogerts B. Neuregulin-1 alpha, the underestimated molecule: emerging new roles in normal brain function and the pathophysiology of schizophrenia? Genome 2013; 56:703-4. [PMID: 24299109 DOI: 10.1139/gen-2013-0171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We comment here, from a schizophrenia research perspective, on a recent paper of Ghahramani Seno et al., which clearly shows that the splice variant neuregulin-1 alpha is able to regulate multiple genes involved in phosphorylation, acetylation, and generation of splice variants.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | | |
Collapse
|