1
|
Petrella M, Borruto AM, Curti L, Domi A, Domi E, Xu L, Barbier E, Ilari A, Heilig M, Weiss F, Mannaioni G, Masi A, Ciccocioppo R. Pharmacological blockage of NOP receptors decreases ventral tegmental area dopamine neuronal activity through GABA B receptor-mediated mechanism. Neuropharmacology 2024; 248:109866. [PMID: 38364970 DOI: 10.1016/j.neuropharm.2024.109866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/15/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
The Nociceptin/Orphanin FQ (N/OFQ) peptide and its receptor NOP are highly expressed within several regions of the mesolimbic system, including the ventral tegmental area (VTA). Evidence indicates that the N/OFQ-NOP receptor system is involved in reward processing and historically it has been proposed that activation of NOP receptors attenuates the motivation for substances of abuse. However, recent findings demonstrated that drug self-administration and relapse to drug-seeking are also attenuated after administration of NOP receptor antagonists. Here, to shed light on the mechanisms through which NOP receptor blockers modulate these processes, we utilized ex vivo patch-clamp recordings to investigate the effect of the selective NOP receptor antagonist LY2817412 on VTA dopaminergic (DA) function in male rats. Results showed that, similar to the endogenous NOP receptor agonist N/OFQ, LY2817412 reduced the spontaneous basal firing discharge of VTA DA neurons. Consistently, we found that NOP receptors are expressed both in VTA DA and GABA cells and that LY2817412 slice perfusion increased GABA release onto VTA DA cells. Finally, in the attempt to dissect the role of postsynaptic and presynaptic NOP receptors, we tested the effect of N/OFQ and LY2817412 in the presence of GABA receptors blockers. Results showed that the effect of LY2817412 was abolished following pretreatment with GABABR, but not GABAAR, blockers. Conversely, inhibition of DA neuronal activity by N/OFQ was unaffected by blockade of GABA receptors. Altogether, these results suggest that both NOP receptor agonists and antagonists can decrease VTA DA neuronal activity, but through distinct mechanisms of action. The effect of NOP receptor antagonists occurs through a GABABR-mediated mechanism while NOP receptor agonists seem to act via a direct effect on VTA DA neurons.
Collapse
Affiliation(s)
- Michele Petrella
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Anna Maria Borruto
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Lorenzo Curti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Ana Domi
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Esi Domi
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy; Center for Social and Affective Neuroscience, Institute for Clinical and Experimental Medicine, Linkoping University, Linkoping, 58183, Sweden
| | - Li Xu
- Center for Social and Affective Neuroscience, Institute for Clinical and Experimental Medicine, Linkoping University, Linkoping, 58183, Sweden
| | - Estelle Barbier
- Center for Social and Affective Neuroscience, Institute for Clinical and Experimental Medicine, Linkoping University, Linkoping, 58183, Sweden
| | - Alice Ilari
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Institute for Clinical and Experimental Medicine, Linkoping University, Linkoping, 58183, Sweden
| | - Friedbert Weiss
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessio Masi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy.
| |
Collapse
|
2
|
Li W, Ren Z, Tang Y, Fu Y, Sun S, Ding R, Hou J, Mai Y, Zhan B, Zhu Y, Zuo W, Ye JH, Fu R. Rostromedial tegmental nucleus nociceptin/orphanin FQ (N/OFQ) signaling regulates anxiety- and depression-like behaviors in alcohol withdrawn rats. Neuropsychopharmacology 2023; 48:908-919. [PMID: 36329156 PMCID: PMC10156713 DOI: 10.1038/s41386-022-01482-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/24/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Recent studies indicate that stimulation of the rostromedial tegmental nucleus (RMTg) can drive a negative affective state and that nociceptin/orphanin FQ (N/OFQ) may play a role in affective disorders and drug addiction. The N/OFQ precursor prepronociceptin encoding genes Pnoc are situated in RMTg neurons. To determine whether N/OFQ signaling contributes to the changes in both behavior phenotypes and RMTg activity of alcohol withdrawn (Post-EtOH) rats, we trained adult male Long-Evans rats, randomly assigned into the ethanol and Naïve groups to consume either 20% ethanol or water-only under an intermittent-access procedure. Using the fluorescence in situ hybridization technique combined with retrograde tracing, we show that the ventral tegmental area projecting RMTg neurons express Pnoc and nociceptin opioid peptide (NOP) receptors encoding gene Oprl1. Also, using the laser capture microdissection technique combined with RT-qPCR, we detected a substantial decrease in Pnoc but an increase in Oprl1 mRNA levels in the RMTg of Post-EtOH rats. Moreover, RMTg cFos expression is increased in Post-EtOH rats, which display anxiety- and depression-like behaviors. Intra-RMTg infusion of the endogenous NOP agonist nociceptin attenuates the aversive behaviors in Post-EtOH rats without causing any notable change in Naïve rats. Conversely, intra-RMTg infusion of the NOP selective antagonist [Nphe1]nociceptin(1-13)NH2 elicits anxiety- and depression-like behaviors in Naïve but not Post-EtOH rats. Furthermore, intra-RMTg infusion of nociceptin significantly reduces alcohol consumption. Thus, our results show that the deficiency of RMTg NOP signaling during alcohol withdrawal mediates anxiety- and depression-like behaviors. The intervention of NOP may help those individuals suffering from alcohol use disorders.
Collapse
Affiliation(s)
- Wenfu Li
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zhiheng Ren
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Ying Tang
- Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yixin Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Shizhu Sun
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Ruxuan Ding
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jiawei Hou
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yunlin Mai
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Bo Zhan
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yingxin Zhu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Rao Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
3
|
Curley DE, Vasaturo-Kolodner TR, Cannella N, Ciccocioppo R, Haass-Koffler CL. Yohimbine as a pharmacological probe for alcohol research: a systematic review of rodent and human studies. Neuropsychopharmacology 2022; 47:2111-2122. [PMID: 35760866 PMCID: PMC9556614 DOI: 10.1038/s41386-022-01363-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 11/08/2022]
Abstract
Alcohol use disorder (AUD) is a significant public health concern, contributing to a myriad of social, psychological, and physiological issues. Despite substantial efforts within the alcohol research field, promising preclinical findings have failed to translate to clinical use, highlighting the necessity to develop safe and effective pharmacological probes with the ability to be used in preclinical and clinical research. Yohimbine, an α2 adrenergic receptor antagonist, is a well-validated pharmacological tool that has been widely employed in alcohol studies to evaluate noradrenergic activation. This scoping systematic review examines published literature in rodent and human studies involving the use of yohimbine relevant to alcohol research. We conducted a systematic literature review of MEDLINE, Embase, Web of Science Core Collection, CINAHL, PsycInfo, and Cochrane Central Register of Controlled Trials to identify: (1) Experimental Characteristics and Methodology, (2) Sex Differences, (3) Neurochemical Systems and Brain Regions, and (4) Discussion of Applications for Medication Development. Sixty-seven (62 preclinical and 5 clinical) studies were identified meeting the stated criteria, comprising extensive evidence supporting the use of yohimbine as a safe, titratable pharmacological agent for translational alcohol research. Support for the use of yohimbine as a fully translational tool, however, is hindered by limited available findings from human laboratory studies, as well as a dearth of studies examining sex differences in yohimbine's mechanistic actions. Additional consideration should be given to further translational modeling, ideally allowing for parallel preclinical and clinical assessment of yohimbine, methodological assessment of neurochemical systems and brain regions.
Collapse
Affiliation(s)
- Dallece E Curley
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Neuroscience Graduate Program, Department of Neuroscience, Brown University, Providence, RI, USA
| | - Talia R Vasaturo-Kolodner
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Carolina L Haass-Koffler
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA.
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA.
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
4
|
Ubaldi M, Cannella N, Borruto AM, Petrella M, Micioni Di Bonaventura MV, Soverchia L, Stopponi S, Weiss F, Cifani C, Ciccocioppo R. Role of Nociceptin/Orphanin FQ-NOP Receptor System in the Regulation of Stress-Related Disorders. Int J Mol Sci 2021; 22:12956. [PMID: 34884757 PMCID: PMC8657682 DOI: 10.3390/ijms222312956] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022] Open
Abstract
Nociceptin/orphanin FQ (N/OFQ) is a 17-residue neuropeptide that binds the nociceptin opioid-like receptor (NOP). N/OFQ exhibits nucleotidic and aminoacidics sequence homology with the precursors of other opioid neuropeptides but it does not activate either MOP, KOP or DOP receptors. Furthermore, opioid neuropeptides do not activate the NOP receptor. Generally, activation of N/OFQ system exerts anti-opioids effects, for instance toward opioid-induced reward and analgesia. The NOP receptor is widely expressed throughout the brain, whereas N/OFQ localization is confined to brain nuclei that are involved in stress response such as amygdala, BNST and hypothalamus. Decades of studies have delineated the biological role of this system demonstrating its involvement in significant physiological processes such as pain, learning and memory, anxiety, depression, feeding, drug and alcohol dependence. This review discusses the role of this peptidergic system in the modulation of stress and stress-associated psychiatric disorders in particular drug addiction, mood, anxiety and food-related associated-disorders. Emerging preclinical evidence suggests that both NOP agonists and antagonists may represent a effective therapeutic approaches for substances use disorder. Moreover, the current literature suggests that NOP antagonists can be useful to treat depression and feeding-related diseases, such as obesity and binge eating behavior, whereas the activation of NOP receptor by agonists could be a promising tool for anxiety.
Collapse
Affiliation(s)
- Massimo Ubaldi
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Nazzareno Cannella
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Anna Maria Borruto
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Michele Petrella
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Maria Vittoria Micioni Di Bonaventura
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Laura Soverchia
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Serena Stopponi
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Friedbert Weiss
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - Carlo Cifani
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Roberto Ciccocioppo
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| |
Collapse
|
5
|
Borruto AM, Fotio Y, Stopponi S, Petrella M, De Carlo S, Domi A, Ubaldi M, Weiss F, Ciccocioppo R. NOP receptor antagonism attenuates reinstatement of alcohol-seeking through modulation of the mesolimbic circuitry in male and female alcohol-preferring rats. Neuropsychopharmacology 2021; 46:2121-2131. [PMID: 34285372 PMCID: PMC8505627 DOI: 10.1038/s41386-021-01096-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
In patients suffering from alcohol use disorder (AUD), stress and environmental stimuli associated with alcohol availability are important triggers of relapse. Activation of the nociceptin opioid peptide (NOP) receptor by its endogenous ligand Nociceptin/Orphanin FQ (N/OFQ) attenuates alcohol drinking and relapse in rodents, suggesting that NOP agonists may be efficacious in treating AUD. Intriguingly, recent data demonstrated that also blockade of NOP receptor reduced alcohol drinking in rodents. To explore further the potential of NOP antagonism, we investigated its effects on the reinstatement of alcohol-seeking elicited by administration of the α2 antagonist yohimbine (1.25 mg/kg, i.p.) or by environmental conditioning factors in male and female genetically selected alcohol-preferring Marchigian Sardinian (msP) rats. The selective NOP receptor antagonist LY2817412 (0.0, 3.0, 10.0, and 30.0 mg/kg) was first tested following oral (p.o.) administration. We then investigated the effects of LY2817412 (1.0, 3.0, 6.0 μg/μl/rat) microinjected into three candidate mesolimbic brain regions: the ventral tegmental area (VTA), the central nucleus of the amygdala (CeA), and the nucleus accumbens (NAc). We found that relapse to alcohol seeking was generally stronger in female than in male rats and oral administration of LY2817412 reduced yohimbine- and cue-induced reinstatement in both sexes. Following site-specific microinjections, LY2817412 reduced yohimbine-induced reinstatement of alcohol-seeking when administered into the VTA and the CeA, but not in the NAc. Cue-induced reinstatement was suppressed only when LY2817412 was microinjected into the VTA. Infusions of LY2817412 into the VTA and the CeA did not alter saccharin self-administration. These results demonstrate that NOP receptor blockade prevents the reinstatement of alcohol-seeking through modulation of mesolimbic system circuitry, providing further evidence of the therapeutic potential of NOP receptor antagonism in AUD.
Collapse
Affiliation(s)
- Anna Maria Borruto
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Yannick Fotio
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Serena Stopponi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Michele Petrella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Sara De Carlo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Ana Domi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Friedbert Weiss
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.
| |
Collapse
|
6
|
Toll L, Cippitelli A, Ozawa A. The NOP Receptor System in Neurological and Psychiatric Disorders: Discrepancies, Peculiarities and Clinical Progress in Developing Targeted Therapies. CNS Drugs 2021; 35:591-607. [PMID: 34057709 PMCID: PMC8279133 DOI: 10.1007/s40263-021-00821-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 02/01/2023]
Abstract
The nociceptin opioid peptide (NOP) receptor and its endogenous ligand nociceptin/orphanin FQ (N/OFQ) are the fourth members of the opioid receptor and opioid peptide families. Although they have considerable sequence homology to the other family members, they are not considered opioid per se because they do not have pharmacological profiles similar to the other family members. The number of NOP receptors in the brain is higher than the other family members, and NOP receptors can be found throughout the brain. Because of the widespread distribution of NOP receptors, N/OFQ and other peptide and small molecule agonists and antagonists have extensive CNS activities. Originally thought to be anti-opioid, NOP receptor agonists block some opioid activities, potentiate others, and modulate other activities not affected by traditional opiates. Because the effect of receptor activation can be dependent upon site of administration, state of the animal, and other variables, the study of NOP receptors has been fraught with contradictions and inconsistencies. In this article, the actions and controversies pertaining to NOP receptor activation and inhibition are discussed with respect to CNS disorders including pain (acute, chronic, and migraine), drug abuse, anxiety and depression. In addition, progress towards clinical use of NOP receptor-directed compounds is discussed.
Collapse
Affiliation(s)
- Lawrence Toll
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA.
| | - Andrea Cippitelli
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| | - Akihiko Ozawa
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| |
Collapse
|
7
|
Domi E, Domi A, Adermark L, Heilig M, Augier E. Neurobiology of alcohol seeking behavior. J Neurochem 2021; 157:1585-1614. [PMID: 33704789 DOI: 10.1111/jnc.15343] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/29/2022]
Abstract
Alcohol addiction is a chronic relapsing brain disease characterized by an impaired ability to stop or control alcohol use despite adverse consequences. A main challenge of addiction treatment is to prevent relapse, which occurs in more than >50% of newly abstinent patients with alcohol disorder within 3 months. In people suffering from alcohol addiction, stressful events, drug-associated cues and contexts, or re-exposure to a small amount of alcohol trigger a chain of behaviors that frequently culminates in relapse. In this review, we first present the preclinical models that were developed for the study of alcohol seeking behavior, namely the reinstatement model of alcohol relapse and compulsive alcohol seeking under a chained schedule of reinforcement. We then provide an overview of the neurobiological findings obtained using these animal models, focusing on the role of opioids systems, corticotropin-release hormone and neurokinins, followed by dopaminergic, glutamatergic, and GABAergic neurotransmissions in alcohol seeking behavior.
Collapse
Affiliation(s)
- Esi Domi
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| | - Ana Domi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| | - Eric Augier
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| |
Collapse
|
8
|
Caputi FF, Stopponi S, Rullo L, Palmisano M, Ubaldi M, Candeletti S, Ciccocioppo R, Romualdi P. Dysregulation of Nociceptin/Orphanin FQ and Dynorphin Systems in the Extended Amygdala of Alcohol Preferring Marchigian Sardinian (msP) Rats. Int J Mol Sci 2021; 22:ijms22052448. [PMID: 33671048 PMCID: PMC7957504 DOI: 10.3390/ijms22052448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 01/08/2023] Open
Abstract
Previous studies have shown that genetically selected Marchigian Sardinian alcohol-preferring (msP) rats consume excessive amounts of ethanol to self-medicate from negative moods and to relieve innate hypersensitivity to stress. This phenotype resembling a subset of alcohol use disorder (AUD) patients, appears to be linked to a dysregulation of the equilibrium between stress and antistress mechanisms in the extended amygdala. Here, comparing water and alcohol exposed msP and Wistar rats we evaluate the transcript expression of the anti-stress opioid-like peptide nociceptin/orphanin FQ (N/OFQ) and its receptor NOP as well as of dynorphin (DYN) and its cognate κ-opioid receptor (KOP). In addition, we measured the transcript levels of corticotropin-releasing factor (CRF), CRF receptor 1 (CRF1R), brain-derived neurotrophic factor (BDNF) and of the tropomyosin receptor kinase B receptor (Trk-B). Results showed an innately up-regulation of the CRFergic system, mediating negative mood and stress responses, as well as an inherent up-regulation of the anti-stress N/OFQ system, both in the amygdala (AMY) and bed nucleus of the stria terminalis (BNST) of msP rats. The up-regulation of this latter system may reflect an attempt to buffer the negative condition elicited by the hyperactivity of pro-stress mechanisms since results showed that voluntary alcohol consumption dampened N/OFQ. Alcohol exposure also reduced the expression of dynorphin and CRF transmissions in the AMY of msP rats. In the BNST, alcohol intake led to a more complex reorganization of these systems increasing receptor transcripts in msP rats, along with an increase of CRF and a decrease of N/OFQ transcripts, respectively. Moreover, mimicking the effects of alcohol in the AMY we observed that the activation of NOP receptor by intracerebroventricular administration of N/OFQ in msP rats caused an increase of BDNF and a decrease of CRF transcripts. Our study indicates that both stress and anti-stress mechanisms are dysregulated in the extended AMY of msP rats. The voluntary alcohol drinking, as well as NOP agonism, have a significant impact on neuropeptidergic systems arrangement, bringing the systems back to normalization.
Collapse
Affiliation(s)
- Francesca Felicia Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (F.F.C.); (L.R.); (M.P.); (S.C.)
| | - Serena Stopponi
- Pharmacology Unit, School of Pharmacy, University of Camerino, Madonna delle Carceri, 62032 Camerino, Italy; (S.S.); (M.U.)
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (F.F.C.); (L.R.); (M.P.); (S.C.)
| | - Martina Palmisano
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (F.F.C.); (L.R.); (M.P.); (S.C.)
| | - Massimo Ubaldi
- Pharmacology Unit, School of Pharmacy, University of Camerino, Madonna delle Carceri, 62032 Camerino, Italy; (S.S.); (M.U.)
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (F.F.C.); (L.R.); (M.P.); (S.C.)
| | - Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, University of Camerino, Madonna delle Carceri, 62032 Camerino, Italy; (S.S.); (M.U.)
- Correspondence: (R.C.); (P.R.)
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (F.F.C.); (L.R.); (M.P.); (S.C.)
- Correspondence: (R.C.); (P.R.)
| |
Collapse
|
9
|
Shamakina IY, Shagiakhmetov FS, Anokhin PK, Kohan VS, Davidova TV. [The role of nociceptin in opioid regulation of brain functions]. BIOMEDITSINSKAIA KHIMIIA 2021; 67:5-16. [PMID: 33645518 DOI: 10.18097/pbmc20216701005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review discusses our current knowledge on the nociceptin/orphanin (N/OFQ) system regarding its role in regulation of brain functions. Nociceptin receptor (NOPr) was identified in 1994 [Bunzow et al., 1994; Mollereau et al., 1994]. In 1995 a 17 amino acid endogenous peptide was found to be the high-affinity ligand for the NOPr [Reinscheid et al., 1995]. N/OFQ has a broad spectrum of activity and can act as on opioid-like as well as an anti-opioid peptide. Considering high level of N/OFQ and NOPr mRNA expression in the limbic brain regions, the N/OFQ/NOP system is suggested to be involved in regulation of emotions, resward, pain sensitivity, stress responsibility, sexual behavior, aggression, drug abuse and addiction. However it is still not well understood whether an increased vulnerability to drugs of abuse may be associated with dysregulation of N/OFQ/NOP system. Current review further highlights a need for further research on N/OFQ/NOP system as it could have clinical utility for substance abuse, depression, and anxiety pharmacotherapy.
Collapse
Affiliation(s)
- I Yu Shamakina
- V.P. Serbsky National Medical Research Center on Psychiatry and Addiction, Moscow, Russia
| | | | - P K Anokhin
- V.P. Serbsky National Medical Research Center on Psychiatry and Addiction, Moscow, Russia
| | - V S Kohan
- V.P. Serbsky National Medical Research Center on Psychiatry and Addiction, Moscow, Russia
| | - T V Davidova
- The Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
10
|
Taylor RM, Jeong IH, May MD, Bergman EM, Capaldi VF, Moore NLT, Matson LM, Lowery-Gionta EG. Fear expression is reduced after acute and repeated nociceptin/orphanin FQ (NOP) receptor antagonism in rats: therapeutic implications for traumatic stress exposure. Psychopharmacology (Berl) 2020; 237:2943-2958. [PMID: 32588078 DOI: 10.1007/s00213-020-05582-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022]
Abstract
RATIONALE Evaluation of pharmacotherapies for acute stress disorder (ASD) or post-traumatic stress disorder (PTSD) is challenging due to robust heterogeneity of trauma histories and limited efficacy of any single candidate to reduce all stress-induced effects. Pursuing novel mechanisms, such as the nociceptin/orphanin FQ (NOP) system, may be a viable path for therapeutic development and of interest as it is involved in regulation of relevant behaviors and recently implicated in PTSD and ASD. OBJECTIVES First, we evaluated NOP receptor antagonism on general behavioral performance and again following a three-species predator exposure model (Experiment 1). Then, we evaluated effects of NOP antagonism on fear memory expression (Experiment 2). METHODS Adult, male rats underwent daily administration of NOP antagonists (J-113397 or SB-612,111; 0-20 mg/kg, i.p.) and testing in acoustic startle, elevated plus maze, tail-flick, and open field tests. Effects of acute NOP antagonism on behavioral performance following predator exposure were then assessed. Separately, rats underwent fear conditioning and were later administered SB-612,111 (0-3 mg/kg, i.p.) prior to fear memory expression tests. RESULTS J-113397 and SB-612,111 did not significantly alter most general behavioral performance measures alone, suggesting minimal off-target behavioral effects of NOP antagonism. J-113397 and SB-612,111 restored performance in measures of exploratory behavior (basic movements on the elevated plus maze and total distance in the open field) following predator exposure. Additionally, SB-612,111 significantly reduced freezing behavior relative to control groups across repeated fear memory expression tests, suggesting NOP antagonism may be useful in dampening fear responses. Other measures of general behavioral performance were not significantly altered following predator exposure. CONCLUSIONS NOP antagonists may be useful as pharmacotherapeutics for dampening fear responses to trauma reminders, and the present results provide supporting evidence for the implication of the NOP system in the neuropathophysiology of dysregulations in fear learning and memory processes observed in trauma- and stress-related disorders.
Collapse
Affiliation(s)
- Rachel M Taylor
- Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| | - Isaac H Jeong
- Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Matthew D May
- Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Elizabeth M Bergman
- Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Vincent F Capaldi
- Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Nicole L T Moore
- Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Liana M Matson
- Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Emily G Lowery-Gionta
- Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| |
Collapse
|
11
|
Bellia F, Fernández MS, Fabio MC, Pucci M, Pautassi RM, D'Addario C. Selective alterations in endogenous opioid system genes expression in rats selected for high ethanol intake during adolescence. Drug Alcohol Depend 2020; 212:108025. [PMID: 32442753 DOI: 10.1016/j.drugalcdep.2020.108025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/31/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
Historically, the roots of alcoholism have been linked to either environment or heredity. However, the interaction between these factors is still largely unexplored. The evidence supports a link between alcohol consumption and the endogenous opioid system. We here studied the opioid genes expression in male and female Wistar rats derived from a short-term breeding program which selected -- at adolescence -- for high (ADHI line) or low (ADLO line) ethanol drinking. Specifically, in this work we analyzed central opioid gene expression in the rats of the second filial generation (S2-ADLO and S2-ADHI). Selective downregulation of pronociceptin (Pnoc) and its receptor (Oprl1) mRNA levels were observed in the prefrontal cortex of male S2-ADHI rats when compared to S2-ADLO, and for Oprl1 also in the nucleus accumbens. An increase in gene expression was instead observed for pro-opiomelanocortin (Pomc) in the nucleus accumbens of S2-ADHI males when compared to S2-ADLO, as well as for mu opioid receptor (Oprm1) but in females. The differences in mRNA levels may be due to the different alcohol consumption between the two groups of rats or may represent pre-existing differences between them. Moreover, we show a sex-specific modulation of the expression of these genes, thus pointing out the importance of sex on ethanol responses. The results might lead to more specific and effective pharmacological treatments for alcoholism.
Collapse
Affiliation(s)
| | - Macarena Soledad Fernández
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Carolina Fabio
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Claudio D'Addario
- Università degli Studi di Teramo, Teramo, Italy; Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden.
| |
Collapse
|
12
|
Borruto AM, Fotio Y, Stopponi S, Brunori G, Petrella M, Caputi FF, Romualdi P, Candeletti S, Narendran R, Rorick-Kehn LM, Ubaldi M, Weiss F, Ciccocioppo R. NOP receptor antagonism reduces alcohol drinking in male and female rats through mechanisms involving the central amygdala and ventral tegmental area. Br J Pharmacol 2020; 177:1525-1537. [PMID: 31713848 DOI: 10.1111/bph.14915] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Nociceptin/orphanin FQ (N/OFQ) peptide and its cognate receptor (NOP) are widely expressed in mesolimbic brain regions where they play an important role in modulating reward and motivation. Early evidence suggested that NOP receptor activation attenuates the rewarding effects of drugs of abuse, including alcohol. However, emerging data indicate that NOP receptor blockade also effectively attenuates alcohol drinking and relapse. To advance our understanding of the role of the N/OFQ-NOP receptor system in alcohol abuse, we examined the effect of NOP receptor blockade on voluntary alcohol drinking at the neurocircuitry level. EXPERIMENTAL APPROACH Using male and female genetically selected alcohol-preferring Marchigian Sardinian (msP) rats, we initially evaluated the effects of the selective NOP receptor antagonist LY2817412 (3, 10, and 30 mg·kg-1 , p.o.) on alcohol consumption in a two-bottle free-choice paradigm. We then microinjected LY2817412 (3 and 6 μg·μl-1 per rat) in the central nucleus of the amygdala (CeA), ventral tegmental area (VTA), and nucleus accumbens (NAc). KEY RESULTS Peripheral LY2817412 administration dose-dependently and selectively reduced voluntary alcohol intake in male and female msP rats. Central injections of LY2817412 markedly attenuated voluntary alcohol intake in both sexes following administration in the CeA and VTA but not in the NAc. CONCLUSION AND IMPLICATIONS The present results revealed that the CeA and VTA are neuroanatomical substrates that mediate the effects of NOP receptor antagonism on alcohol consumption. Overall, our findings support the potential of NOP receptor antagonism as a treatment strategy to attenuate alcohol use and addiction.
Collapse
Affiliation(s)
| | - Yannick Fotio
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | - Serena Stopponi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | - Gloria Brunori
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy.,Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Michele Petrella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | - Francesca Felicia Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Rajesh Narendran
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Linda M Rorick-Kehn
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana, USA
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | - Friedbert Weiss
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
13
|
Gibula-Tarlowska E, Grochecki P, Silberring J, Kotlinska JH. The kisspeptin derivative kissorphin reduces the acquisition, expression, and reinstatement of ethanol-induced conditioned place preference in rats. Alcohol 2019; 81:11-19. [PMID: 30981809 DOI: 10.1016/j.alcohol.2019.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 12/17/2022]
Abstract
Research has shown that opioids are involved in the rewarding effects of ethanol. Neuropeptide FF (NPFF) has been described as an anti-opioid peptide because, in many cases, it inhibits opioid and ethanol effects in rodents. Kissorphin (KSO) is a new peptide derived from kisspeptin-10 with structural similarities to NPFF. This peptide possesses NPFF-like biological activity in vitro. The aim of the current study was to investigate whether KSO (Tyr-Asn-Trp-Asn-Ser-Phe-NH2) influences the acquisition, expression, and reinstatement of ethanol-induced conditioned place preference (ethanol-CPP) in rats. The ethanol-CPP was established (conditioning for 5 days) by intraperitoneal (i.p.) administration of ethanol (1 g/kg, 20%, w/v) using an unbiased procedure. After that, one group of rats was used in final post-conditioning testing (expression of CPP) and the other group received a priming injection of ethanol after 10 days of extinction (reinstatement of CPP). Our experiments showed that KSO, given intravenously (i.v.) at the doses of 1, 3, and 10 nmol before every ethanol administration, inhibited the acquisition and, given acutely before the post-conditioning test or before the priming dose of ethanol, inhibited the expression and reinstatement of ethanol-CPP, respectively, in a dose-dependent manner. KSO given by itself neither induced place preference nor aversion and did not alter locomotor activity and coordination of rats. These results suggest that KSO can alter rewarding/motivational effects of ethanol. These data suggest this peptide possesses an anti-opioid character.
Collapse
Affiliation(s)
- Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland.
| | - Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - Jerzy Silberring
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland; Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Jolanta H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| |
Collapse
|
14
|
Park JY, Chae S, Kim CS, Kim YJ, Yi HJ, Han E, Joo Y, Hong S, Yun JW, Kim H, Shin KH. Role of nociceptin/orphanin FQ and nociceptin opioid peptide receptor in depression and antidepressant effects of nociceptin opioid peptide receptor antagonists. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:427-448. [PMID: 31680765 PMCID: PMC6819898 DOI: 10.4196/kjpp.2019.23.6.427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/11/2019] [Accepted: 08/26/2019] [Indexed: 01/28/2023]
Abstract
Nociceptin/orphanin FQ (N/OFQ) and its receptor, nociceptin opioid peptide (NOP) receptor, are localized in brain areas implicated in depression including the amygdala, bed nucleus of the stria terminalis, habenula, and monoaminergic nuclei in the brain stem. N/OFQ inhibits neuronal excitability of monoaminergic neurons and monoamine release from their terminals by activation of G protein-coupled inwardly rectifying K+ channels and inhibition of voltage sensitive calcium channels, respectively. Therefore, NOP receptor antagonists have been proposed as a potential antidepressant. Indeed, mounting evidence shows that NOP receptor antagonists have antidepressant-like effects in various preclinical animal models of depression, and recent clinical studies again confirmed the idea that blockade of NOP receptor signaling could provide a novel strategy for the treatment of depression. In this review, we describe the pharmacological effects of N/OFQ in relation to depression and explore the possible mechanism of NOP receptor antagonists as potential antidepressants.
Collapse
Affiliation(s)
- Jong Yung Park
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Suji Chae
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Chang Seop Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Yoon Jae Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Hyun Joo Yi
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Eunjoo Han
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Youngshin Joo
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Surim Hong
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Jae Won Yun
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Hyojung Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Kyung Ho Shin
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| |
Collapse
|
15
|
Brunori G, Weger M, Schoch J, Targowska-Duda K, Barnes M, Borruto AM, Rorick-Kehn LM, Zaveri NT, Pintar JE, Ciccocioppo R, Toll L, Cippitelli A. NOP Receptor Antagonists Decrease Alcohol Drinking in the Dark in C57BL/6J Mice. Alcohol Clin Exp Res 2019; 43:2167-2178. [PMID: 31386211 DOI: 10.1111/acer.14165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The nociceptin/orphanin FQ opioid peptide (NOP) receptor and its endogenous ligand N/OFQ have been implicated in the regulation of drug and alcohol use disorders (AUD). In particular, evidence demonstrated that NOP receptor activation blocks reinforcing and motivating effects of alcohol across a range of behavioral measures, including alcohol intake, conditioned place preference, and vulnerability to relapse. METHODS Here, we show the effects of pharmacological activation and inhibition of NOP receptors on binge-like alcohol consumption, as measured by the "drinking in the dark" (DID) model in C57BL/6J mice. RESULTS We found that 2 potent and selective NOP agonists AT-202 (0, 0.3, 1, 3 mg/kg) and AT-312 (0, 0.3, 1 mg/kg) did not affect binge alcohol drinking at doses that do not affect locomotor activity. AT-202 also failed to alter DID behavior when administered to mice previously exposed to chronic alcohol treatment with an alcohol-containing liquid diet. Conversely, treatment with either the high affinity NOP receptor antagonist SB-612111 (0, 3, 10, 30 mg/kg) or the selective antagonist LY2817412 (0, 3, 10, 30 mg/kg) decreased binge drinking. SB-612111 was effective at all doses examined, and LY2817412 was effective at 30 mg/kg. Consistently, NOP receptor knockout mice consumed less alcohol compared to wild type. SB-612111 reduced DID and increased sucrose consumption at doses that do not appear to affect locomotor activity. However, the high dose of SB-612111 (30 mg/kg) reduced alcohol intake but failed to inhibit preference in a 2-bottle choice DID model that can assess moderate alcohol intake. CONCLUSIONS The present results suggest that NOP receptor inhibition rather than activation may represent a valuable approach for treatment of AUD characterized by excessive alcohol consumption such as binge drinking.
Collapse
Affiliation(s)
- Gloria Brunori
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida.,Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida.,Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Michelle Weger
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida
| | - Jennifer Schoch
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida.,Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida
| | - Katarzyna Targowska-Duda
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida.,Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Megan Barnes
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Anna Maria Borruto
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | | | | | - John E Pintar
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Lawrence Toll
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida.,Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida
| | - Andrea Cippitelli
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida.,Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida
| |
Collapse
|
16
|
Effects of stimulation of mu opioid and nociceptin/orphanin FQ peptide (NOP) receptors on alcohol drinking in rhesus monkeys. Neuropsychopharmacology 2019; 44:1476-1484. [PMID: 30970376 PMCID: PMC6784996 DOI: 10.1038/s41386-019-0390-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022]
Abstract
Alcohol use disorder (AUD) persists as a devastating public health problem; widely effective pharmacological treatments are needed. Evidence from rodent models suggests that stimulating brain receptors for the neuropeptide nociceptin/orphanin FQ (NOP) can decrease ethanol drinking. We characterized the effects of the mu opioid peptide (MOP) receptor agonist buprenorphine and the buprenorphine analog (2S)-2-[(5R,6R,7R,14S)-N-cyclopropylmethyl-4,5-epoxy-6,14-ethano-3-hydroxy-6 methoxymorphinan-7-yl]-3,3-dimethylpentan-2-ol (BU08028), which stimulates MOP and NOP receptors, in a translational nonhuman primate model of AUD. Rhesus monkeys drank a 4% ethanol solution 6 h per day, 5 days per week via an operant behavioral panel in their home cages. To assess behavioral selectivity, monkeys responded via a photo-optic switch to earn food pellets. After characterizing the acute effects of BU08028 (0.001-0.01 mg/kg, i.m.) and buprenorphine (0.003-0.056 mg/kg, i.m.), the drugs were administered chronically using a model of pharmacotherapy assessment that incorporates clinical aspects of AUD and treatment. Acutely, both drugs decreased ethanol drinking at doses that did not affect food-maintained responding. During chronic treatment, effects of BU08028 and buprenorphine were maintained for several weeks without development of tolerance or emergence of adverse effects. BU08028 was ~0.5 and 1.0 log units more potent in acute and chronic studies, respectively. The selective NOP receptor agonist SCH 221510 also selectively decreased ethanol intakes when given acutely (0.03-1.0 mg/kg, i.m.), whereas the MOP antagonist naltrexone (1.7-5.6 mg/kg, i.m.) decreased both ethanol intake and food pellets delivered. These data demonstrate that bifunctional MOP/NOP agonists, which may have therapeutic advantages to MOP-selective drugs, can decrease alcohol drinking in nonhuman primates.
Collapse
|
17
|
Ciccocioppo R, Borruto AM, Domi A, Teshima K, Cannella N, Weiss F. NOP-Related Mechanisms in Substance Use Disorders. Handb Exp Pharmacol 2019; 254:187-212. [PMID: 30968214 PMCID: PMC6641545 DOI: 10.1007/164_2019_209] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Nociceptin/orphanin FQ (N/OFQ) is a 17 amino acid peptide that was deorphanized in 1995 and has been widely studied since. The role of the N/OFQ system in drug abuse has attracted researchers' attention since its initial discovery. The first two scientific papers describing the effect of intracranial injection of N/OFQ appeared 20 years ago and reported efficacy of the peptide in attenuating alcohol intake, whereas heroin self-administration was insensitive. Since then more than 100 scientific articles investigating the role of the N/OFQ and N/OFQ receptor (NOP) system in drug abuse have been published. The present article provides an historical overview of the advances in the field with focus on three major elements. First, the most robust data supportive of the efficacy of NOP agonists in treating drug abuse come from studies in the field of alcohol research, followed by psychostimulant and opioid research. In contrast, activation of NOP appears to facilitate nicotine consumption. Second, emerging data challenge the assumption that activation of NOP is the most appropriate strategy to attenuate consumption of substances of abuse. This assumption is based first on the observation that animals carrying an overexpression of NOP system components are more prone to consume substances of abuse, whereas NOP knockout rats are less motivated to self-administer heroin, alcohol, and cocaine. Third, administration of NOP antagonists also reduces alcohol consumption. In addition, NOP blockade reduces nicotine self-administration. Hypothetical mechanisms explaining this apparent paradox are discussed. Finally, we focus on the possibility that co-activation of NOP and mu opioid (MOP) receptors is an alternative strategy, readily testable in the clinic, to reduce the consumption of psychostimulants, opiates, and, possibly, alcohol.
Collapse
Affiliation(s)
- Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.
| | - Anna Maria Borruto
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Ana Domi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Koji Teshima
- Research Unit/Neuroscience, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Osaka, Japan
| | - Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Friedbert Weiss
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
18
|
Greenwald MK. Anti-stress neuropharmacological mechanisms and targets for addiction treatment: A translational framework. Neurobiol Stress 2018; 9:84-104. [PMID: 30238023 PMCID: PMC6138948 DOI: 10.1016/j.ynstr.2018.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022] Open
Abstract
Stress-related substance use is a major challenge for treating substance use disorders. This selective review focuses on emerging pharmacotherapies with potential for reducing stress-potentiated seeking and consumption of nicotine, alcohol, marijuana, cocaine, and opioids (i.e., key phenotypes for the most commonly abused substances). I evaluate neuropharmacological mechanisms in experimental models of drug-maintenance and relapse, which translate more readily to individuals presenting for treatment (who have initiated and progressed). An affective/motivational systems model (three dimensions: valence, arousal, control) is mapped onto a systems biology of addiction approach for addressing this problem. Based on quality of evidence to date, promising first-tier neurochemical receptor targets include: noradrenergic (α1 and β antagonist, α2 agonist), kappa-opioid antagonist, nociceptin antagonist, orexin-1 antagonist, and endocannabinoid modulation (e.g., cannabidiol, FAAH inhibition); second-tier candidates may include corticotropin releasing factor-1 antagonists, serotonergic agents (e.g., 5-HT reuptake inhibitors, 5-HT3 antagonists), glutamatergic agents (e.g., mGluR2/3 agonist/positive allosteric modulator, mGluR5 antagonist/negative allosteric modulator), GABA-promoters (e.g., pregabalin, tiagabine), vasopressin 1b antagonist, NK-1 antagonist, and PPAR-γ agonist (e.g., pioglitazone). To address affective/motivational mechanisms of stress-related substance use, it may be advisable to combine agents with actions at complementary targets for greater efficacy but systematic studies are lacking except for interactions with the noradrenergic system. I note clinically-relevant factors that could mediate/moderate the efficacy of anti-stress therapeutics and identify research gaps that should be pursued. Finally, progress in developing anti-stress medications will depend on use of reliable CNS biomarkers to validate exposure-response relationships.
Collapse
Affiliation(s)
- Mark K. Greenwald
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| |
Collapse
|
19
|
Erikson CM, Wei G, Walker BM. Maladaptive behavioral regulation in alcohol dependence: Role of kappa-opioid receptors in the bed nucleus of the stria terminalis. Neuropharmacology 2018; 140:162-173. [PMID: 30075159 DOI: 10.1016/j.neuropharm.2018.07.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 12/15/2022]
Abstract
There is an important emerging role for the endogenous opioid dynorphin (DYN) and the kappa-opioid receptor (KOR) in the treatment of alcohol dependence. Evidence suggests that the DYN/KOR system in the bed nucleus of the stria terminalis (BNST) contributes to maladaptive behavioral regulation during withdrawal in alcohol dependence. The current experiments were designed to assess dysregulation of the BNST DYN/KOR system by evaluating alcohol dependence-induced changes in DYN/KOR gene expression (Pdyn and Oprk1, respectively), and the sensitivity of alcohol self-administration, negative affective-like behavior and physiological withdrawal to intra-BNST KOR antagonism during acute withdrawal. Wistar rats trained to self-administer alcohol, or not trained, were subjected to an alcohol dependence induction procedure (14 h alcohol vapor/10 h air) or air-exposure. BNST micropunches from air- and vapor-exposed animals were analyzed using RT-qPCR to quantify dependence-induced changes in Pdyn and Oprk1 mRNA expression. In addition, vapor- and air-exposed groups received an intra-BNST infusion of a KOR antagonist or vehicle prior to measurement of alcohol self-administration. A separate cohort of vapor-exposed rats was assessed for physiological withdrawal and negative affective-like behavior signs following intra-BNST KOR antagonism. During acute withdrawal, following alcohol dependence induction, there was an upregulation in Oprk1 mRNA expression in alcohol self-administering animals, but not non-alcohol self-administering animals, that confirmed dysregulation of the KOR/DYN system within the BNST. Furthermore, intra-BNST KOR antagonism attenuated escalated alcohol self-administration and negative affective-like behavior during acute withdrawal without reliably impacting physiological symptoms of withdrawal. The results confirm KOR system dysregulation in the BNST in alcohol dependence, illustrating the therapeutic potential of targeting the KOR to treat alcohol dependence.
Collapse
Affiliation(s)
- Chloe M Erikson
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Alcohol and Drug Abuse Research Program, Translational Addiction Research Center, Washington State University, Pullman, WA, 99164-4820, USA
| | - Gengze Wei
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Alcohol and Drug Abuse Research Program, Translational Addiction Research Center, Washington State University, Pullman, WA, 99164-4820, USA
| | - Brendan M Walker
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Alcohol and Drug Abuse Research Program, Translational Addiction Research Center, Washington State University, Pullman, WA, 99164-4820, USA.
| |
Collapse
|
20
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
21
|
Zaveri NT, Marquez PV, Meyer ME, Polgar WE, Hamid A, Lutfy K. A Novel and Selective Nociceptin Receptor (NOP) Agonist (1-(1-((cis)-4-isopropylcyclohexyl)piperidin-4-yl)-1H-indol-2-yl)methanol (AT-312) Decreases Acquisition of Ethanol-Induced Conditioned Place Preference in Mice. Alcohol Clin Exp Res 2018; 42:461-471. [PMID: 29215139 DOI: 10.1111/acer.13575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 11/30/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Nociceptin/orphanin FQ, the endogenous peptide agonist for the opioid receptor-like receptor (also known as NOP or the nociceptin receptor), has been shown to block the acquisition and expression of ethanol (EtOH)-induced conditioned place preference (CPP). Here, we report the characterization of a novel small-molecule NOP ligand AT-312 (1-(1-((cis)-4-isopropylcyclohexyl)piperidin-4-yl)-1H-indol-2-yl)methanol) in receptor binding and GTPγS functional assays in vitro. We then investigated the effect of AT-312 on the rewarding action of EtOH in mice using the CPP paradigm. Further, using mice lacking the NOP receptor and their wild-type controls, we also examined the involvement of NOP in the effect of AT-312. Motivational effects of AT-312 alone were also assessed in the CPP paradigm. METHODS Female mice lacking NOP and/or their wild-type controls received conditioning in the presence or absence of the NOP agonist [AT-312 (1, 3, and 10 mg/kg) or the control NOP agonist SCH221510 (10 mg/kg)] followed by saline/EtOH for 3 consecutive days (twice daily) and tested for CPP in a drug-free state on the next day. RESULTS Our in vitro data showed that AT-312 is a high-affinity, selective NOP full agonist with 17-fold selectivity over the mu opioid receptor and >200-fold selectivity over the kappa opioid receptor. The results of our in vivo studies showed that AT-312 reduced EtOH CPP at the lowest dose (1 mg/kg) tested but completely abolished EtOH CPP at higher doses (3 or 10 mg/kg) compared to their vehicle-treated control group. AT-312 (3 mg/kg) did not alter EtOH-induced CPP in mice lacking NOP, confirming that AT-312 reduced EtOH CPP through its action at the NOP receptor. AT-312 (3 mg/kg) did not induce reward or aversion when administered alone, showing that the novel small-molecule NOP agonist shows efficacy in blocking EtOH-induced CPP via the NOP receptor. CONCLUSIONS Together, these data suggest that small-molecule NOP agonists have the potential to reduce alcohol reward and may be promising as medications to treat alcohol addiction.
Collapse
Affiliation(s)
| | - Paul V Marquez
- College of Pharmacy, Western University of Health Sciences, Pomona, California
| | | | | | - Abdul Hamid
- College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Kabirullah Lutfy
- College of Pharmacy, Western University of Health Sciences, Pomona, California
| |
Collapse
|
22
|
Gavioli EC, Holanda VAD, Ruzza C. NOP Ligands for the Treatment of Anxiety and Mood Disorders. Handb Exp Pharmacol 2018; 254:233-257. [PMID: 30535941 DOI: 10.1007/164_2018_188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many studies point toward the nociceptin/orphanin FQ (N/OFQ) and the N/OFQ peptide receptor (NOP) as targets for the development of innovative drugs for treating anxiety- and mood-related disorders. Evidence supports the view that the activation of NOP receptors with agonists elicits anxiolytic-like effects, while its blockade with NOP antagonists promotes antidepressant-like actions in rodents. Genetic studies showed that NOP receptor knockout mice display an antidepressant-like phenotype, and NOP antagonists are inactive in these animals. In contrast, the genetic blockade of NOP receptor signaling generally displays an increase of anxiety states in the elevated plus-maze test. In this chapter we summarized the most relevant findings of NOP receptor ligands in the modulation of anxiety and mood disorders, and the putative mechanisms of action are discussed.
Collapse
Affiliation(s)
- Elaine C Gavioli
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil.
| | - Victor A D Holanda
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Chiara Ruzza
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| |
Collapse
|
23
|
Litten RZ, Falk DE, Ryan ML, Fertig J, Leggio L. Advances in Pharmacotherapy Development: Human Clinical Studies. Handb Exp Pharmacol 2018; 248:579-613. [PMID: 29294197 DOI: 10.1007/164_2017_79] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
For more than 25 years, researchers have made advances in developing medications to treat alcohol use disorder (AUD), highlighted by the US Food and Drug Administration's (FDA's) approval of disulfiram, naltrexone (oral and long-acting), and acamprosate. These medications are also approved in Europe, where the European Medicines Agency (EMA) recently added a fourth medication, nalmefene, for AUD. Despite these advances, today's medications have a small effect size, showing efficacy for only a limited number of individuals with AUD. However, a host of new medications, which act on variety of pharmacologic targets, are in the pipeline and have been evaluated in numerous human studies. This article reviews the efficacy and safety of medications currently being tested in human trials and looks at ongoing efforts to identify candidate compounds in human studies. As mentioned in the National Institute on Alcohol Abuse and Alcoholism's Strategic Plan 2017-2021 ( https://www.niaaa.nih.gov/sites/default/files/StrategicPlan_NIAAA_optimized_2017-2020.pdf ), medications development remains a high priority. By developing more effective and safe medications, and identifying those patients who will benefit the most from these treatments, we can provide clinicians with the tools they need to treat this devastating disorder, providing relief for patients and their families and markedly improving public health and safety.
Collapse
Affiliation(s)
- Raye Z Litten
- Division of Medications Development, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Daniel E Falk
- Division of Medications Development, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Megan L Ryan
- Division of Medications Development, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Joanne Fertig
- Division of Medications Development, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Lorenzo Leggio
- Section of Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, Bethesda, MD, USA
| |
Collapse
|
24
|
Becker HC. Influence of stress associated with chronic alcohol exposure on drinking. Neuropharmacology 2017; 122:115-126. [PMID: 28431971 PMCID: PMC5497303 DOI: 10.1016/j.neuropharm.2017.04.028] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 12/24/2022]
Abstract
Stress is commonly regarded as an important trigger for relapse and a significant factor that promotes increased motivation to drink in some individuals. However, the relationship between stress and alcohol is complex, likely changing in form during the transition from early moderated alcohol use to more heavy uncontrolled alcohol intake. A growing body of evidence indicates that prolonged excessive alcohol consumption serves as a potent stressor, producing persistent dysregulation of brain reward and stress systems beyond normal homeostatic limits. This progressive dysfunctional (allostatic) state is characterized by changes in neuroendocrine and brain stress pathways that underlie expression of withdrawal symptoms that reflect a negative affective state (dysphoria, anxiety), as well as increased motivation to self-administer alcohol. This review highlights literature supportive of this theoretical framework for alcohol addiction. In particular, evidence for stress-related neural, physiological, and behavioral changes associated with chronic alcohol exposure and withdrawal experience is presented. Additionally, this review focuses on the effects of chronic alcohol-induced changes in several pro-stress neuropeptides (corticotropin-releasing factor, dynorphin) and anti-stress neuropeptide systems (nocicepton, neuropeptide Y, oxytocin) in contributing to the stress, negative emotional, and motivational consequences of chronic alcohol exposure. Studies involving use of animal models have significantly increased our understanding of the dynamic stress-related physiological mechanisms and psychological underpinnings of alcohol addiction. This, in turn, is crucial for developing new and more effective therapeutics for treating excessive, harmful drinking, particularly stress-enhanced alcohol consumption. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Department of Neuroscience, Medical University of South Carolina, RHJ Department of Veterans Affairs, Charleston, SC 29464, USA.
| |
Collapse
|