1
|
Jang WJ, Lee S, Jeong CH. Uncovering transcriptomic biomarkers for enhanced diagnosis of methamphetamine use disorder: a comprehensive review. Front Psychiatry 2024; 14:1302994. [PMID: 38260797 PMCID: PMC10800441 DOI: 10.3389/fpsyt.2023.1302994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Methamphetamine use disorder (MUD) is a chronic relapsing disorder characterized by compulsive Methamphetamine (MA) use despite its detrimental effects on physical, psychological, and social well-being. The development of MUD is a complex process that involves the interplay of genetic, epigenetic, and environmental factors. The treatment of MUD remains a significant challenge, with no FDA-approved pharmacotherapies currently available. Current diagnostic criteria for MUD rely primarily on self-reporting and behavioral assessments, which have inherent limitations owing to their subjective nature. This lack of objective biomarkers and unidimensional approaches may not fully capture the unique features and consequences of MA addiction. Methods We performed a literature search for this review using the Boolean search in the PubMed database. Results This review explores existing technologies for identifying transcriptomic biomarkers for MUD diagnosis. We examined non-invasive tissues and scrutinized transcriptomic biomarkers relevant to MUD. Additionally, we investigated transcriptomic biomarkers identified for diagnosing, predicting, and monitoring MUD in non-invasive tissues. Discussion Developing and validating non-invasive MUD biomarkers could address these limitations, foster more precise and reliable diagnostic approaches, and ultimately enhance the quality of care for individuals with MA addiction.
Collapse
Affiliation(s)
| | | | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Occhipinti C, La Russa R, Iacoponi N, Lazzari J, Costantino A, Di Fazio N, Del Duca F, Maiese A, Fineschi V. miRNAs and Substances Abuse: Clinical and Forensic Pathological Implications: A Systematic Review. Int J Mol Sci 2023; 24:17122. [PMID: 38069445 PMCID: PMC10707252 DOI: 10.3390/ijms242317122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Substance addiction is a chronic and relapsing brain disorder characterized by compulsive seeking and continued substance use, despite adverse consequences. The high prevalence and social burden of addiction are indisputable; however, the available intervention is insufficient. The modulation of gene expression and aberrant adaptation of neural networks are attributed to the changes in brain functions under repeated exposure to addictive substances. Considerable studies have demonstrated that miRNAs are strong modulators of post-transcriptional gene expression in substance addiction. The emerging role of microRNA (miRNA) provides new insights into many biological and pathological processes in the central nervous system: their variable expression in different regions of the brain and tissues may play a key role in regulating the pathophysiological events of addiction. This work provides an overview of the current literature on miRNAs involved in addiction, evaluating their impaired expression and regulatory role in neuroadaptation and synaptic plasticity. Clinical implications of such modulatory capacities will be estimated. Specifically, it will evaluate the potential diagnostic role of miRNAs in the various stages of drug and substance addiction. Future perspectives about miRNAs as potential novel therapeutic targets for substance addiction and abuse will also be provided.
Collapse
Affiliation(s)
- Carla Occhipinti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Raffaele La Russa
- Department of Clinical Medicine, Public Health, Life Sciences, and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Naomi Iacoponi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Julia Lazzari
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Andrea Costantino
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Nicola Di Fazio
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (N.D.F.); (F.D.D.); (V.F.)
| | - Fabio Del Duca
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (N.D.F.); (F.D.D.); (V.F.)
| | - Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (N.D.F.); (F.D.D.); (V.F.)
| |
Collapse
|
3
|
Izuo N, Miyanishi H, Nishizawa D, Fujii T, Hasegawa J, Sato N, Tanioka F, Sugimura H, Ikeda K, Nitta A. DNA methylation status of SHATI/NAT8L promoter in the blood of cigarette smokers. Neuropsychopharmacol Rep 2023; 43:570-575. [PMID: 37668111 PMCID: PMC10739067 DOI: 10.1002/npr2.12373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/15/2023] [Accepted: 07/23/2023] [Indexed: 09/06/2023] Open
Abstract
AIMS Cigarette smoking is a preventable risk factor for various diseases such as cancer, ischemic stroke, cardiac stroke, and chronic obstructive pulmonary disease. Smoking cessation is of great importance not only for individual smokers but also for social health. Regarding current cessation therapies, the effectiveness of nicotine replacement is limited, and the cost of varenicline medication is considerable. Thus, a method for screening smokers who are responsive to cessation therapy based on the therapeutic effectiveness is required. Peripheral biomarkers reflecting smoking dependence status are necessary to establish a method for achieving effective cessation therapy. METHODS Methylation status of smokers' blood DNA was evaluated focusing on SHATI/NAT8L, an addiction-related gene. Eight CpG sites in SHATI/NAT8L were quantified by pyrosequencing. RESULTS There was no difference in the methylation status of this gene between smokers (n = 129) and non-smokers (n = 129) at all CpG sites. No correlations between the methylation status of SHATI/NAT8L and indicators of smoking dependence were found. CONCLUSIONS Although the present study found no significance in the DNA methylation of SHATI/NAT8L among smokers, the exploration of predictable peripheral biomarkers for the effectiveness of smoking cessation therapy is required.
Collapse
Affiliation(s)
- Naotaka Izuo
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Hajime Miyanishi
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Daisuke Nishizawa
- Addictive Substance ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Takuma Fujii
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Junko Hasegawa
- Addictive Substance ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Naomi Sato
- Department of Clinical NursingHamamatsu University School of MedicineShizuokaJapan
- Department of Tumor PathologyHamamatsu University School of MedicineShizuokaJapan
| | - Fumihiko Tanioka
- Department of PathologyIwata City HospitalShizuokaJapan
- Present address:
KDP Pathology Clinic2‐30‐14 Hirosawa Nakaku HamamatsuShizuokaJapan
| | - Haruhiko Sugimura
- Department of Tumor PathologyHamamatsu University School of MedicineShizuokaJapan
- Present address:
Sasaki Institute, Sasaki Foundation2‐2 Kandasurugadai, Chiyoda‐KuTokyo101‐0062Japan
| | - Kazutaka Ikeda
- Addictive Substance ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| |
Collapse
|
4
|
Xu W, Hong Q, Zhou Y, Chen X, Li L, Wang M, Chen W, Xie X, Zhuang D, Lai M, Zhou W, Liu H. Circulating plasma and exosome levels of the miR-320 family as a non-invasive biomarker for methamphetamine use disorder. Front Psychiatry 2023; 14:1160341. [PMID: 37181871 PMCID: PMC10167009 DOI: 10.3389/fpsyt.2023.1160341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
The neurobiological mechanism underlying methamphetamine (MA) use disorder was still unclear, and no specific biomarker exists for clinical diagnosis of this disorder. Recent studies have demonstrated that microRNAs (miRNAs) are involved in the pathological process of MA addiction. The purpose of this study was to identify novel miRNAs for the diagnosis biomarkers of MA user disorder. First, members of the miR-320 family, including miR-320a-3p, miR-320b, and miR-320c, were screened and analyzed in the circulating plasma and exosomes by microarray and sequencing. Secondly, plasma miR-320 was quantified by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) in eighty-two MA patients and fifty age-gender-matched healthy controls. Meanwhile, we also analyzed exosomal miR-320 expression in thirty-nine MA patients and twenty-one age-matched healthy controls. Furthermore, the diagnostic power was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve. The expression of miR-320 significantly increased in plasma and exosomes of MA patients compared with healthy controls. The AUC of the ROC curves of miR-320 in plasma and exosomes of MA patients were 0.751 and 0.962, respectively. And the sensitivities of miR-320 were 0.900 and 0.846, respectively, whereas the specificities of miR-320 were 0.537 and 0.952, respectively, in plasma and exosomes in MA patients. And the increased plasma miR-320 was positively correlated with cigarette smoking, age of onset, and daily use of MA in MA patients. Finally, cardiovascular disease, synaptic plasticity, and neuroinflammation were predicted to be the target pathways related to miR-320. Taken together, our findings indicated that plasma and exosomal miR-320 might be used as a potential blood-based biomarker for diagnosing MA use disorder.
Collapse
Affiliation(s)
- Wenjin Xu
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Qingxiao Hong
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Yun Zhou
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Xiaoyu Chen
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Longhui Li
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Majie Wang
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Weisheng Chen
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Xiaohu Xie
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Dingding Zhuang
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Miaojun Lai
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Wenhua Zhou
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Huifen Liu
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
Zou ZL, Ye Y, Zhou B, Zhang Y. Identification and characterization of noncoding RNAs-associated competing endogenous RNA networks in major depressive disorder. World J Psychiatry 2023; 13:36-49. [PMID: 36925948 PMCID: PMC10011943 DOI: 10.5498/wjp.v13.i2.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/06/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a common and serious mental illness. Many novel genes in MDD have been characterized by high-throughput methods such as microarrays or sequencing. Recently, noncoding RNAs (ncRNAs) were suggested to be involved in the complicated environmental-genetic regulatory network of MDD occurrence; however, the interplay among RNA species, including protein-coding RNAs and ncRNAs, in MDD remains unclear.
AIM To investigate the RNA expression datasets downloaded from a public database and construct a network based on differentially expressed long noncoding RNA (lncRNAs), microRNAs (miRNAs), and mRNAs between MDD and controls.
METHODS Gene expression data were searched in NCBI Gene Expression Omnibus using the search term “major depressive disorder.” Six array datasets from humans were related to the search term: GSE19738, GSE32280, GSE38206, GSE52790, GSE76826, and GSE81152. These datasets were processed for initial assessment and subjected to quality control and differential expression analysis. Differentially expressed lncRNAs, miRNAs, and mRNAs were determined, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed, and protein-protein interaction network was generated. The results were analyzed for their association with MDD.
RESULTS After analysis, 3 miRNAs, 12 lncRNAs, and 33 mRNAs were identified in the competing endogenous RNA network. Two of these miRNAs were earlier shown to be involved in psychiatric disorders, and differentially expressed mRNAs were found to be highly enriched in pathways related to neurogenesis and neuroplasticity as per Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. The expression of hub gene fatty acid 2-hydroxylase was enriched, and the encoded protein was found to be involved in myelin formation, indicating that neurological development and signal transduction are involved in MDD pathogenesis.
CONCLUSION The present study presents candidate ncRNAs involved in the neurogenesis and neuroplasticity pathways related to MDD.
Collapse
Affiliation(s)
- Zhi-Li Zou
- Department of Psychosomatic, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Chengdu 610072, Sichuan Province, China
| | - Yu Ye
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 611130, Sichuan Province, China
| | - Bo Zhou
- Department of Psychosomatic, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Chengdu 610072, Sichuan Province, China
| | - Yuan Zhang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610072, Sichuan Province, China
| |
Collapse
|
6
|
Seyednejad SA, Sartor GC. Noncoding RNA therapeutics for substance use disorder. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10807. [PMID: 36601439 PMCID: PMC9808746 DOI: 10.3389/adar.2022.10807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although noncoding RNAs (ncRNAs) have been shown to regulate maladaptive neuroadaptations that drive compulsive drug use, ncRNA-targeting therapeutics for substance use disorder (SUD) have yet to be clinically tested. Recent advances in RNA-based drugs have improved many therapeutic issues related to immune response, specificity, and delivery, leading to multiple successful clinical trials for other diseases. As the need for safe and effective treatments for SUD continues to grow, novel nucleic acid-based therapeutics represent an appealing approach to target ncRNA mechanisms in SUD. Here, we review ncRNA processes implicated in SUD, discuss recent therapeutic approaches for targeting ncRNAs, and highlight potential opportunities and challenges of ncRNA-targeting therapeutics for SUD.
Collapse
Affiliation(s)
- Seyed Afshin Seyednejad
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for the Brain and Cognitive Sciences (CT IBACS), Storrs, CT, United States
| | - Gregory C. Sartor
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for the Brain and Cognitive Sciences (CT IBACS), Storrs, CT, United States
| |
Collapse
|
7
|
AbouElhassan KM, Sarhan HA, Hussein AK, Taye A, Ahmed YM, Safwat MA. Brain Targeting of Citicoline Sodium via Hyaluronic Acid-Decorated Novel Nano-Transbilosomes for Mitigation of Alzheimer's Disease in a Rat Model: Formulation, Optimization, in vitro and in vivo Assessment. Int J Nanomedicine 2022; 17:6347-6376. [PMID: 36540376 PMCID: PMC9759982 DOI: 10.2147/ijn.s381353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/23/2022] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the furthermost advanced neurodegenerative disorders resulting in cognitive and behavioral impairment. Citicoline sodium (CIT) boosts the brain's secretion of acetylcholine, which aids in membrane regeneration and repair. However, it suffers from poor blood-brain barrier (BBB) permeation, which results in lower levels of CIT in the brain. PURPOSE This study targeted to encapsulate CIT into novel nano-platform transbilosomes decorated with hyaluronic acid CIT-HA*TBLs to achieve enhanced drug delivery from the nose to the brain. METHODS A method of thin-film hydration was utilized to prepare different formulae of CIT-TBLs using the Box-Behnken design. The optimized formula was then hyuloranated via integration of HA to form the CIT-HA*TBLs formula. Furthermore, AD induction was performed by aluminum chloride (Alcl3), animals were allocated, and brain hippocampus tissue was isolated for ELISA and qRT-PCR analysis of malondialdehyde (MDA), nuclear factor kappa B (NF-kB), and microRNA-137 (miR-137) coupled with immunohistochemical amyloid-beta (Aβ1-42) expression and histopathological finding. RESULTS The hyuloranated CIT-HA*TBLs formula, which contained the following ingredients: PL (300 mg), Sp 60 (43.97 mg), and SDC (20 mg). They produced spherical droplets at the nanoscale (178.94 ±12.4 nm), had a high entrapment efficiency with 74.92± 5.54%, had a sustained release profile of CIT with 81.27 ±3.8% release, and had ex vivo permeation of CIT with 512.43±19.58 μg/cm2. In vivo tests showed that CIT-HA*TBL thermogel dramatically reduces the hippocampus expression of miR-137 and (Aβ1-42) expression, boosting cholinergic neurotransmission and decreasing MDA and NF-kB production. Furthermore, CIT-HA*TBLs thermogel mitigate histopathological damage in compared to the other groups. CONCLUSION Succinctly, the innovative loading of CIT-HA*TBLs thermogel is a prospectively invaluable intranasal drug delivery system that can raise the efficacy of CIT in Alzheimer's management.
Collapse
Affiliation(s)
- Kariman M AbouElhassan
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| | - Hatem A Sarhan
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Amal K Hussein
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Ashraf Taye
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| | - Yasmin M Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62514, Egypt
| | - Mohamed A Safwat
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
8
|
Wang H, Dong X, Awan MUN, Bai J. Epigenetic mechanisms involved in methamphetamine addiction. Front Pharmacol 2022; 13:984997. [PMID: 36091781 PMCID: PMC9458865 DOI: 10.3389/fphar.2022.984997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Methamphetamine (METH) is an illicit psychostimulant that is widely abused. The molecular mechanism of METH addiction is complicated and still unknown. METH causes the release of the neurotransmitters including dopamine, glutamate, norepinephrine and serotonin, which activate various brain areas in the central nervous system. METH also induces synaptic plasticity and pathological memory enhancement. Epigenetics plays the important roles in regulating METH addiction. This review will briefly summarize the studies on epigenetics involved in METH addiction.
Collapse
|
9
|
Zhao Y, Qin F, Han S, Li S, Zhao Y, Wang H, Tian J, Cen X. MicroRNAs in drug addiction: Current status and future perspectives. Pharmacol Ther 2022; 236:108215. [DOI: 10.1016/j.pharmthera.2022.108215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
|