1
|
Draghmeh K, Fuehrlein B. Emerging Therapeutics in the Treatment of Substance Use Disorders: A Focus on GLP-1 Receptor Agonists, D3R Antagonists, and CRF Antagonists. J Integr Neurosci 2025; 24:26361. [PMID: 40302255 DOI: 10.31083/jin26361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 05/02/2025] Open
Abstract
The prevalence and rising use of alcohol, opioids, and stimulants have led to substance use disorders (SUDs) that are a significant public health challenge. Traditional treatments offer some benefit; however, they often limited by efficacy, side effects, and accessibility, highlighting the urgent need for novel therapeutics. This review explores the current literature surrounding three different classes of novel treatments: glucagon-like peptide-1 (GLP-1) receptor agonists, dopamine D3 receptor (D3R) antagonists, and corticotropin-releasing factor (CRF) antagonists. These therapeutics collectively target different aspects of the addiction process, such as stress and relapse prevention, reward modulation, and the reduction of drug-seeking behavior, leading to a combined multifaceted approach to treating SUDs. This review includes preclinical and clinical evidence supporting the use of these therapies, highlighting their potential to reduce substance use and prevent relapse to alcohol, opioid, and stimulant use. Despite the potentially promising findings of these treatments, further research is necessary to fully understand their mechanisms, optimize their application, and confirm their efficacy in clinical settings.
Collapse
Affiliation(s)
- Khaled Draghmeh
- Department of Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Brian Fuehrlein
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
- Mental Health Service Line, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
2
|
Schneider P, Goldbaum D, Agarwal A, Taylor A, Sundberg P, Gardner EL, Ranaldi R, You ZB, Galaj E. Region-specific neuroadaptations of CRF1 and CRF2 expression following heroin exposure in female rats. Pharmacol Biochem Behav 2025; 247:173931. [PMID: 39626795 PMCID: PMC11769769 DOI: 10.1016/j.pbb.2024.173931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/13/2024] [Accepted: 11/29/2024] [Indexed: 01/30/2025]
Abstract
While stress increases vulnerability to development of addiction, the recruitment of corticotropin releasing factor (CRF) with excessive drug use heightens the risk of stress-induced relapse. CRF signaling is transmitted via CRF1 and CRF2 receptors, but the roles of these receptors in heroin self-administration and related neuroadaptations of the CRF system within mesolimbic brain loci are not well understood. In this study, we first investigated the causal role of CRF1 and CRF2 receptors in heroin self-administration. Intracerebroventricular (ICV) microinjections of antalarmin (a CRF1 antagonist) or astressin-2B (a CRF2 antagonist) caused brief, dose-dependent reductions in heroin self-administration in female rats, suggesting that these receptors play a critical role in heroin-motivated behaviors. We then used western blotting to examine neuroadaptive changes to CRF1 and CRF2 receptor expression in key forebrain and midbrain regions associated with opioid addiction. Female Long Evans rats treated with escalating doses of heroin for 16 days demonstrated significantly higher naloxone-precipitated withdrawal symptoms than saline-treated rats. Heroin-treated rats showed a significant decrease in CRF1 receptor protein expression in the ventral tegmental area (VTA) and an increase in the nucleus accumbens (NAc) but no changes in the prefrontal cortex (PFC), insula, dorsal striatum (dSTR), dorsal hippocampus (dHippo), anterior hypothalamus (HYPTH), amygdala, or substantia nigra (SN) as compared to saline-treated rats. After chronic heroin exposure, CRF2 receptor expression was significantly downregulated in the dHippo, VTA and HYPTH but not in the other brain regions we investigated. The results of this study suggest that: (1) CRF1 and CRF2 receptors play an important role in self-administration and (2) heroin exposure may lead to region-specific neuroadaptation of CRF1 and CRF2 receptors. Such neuroadaptations might in part contribute to the continuation of drug use and stress-induced relapse.
Collapse
Affiliation(s)
- Piper Schneider
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Danielle Goldbaum
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Ansh Agarwal
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Ashton Taylor
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Peyton Sundberg
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Eliot L Gardner
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Robert Ranaldi
- The Graduate Center of the City University of New York, New York, NY, USA; Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA
| | - Zhi-Bing You
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Ewa Galaj
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA.
| |
Collapse
|
3
|
Hinds NM, Wojtas ID, Pulley DM, McDonald SJ, Spencer CD, Sudarikov M, Hubbard NE, Kulick-Soper CM, de Guzman S, Hayden S, Debski JJ, Patel B, Fox DP, Manvich DF. Fos expression in the periaqueductal gray, but not the ventromedial hypothalamus, is correlated with psychosocial stress-induced cocaine-seeking behavior in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634146. [PMID: 39896664 PMCID: PMC11785129 DOI: 10.1101/2025.01.22.634146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Psychosocial stressors are known to promote cocaine craving and relapse in humans but are infrequently employed in preclinical relapse models. Consequently, the underlying neural circuitry by which these stressors drive cocaine seeking has not been thoroughly explored. Using Fos expression analyses, we sought to examine whether the ventromedial hypothalamus (VMH) or periaqueductal gray (PAG), two critical components of the brain's hypothalamic defense system, are activated during psychosocial stress-induced cocaine seeking. Adult male and female rats self-administered cocaine (0.5 mg/kg/inf IV, fixed-ratio 1 schedule, 2 h/session) over 20 sessions. On sessions 11, 14, 17, and 20, a tactile cue was present in the operant chamber that signaled impending social defeat stress (n=16, 8/sex), footshock stress (n=12, 6/sex), or a no-stress control condition (n=12, 6/sex) immediately after the session's conclusion. Responding was subsequently extinguished, and rats were tested for reinstatement of cocaine seeking during re-exposure to the tactile cue that signaled their impending stress/no-stress post-session event. All experimental groups displayed significant reinstatement of cocaine seeking, but Fos analyses indicated that neural activity within the rostrolateral PAG (rPAGl) was selectively correlated with cocaine-seeking magnitude in the socially-defeated rats. rPAGl activation was also associated with active-defense coping behaviors during social defeat encounters and with Fos expression in prelimbic prefrontal cortex and orexin-negative cells of the lateral hypothalamus/perifornical area in males, but not females. These findings suggest a potentially novel role for the rPAGl in psychosocial stress-induced cocaine seeking, perhaps in a sex-dependent manner.
Collapse
Affiliation(s)
- Nicole M. Hinds
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| | - Ireneusz D. Wojtas
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| | - Desta M. Pulley
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| | - Stephany J. McDonald
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| | - Colton D. Spencer
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| | - Milena Sudarikov
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| | - Nicole E. Hubbard
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| | - Colin M. Kulick-Soper
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| | - Samantha de Guzman
- College of Liberal Arts, Temple University, 1114 West Berks Street, Philadelphia, PA 19122
| | - Sara Hayden
- College of Liberal Arts, Temple University, 1114 West Berks Street, Philadelphia, PA 19122
| | - Jessica J. Debski
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| | - Bianca Patel
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| | - Douglas P. Fox
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| | - Daniel F. Manvich
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| |
Collapse
|
4
|
Bilel S, Azevedo Neto J, Tirri M, Corli G, Bassi M, Fantinati A, Serpelloni G, Malfacini D, Trapella C, Calo' G, Marti M. In vitro and in vivo study of butyrylfentanyl and 4-fluorobutyrylfentanyl in female and male mice: Role of the CRF 1 receptor in cardiorespiratory impairment. Br J Pharmacol 2024. [PMID: 39367619 DOI: 10.1111/bph.17333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND AND PURPOSE Fentanyl analogues have been implicated in many cases of intoxication and death with overdose worldwide. The aim of this study is to investigate the pharmaco-toxicology of two fentanyl analogues: butyrylfentanyl (BUF) and 4-fluorobutyrylfentanyl (4F-BUF). EXPERIMENTAL APPROACH In vitro, we measured agonist opioid receptor efficacy, potency, and selectivity and ability to promote interaction of the μ receptor with G protein and β-arrestin 2. In vivo, we evaluated thermal antinociception, stimulated motor activity and cardiorespiratory changes in female and male CD-1 mice injected with BUF or 4F-BUF (0.1-6 mg·kg-1). Opioid receptor specificity was investigated using naloxone (6 mg·kg-1). We investigated the possible role of stress in increasing cardiorespiratory toxicity using the corticotropin-releasing factor 1 (CRF1) antagonist antalarmin (10 mg·kg-1). KEY RESULTS Agonists displayed the following rank of potency at μ receptors: fentanyl > 4F-BUF > BUF. Fentanyl and BUF behaved as partial agonists for the β-arrestin 2 pathway, whereas 4F-BUF did not promote β-arrestin 2 recruitment. In vivo, we revealed sex differences in motor and cardiorespiratory impairments but not antinociception induced by BUF and 4F-BUF. Antalarmin alone was effective in blocking respiratory impairment induced by BUF in both sexes but not 4F-BUF. The combination of naloxone and antalarmin significantly enhanced naloxone reversal of the cardiorespiratory impairments induced by BUF and 4F-BUF in mice. CONCLUSION AND IMPLICATIONS In this study, we have uncovered a novel mechanism by which synthetic opioids induce respiratory depression, shedding new light on the role of CRF1 receptors in cardiorespiratory impairments by μ agonists.
Collapse
Affiliation(s)
- Sabrine Bilel
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Joaquim Azevedo Neto
- Section of Pharmacology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Marta Bassi
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Anna Fantinati
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Serpelloni
- Neuroscience Clinical Center & TMS Unit, Verona, Italy
- Department of Psychiatry, College of Medicine, Drug Policy Institute, University of Florida, Gainesville, Florida, USA
| | - Davide Malfacini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Claudio Trapella
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Girolamo Calo'
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Matteo Marti
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Center of Gender Medicine, University of Ferrara, Ferrara, Italy
- Collaborative Center of the National Early Warning System, Department for Anti-Drug Policies, Presidency of the Council of Ministers, Rome, Italy
| |
Collapse
|
5
|
Galaj E, Barrera ED, Persaud K, Nisanov R, Vashisht A, Goldberg H, Patel N, Lenhard H, You ZB, Gardner EL, Ranaldi R. The Impact of Heroin Self-Administration and Environmental Enrichment on Ventral Tegmental CRF1 Receptor Expression. Int J Neuropsychopharmacol 2023; 26:828-839. [PMID: 37864842 PMCID: PMC10726410 DOI: 10.1093/ijnp/pyad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/20/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND There is a strong link between chronic stress and vulnerability to drug abuse and addiction. Corticotropin releasing factor (CRF) is central to the stress response that contributes to continuation and relapse to heroin abuse. Chronic heroin exposure can exacerbate CRF production, leading to dysregulation of the midbrain CRF-dopamine-glutamate interaction. METHODS Here we investigated the role of midbrain CRF1 receptors in heroin self-administration and assessed neuroplasticity in CRF1 receptor expression in key opioid addiction brain regions. RESULTS Infusions of antalarmin (a CRF1 receptor antagonist) into the ventral tegmental area (VTA) dose dependently reduced heroin self-administration in rats but had no impact on food reinforcement or locomotor activity in rats. Using RNAscope in situ hybridization, we found that heroin, but not saline, self-administration upregulated CRF1 receptor mRNA in the VTA, particularly on dopamine neurons. AMPA GluR1 and dopamine reuptake transporter mRNA in VTA neurons were not affected by heroin. The western-blot assay showed that CRF1 receptors were upregulated in the VTA and nucleus accumbens. No significant changes in CRF1 protein expression were detected in the prefrontal cortex, insula, dorsal hippocampus, and substantia nigra. In addition, we found that 15 days of environmental enrichment implemented after heroin self-administration does not reverse upregulation of VTA CRF1 receptor mRNA but it downregulates dopamine transporter mRNA. CONCLUSIONS Overall, these data suggest that heroin self-administration requires stimulation of VTA CRF1 receptors and upregulates their expression in brain regions involved in reinforcement. Such long-lasting neuroadaptations may contribute to continuation of drug use and relapse due to stress exposure and are not easily reversed by EE exposure.
Collapse
Affiliation(s)
- Ewa Galaj
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Eddy D Barrera
- The Graduate Center of the City University of New York, New York, NYUSA
| | - Kirk Persaud
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| | - Rudolf Nisanov
- The Graduate Center of the City University of New York, New York, NYUSA
| | - Apoorva Vashisht
- The Graduate Center of the City University of New York, New York, NYUSA
| | - Hindy Goldberg
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| | - Nima Patel
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| | - Hayley Lenhard
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Zhi-Bing You
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA
| | - Eliot L Gardner
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA
| | - Robert Ranaldi
- The Graduate Center of the City University of New York, New York, NYUSA
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| |
Collapse
|
6
|
Lunerti V, Shen Q, Li H, Benvenuti F, Soverchia L, Narendran R, Weiss F, Cannella N, Ciccocioppo R. Cebranopadol, a novel long-acting opioid agonist with low abuse liability, to treat opioid use disorder: Preclinical evidence of efficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550008. [PMID: 37546836 PMCID: PMC10401954 DOI: 10.1101/2023.07.21.550008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The gold standard pharmacological treatment for opioid use disorder (OUD) consists of maintenance therapy with long-acting opioid agonists such as buprenorphine and methadone. Despite these compounds having demonstrated substantial efficacy, a significant number of patients do not show optimal therapeutic responses. Moreover, the abuse liability of these medications remains a major concern. Cebranopadol, is a new, long-acting pan-opioid agonist that also activates the nociception/orphanin FQ NOP receptor. Here we used rats to explore the therapeutic potential of this agent in OUD. First, in operant intravenous self-administration experiments we compared the potential abuse liability of cebranopadol with the prototypical opioid heroin. Under a fixed ratio 1 (FR1) contingency, rats maintained responding for heroin (1, 7, 20, 60 μg/inf) to a larger extent than cebranopadol (0.03, 0.1, 0.3, 1.0, 6.0 μg/inf). When the contingency was switched to a progressive ratio (PR) reinforcement schedule, heroin maintained responding at high levels at all except the lowest dose. Conversely, in the cebranopadol groups responding decreased drastically and the break point (BP) did not differ from saline controls. Next, we demonstrated that oral administration of cebranopadol (0, 25, 50 μg/kg) significantly attenuated drug self-administration independent of heroin dose (1, 7, 20, 60 μg/inf). Cebranopadol also reduced the break point for heroin (20 μg/inf). Furthermore, in a heroin self-administration training extinction/reinstatement paradigm, pretreatment with cebranopadol significantly attenuated yohimbine stress-induced reinstatement of drug seeking. Together, these data indicate that cebranopadol has limited abuse liability compared to heroin and is highly efficacious in attenuating opioid self-administration and stress-induced reinstatement, suggesting clinical potential of this compound for OUD treatment.
Collapse
|
7
|
Mantsch JR. Corticotropin releasing factor and drug seeking in substance use disorders: Preclinical evidence and translational limitations. ADDICTION NEUROSCIENCE 2022; 4:100038. [PMID: 36531188 PMCID: PMC9757758 DOI: 10.1016/j.addicn.2022.100038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The neuropeptide, corticotropin releasing factor (CRF), has been an enigmatic target for the development of medications aimed at treating stress-related disorders. Despite a large body of evidence from preclinical studies in rodents demonstrating that CRF receptor antagonists prevent stressor-induced drug seeking, medications targeting the CRF-R1 have failed in clinical trials. Here, we provide an overview of the abundant findings from preclinical rodent studies suggesting that CRF signaling is involved in stressor-induced relapse. The scientific literature that has defined the receptors, mechanisms and neurocircuits through which CRF contributes to stressor-induced reinstatement of drug seeking following self-administration and conditioned place preference in rodents is reviewed. Evidence that CRF signaling is recruited with repeated drug use in a manner that heightens susceptibility to stressor-induced drug seeking in rodents is presented. Factors that may determine the influence of CRF signaling in substance use disorders, including developmental windows, biological sex, and genetics are examined. Finally, we discuss the translational failure of medications targeting CRF signaling as interventions for substance use disorders and other stress-related conditions. We conclude that new perspectives and research directions are needed to unravel the mysterious role of CRF in substance use disorders.
Collapse
Affiliation(s)
- John R Mantsch
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States
| |
Collapse
|
8
|
Paired Housing or a Socially-Paired Context Decreases Ethanol Conditioned Place Preference in Male Rats. Brain Sci 2022; 12:brainsci12111485. [DOI: 10.3390/brainsci12111485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Alcohol abuse dramatically affects individuals’ lives nationwide. The 2020 National Survey on Drug Use and Health (NSDUH) estimated that 10.2% of Americans suffer from alcohol use disorder. Although social support has been shown to aid in general addiction prevention and rehabilitation, the benefits of social support are not entirely understood. The present study sought to compare the benefits of social interaction on the conditioned ethanol approach behavior in rats through a conditioned place preference (CPP) paradigm in which a drug is paired with one of two distinct contexts. In experiment 1A, rats were single-housed and received conditioning trials in which ethanol was paired with the less preferred context. In experiment 1B, rats underwent procedures identical to experiment 1A, but were pair-housed throughout the paradigm. In experiment 1C, rats were single-housed, but concurrently conditioned to a socially-paired context and an ethanol-paired context. By comparing the time spent between the ethanol-paired environment and the saline-paired or socially-paired environment, we extrapolated the extent of ethanol approach behavior in the pair-housed, single-housed, and concurrently conditioned rats. Our results revealed that social interaction, both in pair-housed animals or concurrently socially-conditioned animals, diminished the ethanol approach behavior, which highlights the importance of social support in addiction prevention, treatment, and recovery programs.
Collapse
|
9
|
Flores-Ramirez FJ, Matzeu A, Sánchez-Marín L, Martin-Fardon R. Blockade of corticotropin-releasing factor-1 receptors in the infralimbic cortex prevents stress-induced reinstatement of alcohol seeking in male Wistar rats: Evidence of interaction between CRF 1 and orexin receptor signaling. Neuropharmacology 2022; 210:109046. [PMID: 35341789 PMCID: PMC9176217 DOI: 10.1016/j.neuropharm.2022.109046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
Alcohol use dysregulates responsivity to stress, which is mediated by corticotropin-releasing factor (CRF). With repeated cycles of alcohol use, the hypothalamic-pituitary-adrenal axis becomes hyporesponsive, rendering individuals vulnerable to the reinstatement of alcohol-seeking behavior during stressful episodes. Orexin (Orx; also called hypocretin) plays a well-established role in regulating diverse physiological processes, including stress, and interacts with CRF. The infralimbic cortex (IL) is a CRF-rich region. Anatomical evidence suggests that CRF and Orx interact in this area. To test the behavioral implication of CRF and Orx transmission in the IL during the stress-induced reinstatement of alcohol-seeking behavior, male Wistar rats were trained to self-administer 10% alcohol for 3 weeks. The rats then underwent two weeks of extinction training (identical to the alcohol self-administration sessions, but alcohol was withheld). The day after the last extinction session, the rats received a bilateral intra-IL injection of the CRF1 receptor antagonist CP154,526 (0.6 μg/0.5 μl/side), the dual Orx receptor antagonist TCS1102 (15 μg/0.5 μl/side), or their combination and then were tested for the footshock stress-induced reinstatement of alcohol-seeking behavior. CP154,526 significantly prevented reinstatement, but TCS1102 did not produce such an effect. Interestingly, the co-administration of TCS1102 and CP154,526 reversed the effect of CP154,526 alone, and footshock stress induced a significant increase in Crhr1 and Hcrtr2 mRNA expression in the IL. These results demonstrate a functional interaction between Orx receptor and CRF1 receptor signaling and suggest that CRF1 receptor antagonism may ameliorate stress-induced alcohol-seeking behavior.
Collapse
Affiliation(s)
| | - Alessandra Matzeu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Laura Sánchez-Marín
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
| | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
10
|
Dunigan AI, Roseberry AG. Actions of feeding-related peptides on the mesolimbic dopamine system in regulation of natural and drug rewards. ADDICTION NEUROSCIENCE 2022; 2:100011. [PMID: 37220637 PMCID: PMC10201992 DOI: 10.1016/j.addicn.2022.100011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The mesolimbic dopamine system is the primary neural circuit mediating motivation, reinforcement, and reward-related behavior. The activity of this system and multiple behaviors controlled by it are affected by changes in feeding and body weight, such as fasting, food restriction, or the development of obesity. Multiple different peptides and hormones that have been implicated in the control of feeding and body weight interact with the mesolimbic dopamine system to regulate many different dopamine-dependent, reward-related behaviors. In this review, we summarize the effects of a selected set of feeding-related peptides and hormones acting within the ventral tegmental area and nucleus accumbens to alter feeding, as well as food, drug, and social reward.
Collapse
Affiliation(s)
- Anna I. Dunigan
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Aaron G. Roseberry
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
11
|
Tseng YT, Zhao B, Chen S, Ye J, Liu J, Liang L, Ding H, Schaefke B, Yang Q, Wang L, Wang F, Wang L. The subthalamic corticotropin-releasing hormone neurons mediate adaptive REM-sleep responses to threat. Neuron 2022; 110:1223-1239.e8. [PMID: 35065715 DOI: 10.1016/j.neuron.2021.12.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/10/2021] [Accepted: 12/23/2021] [Indexed: 01/25/2023]
Abstract
When an animal faces a threatening situation while asleep, rapid arousal is the essential prerequisite for an adequate response. Here, we find that predator stimuli induce immediate arousal from REM sleep compared with NREM sleep. Using in vivo neural activity recording and cell-type-specific manipulations, we identify neurons in the medial subthalamic nucleus (mSTN) expressing corticotropin-releasing hormone (CRH) that mediate arousal and defensive responses to acute predator threats received through multiple sensory modalities across REM sleep and wakefulness. We observe involvement of the same neurons in the normal regulation of REM sleep and the adaptive increase in REM sleep induced by sustained predator stress. Projections to the lateral globus pallidus (LGP) are the effector pathway for the threat-coping responses and REM-sleep expression. Together, our findings suggest adaptive REM-sleep responses could be protective against threats and uncover a critical component of the neural circuitry at their basis.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Binghao Zhao
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Shanping Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialin Ye
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lisha Liang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Ding
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Bernhard Schaefke
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Qin Yang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Lina Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| |
Collapse
|
12
|
Martin EL, Doncheck EM, Reichel CM, McRae-Clark AL. Consideration of sex as a biological variable in the translation of pharmacotherapy for stress-associated drug seeking. Neurobiol Stress 2021; 15:100364. [PMID: 34345636 PMCID: PMC8319013 DOI: 10.1016/j.ynstr.2021.100364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022] Open
Abstract
Stress is a frequent precipitant of relapse to drug use. Pharmacotherapies targeting a diverse array of neural systems have been assayed for efficacy in attenuating stress-induced drug-seeking in both rodents and in humans, but none have shown enough evidence of utility to warrant routine use in the clinic. We posit that a critical barrier in effective translation is inattention to sex as a biological variable at all phases of the research process. In this review, we detail the neurobiological systems implicated in stress-induced relapse to cocaine, opioids, methamphetamine, and cannabis, as well as the pharmacotherapies that have been used to target these systems in rodent models, the human laboratory, and in clinical trials. In each of these areas we additionally describe the potential influences of biological sex on outcomes, and how inattention to fundamental sex differences can lead to biases during drug development that contribute to the limited success of large clinical trials. Based on these observations, we determine that of the pharmacotherapies discussed only α2-adrenergic receptor agonists and oxytocin have a body of research with sufficient consideration of biological sex to warrant further clinical evaluation. Pharmacotherapies that target β-adrenergic receptors, other neuroactive peptides, the hypothalamic-pituitary-adrenal axis, neuroactive steroids, and the endogenous opioid and cannabinoid systems require further assessment in females at the preclinical and human laboratory levels before progression to clinical trials can be recommended.
Collapse
Affiliation(s)
- Erin L Martin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Elizabeth M Doncheck
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Carmela M Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Aimee L McRae-Clark
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.,Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
13
|
Caccamise A, Van Newenhizen E, Mantsch JR. Neurochemical mechanisms and neurocircuitry underlying the contribution of stress to cocaine seeking. J Neurochem 2021; 157:1697-1713. [PMID: 33660857 PMCID: PMC8941950 DOI: 10.1111/jnc.15340] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
In individuals with substance use disorders, stress is a critical determinant of relapse susceptibility. In some cases, stressors directly trigger cocaine use. In others, stressors interact with other stimuli to promote drug seeking, thereby setting the stage for relapse. Here, we review the mechanisms and neurocircuitry that mediate stress-triggered and stress-potentiated cocaine seeking. Stressors trigger cocaine seeking by activating noradrenergic projections originating in the lateral tegmentum that innervate the bed nucleus of the stria terminalis to produce beta adrenergic receptor-dependent regulation of neurons that release corticotropin releasing factor (CRF) into the ventral tegmental area (VTA). CRF promotes the activation of VTA dopamine neurons that innervate the prelimbic prefrontal cortex resulting in D1 receptor-dependent excitation of a pathway to the nucleus accumbens core that mediates cocaine seeking. The stage-setting effects of stress require glucocorticoids, which exert rapid non-canonical effects at several sites within the mesocorticolimbic system. In the nucleus accumbens, corticosterone attenuates dopamine clearance via the organic cation transporter 3 to promote dopamine signaling. In the prelimbic cortex, corticosterone mobilizes the endocannabinoid, 2-arachidonoylglycerol (2-AG), which produces CB1 receptor-dependent reductions in inhibitory transmission, thereby increasing excitability of neurons which comprise output pathways responsible for cocaine seeking. Factors that influence the role of stress in cocaine seeking, including prior history of drug use, biological sex, chronic stress/co-morbid stress-related disorders, adolescence, social variables, and genetics are discussed. Better understanding when and how stress contributes to drug seeking should guide the development of more effective interventions, particularly for those whose drug use is stress related.
Collapse
Affiliation(s)
- Aaron Caccamise
- Graduate Program in Neuroscience, Marquette University, Milwaukee, WI 53201
| | - Erik Van Newenhizen
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226
| | - John R. Mantsch
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226
| |
Collapse
|
14
|
Abstract
Addiction is a disease characterized by compulsive drug seeking and consumption observed in 20-30% of users. An addicted individual will favor drug reward over natural rewards, despite major negative consequences. Mechanistic research on rodents modeling core components of the disease has identified altered synaptic transmission as the functional substrate of pathological behavior. While the initial version of a circuit model for addiction focused on early drug adaptive behaviors observed in all individuals, it fell short of accounting for the stochastic nature of the transition to compulsion. The model builds on the initial pharmacological effect common to all addictive drugs-an increase in dopamine levels in the mesolimbic system. Here, we consolidate this early model by integrating circuits underlying compulsion and negative reinforcement. We discuss the genetic and epigenetic correlates of individual vulnerability. Many recent data converge on a gain-of-function explanation for circuit remodeling, revealing blueprints for novel addiction therapies.
Collapse
Affiliation(s)
- Christian Lüscher
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; .,Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, CH-1211 Geneva, Switzerland
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
15
|
Drug addiction co-morbidity with alcohol: Neurobiological insights. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 157:409-472. [PMID: 33648675 DOI: 10.1016/bs.irn.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Addiction is a chronic disorder that consists of a three-stage cycle of binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. These stages involve, respectively, neuroadaptations in brain circuits involved in incentive salience and habit formation, stress surfeit and reward deficit, and executive function. Much research on addiction focuses on the neurobiology underlying single drug use. However, alcohol use disorder (AUD) can be co-morbid with substance use disorder (SUD), called dual dependence. The limited epidemiological data on dual dependence indicates that there is a large population of individuals suffering from addiction who are dependent on more than one drug and/or alcohol, yet dual dependence remains understudied in addiction research. Here, we review neurobiological data on neurotransmitter and neuropeptide systems that are known to contribute to addiction pathology and how the involvement of these systems is consistent or divergent across drug classes. In particular, we highlight the dopamine, opioid, corticotropin-releasing factor, norepinephrine, hypocretin/orexin, glucocorticoid, neuroimmune signaling, endocannabinoid, glutamate, and GABA systems. We also discuss the limited research on these systems in dual dependence. Collectively, these studies demonstrate that the use of multiple drugs can produce neuroadaptations that are distinct from single drug use. Further investigation into the neurobiology of dual dependence is necessary to develop effective treatments for addiction to multiple drugs.
Collapse
|
16
|
Seeliger C, Lippold JV, Reuter M. Variation on the CRH Gene Determines the Different Performance of Opioid Addicts and Healthy Controls in the IOWA Gambling Task. Neuropsychobiology 2020; 79:150-160. [PMID: 31805553 DOI: 10.1159/000504227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND The hypothalamus-pituitary-adrenal (HPA) axis, the biological substrate of stress reactivity, and related genetic variations play a crucial role in the initiation and maintenance of drug addiction. On the behavioral level, substance abusers are characterized by impulsivity and the inability to pursue long-term goals. The neural substrate of these behaviors is assumed to be related to the ventromedial prefrontal cortex (VMPFC). One of the most established paradigms to assess VMPFC deficiency is the IOWA gambling task (IGT). AIMS The aim of this study was to investigate the interplay between the HPA axis-related genetic variation on corticotropin-releasing hormone (CRH; secreted from the hypothalamus and constituting the starting point of the HPA axis) gene and opioid addiction, with respect to IGT performance. There is some evidence that stress and pathological HPA axis hyperactivity, in the same way as drug addiction, is related to a poorer IGT performance. METHODS In total, 138 long-term opioid addicts (mean age 38.63 years [SD 9.15]) and 160 healthy controls (mean age 22.57 years [SD 5.86]) performed the IGT and were genotyped for 6 SNPs covering the CRH gene and adjacent regions (rs3176921, rs6999780, rs7816410, rs1870393, rs1814583, and rs11996294). The first 5 of these 6 SNPs build a haplotype block spanning 15 kb on the CRH gene. RESULTS We found a significant group difference in the total IGT score, with higher scores in controls than in opioids. Most interestingly, there was a 3-way interaction, group × haplotype × block. Carriers homozygous for the TGTAA-haplotype differed in IGT performance dependent on group. In the control group, carriers homozygous for the TGTAA-haplotype showed a linear learning curve across blocks of trials, which was not observed in participants without this homozygosity. There were diametric effects in opioid addicts. Controlling for age and gender did not change the findings. CONCLUSION This study provides genetic evidence for the interplay between stress, decision-making, and opioid addiction.
Collapse
Affiliation(s)
- Christian Seeliger
- Department of Psychology, Laboratory of Neurogenetics, University of Bonn, Bonn, Germany
| | - Julia V Lippold
- Department of Psychology, Laboratory of Neurogenetics, University of Bonn, Bonn, Germany
| | - Martin Reuter
- Department of Psychology, Laboratory of Neurogenetics, University of Bonn, Bonn, Germany,
| |
Collapse
|
17
|
Loftis JM, Navis T, Taylor J, Hudson R, Person U, Lattal KM, Vandenbark AA, Shirley R, Huckans M. Partial MHC/neuroantigen peptide constructs attenuate methamphetamine-seeking and brain chemokine (C-C motif) ligand 2 levels in rats. Eur J Pharmacol 2020; 880:173175. [PMID: 32416183 DOI: 10.1016/j.ejphar.2020.173175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/09/2020] [Accepted: 05/06/2020] [Indexed: 11/28/2022]
Abstract
There are no medications that target the neurotoxic effects or reduce the use of methamphetamine. Recombinant T-cell receptor ligand (RTL) 1000 [a partial major histocompatibility complex (pMHC) class II construct with a tethered myelin peptide], addresses the neuroimmune effects of methamphetamine addiction by competitively inhibiting the disease-promoting activity of macrophage migration inhibitory factor to CD74, a key pathway involved in several chronic inflammatory conditions, including substance use disorders. We previously reported that RTL constructs improve learning and memory impairments and central nervous system (CNS) inflammation induced by methamphetamine in mouse models. The present study in Lewis rats evaluated the effects of RTL1000 on maintenance of self-administration and cue-induced reinstatement using operant behavioral methods. Post-mortem brain and serum samples were evaluated for the levels of inflammatory factors. Rats treated with RTL1000 displayed significantly fewer presses on the active lever as compared to rats treated with vehicle during the initial extinction session, indicating more rapid extinction in the presence of RTL1000. Immunoblotting of rat brain sections revealed reduced levels of the pro-inflammatory chemokine (C-C motif) ligand 2 (CCL2) in the frontal cortex of rats treated with RTL1000, as compared to vehicle. Post hoc analysis identified a positive association between the levels of CCL2 detected in the frontal cortex and the number of lever presses during the first extinction session. Taken together, results suggest that RTL1000 may block downstream inflammatory effects of methamphetamine exposure and facilitate reduced drug seeking-potentially offering a new strategy for the treatment of methamphetamine-induced CNS injury and neuropsychiatric impairments.
Collapse
Affiliation(s)
- Jennifer M Loftis
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA; Methamphetamine Research Center, Portland, OR, USA.
| | - Tommy Navis
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Jonathan Taylor
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Rebekah Hudson
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Ulziibat Person
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Arthur A Vandenbark
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Renee Shirley
- Virogenomics BioDevelopment, Inc., Portland, OR, USA
| | - Marilyn Huckans
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA; Methamphetamine Research Center, Portland, OR, USA; Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
18
|
Dedic N, Kühne C, Gomes KS, Hartmann J, Ressler KJ, Schmidt MV, Deussing JM. Deletion of CRH From GABAergic Forebrain Neurons Promotes Stress Resilience and Dampens Stress-Induced Changes in Neuronal Activity. Front Neurosci 2019; 13:986. [PMID: 31619956 PMCID: PMC6763571 DOI: 10.3389/fnins.2019.00986] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of the corticotropin-releasing hormone (CRH) system has been implicated in stress-related psychopathologies such as depression and anxiety. Although most studies have linked CRH/CRH receptor 1 signaling to aversive, stress-like behavior, recent work has revealed a crucial role for distinct CRH circuits in maintaining positive emotional valence and appetitive responses under baseline conditions. Here we addressed whether deletion of CRH, specifically from GABAergic forebrain neurons (Crh CKO-GABA mice) differentially affects general behavior under baseline and chronic stress conditions. Expression mapping in Crh CK O-GABA mice revealed absence of Crh in GABAergic neurons of the cortex and limbic regions including the hippocampus, central nucleus of the amygdala and the bed nucleus of the stria terminals, but not in the paraventricular nucleus of hypothalamus. Consequently, conditional CRH knockout animals exhibited no alterations in circadian and stress-induced corticosterone release compared to controls. Under baseline conditions, absence of Crh from forebrain GABAergic neurons resulted in social interaction deficits but had no effect on other behavioral measures including locomotion, anxiety, immobility in the forced swim test, acoustic startle response and fear conditioning. Interestingly, following exposure to chronic social defeat stress, Crh CKO-GABA mice displayed a resilient phenotype, which was accompanied by a dampened, stress-induced expression of immediate early genes c-fos and zif268 in several brain regions. Collectively our data reveals the requirement of GABAergic CRH circuits in maintaining appropriate social behavior in naïve animals and further supports the ability of CRH to promote divergent behavioral states under baseline and severe stress conditions.
Collapse
Affiliation(s)
- Nina Dedic
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, United States
| | - Claudia Kühne
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Karina S Gomes
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Laboratory of Neuropsychopharmacology, Paulista State University, Araraquara, Brazil
| | - Jakob Hartmann
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, United States.,Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, United States
| | - Mathias V Schmidt
- Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
19
|
Stafford NP, Kazan TN, Donovan CM, Hart EE, Drugan RC, Charntikov S. Individual Vulnerability to Stress Is Associated With Increased Demand for Intravenous Heroin Self-administration in Rats. Front Behav Neurosci 2019; 13:134. [PMID: 31293400 PMCID: PMC6603087 DOI: 10.3389/fnbeh.2019.00134] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022] Open
Abstract
Opioid use is a widespread epidemic, and traumatic stress exposure is a critical risk factor in opioid use and relapse. There is a significant gap in our understanding of how stress contributes to heroin use, and there are limited studies investigating individual differences underlying stress reactivity and subsequent stress-induced heroin self-administration. We hypothesized that greater individual vulnerability to stress would predict higher demand for heroin self-administration in a within-subjects rodent model of stress and heroin use comorbidity. Male rats were exposed to inescapable intermittent swim stress (ISS) and individual biological (corticosterone) or behavioral [open field, social exploration, and forced swim tests (FSTs)] measures were assessed before and after the stress episode. Individual demand for self-administered heroin (0.05 mg/kg/infusion; 12-h sessions) was assessed using a behavioral economics approach followed by extinction and reinstatement tests triggered by stress re-exposure, non-contingent cue presentations, and yohimbine (0, 1.0, or 2.5 mg/kg). We found that behavioral, biological, and a combination of behavioral and biological markers sampled prior to and after the stress episode that occurred weeks before the access to heroin self-administration predicted the magnitude of individual demand for heroin. Non-contingent presentation of cues, that were previously associated with heroin, reinstated heroin seeking in extinction. For the first time, we show that individual biological response to an ecologically relevant stressor in combination with associated behavioral markers can be used to predict subsequent economic demand for heroin.
Collapse
Affiliation(s)
- Nathaniel P Stafford
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| | - Theodore N Kazan
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| | - Colleen M Donovan
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| | - Erin E Hart
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| | - Robert C Drugan
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| | - Sergios Charntikov
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
20
|
Glucagon-Like Peptide-1 Receptor Agonist Treatment Does Not Reduce Abuse-Related Effects of Opioid Drugs. eNeuro 2019; 6:eN-NRS-0443-18. [PMID: 31058214 PMCID: PMC6498420 DOI: 10.1523/eneuro.0443-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 12/29/2022] Open
Abstract
Dependence on opioids and the number of opioid overdose deaths are serious and escalating public health problems, but medication-assisted treatments for opioid addiction remain inadequate for many patients. Glucagon-like pepide-1 (GLP-1) is a gut hormone and neuropeptide with actions in peripheral tissues and in the brain, including regulation of blood glucose and food intake. GLP-1 analogs, which are approved diabetes medications, can reduce the reinforcing and rewarding effects of alcohol, cocaine, amphetamine, and nicotine in rodents. Investigations on effects of GLP-1 analogs on opioid reward and reinforcement have not been reported. We assessed the effects of the GLP-1 receptor agonist Exendin-4 (Ex4) on opioid-related behaviors in male mice, i.e., morphine-conditioned place preference (CPP), intravenous self-administration (IVSA) of the short-acting synthetic opioid remifentanil, naltrexone-precipitated morphine withdrawal, morphine analgesia (male and female mice), and locomotor activity. Ex4 treatment had no effect on morphine-induced CPP, withdrawal, or hyperlocomotion. Ex4 failed to decrease remifentanil self-administration, if anything reinforcing effects of remifentanil appeared increased in Ex4-treated mice relative to saline. Ex4 did not significantly affect analgesia. In contrast, Ex4 dose dependently decreased oral alcohol self-administration, and suppressed spontaneous locomotor activity. Taken together, Ex4 did not attenuate the addiction-related behavioral effects of opioids, indicating that GLP-1 analogs would not be useful medications in the treatment of opioid addiction. This difference between opioids and other drug classes investigated to date may shed light on the mechanism of action of GLP-1 receptor treatment in the addictive effects of alcohol, central stimulants, and nicotine.
Collapse
|
21
|
Reiner DJ, Fredriksson I, Lofaro OM, Bossert JM, Shaham Y. Relapse to opioid seeking in rat models: behavior, pharmacology and circuits. Neuropsychopharmacology 2019; 44:465-477. [PMID: 30293087 PMCID: PMC6333846 DOI: 10.1038/s41386-018-0234-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/17/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022]
Abstract
Lifetime relapse rates remain a major obstacle in addressing the current opioid crisis. Relapse to opioid use can be modeled in rodent studies where drug self-administration is followed by a period of abstinence and a subsequent test for drug seeking. Abstinence can be achieved through extinction training, forced abstinence, or voluntary abstinence. Voluntary abstinence can be accomplished by introducing adverse consequences of continued drug self-administration (e.g., punishment or electric barrier) or by introducing an alternative nondrug reward in a discrete choice procedure (drug versus palatable food or social interaction). In this review, we first discuss pharmacological and circuit mechanisms of opioid seeking, as assessed in the classical extinction-reinstatement model, where reinstatement is induced by reexposure to the self-administered drug (drug priming), discrete cues, discriminative cues, drug-associated contexts, different forms of stress, or withdrawal states. Next, we discuss pharmacological and circuit mechanisms of relapse after forced or voluntary abstinence, including the phenomenon of "incubation of heroin craving" (the time-dependent increases in heroin seeking during abstinence). We conclude by discussing future directions of preclinical relapse-related studies using opioid drugs.
Collapse
Affiliation(s)
- David J. Reiner
- Behavioral Neuroscience Research Branch, IRP-NIDA-NIH, Baltimore, MD USA
| | - Ida Fredriksson
- Behavioral Neuroscience Research Branch, IRP-NIDA-NIH, Baltimore, MD USA
| | - Olivia M. Lofaro
- Behavioral Neuroscience Research Branch, IRP-NIDA-NIH, Baltimore, MD USA
| | | | - Yavin Shaham
- Behavioral Neuroscience Research Branch, IRP-NIDA-NIH, Baltimore, MD, USA.
| |
Collapse
|
22
|
Ch'ng S, Fu J, Brown RM, McDougall SJ, Lawrence AJ. The intersection of stress and reward: BNST modulation of aversive and appetitive states. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:108-125. [PMID: 29330137 DOI: 10.1016/j.pnpbp.2018.01.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is widely acknowledged as a brain structure that regulates stress and anxiety states, as well as aversive and appetitive behaviours. The diverse roles of the BNST are afforded by its highly modular organisation, neurochemical heterogeneity, and complex intrinsic and extrinsic circuitry. There has been growing interest in the BNST in relation to psychopathologies such as anxiety and addiction. Although research on the human BNST is still in its infancy, there have been extensive preclinical studies examining the molecular signature and hodology of the BNST and their involvement in stress and reward seeking behaviour. This review examines the neurochemical phenotype and connectivity of the BNST, as well as electrophysiological correlates of plasticity in the BNST mediated by stress and/or drugs of abuse.
Collapse
Affiliation(s)
- Sarah Ch'ng
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jingjing Fu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
23
|
Greenwald MK. Anti-stress neuropharmacological mechanisms and targets for addiction treatment: A translational framework. Neurobiol Stress 2018; 9:84-104. [PMID: 30238023 PMCID: PMC6138948 DOI: 10.1016/j.ynstr.2018.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022] Open
Abstract
Stress-related substance use is a major challenge for treating substance use disorders. This selective review focuses on emerging pharmacotherapies with potential for reducing stress-potentiated seeking and consumption of nicotine, alcohol, marijuana, cocaine, and opioids (i.e., key phenotypes for the most commonly abused substances). I evaluate neuropharmacological mechanisms in experimental models of drug-maintenance and relapse, which translate more readily to individuals presenting for treatment (who have initiated and progressed). An affective/motivational systems model (three dimensions: valence, arousal, control) is mapped onto a systems biology of addiction approach for addressing this problem. Based on quality of evidence to date, promising first-tier neurochemical receptor targets include: noradrenergic (α1 and β antagonist, α2 agonist), kappa-opioid antagonist, nociceptin antagonist, orexin-1 antagonist, and endocannabinoid modulation (e.g., cannabidiol, FAAH inhibition); second-tier candidates may include corticotropin releasing factor-1 antagonists, serotonergic agents (e.g., 5-HT reuptake inhibitors, 5-HT3 antagonists), glutamatergic agents (e.g., mGluR2/3 agonist/positive allosteric modulator, mGluR5 antagonist/negative allosteric modulator), GABA-promoters (e.g., pregabalin, tiagabine), vasopressin 1b antagonist, NK-1 antagonist, and PPAR-γ agonist (e.g., pioglitazone). To address affective/motivational mechanisms of stress-related substance use, it may be advisable to combine agents with actions at complementary targets for greater efficacy but systematic studies are lacking except for interactions with the noradrenergic system. I note clinically-relevant factors that could mediate/moderate the efficacy of anti-stress therapeutics and identify research gaps that should be pursued. Finally, progress in developing anti-stress medications will depend on use of reliable CNS biomarkers to validate exposure-response relationships.
Collapse
Affiliation(s)
- Mark K. Greenwald
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| |
Collapse
|
24
|
Montagud-Romero S, Blanco-Gandía MC, Reguilón MD, Ferrer-Pérez C, Ballestín R, Miñarro J, Rodríguez-Arias M. Social defeat stress: Mechanisms underlying the increase in rewarding effects of drugs of abuse. Eur J Neurosci 2018; 48:2948-2970. [PMID: 30144331 DOI: 10.1111/ejn.14127] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 08/14/2018] [Indexed: 12/27/2022]
Abstract
Social interaction is known to be the main source of stress in human beings, which explains the translational importance of this research in animals. Evidence reported over the last decade has revealed that, when exposed to social defeat experiences (brief episodes of social confrontations during adolescence and adulthood), the rodent brain undergoes remodeling and functional modifications, which in turn lead to an increase in the rewarding and reinstating effects of different drugs of abuse. The mechanisms by which social stress cause changes in the brain and behavior are unknown, and so the objective of this review is to contemplate how social defeat stress induces long-lasting consequences that modify the reward system. First of all, we will describe the most characteristic results of the short- and long-term consequences of social defeat stress on the rewarding effects of drugs of abuse such as psychostimulants and alcohol. Secondly, and throughout the review, we will carefully assess the neurobiological mechanisms underlying these effects, including changes in the dopaminergic system, corticotrophin releasing factor signaling, epigenetic modifications and the neuroinflammatory response. To conclude, we will consider the advantages and disadvantages and the translational value of the social defeat stress model, and will discuss challenges and future directions.
Collapse
Affiliation(s)
- Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | | | - Marina D Reguilón
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Carmen Ferrer-Pérez
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Raul Ballestín
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Jose Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
25
|
Pituitary Adenylate Cyclase-Activating Peptide (PACAP) Signaling and the Dark Side of Addiction. J Mol Neurosci 2018; 68:453-464. [PMID: 30074172 DOI: 10.1007/s12031-018-1147-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
While addiction to drugs of abuse represents a significant health problem worldwide, the behavioral and neural mechanisms that underlie addiction and relapse are largely unclear. The concept of the dark side of addiction, developed and explored by George Koob and colleagues, describes a systematic decrease in reward-related processing following drug self-administration and subsequent recruitment of anti-reward (i.e., stress) systems. Indeed, the activation of central nervous system (CNS) stress-response systems by drugs of abuse is contributory not only to mood and anxiety-related disorders but critical to both the maintenance of addiction and relapse following abstinence. In both human and animal studies, compounds that activate the bed nucleus of the stria terminalis (BNST) have roles in stress-related behaviors and addiction processes. The activation of pituitary adenylate cyclase-activating peptide (PACAP) systems in the BNST mediates many consequences of chronic stressor exposure that may engage in part downstream corticotropin-releasing hormone (CRH) signaling. Similar to footshock stress, the BNST administration of PACAP or the PAC1 receptor-specific agonist maxadilan can facilitate relapse following extinction of cocaine-seeking behavior. Further, in the same paradigm, the footshock-induced relapse could be attenuated following BNST pretreatment with PAC1 receptor antagonist PACAP6-38, implicating PACAP systems as critical components underlying stress-induced reinstatement. In congruence with previous work, the PAC1 receptor internalization and endosomal MEK/ERK signaling appear contributory mechanisms to the addiction processes. The studies offer new insights and approaches to addiction and relapse therapeutics.
Collapse
|
26
|
Role of D1-like and D2-like dopamine receptors within the ventral tegmental area in stress-induced and drug priming-induced reinstatement of morphine seeking in rats. Behav Pharmacol 2018; 29:426-436. [DOI: 10.1097/fbp.0000000000000381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Ferrer-Pérez C, Reguilón MD, Manzanedo C, Aguilar MA, Miñarro J, Rodríguez-Arias M. Antagonism of corticotropin-releasing factor CRF 1 receptors blocks the enhanced response to cocaine after social stress. Eur J Pharmacol 2018; 823:87-95. [PMID: 29391155 DOI: 10.1016/j.ejphar.2018.01.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 01/07/2023]
Abstract
Numerous studies have shown that social defeat stress induces an increase in the rewarding effects of cocaine. In this study we have investigated the role played by the main hypothalamic stress hormone, corticotropin-releasing factor (CRF), in the effects that repeated social defeat (RSD) induces in the conditioned rewarding effects and locomotor sensitization induced by cocaine. A total of 220 OF1 mice were divided into experimental groups according to the treatment received before each social defeat: saline, 5 or 10 mg/kg of the nonpeptidic corticotropin-releasing factor CRF1 receptor antagonist CP-154,526, or 15 or 30 µg/kg of the peptidic corticotropin-releasing factor CRF2 receptor antagonist Astressin2-B. Three weeks after the last defeat, conditioned place preference (CPP) induced by 1 mg/kg of cocaine was evaluated. Motor response to 10 mg/kg of cocaine was also studied after a sensitization induction. Blockade of corticotropin-releasing factor CRF1 receptor reversed the increase in cocaine CPP induced by social defeat. Conversely, peripheral corticotropin-releasing factor CRF2 receptor blockade produced similar effects to those observed in socially stressed animals. The effect of RSD on cocaine sensitization was again blocked by the corticotropin-releasing factor CRF1 receptor antagonist, while peripheral CRF2 receptor antagonist did not show effect. Acute administration of Astressin2-B induced an anxiogenic response. Our results confirm that CRF modulates the effects of social stress on reinforcement and sensitization induced by cocaine in contrasting ways. These findings highlight CRF receptors as potential therapeutic targets to be explored by research about stress-related addiction problems.
Collapse
Affiliation(s)
- Carmen Ferrer-Pérez
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Marina D Reguilón
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Carmen Manzanedo
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - M Asunción Aguilar
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - José Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain.
| |
Collapse
|
28
|
Kaye JT, Bradford DE, Magruder KP, Curtin JJ. Probing for Neuroadaptations to Unpredictable Stressors in Addiction: Translational Methods and Emerging Evidence. J Stud Alcohol Drugs 2017; 78:353-371. [PMID: 28499100 DOI: 10.15288/jsad.2017.78.353] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stressors clearly contribute to addiction etiology and relapse in humans, but our understanding of specific mechanisms remains limited. Rodent models of addiction offer the power, flexibility, and precision necessary to delineate the causal role and specific mechanisms through which stressors influence alcohol and other drug use. This review describes a program of research using startle potentiation to unpredictable stressors that is well positioned to translate between animal models and clinical research with humans on stress neuroadaptations in addiction. This research rests on a solid foundation provided by three separate pillars of evidence from (a) rodent behavioral neuroscience on stress neuroadaptations in addiction, (b) rodent affective neuroscience on startle potentiation, and (c) human addiction and affective science with startle potentiation. Rodent stress neuroadaptation models implicate adaptations in corticotropin-releasing factor and norepinephrine circuits within the central extended amygdala following chronic alcohol and other drug use that mediate anxious behaviors and stress-induced reinstatement among drug-dependent rodents. Basic affective neuroscience indicates that these same neural mechanisms are involved in startle potentiation to unpredictable stressors in particular (vs. predictable stressors). We believe that synthesis of these evidence bases should focus us on the role of unpredictable stressors in addiction etiology and relapse. Startle potentiation in unpredictable stressor tasks is proposed to provide an attractive and flexible test bed to encourage tight translation and reverse translation between animal models and human clinical research on stress neuroadaptations. Experimental therapeutics approaches focused on unpredictable stressors hold high promise to identify, repurpose, or refine pharmacological and psychosocial interventions for addiction.
Collapse
Affiliation(s)
- Jesse T Kaye
- University of Wisconsin-Madison, Madison, Wisconsin
| | | | | | | |
Collapse
|
29
|
Bernardi RE, Broccoli L, Hirth N, Justice NJ, Deussing JM, Hansson AC, Spanagel R. Dissociable Role of Corticotropin Releasing Hormone Receptor Subtype 1 on Dopaminergic and D1 Dopaminoceptive Neurons in Cocaine Seeking Behavior. Front Behav Neurosci 2017; 11:221. [PMID: 29180955 PMCID: PMC5693884 DOI: 10.3389/fnbeh.2017.00221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/24/2017] [Indexed: 11/18/2022] Open
Abstract
The ability of many drugs of abuse, including cocaine, to mediate reinforcement and drug-seeking behaviors is in part mediated by the corticotropin-releasing hormone (CRH) system, in which CRH exerts its effects partly via the CRH receptor subtype 1 (CRHR1) in extra-hypothalamic areas. In fact, CRHR1 expressed in regions of the mesolimbic dopamine (DA) system have been demonstrated to modify cocaine-induced DA release and alter cocaine-mediated behaviors. Here we examined the role of neuronal selectivity of CRHR1 within the mesolimbic system on cocaine-induced behaviors. First we used a transgenic mouse line expressing GFP under the control of the Crhr1 promoter for double fluorescence immunohistochemistry to demonstrate the cellular location of CRHR1 in both dopaminergic and D1 dopaminoceptive neurons. We then studied cocaine sensitization, self-administration, and reinstatement in inducible CRHR1 knockouts using the CreERT2/loxP in either dopamine transporter (DAT)-containing neurons (DAT-Crhr1) or dopamine receptor 1 (D1)-containing neurons (D1-Crhr1). For sensitization testing, mice received five daily injections of cocaine (15 mg/kg IP). For self-administration, mice received eight daily 2 h cocaine (0.5 mg/kg per infusion) self-administration sessions followed by extinction and reinstatement testing. There were no differences in the acute or sensitized locomotor response to cocaine in DAT-Crhr1 or D1-Crhr1 mice and their respective controls. Furthermore, both DAT-Crhr1 and D1-Crhr1 mice reliably self-administered cocaine at the level of controls. However, DAT-Crhr1 mice demonstrated a significant increase in cue-induced reinstatement relative to controls, whereas D1-Crhr1 mice demonstrated a significant decrease in cue-induced reinstatement relative to controls. These data demonstrate the involvement of CRHR1 in cue-induced reinstatement following cocaine self-administration, and implicate a bi-directional role of CRHR1 for cocaine craving.
Collapse
Affiliation(s)
- Rick E Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Laura Broccoli
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Natalie Hirth
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nicholas J Justice
- Institute of Molecular Medicine, University of Texas, Houston, TX, United States
| | - Jan M Deussing
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
30
|
McRae-Clark AL, Cason AM, Kohtz AS, Moran Santa-Maria M, Aston-Jones G, Brady KT. Impact of gender on corticotropin-releasing factor and noradrenergic sensitivity in cocaine use disorder. J Neurosci Res 2017; 95:320-327. [PMID: 27870396 DOI: 10.1002/jnr.23860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/30/2016] [Accepted: 07/11/2016] [Indexed: 12/21/2022]
Abstract
Responses to stress may be important in understanding gender differences in substance use disorders and may also be a target for development of treatment interventions. A growing body of both preclinical and clinical research supports important underlying gender differences in the corticotropin-releasing factor (CRF) and noradrenergic systems, which may contribute to drug use. Preclinical models have demonstrated increased sensitivity of females to CRF and noradrenergic-induced drug reinstatement compared with males, and, consistent with these findings, human laboratory studies have demonstrated greater sensitivity to corticotropin-releasing hormone (CRH) and noradrenergic stimulation in cocaine-dependent women compared with men. Furthermore, neuroimaging studies have demonstrated increased neural response to stressful stimuli in cocaine-dependent women compared with men as well as showing significant sex differences in the sensitivity of brain regions responsible for regulating the response to CRH. Development of interventions targeting the noradrenergic system and stress response in drug-dependent individuals could have important clinical implications for both women and men. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aimee L McRae-Clark
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
| | - Angie M Cason
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Amy S Kohtz
- Brain Health Institute, Rutgers University, Piscataway, New Jersey
| | | | - Gary Aston-Jones
- Brain Health Institute, Rutgers University, Piscataway, New Jersey
| | - Kathleen T Brady
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
31
|
Pizzimenti CL, Navis TM, Lattal KM. Persistent effects of acute stress on fear and drug-seeking in a novel model of the comorbidity between post-traumatic stress disorder and addiction. ACTA ACUST UNITED AC 2017; 24:422-431. [PMID: 28814468 PMCID: PMC5580533 DOI: 10.1101/lm.044164.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/08/2017] [Indexed: 01/13/2023]
Abstract
Even following long periods of abstinence, individuals with anxiety disorders have high rates of relapse to drugs of abuse. Although many current models of relapse demonstrate effects of acute stress on drug-seeking, most of these studies examine stressful experiences that occur in close temporal and physical proximity to the reinstatement test. Here, we assess the effects of a stressful experience in one context on fear and drug-seeking in a different context. We adapt the stress-enhanced fear learning procedure to examine impacts on drug-seeking long after the stressful experience occurred. We find massive footshock in a distinct environment produced an acute increase in corticosterone, long-term hyper-responsivity to a single shock in different contexts with extensive histories of drug-seeking behaviors, enhancements in cocaine-induced conditioned place preference in mice, and persistent enhancements in cue-induced reinstatement of methamphetamine-seeking behavior in rats. Together, these experiments demonstrate that an acute trauma causes persistent changes in responsivity to mild stressors and drug-seeking behavior in other contexts, which mirrors aspects of the comorbidity between post-traumatic stress disorder and substance use disorders. These behavioral approaches provide novel procedures for investigating basic mechanisms underlying this comorbidity and they provide powerful tools for testing preclinical pharmacological and behavioral interventions.
Collapse
Affiliation(s)
- Christie L Pizzimenti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Tom M Navis
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, USA
| |
Collapse
|
32
|
Roberto M, Spierling SR, Kirson D, Zorrilla EP. Corticotropin-Releasing Factor (CRF) and Addictive Behaviors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:5-51. [PMID: 29056155 PMCID: PMC6155477 DOI: 10.1016/bs.irn.2017.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drug addiction is a complex disorder that is characterized by compulsivity to seek and take the drug, loss of control in limiting intake of the drug, and emergence of a withdrawal syndrome in the absence of the drug. The transition from casual drug use to dependence is mediated by changes in reward and brain stress functions and has been linked to a shift from positive reinforcement to negative reinforcement. The recruitment of brain stress systems mediates the negative emotional state produced by dependence that drives drug seeking through negative reinforcement mechanisms, defined as the "dark side" of addiction. In this chapter we focus on behavioral and cellular neuropharmacological studies that have implicated brain stress systems (i.e., corticotropin-releasing factor [CRF]) in the transition to addiction and the predominant brain regions involved. We also discuss the implication of CRF recruitment in compulsive eating disorders.
Collapse
Affiliation(s)
- Marisa Roberto
- The Scripps Research Institute, La Jolla, CA, United States.
| | | | - Dean Kirson
- The Scripps Research Institute, La Jolla, CA, United States
| | | |
Collapse
|
33
|
Forster SE, Finn PR, Brown JW. Neural responses to negative outcomes predict success in community-based substance use treatment. Addiction 2017; 112:884-896. [PMID: 28029198 PMCID: PMC5382058 DOI: 10.1111/add.13734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/25/2016] [Accepted: 12/22/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Patterns of brain activation have demonstrated promise as prognostic indicators in substance dependent individuals (SDIs) but have not yet been explored in SDIs typical of community-based treatment settings. DESIGN Prospective clinical outcome design, evaluating baseline functional magnetic resonance imaging data from the Balloon Analogue Risk Task (BART) as a predictor of 3-month substance use treatment outcomes. SETTING Community-based substance use programs in Bloomington, Indiana, USA. PARTICIPANTS Twenty-three SDIs (17 male, aged 18-43 years) in an intensive outpatient or residential treatment program; abstinent 1-4 weeks at baseline. MEASUREMENTS Event-related brain response, BART performance and self-report scores at treatment onset, substance use outcome measure (based on days of use). FINDINGS Using voxel-level predictive modeling and leave-one-out cross-validation, an elevated response to unexpected negative feedback in bilateral amygdala and anterior hippocampus (Amyg/aHipp) at baseline successfully predicted greater substance use during the 3-month study interval (P ≤ 0.006, cluster-corrected). This effect was robust to inclusion of significant non-brain-based covariates. A larger response to negative feedback in bilateral Amyg/aHipp was also associated with faster reward-seeking responses after negative feedback (r(23) = -0.544, P = 0.007; r(23) = -0.588, P = 0.003). A model including Amyg/aHipp activation, faster reward-seeking after negative feedback and significant self-report scores accounted for 45% of the variance in substance use outcomes in our sample. CONCLUSIONS An elevated response to unexpected negative feedback in bilateral amygdala and anterior hippocampus (Amyg/aHipp) appears to predict relapse to substance use in people attending community-based treatment.
Collapse
Affiliation(s)
- Sarah E. Forster
- Indiana University, Department of Psychological and Brain Sciences,VA Pittsburgh Healthcare System,University of Pittsburgh, Department of Psychiatry
| | - Peter R. Finn
- Indiana University, Department of Psychological and Brain Sciences
| | - Joshua W. Brown
- Indiana University, Department of Psychological and Brain Sciences
| |
Collapse
|
34
|
Slater PG, Yarur HE, Gysling K. Corticotropin-Releasing Factor Receptors and Their Interacting Proteins: Functional Consequences. Mol Pharmacol 2016; 90:627-632. [PMID: 27612874 DOI: 10.1124/mol.116.104927] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/08/2016] [Indexed: 02/14/2025] Open
Abstract
The corticotropin-releasing factor (CRF) system, which is involved in stress, addiction, and anxiety disorders such as depression, acts through G-protein-coupled receptors (GPCRs) known as type-1 and type-2 CRF receptors. The purpose of this review is to highlight recent advances in the interactions of CRF receptors with other GPCRs and non-GPCR proteins and their associated functional consequences. A better understanding of these interactions may generate new pharmacological alternatives for the treatment of addiction and stress-related disorders.
Collapse
Affiliation(s)
- Paula G Slater
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hector E Yarur
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
35
|
Packard AEB, Egan AE, Ulrich-Lai YM. HPA Axis Interactions with Behavioral Systems. Compr Physiol 2016; 6:1897-1934. [PMID: 27783863 DOI: 10.1002/cphy.c150042] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Perhaps the most salient behaviors that individuals engage in involve the avoidance of aversive experiences and the pursuit of pleasurable experiences. Engagement in these behaviors is regulated to a significant extent by an individual's hormonal milieu. For example, glucocorticoid hormones are produced by the hypothalamic-pituitary-adrenocortical (HPA) axis, and influence most aspects of behavior. In turn, many behaviors can influence HPA axis activity. These bidirectional interactions not only coordinate an individual's physiological and behavioral states to each other, but can also tune them to environmental conditions thereby optimizing survival. The present review details the influence of the HPA axis on many types of behavior, including appetitively-motivated behaviors (e.g., food intake and drug use), aversively-motivated behaviors (e.g., anxiety-related and depressive-like) and cognitive behaviors (e.g., learning and memory). Conversely, the manuscript also describes how engaging in various behaviors influences HPA axis activity. Our current understanding of the neuronal and/or hormonal mechanisms that underlie these interactions is also summarized. © 2016 American Physiological Society. Compr Physiol 6:1897-1934, 2016.
Collapse
Affiliation(s)
- Amy E B Packard
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ann E Egan
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yvonne M Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
36
|
Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 2016; 3:760-773. [PMID: 27475769 PMCID: PMC6135092 DOI: 10.1016/s2215-0366(16)00104-8] [Citation(s) in RCA: 2096] [Impact Index Per Article: 232.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 12/17/2022]
Abstract
Drug addiction represents a dramatic dysregulation of motivational circuits that is caused by a combination of exaggerated incentive salience and habit formation, reward deficits and stress surfeits, and compromised executive function in three stages. The rewarding effects of drugs of abuse, development of incentive salience, and development of drug-seeking habits in the binge/intoxication stage involve changes in dopamine and opioid peptides in the basal ganglia. The increases in negative emotional states and dysphoric and stress-like responses in the withdrawal/negative affect stage involve decreases in the function of the dopamine component of the reward system and recruitment of brain stress neurotransmitters, such as corticotropin-releasing factor and dynorphin, in the neurocircuitry of the extended amygdala. The craving and deficits in executive function in the so-called preoccupation/anticipation stage involve the dysregulation of key afferent projections from the prefrontal cortex and insula, including glutamate, to the basal ganglia and extended amygdala. Molecular genetic studies have identified transduction and transcription factors that act in neurocircuitry associated with the development and maintenance of addiction that might mediate initial vulnerability, maintenance, and relapse associated with addiction.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA.
| | - Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
37
|
Hadad NA, Wu L, Hiller H, Krause EG, Schwendt M, Knackstedt LA. Conditioned stress prevents cue-primed cocaine reinstatement only in stress-responsive rats. Stress 2016; 19:406-18. [PMID: 27181613 DOI: 10.1080/10253890.2016.1189898] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Neurobiological mechanisms underlying comorbid posttraumatic stress disorder (PTSD) and cocaine use disorder (CUD) are unknown. We aimed to develop an animal model of PTSD + CUD to examine the neurobiology underlying cocaine-seeking in the presence of PTSD comorbidity. Rats were exposed to cat urine once for 10-minutes and tested for anxiety-like behaviors one week later. Subsequently, rats underwent long-access (LgA) cocaine self-administration and extinction training. Rats were re-exposed to the trauma context and then immediately tested for cue-primed reinstatement of cocaine-seeking. Plasma and brains were collected afterwards for corticosterone assays and real-time qPCR analysis. Urine-exposed (UE; n = 23) and controls not exposed to urine (Ctrl; n = 11) did not differ in elevated plus maze behavior, but UE rats displayed significantly reduced habituation of the acoustic startle response (ASR) relative to Ctrl rats. A median split of ASR habituation scores was used to classify stress-responsive rats. UE rats (n = 10) self-administered more cocaine on Day 1 of LgA than control rats (Ctrl + Coc; n = 8). Re-exposure to the trauma context prevented cocaine reinstatement only in stress-responsive rats. Ctrl + Coc rats had lower plasma corticosterone concentrations than Ctrls, and decreased gene expression of corticotropin releasing hormone (CRH) and Glcci1 in the hippocampus. Rats that self-administered cocaine displayed greater CRH expression in the amygdala that was independent of urine exposure. While we did not find that cat urine exposure induced a PTSD-like phenotype in our rats, the present study underscores the need to separate stressed rats into cohorts based on anxiety-like behavior in order to study individual vulnerability to PTSD + CUD.
Collapse
Affiliation(s)
- Natalie A Hadad
- a Department of Psychology , University of Florida , Gainesville , FL , USA
| | - Lizhen Wu
- a Department of Psychology , University of Florida , Gainesville , FL , USA
| | - Helmut Hiller
- b Department of Pharmacodynamics , University of Florida , Gainesville , FL , USA
| | - Eric G Krause
- b Department of Pharmacodynamics , University of Florida , Gainesville , FL , USA
| | - Marek Schwendt
- a Department of Psychology , University of Florida , Gainesville , FL , USA
| | - Lori A Knackstedt
- a Department of Psychology , University of Florida , Gainesville , FL , USA
| |
Collapse
|
38
|
Cason AM, Kohtz A, Aston-Jones G. Role of Corticotropin Releasing Factor 1 Signaling in Cocaine Seeking during Early Extinction in Female and Male Rats. PLoS One 2016; 11:e0158577. [PMID: 27362504 PMCID: PMC4928795 DOI: 10.1371/journal.pone.0158577] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023] Open
Abstract
Locus coeruleus norepinephrine (LC-NE) and corticotropin releasing factor (CRF) neurons are involved in stress responses, including stress’s ability to drive drug relapse. Previous animal studies indicate that female rats exhibit greater drug seeking than male rats during initial drug abstinence. Moreover, females are more sensitive to the effect of stress to drive drug seeking than males. Finally, LC-NE neurons are more sensitive to CRF in females compared to males. We hypothesized that increased drug seeking in females on extinction day one (ED1) is due to increased response to the stress of early withdrawal and is dependent upon the increased response of LC in females to CRF. We predicted that LC-NE neurons would exhibit Fos activation on ED1, and that blocking CRF1 signaling would decrease drug seeking on ED1 measured by responding on an active lever previously associated with cocaine self- administration. After chronic cocaine self-administration, female and male rats underwent a test for initial extinction responding by measuring lever pressing in the absence of cocaine. Prior to this Extinction Day 1 (ED1) session, rats were injected with vehicle or the selective CRF1 antagonist (CP) to measure effects of CRF antagonism on drug seeking during early abstinence. ED1 increased corticosterone in female rats, in proportion to lever responding in male and female, indicating that ED1 was stressful. Pretreatment with CP decreased cocaine seeking on ED1 more effectively in female compared to male rats. This increase in responding was associated with an increase in activation of LC NE neurons. Together, these findings indicate that stress, and signaling at CRF receptors in LC, may be involved in the increased drug seeking during initial abstinence.
Collapse
Affiliation(s)
- Angie M. Cason
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| | - Amy Kohtz
- Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, New Jersey, United States of America
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, New Jersey, United States of America
| |
Collapse
|
39
|
Manvich DF, Stowe TA, Godfrey JR, Weinshenker D. A Method for Psychosocial Stress-Induced Reinstatement of Cocaine Seeking in Rats. Biol Psychiatry 2016; 79:940-6. [PMID: 26257242 PMCID: PMC4706515 DOI: 10.1016/j.biopsych.2015.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/15/2022]
Abstract
We describe a novel preclinical model of stress-induced relapse to cocaine use in rats using social defeat stress, an ethologically valid psychosocial stressor in rodents that closely resembles stressors that promote craving and relapse in humans. Rats self-administered cocaine for 20 days. On days 11, 14, 17, and 20, animals were subjected to social defeat stress or a nonstressful control condition following the session, with discrete environmental stimuli signaling the impending event. After extinction training, reinstatement was assessed following re-exposure to these discrete cues. Animals re-exposed to psychosocial stress-predictive cues exhibited increased serum corticosterone and significantly greater reinstatement of cocaine seeking than the control group, and active coping behaviors during social defeat episodes were associated with subsequent reinstatement magnitude. These studies are the first to describe an operant model of psychosocial stress-induced relapse in rodents and lay the foundation for future work investigating its neurobiological underpinnings.
Collapse
Affiliation(s)
- Daniel F Manvich
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Taylor A Stowe
- Neuroscience and Behavioral Biology Program, Emory University, Atlanta, GA 30322
| | - Jodi R Godfrey
- Division of Neuropharmacology and Neurologic Diseases and Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, Georgia.
| |
Collapse
|
40
|
Mantsch JR, Baker DA, Funk D, Lê AD, Shaham Y. Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress. Neuropsychopharmacology 2016; 41:335-56. [PMID: 25976297 PMCID: PMC4677117 DOI: 10.1038/npp.2015.142] [Citation(s) in RCA: 336] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/01/2015] [Accepted: 05/08/2015] [Indexed: 12/24/2022]
Abstract
In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse.
Collapse
Affiliation(s)
- John R Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - David A Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Douglas Funk
- Center for Addiction and Mental Health, Campbell Family Mental Health Research Institute, University of Toronto, Toronto, ON, Canada
| | - Anh D Lê
- Center for Addiction and Mental Health, Campbell Family Mental Health Research Institute, University of Toronto, Toronto, ON, Canada
| | - Yavin Shaham
- Intramural Research Program, NIDA-NIH, Baltimore, MD, USA
| |
Collapse
|
41
|
Pizzimenti CL, Lattal KM. Epigenetics and memory: causes, consequences and treatments for post-traumatic stress disorder and addiction. GENES BRAIN AND BEHAVIOR 2015; 14:73-84. [PMID: 25560936 DOI: 10.1111/gbb.12187] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/24/2014] [Accepted: 11/10/2014] [Indexed: 01/06/2023]
Abstract
Understanding the interaction between fear and reward at the circuit and molecular levels has implications for basic scientific approaches to memory and for understanding the etiology of psychiatric disorders. Both stress and exposure to drugs of abuse induce epigenetic changes that result in persistent behavioral changes, some of which may contribute to the formation of a drug addiction or a stress-related psychiatric disorder. Converging evidence suggests that similar behavioral, neurobiological and molecular mechanisms control the extinction of learned fear and drug-seeking responses. This may, in part, account for the fact that individuals with post-traumatic stress disorder have a significantly elevated risk of developing a substance use disorder and have high rates of relapse to drugs of abuse, even after long periods of abstinence. At the behavioral level, a major challenge in treatments is that extinguished behavior is often not persistent, returning with changes in context, the passage of time or exposure to mild stressors. A common goal of treatments is therefore to weaken the ability of stressors to induce relapse. With the discovery of epigenetic mechanisms that create persistent molecular signals, recent work on extinction has focused on how modulating these epigenetic targets can create lasting extinction of fear or drug-seeking behavior. Here, we review recent evidence pointing to common behavioral, systems and epigenetic mechanisms in the regulation of fear and drug seeking. We suggest that targeting these mechanisms in combination with behavioral therapy may promote treatment and weaken stress-induced relapse.
Collapse
Affiliation(s)
- C L Pizzimenti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | | |
Collapse
|
42
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [PMID: 26403687 DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Bjørnar den Hollander
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Usman Farooq
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Elena Vashchinkina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - David J Nutt
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Gavin S Dawe
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| |
Collapse
|
43
|
Orexin-corticotropin-releasing factor receptor heteromers in the ventral tegmental area as targets for cocaine. J Neurosci 2015; 35:6639-53. [PMID: 25926444 DOI: 10.1523/jneurosci.4364-14.2015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Release of the neuropeptides corticotropin-releasing factor (CRF) and orexin-A in the ventral tegmental area (VTA) play an important role in stress-induced cocaine-seeking behavior. We provide evidence for pharmacologically significant interactions between CRF and orexin-A that depend on oligomerization of CRF1 receptor (CRF1R) and orexin OX1 receptors (OX1R). CRF1R-OX1R heteromers are the conduits of a negative crosstalk between orexin-A and CRF as demonstrated in transfected cells and rat VTA, in which they significantly modulate dendritic dopamine release. The cocaine target σ1 receptor (σ1R) also associates with the CRF1R-OX1R heteromer. Cocaine binding to the σ1R-CRF1R-OX1R complex promotes a long-term disruption of the orexin-A-CRF negative crosstalk. Through this mechanism, cocaine sensitizes VTA cells to the excitatory effects of both CRF and orexin-A, thus providing a mechanism by which stress induces cocaine seeking.
Collapse
|
44
|
Long J, Lee WS, Chough C, Bae IH, Kim BM. Synthesis toward CRHR1 Antagonists through 2,7-Dimethylpyrazolo[1,5-α][1,3,5]triazin-4(3H)-one C–H Arylation. J Org Chem 2015; 80:4716-21. [DOI: 10.1021/jo502894r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jinghai Long
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Woong-Sup Lee
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Chieyeon Chough
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Il Hak Bae
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - B. Moon Kim
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| |
Collapse
|
45
|
Role of bed nucleus of the stria terminalis corticotrophin-releasing factor receptors in frustration stress-induced binge-like palatable food consumption in female rats with a history of food restriction. J Neurosci 2014; 34:11316-24. [PMID: 25143612 DOI: 10.1523/jneurosci.1854-14.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We developed recently a binge-eating model in which female rats with a history of intermittent food restriction show binge-like palatable food consumption after 15 min exposure to the sight of the palatable food. This "frustration stress" manipulation also activates the hypothalamic-pituitary-adrenal stress axis. Here, we determined the role of the stress neurohormone corticotropin-releasing factor (CRF) in stress-induced binge eating in our model. We also assessed the role of CRF receptors in the bed nucleus of the stria terminalis (BNST), a brain region implicated in stress responses and stress-induced drug seeking, in stress-induced binge eating. We used four groups that were first exposed or not exposed to repeated intermittent cycles of regular chow food restriction during which they were also given intermittent access to high-caloric palatable food. On the test day, we either exposed or did not expose the rats to the sight of the palatable food for 15 min (frustration stress) before assessing food consumption for 2 h. We found that systemic injections of the CRF1 receptor antagonist R121919 (2,5-dimethyl-3-(6-dimethyl-4-methylpyridin-3-yl)-7 dipropylamino pyrazolo[1,5-a]pyrimidine) (10-20 mg/kg) and BNST (25-50 ng/side) or ventricular (1000 ng) injections of the nonselective CRF receptor antagonist D-Phe-CRF(12-41) decreased frustration stress-induced binge eating in rats with a history of food restriction. Frustration stress also increased Fos (a neuronal activity marker) expression in ventral and dorsal BNST. Results demonstrate a critical role of CRF receptors in BNST in stress-induced binge eating in our rat model. CRF1 receptor antagonists may represent a novel pharmacological treatment for bingeing-related eating disorders.
Collapse
|
46
|
Knockdown of CRF1 receptors in the ventral tegmental area attenuates cue- and acute food deprivation stress-induced cocaine seeking in mice. J Neurosci 2014; 34:11560-70. [PMID: 25164654 DOI: 10.1523/jneurosci.4763-12.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Corticotrophin-releasing factor (CRF) modulates the influence of stress on cocaine reward and reward seeking acting at multiple sites, including the ventral tegmental area (VTA). There is controversy, however, concerning the contribution of CRF receptor type 1 (CRFR1) to this effect and whether CRF within the VTA is involved in other aspects of reward seeking independent of acute stress. Here we examine the role of CRFR1 within the VTA in relation to cocaine and natural reward using viral delivery of short hairpin RNAs (lenti-shCRFR1) and investigate the effect on operant self-administration and motivation to self-administer, as well as stress- and cue-induced reward seeking in mice. While knockdown of CRFR1 in the VTA had no effect on self-administration behavior for either cocaine or sucrose, it effectively blocked acute food deprivation stress-induced reinstatement of cocaine seeking. We also observed reduced cue-induced cocaine seeking assessed in a single extinction session after extended abstinence, but cue-induced sucrose seeking was unaffected, suggesting dissociation between the contribution of CRFR1 in the VTA in cocaine reward and sucrose and cocaine seeking. Further, our data indicate a role for VTA CRFR1 signaling in cocaine seeking associated with, and independent of, stress potentially involving conditioning and/or salience attribution of cocaine reward-related cues. CRFR1 signaling in the VTA therefore presents a target for convergent effects of both cue- and stress-induced cocaine-seeking pathways.
Collapse
|
47
|
McReynolds JR, Vranjkovic O, Thao M, Baker DA, Makky K, Lim Y, Mantsch JR. Beta-2 adrenergic receptors mediate stress-evoked reinstatement of cocaine-induced conditioned place preference and increases in CRF mRNA in the bed nucleus of the stria terminalis in mice. Psychopharmacology (Berl) 2014; 231:3953-63. [PMID: 24696080 PMCID: PMC8647032 DOI: 10.1007/s00213-014-3535-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/02/2014] [Indexed: 12/30/2022]
Abstract
RATIONALE Understanding the mechanisms responsible for stress-induced relapse is important for guiding treatment strategies aimed at minimizing the contribution of stress to addiction. Evidence suggests that these mechanisms involve interactions between noradrenergic systems and the neuropeptide corticotropin-releasing factor (CRF). OBJECTIVES The interaction between β-adrenergic receptors (ARs) and CRF as it relates to the reinstatement of cocaine-conditioned reward in response to a stressor was examined in mice. We hypothesized that β2-ARs are required for stress-induced activation of CRF pathways responsible for reinstatement. METHODS Stress-induced relapse was examined based on the re-establishment of cocaine-induced conditioned place preference (CPP; 4 × 15 mg/kg cocaine, i.p.) after extinction using forced swim (6 min at 22 °C) or an injection of the β2-AR agonist, clenbuterol (4 mg/kg, i.p.). The CRF-R1 antagonist antalarmin (10 mg/kg, i.p.) or the β2-AR antagonist ICI-118,551 (1 mg/kg, i.p.) were given 30 min prior to reinstating stimuli. Quantitative PCR was conducted in dissected bed nucleus of the stria terminalis (BNST) and amygdala, putative sources of CRF that contribute to reinstatement, to examine the effects of ICI-118,551 on swim-induced increases in CRF messenger RNA (mRNA) in mice with a cocaine history. RESULTS Pretreatment with ICI-118,551 or antalarmin blocked swim-induced reinstatement of CPP. Reinstatement by clenbuterol was also blocked by antalarmin. ICI-118,551 pretreatment prevented swim-induced increases in CRF mRNA in the BNST. Effects in the amygdala were not observed. CONCLUSIONS These findings indicate that, during stress, norepinephrine, via β2-ARs, either directly or indirectly activates CRF-releasing neurons in the BNST that interface with motivational neurocircuitry to induce reinstatement of cocaine-conditioned reward.
Collapse
Affiliation(s)
- Jayme R. McReynolds
- Corresponding Author: John Mantsch, Ph.D., Department of Biomedical Sciences, Marquette University, , , Telephone Number: (414) 288-2036, Fax Number: (414) 288-6564
| | - Oliver Vranjkovic
- Corresponding Author: John Mantsch, Ph.D., Department of Biomedical Sciences, Marquette University, , , Telephone Number: (414) 288-2036, Fax Number: (414) 288-6564
| | | | | | | | | | | |
Collapse
|
48
|
Perry CJ, Zbukvic I, Kim JH, Lawrence AJ. Role of cues and contexts on drug-seeking behaviour. Br J Pharmacol 2014; 171:4636-72. [PMID: 24749941 PMCID: PMC4209936 DOI: 10.1111/bph.12735] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/04/2014] [Accepted: 04/10/2014] [Indexed: 01/15/2023] Open
Abstract
Environmental stimuli are powerful mediators of craving and relapse in substance-abuse disorders. This review examined how animal models have been used to investigate the cognitive mechanisms through which cues are able to affect drug-seeking behaviour. We address how animal models can describe the way drug-associated cues come to facilitate the development and persistence of drug taking, as well as how these cues are critical to the tendency to relapse that characterizes substance-abuse disorders. Drug-associated cues acquire properties of conditioned reinforcement, incentive motivation and discriminative control, which allow them to influence drug-seeking behaviour. Using these models, researchers have been able to investigate the pharmacology subserving the behavioural impact of environmental stimuli, some of which we highlight. Subsequently, we examine whether the impact of drug-associated stimuli can be attenuated via a process of extinction, and how this question is addressed in the laboratory. We discuss how preclinical research has been translated into behavioural therapies targeting substance abuse, as well as highlight potential developments to therapies that might produce more enduring changes in behaviour.
Collapse
Affiliation(s)
- Christina J Perry
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Isabel Zbukvic
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Jee Hyun Kim
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Andrew J Lawrence
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| |
Collapse
|
49
|
Forray A, Sofuoglu M. Future pharmacological treatments for substance use disorders. Br J Clin Pharmacol 2014; 77:382-400. [PMID: 23039267 DOI: 10.1111/j.1365-2125.2012.04474.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/23/2012] [Indexed: 12/20/2022] Open
Abstract
Substance use disorders represent a serious public health and social issue worldwide. Recent advances in our understanding of the neurobiological basis of the addictive processes have led to the development of a growing number of pharmacological agents to treat addictions. Despite this progress, there are no approved pharmacological treatments for cocaine, methamphetamine and cannabis addiction. Moving treatment development to the next stage will require novel ways of approaching substance use disorders. One such novel approach is to target individual vulnerabilities, such as cognitive function, sex differences and psychiatric comorbidities. This review provides a summary of promising pharmacotherapies for alcohol, opiate, stimulant and nicotine addictions. Many medications that target positive and negative reinforcement of drugs, as well as individual vulnerabilities to addiction, are in different phases of development. Clinical trials testing the efficacy of these medications for substance use disorder are warranted.
Collapse
Affiliation(s)
- Ariadna Forray
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
50
|
Chen YW, Fiscella KA, Bacharach SZ, Calu DJ. Effect of cafeteria diet history on cue-, pellet-priming-, and stress-induced reinstatement of food seeking in female rats. PLoS One 2014; 9:e102213. [PMID: 25025329 PMCID: PMC4099011 DOI: 10.1371/journal.pone.0102213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/17/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Relapse to unhealthy eating habits is a major problem in human dietary treatment. The individuals most commonly seeking dietary treatment are overweight or obese women, yet the commonly used rat reinstatement model to study relapse to palatable food seeking during dieting primarily uses normal-weight male rats. To increase the clinical relevance of the relapse to palatable food seeking model, here we pre-expose female rats to a calorically-dense cafeteria diet in the home-cage to make them overweight prior to examining the effect of this diet history on cue-, pellet-priming- and footshock-induced reinstatement of food seeking. METHODS Post-natal day 32 female Long-Evans rats had seven weeks of home-cage access to either chow only or daily or intermittent cafeteria diet alongside chow. Next, they were trained to self-administer normally preferred 45 mg food pellets accompanied by a tone-light cue. After extinction, all rats were tested for reinstatement induced by discrete cue, pellet-priming, and intermittent footshock under extinction conditions. RESULTS Access to daily cafeteria diet and to a lesser degree access to intermittent cafeteria diet decreased food pellet self-administration compared to chow-only. Prior history of these cafeteria diets also reduced extinction responding, cue- and pellet-priming-induced reinstatement. In contrast, modest stress-induced reinstatement was only observed in rats with a history of daily cafeteria diet. CONCLUSION A history of cafeteria diet does not increase the propensity for cue- and pellet-priming-induced relapse in the rat reinstatement model but does appear to make rats more susceptible to footshock stress-induced reinstatement.
Collapse
Affiliation(s)
- Yu-Wei Chen
- Intramural Research Program, NIDA/NIH, Baltimore, Maryland, United States of America
| | - Kimberly A. Fiscella
- Intramural Research Program, NIDA/NIH, Baltimore, Maryland, United States of America
| | - Samuel Z. Bacharach
- Intramural Research Program, NIDA/NIH, Baltimore, Maryland, United States of America
| | - Donna J. Calu
- Intramural Research Program, NIDA/NIH, Baltimore, Maryland, United States of America
| |
Collapse
|