1
|
Aguilar-Romero I, Madrid F, Villaverde J, Morillo E. Ibuprofen-enhanced biodegradation in solution and sewage sludge by a mineralizing microbial consortium. Shift in associated bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132970. [PMID: 37976863 DOI: 10.1016/j.jhazmat.2023.132970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Ibuprofen (IBP) is a widely used drug of environmental concern as emerging contaminant due to its low elimination rates by wastewater treatment plants (WWTPs), leading to the contamination of the environment, where IBP is introduced mainly from wastewater discharge and sewage sludge used as fertilizer. This study describes the application of a consortium from sewage sludge and acclimated with ibuprofen (consortium C7) to accelerate its biodegradation both in solution and sewage sludge. 500 mg L-1 IBP was degraded in solution in 28 h, and 66% mineralized in 3 days. IBP adsorbed in sewage sludge (10 mg kg-1) was removed after bioaugmentation with C7 up to 90% in 16 days, with a 5-fold increase in degradation rate. This is the first time that bioaugmentation with bacterial consortia or isolated bacterial strains have been used for IBP degradation in sewage sludge. The bacterial community of consortium C7 was significantly enriched in Sphingomonas wittichii, Bordetella petrii, Pseudomonas stutzeri and Bosea genosp. after IBP degradation, with a special increase in abundance of S. wittichii, probably the main potential bacterial specie responsible for IBP mineralization. Thirteen bacterial strains were isolated from C7 consortium. All of them degraded IBP in presence of glucose, especially Labrys neptuniae. Eight of these bacterial strains (B. tritici, L. neptuniae, S. zoogloeoides, B. petrii, A. denitrificans, S. acidaminiphila, P. nitroreducens, C. flaccumfaciens) had not been previously described as IBP-degraders. The bacterial community that makes up the indigenous consortium C7 appears to have a highly efficient biotic degradation potential to facilitate bioremediation of ibuprofen in contaminated effluents as well as in sewage sludge generated in WWTPs.
Collapse
Affiliation(s)
- Inés Aguilar-Romero
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
| | - Fernando Madrid
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
| | - Jaime Villaverde
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
| | - Esmeralda Morillo
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
| |
Collapse
|
2
|
Ibuprofen: Toxicology and Biodegradation of an Emerging Contaminant. Molecules 2023; 28:molecules28052097. [PMID: 36903343 PMCID: PMC10004696 DOI: 10.3390/molecules28052097] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023] Open
Abstract
The anti-inflammatory drug ibuprofen is considered to be an emerging contaminant because of its presence in different environments (from water bodies to soils) at concentrations with adverse effects on aquatic organisms due to cytotoxic and genotoxic damage, high oxidative cell stress, and detrimental effects on growth, reproduction, and behavior. Because of its high human consumption rate and low environmental degradation rate, ibuprofen represents an emerging environmental problem. Ibuprofen enters the environment from different sources and accumulates in natural environmental matrices. The problem of drugs, particularly ibuprofen, as contaminants is complicated because few strategies consider them or apply successful technologies to remove them in a controlled and efficient manner. In several countries, ibuprofen's entry into the environment is an unattended contamination problem. It is a concern for our environmental health system that requires more attention. Due to its physicochemical characteristics, ibuprofen degradation is difficult in the environment or by microorganisms. There are experimental studies that are currently focused on the problem of drugs as potential environmental contaminants. However, these studies are insufficient to address this ecological issue worldwide. This review focuses on deepening and updating the information concerning ibuprofen as a potential emerging environmental contaminant and the potential for using bacteria for its biodegradation as an alternative technology.
Collapse
|
3
|
The Antidepressants Amitriptyline and Paroxetine Induce Changes in the Structure and Functional Traits of Marine Nematodes. SUSTAINABILITY 2022. [DOI: 10.3390/su14106100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Increasing concentrations of the antidepressants amitriptyline and paroxetine were determined recently in marine habitats. However, their impact on marine biota is understudied, despite multiple undesirable effects they have on the environment. An important behavioral aspect that is increasingly measured following exposure to contaminants is the migration of fauna from contaminated areas. Hence, our aim was to better understand the migration pattern of marine meiobenthic fauna, but with a main focus on nematodes, following the exposure to both antidepressants, alone or in mixture. The experiment was carried out in microcosms, which comprised an uncontaminated upper and a lower contaminated compartment, where amitriptyline was added, alone or mixed with paroxetine, at concentrations of 0.4 and 40 µg L−1. The overall abundance of meiobenthic groups decreased significantly following exposure to amitriptyline in both compartments, a pattern augmented by the mixture with paroxetine. The migration of nematodes towards the upper compartments of microcosms was triggered by the level of contamination with antidepressants. As such, the species Terschellingia longicaudata showed no significant change in abundance, suggesting tolerance to both antidepressants. On the other hand, the abundances of nematode taxa Cyatholaimus prinzi, Calomicrolaimus sp., Calomicrolaimus honestus, Neochromadora sp., Chromadorina sp. and Chromadorina minor decreased significantly following the exposure to both antidepressants, even at low concentrations. At the end of the experiment, the dominant migratory nematodes belonged to deposit-feeders and omnivores-carnivores trophic guilds, with tail shapes of e/f types and body-sizes longer than 2 mm. Such functional traits increase their mobility in sediments and the chance to move away from contaminated habitats. Moreover, the sex ratio was imbalanced in the favor of males in contaminated lower compartments with mixtures of the lowest and highest concentrations of amitriptyline and paroxetine, suggesting that these drugs also affect the hormone system. In conclusion, the exposure to the antidepressants amitriptyline and paroxetine triggered important changes within nematode communities, as changes in taxonomic composition were a result of migration and survival of tolerant taxa, but equally acting on the hormone system and leading to unbalanced sex-ratio among the residents.
Collapse
|
4
|
Chopra S, Kumar D. Characteristics and growth kinetics of biomass of Citrobacter freundii strains PYI-2 and Citrobacter portucalensis strain YPI-2 during the biodegradation of Ibuprofen. Int Microbiol 2022; 25:615-628. [PMID: 35553276 DOI: 10.1007/s10123-022-00248-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/14/2022] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
Abstract
Ibuprofen (IBU) is the third most commonly used analgesic drug in the world. It enters the water system as a result of human excretion-based wastewater discharges. Hence, it attracts the attention of environmentalists for its ecological fate and degradation behavior. In this study, the two IBU degrading bacterial strains, Citrobacter freundii strain PYI-2 (MT039504) and Citrobacter portucalensis strain YPI-2 (MN744335), were isolated from industrial wastewater samples using an enrichment culture method, identified, and characterized. Physiological and batch culture degradation studies have indicated that these strains involved in IBU degradation and the intermediates produced during the process were analyzed. These strains degrade IBU in the batch culture. The optimum pH was reported for degradation of the PYI2 strain (6.9) and YPI2 strain (5.8), and the optimum temperatures were 42°C and 32°C, respectively. Biomass kinetic analysis of these strains was performed based on physical parameters (temperature, pH, and rpm) and confirmed by the experimental study. As indicated in the GC-MS chromatogram peaks, viz., hydroxyibuprofen, 2-(4-hydroxyphenylpropionic acid), 1,4-hydroquinone, and 2-hydroxy-1,4-quinol various intermediates compounds of degradation pathway were observed. Finally, through the GC-MS data, the metabolic pathway for degradation was predicted. In the study, it was confirmed that Citrobacter freundii strain PYI-2 and Citrobacter portucalensis strain YPI-2 exhibit metabolic potential for the biodegradation of IBU and can be further deployed in bioremediation.
Collapse
Affiliation(s)
- Sunil Chopra
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India.
| |
Collapse
|
5
|
Mishra S, Huang Y, Li J, Wu X, Zhou Z, Lei Q, Bhatt P, Chen S. Biofilm-mediated bioremediation is a powerful tool for the removal of environmental pollutants. CHEMOSPHERE 2022; 294:133609. [PMID: 35051518 DOI: 10.1016/j.chemosphere.2022.133609] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Biofilm-mediated bioremediation is an attractive approach for the elimination of environmental pollutants, because of its wide adaptability, biomass, and excellent capacity to absorb, immobilize, or degrade contaminants. Biofilms are assemblages of individual or mixed microbial cells adhering to a living or non-living surface in an aqueous environment. Biofilm-forming microorganisms have excellent survival under exposure to harsh environmental stressors, can compete for nutrients, exhibit greater tolerance to pollutants compared to free-floating planktonic cells, and provide a protective environment for cells. Biofilm communities are thus capable of sorption and metabolization of organic pollutants and heavy metals through a well-controlled expression pattern of genes governed by quorum sensing. The involvement of quorum sensing and chemotaxis in biofilms can enhance the bioremediation kinetics with the help of signaling molecules, the transfer of genetic material, and metabolites. This review provides in-depth knowledge of the process of biofilm formation in microorganisms, their regulatory mechanisms of interaction, and their importance and application as powerful bioremediation agents in the biodegradation of environmental pollutants, including hydrocarbons, pesticides, and heavy metals.
Collapse
Affiliation(s)
- Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Ishak S, Allouche M, Harrath AH, Alwasel S, Beyrem H, Pacioglu O, Badraoui R, Boufahja F. Effects of the antidepressant paroxetine on migratory behaviour of meiobenthic nematodes: Computational and open experimental microcosm approach. MARINE POLLUTION BULLETIN 2022; 177:113558. [PMID: 35314393 DOI: 10.1016/j.marpolbul.2022.113558] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
An open experimental setup was established in order to explore the toxic effects of the antidepressant paroxetine on meiobenthic nematodes. Three types of microcosms made from polyvinyl chloride tubes, each comprising two sediments compartments (upper and lower), were used in a laboratory experiment for 15 days. The experimental setup targeted the migratory behaviour of the nematofauna from the above compartments, which were exposed to paroxetine (0.4 and 40 μg.l-1), towards below compartments. The univariate indices significantly decrease in the contaminated compartments compared to controls. Multivariate analyses revealed also significant taxonomic dissimilarities between contaminated and uncontaminated compartments. Furthermore, SIMPER functional outcomes highlighted a significant decrease in 2A feeding groups, 'co' tail shape, 1-2 mm interval length, 'cr' amphid shape, and c-p2 life history in contaminated compartments. Computational approach showed that paroxetine bound GLD-3 and SDP with high affinities, which together with molecular interactions and toxicokinetics satisfactorily explain the experimental results.
Collapse
Affiliation(s)
- Sahar Ishak
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Mohamed Allouche
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Abdel Halim Harrath
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh 11451, Saudi Arabia
| | - Saleh Alwasel
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh 11451, Saudi Arabia
| | - Hamouda Beyrem
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Octavian Pacioglu
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Riadh Badraoui
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, 1007 La Rabta-Tunis, Tunisia
| | - Fehmi Boufahja
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia.
| |
Collapse
|
7
|
Sun S, Hu Y, Xu M, Cheng F, Zhang H, Li Z. Photo-Fenton degradation of carbamazepine and ibuprofen by iron-based metal-organic framework under alkaline condition. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127698. [PMID: 34775313 DOI: 10.1016/j.jhazmat.2021.127698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks have been widely used as photocatalytic materials. In this paper, a novel photocatalyst HSO3-MIL-53(Fe) with acidity regulating groups was successfully synthesized by the solvothermal method and applied to remove carbamazepine (CBZ) and ibuprofen (IBP). The photodegradation efficiency of vis/H2O2/HSO3-MIL-53(Fe) can reach 100% when the pH value is 8 or 9. The free radical capture experiment and electron paramagnetic resonance analysis proved that hole (h+), hydroxide radical (·OH), singlet oxygen (1O2), and superoxide Radical (·O2-) are the main active species for pollutants degradation. In the vis/H2O2/HSO3-MIL-53(Fe) system, the high pollutant degradation efficiency under alkaline conditions was attributed to two factors: (1) the acidity adjusting group -HSO3 adjusts the pH value of the whole system, which is beneficial to the photo-Fenton process. (2) The photogenerated electrons of HSO3-MIL-53(Fe) can be captured by Fe (III), H2O2 and O2 to accelerate the reduction of Fe (III) and generate ·OH, 1O2, and ·O2-. Besides, H2O2 can also be activated by Fe (II) and Fe (III). The above processes synergistically improved the photocatalytic efficiency. Based on liquid chromatography-mass spectrometry (LC-MS) analysis, the possible degradation pathways of the two pollutants were proposed.
Collapse
Affiliation(s)
- Siyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Youyou Hu
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mengshan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Fan Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhengkui Li
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
8
|
A review on environmental occurrence, toxicity and microbial degradation of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113694. [PMID: 34537557 DOI: 10.1016/j.jenvman.2021.113694] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/19/2021] [Accepted: 09/04/2021] [Indexed: 02/05/2023]
Abstract
In recent years, Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) have surfaced as a novel class of pollutants due to their incomplete degradation in wastewater treatment plants and their inherent ability to promote physiological predicaments in humans even at low doses. The occurrence of the most common NSAIDs (diclofenac, ibuprofen, naproxen, and ketoprofen) in river water, groundwater, finished water samples, WWTPs, and hospital wastewater effluents along with their toxicity effects were reviewed. The typical concentrations of NSAIDs in natural waters were mostly below 1 μg/L, the rivers receiving untreated wastewater discharge have often showed higher concentrations, highlighting the importance of effective wastewater treatment. The critical analysis of potential, pathways and mechanisms of microbial degradation of NSAIDs were also done. Although studies on algal and fungal strains were limited, several bacterial strains were known to degrade NSAIDs. This microbial ability is attributed to hydroxylation by cytochrome P450 because of the decrease in drug concentrations in fungal cultures of Phanerochaete sordida YK-624 on incubation with 1-aminobenzotriazole. Moreover, processes like decarboxylation, dehydrogenation, dechlorination, subsequent oxidation, demethylation, etc. also constitute the degradation pathways. A wide array of enzymes like dehydrogenase, oxidoreductase, dioxygenase, monooxygenase, decarboxylase, and many more are upregulated during the degradation process, which indicates the possibility of their involvement in microbial degradation. Specific hindrances in upscaling the process along with analytical research needs were also identified, and novel investigative approaches for future monitoring studies are proposed.
Collapse
|
9
|
Hu B, Hu S, Vymazal J, Chen Z. Arbuscular mycorrhizal symbiosis in constructed wetlands with different substrates: Effects on the phytoremediation of ibuprofen and diclofenac. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113217. [PMID: 34246029 DOI: 10.1016/j.jenvman.2021.113217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/06/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the role of arbuscular mycorrhizal fungal (AMF) for the removal of ibuprofen (IBU) and diclofenac (DCF) in constructed wetlands (CWs) with four different substrates. Results showed that AMF colonization in adsorptive substrate (perlite, vermiculite, and biochar) systems was higher than that in sand systems. AMF enhanced the tolerance of Glyceria maxima to the stress of IBU and DCF by promoting the activities of antioxidant enzymes (peroxidase and superoxide dismutase) and the contents of soluble protein, while decreasing the contents of malondialdehyde and O2•-. The removal efficiencies of IBU and DCF were increased by 15%-18% and 25%-38% in adsorptive substrate systems compare to sand systems. Adsorptive substrates enhanced the accumulation of IBU and DCF in the rhizosphere and promoted the uptake of IBU and DCF by plant roots. AMF promoted the removal of IBU and DCF in sand systems but limited their reduction in adsorptive substrate systems. In all scenarios, the presence of AMF decreased the contents of CECs metabolites (2-OH IBU, CA IBU, and 4'-OH IBU) in the effluents and promoted the uptake of IBU by plant roots. Therefore, these results indicated that the addition of adsorptive substrates could enhance the removal of IBU and DCF in CWs. The role of AMF on the removal of IBU and DCF was influenced by CW substrate. These may provide useful information for the application of AMF in CWs to remove contaminants of emerging concern.
Collapse
Affiliation(s)
- Bo Hu
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 16500, Czech Republic
| | - Shanshan Hu
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 16500, Czech Republic
| | - Jan Vymazal
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 16500, Czech Republic
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 16500, Czech Republic.
| |
Collapse
|
10
|
Mulkiewicz E, Wolecki D, Świacka K, Kumirska J, Stepnowski P, Caban M. Metabolism of non-steroidal anti-inflammatory drugs by non-target wild-living organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148251. [PMID: 34139498 DOI: 10.1016/j.scitotenv.2021.148251] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
The presence of the non-steroidal anti-inflammatory drugs (NSAIDs) in the environment is a fact, and aquatic and soil organisms are chronically exposed to trace levels of these emerging pollutants. This review presents the current state of knowledge on the metabolic pathways of NSAIDs in organisms at various levels of biological organisation. More than 150 publications dealing with target or non-target analysis of selected NSAIDs (mainly diclofenac, ibuprofen, and naproxen) were collected. The metabolites of phase I and phase II are presented. The similarity of NSAIDs metabolism to that in mammals was observed in bacteria, microalgae, fungi, higher plants, invertebrates, and vertebrates. The differences, such as newly detected metabolites, the extracellular metabolism observed in bacteria and fungi, or phase III metabolism in plants, are highlighted. Metabolites detected in plants (conjugates with sugars and amino acids) but not found in any other organisms are described. Selected, in-depth studies with isolated bacterial strains showed the possibility of transforming NSAIDs into assimilable carbon sources. It has been found that some of the metabolites show higher toxicity than their parent forms. The presence of metabolites of NSAIDs in the environment is the cumulative effect of their introduction with wastewaters, their formation in wastewater treatment plants, and their transformation by non-target wild-living organisms.
Collapse
Affiliation(s)
- Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Daniel Wolecki
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Klaudia Świacka
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Jolanta Kumirska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
11
|
Hasan M, Alfredo K, Murthy S, Riffat R. Biodegradation of salicylic acid, acetaminophen and ibuprofen by bacteria collected from a full-scale drinking water biofilter. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113071. [PMID: 34174686 DOI: 10.1016/j.jenvman.2021.113071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
This study examined the biodegradation of two pharmaceuticals-acetaminophen, and ibuprofen, and one natural organic surrogate-salicylic acid, by bacteria seeded from backwash water collected from a full-scale biofiltration plant. The degradation was studied in the presence of oxygen. Complete removal of salicylic acid was observed in 27-66 h depending on the seasonality of the collected backwash water, while 90-92% acetaminophen removal was observed in more than 225 h. Ibuprofen demonstrated poor removal efficiencies with only 50% biodegradation after 230 h. Adenosine tri phosphate (ATP) in the reactor was found to be linked with the biodegradation rate. ATP was found to be correlated with oxygen uptake rate (OUR). ATP also had a correlation with each of extracellular polymeric substances (EPS), protein and polysaccharides. These results highlight the potential for increasing the biodegradation rates to achieve enhanced contaminant removal.
Collapse
Affiliation(s)
- Mahmudul Hasan
- Department of Civil & Environmental Engineering, The George Washington University, 800 22nd Street, NW, Washington, DC, 20052, USA.
| | - Katherine Alfredo
- Department of Civil & Environmental Engineering, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | | | - Rumana Riffat
- Department of Civil & Environmental Engineering, The George Washington University, 800 22nd Street, NW, Washington, DC, 20052, USA
| |
Collapse
|
12
|
Show S, Chakraborty P, Karmakar B, Halder G. Sorptive and microbial riddance of micro-pollutant ibuprofen from contaminated water: A state of the art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147327. [PMID: 33984700 DOI: 10.1016/j.scitotenv.2021.147327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/28/2021] [Accepted: 04/21/2021] [Indexed: 05/22/2023]
Abstract
Continuous discharge of ibuprofen, a pharmaceutical compound in local water systems is becoming a budding concern as seen from data procured from the past few decades. Increased concentrations of the compound in water reservoirs resulted in adverse effects on the environment. In order to prevent the deleterious impacts of increasing ibuprofen concentration in water bodies, application of cost effective and energy efficient elimination of ibuprofen (IBP) is needed. As a result, various techniques over time have been tested for IBP expulsion from aqueous media. However, adsorption and bioremediation are still the most realistic approaches to remove ibuprofen than conventional methods, like precipitation, reverse osmosis, ion exchange, nano-filtration etc., because of their lower initial cost, reduced electricity consumption, minimized sludge generation, local availability of precursor material etc. Various researchers have reported the applicability of the adsorption and bioremediation process in remediation of ibuprofen from water. Therefore, the present review article confers both the biosorption and bioremediation process towards IBP removal from water bodies and explicates the performances of various adsorbents and microorganisms derived from various sources. The presented review also substantially emphasizes on the effect of different parameters on sorptive uptake of ibuprofen, various isotherms and kinetic models, sorption mechanism and assessment of costs, which could enable future researchers to determine widespread use of reported adsorbents and microbes towards effective elimination of IBP from aqueous media.
Collapse
Affiliation(s)
- Sumona Show
- Department of Chemical Engineering, National Institute of Technology Durgapur, India
| | - Prasenjit Chakraborty
- Department of Chemical Engineering, National Institute of Technology Durgapur, India
| | - Bisheswar Karmakar
- Department of Chemical Engineering, National Institute of Technology Durgapur, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, India.
| |
Collapse
|
13
|
Betsholtz A, Karlsson S, Svahn O, Davidsson Å, Cimbritz M, Falås P. Tracking 14C-Labeled Organic Micropollutants to Differentiate between Adsorption and Degradation in GAC and Biofilm Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11318-11327. [PMID: 34311545 PMCID: PMC8383275 DOI: 10.1021/acs.est.1c02728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 05/22/2023]
Abstract
Granular activated carbon (GAC) filters can be used to reduce emissions of organic micropollutants via municipal wastewater, but it is still uncertain to which extent biological degradation contributes to their removal in GAC filters. 14C-labeled organic micropollutants were therefore used to distinguish degradation from adsorption in a GAC-filter media with associated biofilm. The rates and extents of biological degradation and adsorption were investigated and compared with other biofilm systems, including a moving bed biofilm reactor (MBBR) and a sand filter, by monitoring 14C activities in the liquid and gas phases. The microbial cleavage of ibuprofen, naproxen, diclofenac, and mecoprop was confirmed for all biofilms, based on the formation of 14CO2, whereas the degradation of 14C-labeled moieties of sulfamethoxazole and carbamazepine was undetected. Higher degradation rates for diclofenac were observed for the GAC-filter media than for the other biofilms. Degradation of previously adsorbed diclofenac onto GAC could be confirmed by the anaerobic adsorption and subsequent aerobic degradation by the GAC-bound biofilm. This study demonstrates the potential use of 14C-labeled micropollutants to study interactions and determine the relative contributions of adsorption and degradation in GAC-based treatment systems.
Collapse
Affiliation(s)
| | - Stina Karlsson
- Department
of Chemical Engineering, Lund University, 221 00 Lund, Sweden
- Sweden
Water Research AB, Ideon Science Park, Scheelevägen 15, 223 70 Lund, Sweden
| | - Ola Svahn
- School
of Education and Environment, Division of Natural Sciences, Kristianstad University, 291 88 Kristianstad, Sweden
| | - Åsa Davidsson
- Department
of Chemical Engineering, Lund University, 221 00 Lund, Sweden
| | - Michael Cimbritz
- Department
of Chemical Engineering, Lund University, 221 00 Lund, Sweden
| | - Per Falås
- Department
of Chemical Engineering, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
14
|
Alfonso-Muniozguren P, Serna-Galvis EA, Bussemaker M, Torres-Palma RA, Lee J. A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems. ULTRASONICS SONOCHEMISTRY 2021; 76:105656. [PMID: 34274706 PMCID: PMC8319449 DOI: 10.1016/j.ultsonch.2021.105656] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 06/01/2023]
Abstract
Contaminants of emerging concern (CEC) such as pharmaceuticals commonly found in urban and industrial wastewater are a potential threat to human health and have negative environmental impact. Most wastewater treatment plants cannot efficiently remove these compounds and therefore, many pharmaceuticals end up in aquatic ecosystems, inducing problems such as toxicity and antibiotic-resistance. This review reports the extent of pharmaceutical removal by individual processes such as bioreactors, advanced oxidation processes and membrane filtration systems, all of which are not 100% efficient and can lead to the direct discharge of pharmaceuticals into water bodies. Also, the importance of understanding biotransformation of pharmaceutical compounds during biological and ultrasound treatment, and its impact on treatment efficacy will be reviewed. Different combinations of the processes above, either as an integrated configuration or in series, will be discussed in terms of their degradation efficiency and scale-up capabilities. The trace quantities of pharmaceutical compounds in wastewater and scale-up issues of ultrasound highlight the importance of membrane filtration as a concentration and volume reduction treatment step for wastewater, which could subsequently be treated by ultrasound.
Collapse
Affiliation(s)
| | - Efraím A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Grupo de Investigaciones Biomédicas, Facultad de Ciencias de la Salud, Corporación Universitaria Remington (Uniremington), Calle 51 No. 51-27, Medellín, Colombia
| | - Madeleine Bussemaker
- Chemical and Process Engineering, University of Surrey, Guildford GU27XH, United Kingdom
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Judy Lee
- Chemical and Process Engineering, University of Surrey, Guildford GU27XH, United Kingdom.
| |
Collapse
|
15
|
Hu B, Hu S, Chen Z, Vymazal J. Employ of arbuscular mycorrhizal fungi for pharmaceuticals ibuprofen and diclofenac removal in mesocosm-scale constructed wetlands. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124524. [PMID: 33243641 DOI: 10.1016/j.jhazmat.2020.124524] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the effects of arbuscular mycorrhizal fungi (AMF) colonization on the growth of wetland plants (Glyceria maxima), and treatment performance in constructed wetlands (CWs) under the stress of pharmaceuticals ibuprofen (IBU) and diclofenac (DCF). Results showed that the growth of G. maxima was significantly increased by AMF colonization. AMF significantly increased the activities of antioxidant enzymes (peroxidase and superoxide dismutase) and soluble protein content in wetland plants, but the contents of malondialdehyde and O2•- were reduced. The removal efficiencies of TOC, PO43--P, NH4+-N, and TN were increased in AMF+ treatments by 6%, 11%, 15% and 11%, respectively. AMF increased the removal efficiencies of IBU and DCF by 6-14% and 2-21%, respectively, and reduced the content of their metabolites (2-OH IBU, CA IBU and 4'-OH DCF) in the effluent. Besides, the presence of AMF increased the contents of IBU and DCF in plant roots, while decreased their transportation to shoots. AMF symbiosis decreased the contents of IBU metabolites (2-OH IBU and CA IBU) but increased the contents of DCF metabolite (4'-OH DCF) in the roots of the host plant. In conclusion, these results indicated that AMF plays a promising role in CWs for emerging pollutants removal.
Collapse
Affiliation(s)
- Bo Hu
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Shanshan Hu
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic.
| | - Jan Vymazal
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| |
Collapse
|
16
|
Aguilar-Romero I, De la Torre-Zúñiga J, Quesada JM, Haïdour A, O'Connell G, McAmmond BM, Van Hamme JD, Romero E, Wittich RM, van Dillewijn P. Effluent decontamination by the ibuprofen-mineralizing strain, Sphingopyxis granuli RW412: Metabolic processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116536. [PMID: 33529903 DOI: 10.1016/j.envpol.2021.116536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
The high global consumption of ibuprofen and its limited elimination by wastewater treatment plants (WWTPs), has led to the contamination of aquatic systems by this common analgesic and its metabolites. The potentially negative environmental and public health effects of this emerging contaminant have raised concerns, driving the demand for treatment technologies. The implementation of bacteria which mineralize organic contaminants in biopurification systems used to decontaminate water or directly in processes in WWTPs, is a cheap and sustainable means for complete elimination before release into the environment. In this work, an ibuprofen-mineralizing bacterial strain isolated from sediments of the River Elbe was characterized and assayed to remediate different ibuprofen-polluted media. Strain RW412, which was identified as Sphingopyxis granuli, has a 4.48 Mb genome which includes plasmid sequences which harbor the ipf genes that encode the first steps of ibuprofen mineralization. Here, we confirm that these genes encode enzymes which initiate CoA ligation to ibuprofen, followed by aromatic ring activation by a dioxygenase and retroaldol cleavage to unequivocally produce 4-isobutylcatechol and propionyl-CoA which then undergo further degradation. In liquid mineral salts medium, the strain eliminated more than 2 mM ibuprofen within 74 h with a generation time of 16 h. Upon inoculation into biopurification systems, it eliminated repeated doses of ibuprofen within a few days. Furthermore, in these systems the presence of RW412 avoided the accumulation of ibuprofen metabolites. In ibuprofen-spiked effluent from a municipal WWTP, ibuprofen removal by this strain was 7 times faster than by the indigenous microbiota. These results suggest that this strain can persist and remain active under environmentally relevant conditions, and may be a useful innovation to eliminate this emerging contaminant from urban wastewater treatment systems.
Collapse
Affiliation(s)
- Inés Aguilar-Romero
- Dept. of Environmental Protection, Estación Experimental Del Zaidín - CSIC, Calle Professor Albareda 1, 18008, Granada, Spain
| | - Jesús De la Torre-Zúñiga
- Dept. of Environmental Protection, Estación Experimental Del Zaidín - CSIC, Calle Professor Albareda 1, 18008, Granada, Spain
| | - José Miguel Quesada
- Dept. of Environmental Protection, Estación Experimental Del Zaidín - CSIC, Calle Professor Albareda 1, 18008, Granada, Spain
| | - Ali Haïdour
- Unidad de Resonancia Magnética Nuclear, Centro de Instrumentación Científica, Universidad de Granada, Paseo Juan Osorio S/n, 18071, Granada, Spain
| | - Garret O'Connell
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, V2C 0C8, Canada
| | - Breanne M McAmmond
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, V2C 0C8, Canada
| | - Jonathan D Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, V2C 0C8, Canada
| | - Esperanza Romero
- Dept. of Environmental Protection, Estación Experimental Del Zaidín - CSIC, Calle Professor Albareda 1, 18008, Granada, Spain
| | - Regina-Michaela Wittich
- Dept. of Environmental Protection, Estación Experimental Del Zaidín - CSIC, Calle Professor Albareda 1, 18008, Granada, Spain
| | - Pieter van Dillewijn
- Dept. of Environmental Protection, Estación Experimental Del Zaidín - CSIC, Calle Professor Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
17
|
Granatto CF, Grosseli GM, Sakamoto IK, Fadini PS, Varesche MBA. Methanogenic potential of diclofenac and ibuprofen in sanitary sewage using metabolic cosubstrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140530. [PMID: 32629260 DOI: 10.1016/j.scitotenv.2020.140530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Diclofenac (DCF) and ibuprofen (IBU) are widely used anti-inflammatory drugs and are frequently detected in wastewater from Wastewater Treatment Plants and in aquatic environments. In this study, the methanogenic potential (P) of anaerobic sludge subjected to DCF (7.11 ± 0.02 to 44.41 ± 0.05 mg L-1) and IBU (6.11 ± 0.01 to 42.61 ± 0.05 mg L-1), in sanitary sewage, was investigated in batch reactors. Cosubstrates (200 mg L-1 of organic matter) in the form of ethanol, methanol:ethanol and fumarate were tested separately for the removal of drugs. In the DCF assays, P was 6943 ± 121 μmolCH4, 9379 ± 259 μmolCH4, 9897 ± 212 μmolCH4 and 11,530 ± 368 μmolCH4 for control, fumarate, methanol:ethanol and ethanol conditions, respectively. In the IBU assays, under the same conditions, P was 6145 ± 101 μmolCH4, 6947 ± 66 μmolCH4, 8141 ± 191 μmolCH4and 10,583 ± 512 μmolCH4, respectively. Without cosubstrates, drug removal was below 18% for 43.10 ± 0.01 mgDCF L-1 and 43.12 ± 0.03 mgIBU L-1, respectively. Higher P and removal of DCF (28.24 ± 1.10%) and IBU (18.72 ± 1.60%) with ethanol was observed for 43.20 ± 0.01 mgDCF L-1 and 43.42 ± 0.03 mgIBU L-1, respectively. This aspect was better evidenced with DCF due to its molecular structure, a condition that resulted in a higher diversity of bacterial populations. Through the 16S rRNA sequencing, bacteria genera capable of performing aromatic ring cleavage, β-oxidation and oxidation of ethanol and fatty acids were identified. Higher relative abundance (>0.6%) was observed for Smithella, Sulfuricurvum and Synthophus for the Bacteria Domain and Methanosaeta (>79%) for the Archaea Domain. The use of ethanol favored greater mineralization of organic matter and greater methane production, which can directly assist in the metabolic pathways of microorganisms.
Collapse
Affiliation(s)
- Caroline F Granatto
- Department of Hydraulics and Sanitation Engineering, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, 13566-590 São Carlos, SP, Brazil..
| | - Guilherme M Grosseli
- Federal University of São Carlos, Washington Luiz Highway, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Isabel K Sakamoto
- Department of Hydraulics and Sanitation Engineering, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, 13566-590 São Carlos, SP, Brazil
| | - Pedro S Fadini
- Federal University of São Carlos, Washington Luiz Highway, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Maria Bernadete A Varesche
- Department of Hydraulics and Sanitation Engineering, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, 13566-590 São Carlos, SP, Brazil..
| |
Collapse
|
18
|
Rutere C, Knoop K, Posselt M, Ho A, Horn MA. Ibuprofen Degradation and Associated Bacterial Communities in Hyporheic Zone Sediments. Microorganisms 2020; 8:E1245. [PMID: 32824323 PMCID: PMC7464344 DOI: 10.3390/microorganisms8081245] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/29/2023] Open
Abstract
Ibuprofen, a non-steroidal anti-inflammatory pain reliever, is among pharmaceutical residues of environmental concern ubiquitously detected in wastewater effluents and receiving rivers. Thus, ibuprofen removal potentials and associated bacteria in the hyporheic zone sediments of an impacted river were investigated. Microbially mediated ibuprofen degradation was determined in oxic sediment microcosms amended with ibuprofen (5, 40, 200, and 400 µM), or ibuprofen and acetate, relative to an un-amended control. Ibuprofen was removed by the original sediment microbial community as well as in ibuprofen-enrichments obtained by re-feeding of ibuprofen. Here, 1-, 2-, 3-hydroxy- and carboxy-ibuprofen were the primary transformation products. Quantitative real-time PCR analysis revealed a significantly higher 16S rRNA abundance in ibuprofen-amended relative to un-amended incubations. Time-resolved microbial community dynamics evaluated by 16S rRNA gene and 16S rRNA analyses revealed many new ibuprofen responsive taxa of the Acidobacteria, Actinobacteria, Bacteroidetes, Gemmatimonadetes, Latescibacteria, and Proteobacteria. Two ibuprofen-degrading strains belonging to the genera Novosphingobium and Pseudomonas were isolated from the ibuprofen-enriched sediments, consuming 400 and 300 µM ibuprofen within three and eight days, respectively. The collective results indicated that the hyporheic zone sediments sustain an efficient biotic (micro-)pollutant degradation potential, and hitherto unknown microbial diversity associated with such (micro)pollutant removal.
Collapse
Affiliation(s)
- Cyrus Rutere
- Department of Ecological Microbiology, University of Bayreuth, 95448 Bayreuth, Germany;
| | - Kirsten Knoop
- Institute of Microbiology, Leibniz University Hannover, 30419 Hannover, Germany; (K.K.); (A.H.)
| | - Malte Posselt
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Adrian Ho
- Institute of Microbiology, Leibniz University Hannover, 30419 Hannover, Germany; (K.K.); (A.H.)
| | - Marcus A. Horn
- Department of Ecological Microbiology, University of Bayreuth, 95448 Bayreuth, Germany;
- Institute of Microbiology, Leibniz University Hannover, 30419 Hannover, Germany; (K.K.); (A.H.)
| |
Collapse
|
19
|
Chopra S, Kumar D. Ibuprofen as an emerging organic contaminant in environment, distribution and remediation. Heliyon 2020; 6:e04087. [PMID: 32510000 PMCID: PMC7265064 DOI: 10.1016/j.heliyon.2020.e04087] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/08/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Pharmaceutical and personal care products (PPCPs) are the one of sub-class under emerging organic contaminants (EOCs). Ibuprofen is the world's third most consumable drug. This drug enters into our water system through human pharmaceutical use. It attracts the attention of environmentalist on the basis of risk associated, presence and transformation in the environment. The detection and removal are the two key area where we need to focus. The concentration of such compounds in waterbodies detected through conventional and also by the advanced methods. This review we described the available technologies including chemical, physical and biological methods, etc used the for removal of Ibuprofen. The pure culture based method, mixed culture approach and activated sludge culture approach focused and pathway of degradation of ibuprofen was deciphered by using the various methods of structure determination. The various degradation methods used for Ibuprofen are discussed. The advanced methods coupled with physical, chemical, biological, chemical methods like ozonolysis, oxidation and adsorption, nanotechnology based methods, nanocatalysis and use of nonosensors to detect the presence of small amount in waterbodies can enhance the future degradation of this drug. It is necessary to develop the new detection methods to enhance the detection of such pollutants. With the developments in new detection methods based on GC-MS//MS, HPLC, LC/MS and nanotechnology based sensors makes easier detection of these compounds which can detect even very minute amount with great sensitivity and in less time. Also, the isolation and characterization of more potent microbial strains and nano-photocatalysis will significantly increase the future degradation of such harmful compounds from the environment.
Collapse
Affiliation(s)
- Sunil Chopra
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039 Sonepat, Haryana, India
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039 Sonepat, Haryana, India
| |
Collapse
|
20
|
The effect of combined cometabolism and gamma irradiation treatment on the biodegradability of diclofenac and sulfamethoxazole. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108642] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Jia Y, Yin L, Khanal SK, Zhang H, Oberoi AS, Lu H. Biotransformation of ibuprofen in biological sludge systems: Investigation of performance and mechanisms. WATER RESEARCH 2020; 170:115303. [PMID: 31751892 DOI: 10.1016/j.watres.2019.115303] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Ibuprofen (IBU), a common non-steroidal anti-inflammatory drug (NSAID), is widely used by humans for controlling fever and pain, and is frequently detected in the influent of wastewater treatment plants and different aquatic environments. In this study, the biotransformation of IBU in activated sludge (AS), anaerobic methanogenic sludge (AnMS) and sulfate-reducing bacteria (SRB)-enriched sludge systems was investigated at three different concentrations of 100, 500 and 1000 μg/L via a series of batch and continuous studies. IBU at concentration of 100 μg/L was effectively biodegraded by AS whereas AnMS and SRB-enriched sludge were less effective in IBU biodegradation at all concentrations tested. However, at higher IBU concentrations of 500 and 1000 μg/L, AS showed poor IBU biodegradation and chemical oxygen demand (COD) removal due to inhibition of aerobic heterotrophic bacteria (i.e., Candidatus Competibacter) by IBU and/or IBU biotransformation products. The microbial analyses showed that IBU addition shifted the microbial community structure in AS, AnMS and SRB-enriched sludge systems, however, the removals of COD, nitrogen and sulfur in both anaerobic sludge systems were not affected significantly (p > 0.05). The findings of this study provided a new insight into biotransformation of IBU in three important biological sludge systems.
Collapse
Affiliation(s)
- Yanyan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China
| | - Linwan Yin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, USA
| | - Huiqun Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China
| | - Akashdeep Singh Oberoi
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China.
| |
Collapse
|
22
|
Degradation of Carbamazepine by Photo(electro)catalysis on Nanostructured TiO2 Meshes: Transformation Products and Reaction Pathways. Catalysts 2020. [DOI: 10.3390/catal10020169] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Carbamazepine (CBZ) is a pharmaceutical compound recalcitrant to conventional wastewater treatment plants and widely detected in wastewater bodies. In the present study, advanced oxidation processes for carbamazepine removal are investigated, with particular regard to the degradation pathways of carbamazepine by photoelectrocatalysis and conventional photocatalysis. Photoelectrocatalysis was carried out onto TiO2 meshes obtained by Plasma Electrolytic Oxidation, a well-known technique in the field of industrial surface treatments, in view of an easy scale-up of the process. By photoelectrocatalysis, 99% of carbamazepine was removed in 55 min while only 65% removal was achieved by photolysis. The investigation of the transformation products (TPs) was carried out by means of UPLC-QTOF/MS/MS. Several new TPs were identified and accordingly reaction pathways were proposed. Above 80 min the transformation products disappear, probably forming organic acids of low-molecular weight as final degradation products. The results demonstrated that photoelectrocatalysis onto TiO2 meshes obtained by plasma electrolytic oxidation is a useful alternative to common advanced oxidation processes as wastewater tertiary treatment aimed at removing compounds of emerging concern.
Collapse
|
23
|
Ahmad M, Abbott T, Eskicioglu C. Effectiveness of single-stage and sequential sludge digestion on removal of recalcitrant pharmaceuticals and conventional pollutants. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Murgolo S, Franz S, Arab H, Bestetti M, Falletta E, Mascolo G. Degradation of emerging organic pollutants in wastewater effluents by electrochemical photocatalysis on nanostructured TiO 2 meshes. WATER RESEARCH 2019; 164:114920. [PMID: 31401328 DOI: 10.1016/j.watres.2019.114920] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/10/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
An immobilized photoactive TiO2 coating grown directly on titanium meshes was successfully exploited for the electrochemical photocatalytic degradation of carbamazepine in real secondary wastewater effluent. The catalyst was prepared by Plasma Electrolytic Oxidation and during the photocatalytic water treatment an electrical polarization (bias) was applied to the catalyst. The investigated process was compared with the conventional one employing suspended TiO2 powder (Degussa P25). Results showed that carbamazepine degradation rate follows the order UV/supported TiO2+bias ≈ UV/TiO2 Degussa P25 > UV/supported TiO2 > UV. The investigation also included the identification of other micropollutants and degradation products. This allowed the detection of 201 compounds present in the secondary wastewater effluent employed for the photocatalysis tests, 51 of them also successfully associated to compounds of emerging concern (CECs), and 194 to transformation products (TPs). The degradation of detected compounds followed first-order kinetics and the mean kinetic constant values of the 51 CECs resulted to be 0.048, 0.035 and 0.043 min-1 for the TiO2+Bias + UV, TiO2+UV and UV, respectively. As for TPs, results showed that the TiO2+Bias + UV treatment is much more efficient than both TiO2+UV and UV in minimizing the intensity of the organics in the real wastewater. Such a better performance was more pronounced at higher reaction time reaching 60% reduction of mean peak area of TPs at 90 min of reaction. Among the detected TPs also compounds belonging to known carbamazepine TPs were found. This allowed to propose a degradation pathway of carbamazepine. The supported catalyst was positively tested for 15 cycles demonstrating that it has the potential to be used in real wastewater tertiary steps aimed at removing CECs.
Collapse
Affiliation(s)
- S Murgolo
- CNR, Istituto di Ricerca Sulle Acque, Via F. De Blasio 5, 70132, Bari, Italy
| | - S Franz
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering, G.Natta, Milano, Italy
| | - H Arab
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering, G.Natta, Milano, Italy
| | - M Bestetti
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering, G.Natta, Milano, Italy
| | - E Falletta
- Università di Milano, Dipartimento di Chimica, Milano, Italy
| | - G Mascolo
- CNR, Istituto di Ricerca Sulle Acque, Via F. De Blasio 5, 70132, Bari, Italy.
| |
Collapse
|
25
|
Peng J, Wang X, Yin F, Xu G. Characterizing the removal routes of seven pharmaceuticals in the activated sludge process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2437-2445. [PMID: 30292999 DOI: 10.1016/j.scitotenv.2018.10.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 05/14/2023]
Abstract
The removal routes of pharmaceuticals especially biodegradation routes in the activated sludge process are still unclear. Some studies indicated pharmaceuticals were mainly removed via nitrification process (autotrophic biodegradation), while others suggested pharmaceuticals were mainly removed via COD degradation process (heterotrophic biodegradation). These unclear problems limited the improvements of pharmaceuticals removal. In this study, in order to elucidate three biodegradation routes (nitrification, COD degradation, or both nitrification and COD degradation), autotrophic and heterotrophic reactors were individually developed to separate nitrification and COD degradation form the activated sludge process (mix-trophic process including nitrification and COD degradation). Furthermore, the pharmaceuticals removal routes of adsorption, hydrolysis, and oxidation were also studied. Among six degradable pharmaceuticals, heterotrophic biodegradation and adsorption were the major removal routes. Two sulfonamides of five antibiotics were predominantly removed by COD degradation process, while nitrification and adsorption had no contributions. Adsorption, hydrolysis, nitrification, and COD degradation were the main elimination routes of cefalexin. COD degradation and adsorption were the dominant removal routes of norfloxacin. Tetracycline was mainly removed by the adsorption route, and hydrolysis and oxidation also played a role. For two drugs, ibuprofen was removed mainly via nitrification and COD degradation, and no adsorption occurred. Diclofenac could not be removed at all and was persistent in the aerobic conditions. Kinetic studies showed that biodegradation of the two sulfonamides, cefalexin, norfloxacin, and ibuprofen followed first-order kinetics rather than zero-order or second-order kinetics.
Collapse
Affiliation(s)
- Jingjing Peng
- Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Xingzu Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Fengjun Yin
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Guihua Xu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
26
|
Nurmi TMA, Kiljunen TK, Knuutinen JS. A fugacity model assessment of ibuprofen, diclofenac, carbamazepine, and their transformation product concentrations in an aquatic environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:328-341. [PMID: 30397752 PMCID: PMC6318256 DOI: 10.1007/s11356-018-3485-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/16/2018] [Indexed: 05/11/2023]
Abstract
An updated version of FATEMOD, a multimedia fugacity model for environmental fate of organic chemicals, was set up to assess environmental behaviour of three pharmaceuticals in northern Lake Päijänne, Finland. Concentrations of ibuprofen, diclofenac, and carbamazepine were estimated at various depths at two sites: near a wastewater treatment plant and 3.5 km downstream the plant. When compared with environmental sampling data from corresponding depths and sites, the predicted concentrations, ranging from nanograms to hundreds of nanograms per litre, were found to be in good agreement. Weather data were utilised with the model to rationalise the effects of various environmental parameters on the sampling results, and, e.g. the roles of various properties of lake dynamics and photodegradation were identified. The new model also enables simultaneous assessment of transformation products. Environmentally formed transformation product concentrations were estimated to be at highest an order of magnitude lower than those of the parent compounds, and unlikely to reach a detectable level. However, a possibility that conjugates of ibuprofen are present at higher levels than the parent compound was identified. Simulation results suggest that environmental degradation half-lives of the inspected contaminants under stratified lake conditions are in the range of some weeks to months.
Collapse
Affiliation(s)
- Tuomas M A Nurmi
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyväskylä, Finland.
| | - Toni K Kiljunen
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Juha S Knuutinen
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyväskylä, Finland
| |
Collapse
|
27
|
Falås P, Jewell KS, Hermes N, Wick A, Ternes TA, Joss A, Nielsen JL. Transformation, CO 2 formation and uptake of four organic micropollutants by carrier-attached microorganisms. WATER RESEARCH 2018; 141:405-416. [PMID: 29859473 DOI: 10.1016/j.watres.2018.03.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/11/2018] [Accepted: 03/15/2018] [Indexed: 05/27/2023]
Abstract
A tiered process was developed to assess the transformation, CO2 formation and uptake of four organic micropollutants by carrier-attached microorganisms from two municipal wastewater treatment plants. At the first tier, primary transformation of ibuprofen, naproxen, diclofenac, and mecoprop by carrier-attached microorganisms was shown by the dissipation of the target compounds and the formation of five transformation products using LC-tandem MS. At the second tier, the microbial cleavage of the four organic micropollutants was confirmed with 14C-labeled micropollutants through liquid scintillation counting of the 14CO2 formed. At the third tier, microautoradiography coupled with fluorescence in situ hybridization (MAR-FISH) was used to screen carrier-attached microorganisms for uptake of the four radiolabeled micropollutants. Results from the MAR-FISH screening indicated that only a small fraction of the microbial community (≤1‰) was involved in the uptake of the radiolabeled micropollutants and that the responsible microorganisms differed between the compounds. At the fourth tier, the microbial community structure of the carrier-attached biofilms was analyzed by 16S rRNA gene amplicon sequencing. The sequencing results showed that the MAR-FISH screening targeted ∼80% of the microbial community and that several taxonomic families within the FISH-probed populations with MAR-positive signals (i.e. Firmicutes, Gammaproteobacteria, and Deltaproteobacteria) were present in both biofilms. From the broader perspective of organic micropollutant removal in biological wastewater treatment, the MAR-FISH results of this study indicate a high degree of microbial substrate specialization that could explain differences in transformation rates and patterns between micropollutants and microbial communities.
Collapse
Affiliation(s)
- Per Falås
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Water and Environmental Engineering, Department of Chemical Engineering, Lund University, 221 00 Lund, Sweden.
| | - Kevin S Jewell
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Nina Hermes
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Arne Wick
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Adriano Joss
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Jeppe Lund Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| |
Collapse
|
28
|
Żur J, Piński A, Marchlewicz A, Hupert-Kocurek K, Wojcieszyńska D, Guzik U. Organic micropollutants paracetamol and ibuprofen-toxicity, biodegradation, and genetic background of their utilization by bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21498-21524. [PMID: 29923050 PMCID: PMC6063337 DOI: 10.1007/s11356-018-2517-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/07/2018] [Indexed: 05/26/2023]
Abstract
Currently, analgesics and nonsteroidal anti-inflammatory drugs (NSAIDs) are classified as one of the most emerging group of xenobiotics and have been detected in various natural matrices. Among them, monocyclic paracetamol and ibuprofen, widely used to treat mild and moderate pain are the most popular. Since long-term adverse effects of these xenobiotics and their biological and pharmacokinetic activity especially at environmentally relevant concentrations are better understood, degradation of such contaminants has become a major concern. Moreover, to date, conventional wastewater treatment plants (WWTPs) are not fully adapted to remove that kind of micropollutants. Bioremediation processes, which utilize bacterial strains with increased degradation abilities, seem to be a promising alternative to the chemical methods used so far. Nevertheless, despite the wide prevalence of paracetamol and ibuprofen in the environment, toxicity and mechanism of their microbial degradation as well as genetic background of these processes remain not fully characterized. In this review, we described the current state of knowledge about toxicity and biodegradation mechanisms of paracetamol and ibuprofen and provided bioinformatics analysis concerning the genetic bases of these xenobiotics decomposition.
Collapse
Affiliation(s)
- Joanna Żur
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Artur Piński
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Ariel Marchlewicz
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Katarzyna Hupert-Kocurek
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
29
|
Blunt SM, Sackett JD, Rosen MR, Benotti MJ, Trenholm RA, Vanderford BJ, Hedlund BP, Moser DP. Association between degradation of pharmaceuticals and endocrine-disrupting compounds and microbial communities along a treated wastewater effluent gradient in Lake Mead. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:1640-1648. [PMID: 29056380 DOI: 10.1016/j.scitotenv.2017.10.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/30/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
The role of microbial communities in the degradation of trace organic contaminants in the environment is little understood. In this study, the biotransformation potential of 27 pharmaceuticals and endocrine-disrupting compounds was examined in parallel with a characterization of the native microbial community in water samples from four sites variously impacted by urban run-off and wastewater discharge in Lake Mead, Nevada and Arizona, USA. Samples included relatively pristine Colorado River water at the upper end of the lake, nearly pure tertiary-treated municipal wastewater entering via the Las Vegas Wash, and waters of mixed influence (Las Vegas Bay and Boulder Basin), which represented a gradient of treated wastewater effluent impact. Microbial diversity analysis based on 16S rRNA gene censuses revealed the community at this site to be distinct from the less urban-impacted locations, although all sites were similar in overall diversity and richness. Similarly, Biolog EcoPlate assays demonstrated that the microbial community at Las Vegas Wash was the most metabolically versatile and active. Organic contaminants added as a mixture to laboratory microcosms were more rapidly and completely degraded in the most wastewater-impacted sites (Las Vegas Wash and Las Vegas Bay), with the majority exhibiting shorter half-lives than at the other sites or in a bacteriostatic control. Although the reasons for enhanced degradation capacity in the wastewater-impacted sites remain to be established, these data are consistent with the acclimatization of native microorganisms (either through changes in community structure or metabolic regulation) to effluent-derived trace contaminants. This study suggests that in urban, wastewater-impacted watersheds, prior exposure to organic contaminants fundamentally alters the structure and function of microbial communities, which in turn translates into greater potential for the natural attenuation of these compounds compared to more pristine sites.
Collapse
Affiliation(s)
- Susanna M Blunt
- Division of Earth and Ecosystems Sciences, Desert Research Institute, Las Vegas, Las Vegas, NV 89119, USA; School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Joshua D Sackett
- Division of Earth and Ecosystems Sciences, Desert Research Institute, Las Vegas, Las Vegas, NV 89119, USA; School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Michael R Rosen
- United States Geological Survey, Water Science Field Team, Carson City, NV 89701, USA
| | - Mark J Benotti
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193-9954, USA
| | - Rebecca A Trenholm
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193-9954, USA
| | - Brett J Vanderford
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193-9954, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA; Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA.
| | - Duane P Moser
- Division of Earth and Ecosystems Sciences, Desert Research Institute, Las Vegas, Las Vegas, NV 89119, USA.
| |
Collapse
|
30
|
Alvarino T, Suarez S, Lema J, Omil F. Understanding the sorption and biotransformation of organic micropollutants in innovative biological wastewater treatment technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:297-306. [PMID: 28982079 DOI: 10.1016/j.scitotenv.2017.09.278] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
New technologies for wastewater treatment have been developed in the last years based on the combination of biological reactors operating under different redox conditions. Their efficiency in the removal of organic micropollutants (OMPs) has not been clearly assessed yet. This review paper is focussed on understanding the sorption and biotransformation of a selected group of 17 OMPs, including pharmaceuticals, hormones and personal care products, during biological wastewater treatment processes. Apart from considering the role of "classical" operational parameters, new factors such as biomass conformation and particle size, upward velocity applied or the addition of adsorbents have been considered. It has been found that the OMP removal by sorption not only depends on their physico-chemical characteristics and other parameters, such as the biomass conformation and particle size, or some operational conditions also relevant. Membrane biological reactors (MBR), have shown to enhance sorption and biotransformation of some OMPs. The same applies to technologies bases on direct addition of activated carbon in bioreactors. The OMP biotransformation degree and pathway is mainly driven by the redox potential and the primary substrate activity. The combination of different redox potentials in hybrid reactor systems can significantly enhance the overall OMP removal efficiency. Sorption and biotransformation can be synergistically promoted in biological reactors by the addition of activated carbon. The deeper knowledge of the main parameters influencing OMP removal provided by this review will allow optimizing the biological processes in the future.
Collapse
Affiliation(s)
- T Alvarino
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - S Suarez
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - J Lema
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - F Omil
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
31
|
Kim S, Rossmassler K, Broeckling CD, Galloway S, Prenni J, De Long SK. Impact of inoculum sources on biotransformation of pharmaceuticals and personal care products. WATER RESEARCH 2017; 125:227-236. [PMID: 28865372 DOI: 10.1016/j.watres.2017.08.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/04/2017] [Accepted: 08/18/2017] [Indexed: 05/25/2023]
Abstract
Limited knowledge of optimal microbial community composition for PPCP biotreatment, and of the microbial phylotypes that drive biotransformation within mixed microbial communities, has hindered the rational design and operation of effective and reliable biological PPCP treatment technologies. Herein, bacterial community composition was investigated as an isolated variable within batch biofilm reactors via comparison of PPCP removals for three distinct inocula. Inocula pre-acclimated to model PPCPs were derived from activated sludge (AS), ditch sediment historically-impacted by wastewater treatment plant effluent (Sd), and material from laboratory-scale soil aquifer treatment (SAT) columns. PPCP removals were found to be substantially higher for AS- and Sd-derived inocula compared to the SAT-derived inocula despite comparable biomass. Removal patterns differed among the 6 model compounds examined (diclofenac, 5-fluorouracil, gabapentin, gemfibrozil, ibuprofen, and triclosan) indicating differences in biotransformation mechanisms. Sphingomonas, Beijerinckia, Methylophilus, and unknown Cytophagaceae were linked with successful PPCP biodegradation via next-generation sequencing of 16S rRNA genes over time. Results indicate the criticality of applying engineering approaches to control bacterial community compositions in biotreatment systems.
Collapse
Affiliation(s)
- Sunah Kim
- Colorado State University, Department of Civil and Environmental Engineering, USA
| | - Karen Rossmassler
- Colorado State University, Department of Civil and Environmental Engineering, USA
| | | | - Sarah Galloway
- Colorado State University, Proteomics and Metabolomics Facility, USA
| | - Jessica Prenni
- Colorado State University, Proteomics and Metabolomics Facility, USA
| | - Susan K De Long
- Colorado State University, Department of Civil and Environmental Engineering, USA.
| |
Collapse
|
32
|
Kang X, Sun W, Cao L, Yang J. Highly efficient electro-oxidation catalyst under ultra-low voltage for degradation of aspirin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:25881-25888. [PMID: 28936577 DOI: 10.1007/s11356-017-0207-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
A novel cryptomelane-Ir (cry-Ir) electrode is prepared for Ir to enter into the cryptomelane (named as cry-Mn) structure and used for aspirin degradation. This catalyst can efficiently reduce the Ir usage from 85 to 34%. Also, the onset potential of cry-Ir is about 1.40 V and the over potential is about 0.34 V at 10 mA cm-2, indicating that cry-Ir has an excellent oxygen evolution reaction (OER) activity to produce oxidizing species and can decrease electrolytic voltage during the electro-oxidation process. So, the electrical efficiency per log order (EE/O) for cry-Ir electrode is only 5% of PbO2 electrode, which is the best electrode for organic degradation. Also, cry-Ir has large tunnel size which favors insertion of aspirin molecule into cry-Ir structure and enhances the contact between reactive intermediates and the contaminant. Using cry-Ir as anode, 100% aspirin removal and 55% chemical oxygen demand (COD) removal could be obtained at 4 V. We also compare cry-Ir electrode with IrO2 and find that IrO2 anode can only eliminate 20% aspirin under the same condition. As a result, cry-Ir is a promising anode material for organic pollutant degradation. Graphical abstract Aspirin removal after 4h under different voltages. Aspirin removal on IrO2/Ti-f and cry-Ir/Ti-f after 4h.
Collapse
Affiliation(s)
- Xiaolei Kang
- School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Wei Sun
- School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Limei Cao
- School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Ji Yang
- School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
33
|
Marchlewicz A, Guzik U, Smułek W, Wojcieszyńska D. Exploring the Degradation of Ibuprofen by Bacillus thuringiensis B1(2015b): The New Pathway and Factors Affecting Degradation. Molecules 2017; 22:molecules22101676. [PMID: 28991215 PMCID: PMC6151734 DOI: 10.3390/molecules22101676] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/06/2017] [Indexed: 11/29/2022] Open
Abstract
Ibuprofen is one of the most often detected pollutants in the environment, particularly at landfill sites and in wastewaters. Contamination with pharmaceuticals is often accompanied by the presence of other compounds which may influence their degradation. This work describes the new degradation pathway of ibuprofen by Bacillus thuringiensis B1(2015b), focusing on enzymes engaged in this process. It is known that the key intermediate which transformation limits the velocity of the degradation process is hydroxyibuprofen. As the degradation rate also depends on various factors, the influence of selected heavy metals and aromatic compounds on ibuprofen degradation by the B1(2015b) strain was examined. Based on the values of non-observed effect concentration (NOEC) it was found that the toxicity of tested metals increases from Hg(II) < Cu(II) < Cd(II) < Co(II) < Cr(VI). Despite the toxic effect of metals, the biodegradation of ibuprofen was observed. The addition of Co2+ ions into the medium significantly extended the time necessary for the complete removal of ibuprofen. It was shown that Bacillus thuringiensis B1(2015b) was able to degrade ibuprofen in the presence of phenol, benzoate, and 2-chlorophenol. Moreover, along with the removal of ibuprofen, degradation of phenol and benzoate was observed. Introduction of 4-chlorophenol into the culture completely inhibits degradation of ibuprofen.
Collapse
Affiliation(s)
- Ariel Marchlewicz
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| |
Collapse
|
34
|
Ding T, Yang M, Zhang J, Yang B, Lin K, Li J, Gan J. Toxicity, degradation and metabolic fate of ibuprofen on freshwater diatom Navicula sp. JOURNAL OF HAZARDOUS MATERIALS 2017; 330:127-134. [PMID: 28214648 DOI: 10.1016/j.jhazmat.2017.02.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/22/2017] [Accepted: 02/04/2017] [Indexed: 05/18/2023]
Abstract
Ibuprofen (IBU) is one of the most widely used and frequently detected human pharmaceuticals in aquatic environment. However, the toxicity of IBU on diatom and its fate remain still unkown. In the present study, the toxicity of IBU on the diatom was evaluated by the algal growth rate, the chlorophyll-a and carotenoids contents. The degradation of IBU including in particular the potential for the formation of incomplete degradation products was also explored. Biochemical characteristics of Navicula sp. were significantly inhibited at IBU concentrations up to 50mgL-1 after 10days of exposure. The degradation of IBU was retarded by Navicula sp. at low concentration (1mgL-1), with t1/2 being extended from 9.6±1.8 d to 12.0±1.5 d, indicating that Navicula sp. could prolong the exposure time of IBU. A total of 8 metabolites were identified by LC-MS/MS and the degradation pathway of IBU in Navicula sp. was proposed. Hydroxylation, acylation, demethylation, and glucuronidation contributed to IBU transformative reactions in diatom cells. These findings indicate that the presence of diatom Navicula sp. could hinder degradation of IBU, and IBU and/or its metabolites may pose high risks on aquatic ecosystem in natural waters.
Collapse
Affiliation(s)
- Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Mengting Yang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junmin Zhang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bo Yang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kunde Lin
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| |
Collapse
|
35
|
Stadlmair LF, Letzel T, Drewes JE, Graßmann J. Mass spectrometry based in vitro assay investigations on the transformation of pharmaceutical compounds by oxidative enzymes. CHEMOSPHERE 2017; 174:466-477. [PMID: 28189026 DOI: 10.1016/j.chemosphere.2017.01.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/20/2017] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
The ubiquitous presence of trace organic chemicals in wastewater and surface water leads to a growing demand for novel removal technologies. The use of isolated enzymes has been shown to possess the capability for a targeted application but requires a clearer mechanistic understanding. In this study, the potential of peroxidase from horseradish (HRP) and laccase from Pleurotus ostreatus (LccPO) to transform selected trace organic chemicals was studied using mass spectrometry (MS)-based in vitro enzyme assays. Conversion by HRP appeared to be more efficient compared to LccPO. Diclofenac (DCF) and sotalol (STL) were completely transformed by HRP after 4 h and immediate conversion was observed for acetaminophen (APAP). During treatment with LccPO, 60% of DCF was still detectable after 24 h and no conversion was found for STL. APAP was completely transformed after 20 min. Sulfamethoxazole (SMX), carbamazepine (CBZ), ibuprofen (IBP) and naproxen (NAP) were insusceptible to enzymatic conversion. In pharmaceutical mixtures, HRP exhibited a preference for DCF and APAP and the generally less efficient conversion of STL was enhanced in presence of APAP. Transformation product pattern after treatment with HRP revealed polymerization products for DCF while STL showed cleavage reactions. DCF product formation shifted towards a proposed dimeric iminoquinone product in presence of APAP whereas a generally less pronounced product formation in mixtures was observed for STL. In conclusion, the enzymatic treatment approach worked selectively and efficiently for a few pharmaceuticals. However, for application the investigation and possibly immobilization of multiplex enzymes being able to transform diverse chemical structures is recommended.
Collapse
Affiliation(s)
- Lara F Stadlmair
- Chair of Urban Water Systems Engineering, Department of Civil, Geo and Environmental Engineering, Technical University of Munich, Am Coloumbwall 3, 85748 Garching, Germany.
| | - Thomas Letzel
- Chair of Urban Water Systems Engineering, Department of Civil, Geo and Environmental Engineering, Technical University of Munich, Am Coloumbwall 3, 85748 Garching, Germany
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Department of Civil, Geo and Environmental Engineering, Technical University of Munich, Am Coloumbwall 3, 85748 Garching, Germany
| | - Johanna Graßmann
- Chair of Urban Water Systems Engineering, Department of Civil, Geo and Environmental Engineering, Technical University of Munich, Am Coloumbwall 3, 85748 Garching, Germany.
| |
Collapse
|
36
|
Koumaki E, Mamais D, Noutsopoulos C. Environmental fate of non-steroidal anti-inflammatory drugs in river water/sediment systems. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:233-241. [PMID: 27021262 DOI: 10.1016/j.jhazmat.2016.03.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 05/25/2023]
Abstract
Laboratory tests were conducted with four non-steroidal anti-inflammatory drugs (naproxen, ibuprofen, diclofenac and ketoprofen) under different redox conditions (aerobic, anoxic, anaerobic and sulfate-reducing conditions) in order to assess abiotic and biotic degradation in a river water/sediment system. The river water was sampled from Sperchios River and the sediment was collected from the banks of a rural stream where the discharge point of a wastewater treatment plant is located. To quantitatively describe degradation kinetics of the selected compounds, pseudo first-order kinetics were adopted. According to the results, it can be stated that the concentration of the substances remained constant or decreased only marginally (p≥0.05) in the sterile experiments and this excludes abiotic processes such as hydrolysis or sorption as major removal mechanisms of the target compounds from the water phase and assign their removal to microbial action. Results showed that the removal rate of the compounds decreases as dissolved oxygen concentration in the river water/sediment system decreases. All compounds were found to be biodegradable under aerobic conditions at dissipation half-lives between 1.6 and 20.1days, while dissipation half-lives for naproxen and ketoprofen increase by a factor of 2 under all tested conditions in the absence of oxygen.
Collapse
Affiliation(s)
- Elena Koumaki
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou, Zografou 15780, Athens, Greece
| | - Daniel Mamais
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou, Zografou 15780, Athens, Greece.
| | - Constantinos Noutsopoulos
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou, Zografou 15780, Athens, Greece
| |
Collapse
|
37
|
Xing Y, Chen X, Chen X, Zhuang J. Colloid-Mediated Transport of Pharmaceutical and Personal Care Products through Porous Media. Sci Rep 2016; 6:35407. [PMID: 27734948 PMCID: PMC5062131 DOI: 10.1038/srep35407] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/28/2016] [Indexed: 11/21/2022] Open
Abstract
Pharmaceutical and personal care products (PPCPs) enter soils through reclaimed water irrigation and biosolid land applications. Colloids, such as clays, that are present in soil may interact with PPCPs and thus affect their fate and transport in the subsurface environment. This study addresses the influence of soil colloids on the sorption and transport behaviors of PPCPs through laboratory column experiments. Results show that the affinities of PPCPs for colloids vary with their molecular chemistry and solution ionic strength. The presence of colloids promotes the breakthrough of ciprofloxacin (over 90% sorbed on colloids) from ~4% to 30–40%, and the colloid-facilitated effect was larger at lower ionic strength (e.g., 2 mM). In comparison, the net effect of colloids on the transport of tetracycline (~50% sorbed on colloids) could be facilitation or inhibition, depending on solution chemistry. This dual effect of colloids is primarily due to the opposite response of migration of dissolved and colloid-bound tetracycline to the change in solution ionic strength. Colloids could also facilitate the transport of ibuprofen (~10% sorbed on colloids) by ~50% due likely to exclusion of dispersion pathways by colloid straining. This study suggests that colloids are significant carriers or transport promoters of some PPCPs in the subsurface environment and could affect their off-site environmental risks.
Collapse
Affiliation(s)
- Yingna Xing
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xijuan Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xin Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jie Zhuang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.,Department of Biosystems Engineering and Soil Science, Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
38
|
Chen Y, Vymazal J, Březinová T, Koželuh M, Kule L, Huang J, Chen Z. Occurrence, removal and environmental risk assessment of pharmaceuticals and personal care products in rural wastewater treatment wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:1660-1669. [PMID: 27342641 DOI: 10.1016/j.scitotenv.2016.06.069] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 05/17/2023]
Abstract
Rural communities in central and eastern Europe usually use constructed wetlands (CWs) to treat domestic wastewater. Effluents from these systems are regularly discharged to receiving water, resulting in a potential transfer of pharmaceuticals and personal care products (PPCPs) from sewage to the aquatic environment. In this study, the seasonal occurrence, removal and risk assessment of 32 multi-class PPCPs were investigated in three CWs from the village of south Bohemia, Czech Republic. Among the PPCPs considered, 25 compounds were detected in sewage influent, and ibuprofen, caffeine and paracetamol were the most commonly detected PPCPs. The removal efficiencies of PPCPs in the rural CWs exhibited large variability with 11-100% for anti-inflammatories, 37-99% for β-blockers and 18-95% for diuretics. The statistical results revealed significant correlations between removal efficiencies of six PPCPs and conventional water quality parameters. The ecotoxicological assessment study revealed that most of the PPCPs (except ibuprofen) in the effluent yielded low aquatic risk. This study suggested that constructed wetlands could be effective for removing PPCPs and reducing environmental risk of PPCPs discharged from rural communities into surface water systems.
Collapse
Affiliation(s)
- Yi Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 16521 Prague, 6, Czech Republic; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jan Vymazal
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 16521 Prague, 6, Czech Republic.
| | - Tereza Březinová
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 16521 Prague, 6, Czech Republic
| | - Milan Koželuh
- Vltaeva River Board, Holečkova 8, 152 00 Praha, 5, Czech Republic
| | - Lumír Kule
- Vltaeva River Board, Holečkova 8, 152 00 Praha, 5, Czech Republic
| | - Jingang Huang
- Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 16521 Prague, 6, Czech Republic; College of Resources and Environment, Huazhong Agricultural University, Shizishan 1, 430070 Wuhan, PR China
| |
Collapse
|
39
|
Xu Y, Yuan Z, Ni BJ. Biotransformation of pharmaceuticals by ammonia oxidizing bacteria in wastewater treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:796-805. [PMID: 27243932 DOI: 10.1016/j.scitotenv.2016.05.118] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
Pharmaceutical residues could potentially pose detrimental effects on aquatic ecosystems and human health, with wastewater treatment being one of the major pathways for pharmaceuticals to enter into the environment. Enhanced removal of pharmaceuticals by ammonia oxidizing bacteria (AOB) has been widely observed in wastewater treatment processes. This article reviews the current knowledge on the biotransformation of pharmaceuticals by AOB. The relationship between the pharmaceuticals removal and nitrification process was revealed. The important role of AOB-induced cometabolism on the biotransformation of pharmaceuticals as well as their transformation products and pathways was elucidated. Kinetics and mathematical models describing the biotransformation of pharmaceuticals by AOB were also reviewed. The results highlighted the high degradation capabilities of AOB toward some refractory pharmaceuticals, with their degradations being clearly related to the nitrification rate and their transformation products being identified, which may exhibit similar or higher ecotoxicological impacts compared to the parent compound.
Collapse
Affiliation(s)
- Yifeng Xu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Bing-Jie Ni
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
40
|
Warren KM, Islam MM, LeDuc PR, Steward R. 2D and 3D Mechanobiology in Human and Nonhuman Systems. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21869-21882. [PMID: 27214883 DOI: 10.1021/acsami.5b12064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mechanobiology involves the investigation of mechanical forces and their effect on the development, physiology, and pathology of biological systems. The human body has garnered much attention from many groups in the field, as mechanical forces have been shown to influence almost all aspects of human life ranging from breathing to cancer metastasis. Beyond being influential in human systems, mechanical forces have also been shown to impact nonhuman systems such as algae and zebrafish. Studies of nonhuman and human systems at the cellular level have primarily been done in two-dimensional (2D) environments, but most of these systems reside in three-dimensional (3D) environments. Furthermore, outcomes obtained from 3D studies are often quite different than those from 2D studies. We present here an overview of a select group of human and nonhuman systems in 2D and 3D environments. We also highlight mechanobiological approaches and their respective implications for human and nonhuman physiology.
Collapse
Affiliation(s)
- Kristin M Warren
- Departments of Mechanical Engineering, Biomedical Engineering, Computational Biology, and Biological Sciences, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Md Mydul Islam
- Department of Mechanical and Aerospace Engineering and Burnett School of Biomedical Sciences, University of Central Florida , Orlando, Florida 32827, United States
| | - Philip R LeDuc
- Departments of Mechanical Engineering, Biomedical Engineering, Computational Biology, and Biological Sciences, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Robert Steward
- Department of Mechanical and Aerospace Engineering and Burnett School of Biomedical Sciences, University of Central Florida , Orlando, Florida 32827, United States
| |
Collapse
|
41
|
Li Y, Wu B, Zhu G, Liu Y, Ng WJ, Appan A, Tan SK. High-throughput pyrosequencing analysis of bacteria relevant to cometabolic and metabolic degradation of ibuprofen in horizontal subsurface flow constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:604-613. [PMID: 27110975 DOI: 10.1016/j.scitotenv.2016.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
The potential toxicity of pharmaceutical residues including ibuprofen on the aquatic vertebrates and invertebrates has attracted growing attention to the pharmaceutical pollution control using constructed wetlands, but there lacks of an insight into the relevant microbial degradation mechanisms. This study investigated the bacteria associated with the cometabolic and metabolic degradation of ibuprofen in a horizontal subsurface flow constructed wetland system by high-throughput pyrosequencing analysis. The ibuprofen degradation dynamics, bacterial diversity and evenness, and bacterial community structure in a planted bed with Typha angustifolia and an unplanted bed (control) were compared. The results showed that the plants promoted the microbial degradation of ibuprofen, especially at the downstream zones of wetland. However, at the upstream one-third zone of wetland, the presence of plants did not significantly enhance ibuprofen degradation, probably due to the much greater contribution of cometabolic behaviors of certain non-ibuprofen-degrading microorganisms than that of the plants. By analyzing bacterial characteristics, we found that: (1) The aerobic species of family Flavobacteriaceae, family Methylococcaceae and genus Methylocystis, and the anaerobic species of family Spirochaetaceae and genus Clostridium_sensu_stricto were the most possible bacteria relevant to the cometabolic degradation of ibuprofen; (2) The family Rhodocyclaceae and the genus Ignavibacterium closely related to the plants appeared to be associated with the metabolic degradation of ibuprofen.
Collapse
Affiliation(s)
- Yifei Li
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore.
| | - Bing Wu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Guibing Zhu
- State Key Laboratory of Environmental Aquatic Quality, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, PR China.
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Wun Jern Ng
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Adhityan Appan
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Soon Keat Tan
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore; Maritime Research Centre, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
42
|
Chander V, Sharma B, Negi V, Aswal RS, Singh P, Singh R, Dobhal R. Pharmaceutical Compounds in Drinking Water. J Xenobiot 2016; 6:5774. [PMID: 30701048 PMCID: PMC6324466 DOI: 10.4081/xeno.2016.5774] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 11/23/2022] Open
Abstract
Pharmaceutical products and their wastes play a major role in the degradation of environment. These drugs have positive as well as negative consequences on different environmental components including biota in different ways. Many types of pharmaceutical substances have been detected with significant concentrations through various advanced instrumental techniques in surface water, subsurface water, ground water, domestic waste water, municipal waste water and industrial effluents. The central as well as state governments in India are providing supports by creating excise duty free zones to promote the pharmaceutical manufacturers for their production. As a result, pharmaceutical companies are producing different types of pharmaceutical products at large scale and also producing complex non-biodegradable toxic wastes byproducts and releasing untreated or partially treated wastes in the environment in absence of strong regulations. These waste pollutants are contaminating all types of drinking water sources. The present paper focuses on water quality pollution by pharmaceutical pollutants, their occurrences, nature, metabolites and their fate in the environment.
Collapse
Affiliation(s)
- Vikas Chander
- Department of Chemistry, DAV (PG) College, Dehradun, Uttarakhand
| | - Bhavtosh Sharma
- Uttarakhand Science Education and Research Centre (USERC), Dehradun, Uttarakhand
| | - Vipul Negi
- Department of Chemistry, DBS (PG) College, Dehradun, Uttarakhand
| | - Ravinder Singh Aswal
- Department of Environmental Sciences, Gurukula Kangri Vishwavidyalaya, Haridwar, Uttarakhand
| | - Prashant Singh
- Department of Chemistry, DAV (PG) College, Dehradun, Uttarakhand
| | - Rakesh Singh
- Department of Chemistry, DBS (PG) College, Dehradun, Uttarakhand
| | - Rajendra Dobhal
- Uttarakhand Council for Science and Technology (UCOST), Dehradun, Uttarakhand, India
| |
Collapse
|
43
|
Tang L, Wang J, Zeng G, Liu Y, Deng Y, Zhou Y, Tang J, Wang J, Guo Z. Enhanced photocatalytic degradation of norfloxacin in aqueous Bi2WO6 dispersions containing nonionic surfactant under visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2016; 306:295-304. [PMID: 26774984 DOI: 10.1016/j.jhazmat.2015.12.044] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/02/2015] [Accepted: 12/22/2015] [Indexed: 05/15/2023]
Abstract
Photocatalytic degradation is an alternative method to remove pharmaceutical compounds in water, however it is hard to achieve efficient rate because of the poor solubility of pharmaceutical compounds in water. This study investigated the photodegradation of norfloxacin in a nonionic surfactant Triton-X100 (TX100)/Bi2WO6 dispersion under visible light irradiation (400-750nm). It was found that the degradation of poorly soluble NOF can be strongly enhanced with the addition of TX100. TX100 was adsorbed strongly on Bi2WO6 surface and accelerated NOF photodegradation at the critical micelle concentration (CMC=0.25mM). Higher TX100 concentration (>0.25mM) lowered the degradation rate. In the presence of TX100, the degradation rate reached the maximum value when the pH value was 8.06. FTIR analyses demonstrated that the adsorbed NOF on the catalyst was completely degraded after 2h irradiation. According to the intermediates identified by HPLC/MS/MS, three possible degradation pathways were proposed to include addition of hydroxyl radical to quinolone ring, elimination of piperazynilic ring in fluoroquinolone molecules, and replacement of F atoms on the aromatic ring by hydroxyl radicals.
Collapse
Affiliation(s)
- Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yani Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yaocheng Deng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yaoyu Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jingjing Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhi Guo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
44
|
Svan A, Hedeland M, Arvidsson T, Jasper JT, Sedlak DL, Pettersson CE. Identification of transformation products from β-blocking agents formed in wetland microcosms using LC-Q-ToF. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:207-218. [PMID: 26956388 DOI: 10.1002/jms.3737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/17/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
Identification of degradation products from trace organic compounds, which may retain the biological activity of the parent compound, is an important step in understanding the long-term effects of these compounds on the environment. Constructed wetlands have been successfully utilized to remove contaminants from wastewater effluent, including pharmacologically active compounds. However, relatively little is known about the transformation products formed during wetland treatment. In this study, three different wetland microcosm treatments were used to determine the biotransformation products of the β-adrenoreceptor antagonists atenolol, metoprolol and propranolol. LC/ESI-Q-ToF run in the MS(E) and MS/MS modes was used to identify and characterize the degradation products through the accurate masses of precursor and product ions. The results were compared with those of a reference standard when available. Several compounds not previously described as biotransformation products produced in wetlands were identified, including propranolol-O-sulfate, 1-naphthol and the human metabolite N-deaminated metoprolol. Transformation pathways were significantly affected by microcosm conditions and differed between compounds, despite the compounds' structural similarities. Altogether, a diverse range of transformation products in wetland microcosms were identified and elucidated using high resolving MS. This work shows that transformation products are not always easily predicted, nor formed via the same pathways even for structurally similar compounds.
Collapse
Affiliation(s)
- Alfred Svan
- Division of Analytical Pharmaceutical Chemistry, Uppsala University, BMC Box 574, SE-751 23, Uppsala, Sweden
| | - Mikael Hedeland
- Division of Analytical Pharmaceutical Chemistry, Uppsala University, BMC Box 574, SE-751 23, Uppsala, Sweden
- National Veterinary Institute (SVA), Department of Chemistry, Environment and Feed Hygiene, SE-751 89, Uppsala, Sweden
| | - Torbjörn Arvidsson
- Division of Analytical Pharmaceutical Chemistry, Uppsala University, BMC Box 574, SE-751 23, Uppsala, Sweden
- Medical Products Agency, Box 26, SE-751 03, Uppsala, Sweden
| | - Justin T Jasper
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, CA, 94720, United States
| | - David L Sedlak
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, CA, 94720, United States
| | - Curt E Pettersson
- Division of Analytical Pharmaceutical Chemistry, Uppsala University, BMC Box 574, SE-751 23, Uppsala, Sweden
| |
Collapse
|
45
|
Pietrini F, Di Baccio D, Aceña J, Pérez S, Barceló D, Zacchini M. Ibuprofen exposure in Lemna gibba L.: Evaluation of growth and phytotoxic indicators, detection of ibuprofen and identification of its metabolites in plant and in the medium. JOURNAL OF HAZARDOUS MATERIALS 2015; 300:189-193. [PMID: 26184801 DOI: 10.1016/j.jhazmat.2015.06.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 05/15/2023]
Abstract
Ibuprofen (IBU) is detected worldwide in water bodies due to the incomplete removal by wastewater treatments. Contrasting results have been reported on the toxicity of IBU on aquatic biomonitor plants such as duckweed, and no data about IBU detection and metabolism in plants has been reported. In this work, the effects of 1 mg L(-1) IBU on Lemna gibba L. were monitored in an 8-day laboratory test. In particular, an increase in frond number (+12%) and multiplication rate (+10%) while no variations in photosynthetic pigment content were observed. Moreover, UPLC-HRMS analysis of the presence of IBU and its metabolites in plants and in the growth medium was performed. The results showed that, besides IBU, 11 IBU metabolites were detected in plants. Among the IBU metabolites, hydroxyl- and dihydroxyl-IBU were found, whereas carboxyl-IBU was undetectable. Interestingly, some IBU metabolites were detected in the plant growth solution at the end of the IBU treatment, while no IBU products were found in the IBU solution without plants, suggesting a role for L. gibba in IBU metabolism. The findings of this work represent an important step for a better evaluation of the effects of IBU and its metabolites in duckweed, with notable implications for the eco-toxicological assessment of IBU in the aquatic ecosystem.
Collapse
Affiliation(s)
- F Pietrini
- Institute of Agro-environmental and Forest Biology, National Research Council of Italy, Via Salaria Km 29,300, 00015 Monterotondo Scalo, Roma, Italy
| | - D Di Baccio
- Institute of Agro-environmental and Forest Biology, National Research Council of Italy, Via Salaria Km 29,300, 00015 Monterotondo Scalo, Roma, Italy
| | - J Aceña
- Water and Soil Research Group, Department of Environmental Chemistry, IDAEA-CSIC, c/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - S Pérez
- Water and Soil Research Group, Department of Environmental Chemistry, IDAEA-CSIC, c/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - D Barceló
- Water and Soil Research Group, Department of Environmental Chemistry, IDAEA-CSIC, c/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - M Zacchini
- Institute of Agro-environmental and Forest Biology, National Research Council of Italy, Via Salaria Km 29,300, 00015 Monterotondo Scalo, Roma, Italy.
| |
Collapse
|
46
|
He Y, Huang W, Chen R, Zhang W, Lin H, Li H. Anodic oxidation of aspirin on PbO 2 , BDD and porous Ti/BDD electrodes: Mechanism, kinetics and utilization rate. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.09.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
Marchlewicz A, Guzik U, Wojcieszyńska D. Over-the-Counter Monocyclic Non-Steroidal Anti-Inflammatory Drugs in Environment-Sources, Risks, Biodegradation. WATER, AIR, AND SOIL POLLUTION 2015; 226:355. [PMID: 26478634 PMCID: PMC4600096 DOI: 10.1007/s11270-015-2622-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/22/2015] [Indexed: 05/31/2023]
Abstract
Recently, the increased use of monocyclic non-steroidal anti-inflammatory drugs has resulted in their presence in the environment. This may have potential negative effects on living organisms. The biotransformation mechanisms of monocyclic non-steroidal anti-inflammatory drugs in the human body and in other mammals occur by hydroxylation and conjugation with glycine or glucuronic acid. Biotransformation/biodegradation of monocyclic non-steroidal anti-inflammatory drugs in the environment may be caused by fungal or bacterial microorganisms. Salicylic acid derivatives are degraded by catechol or gentisate as intermediates which are cleaved by dioxygenases. The key intermediate of the paracetamol degradation pathways is hydroquinone. Sometimes, after hydrolysis of this drug, 4-aminophenol is formed, which is a dead-end metabolite. Ibuprofen is metabolized by hydroxylation or activation with CoA, resulting in the formation of isobutylocatechol. The aim of this work is to attempt to summarize the knowledge about environmental risk connected with the presence of over-the-counter anti-inflammatory drugs, their sources and the biotransformation and/or biodegradation pathways of these drugs.
Collapse
Affiliation(s)
- Ariel Marchlewicz
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland
| | - Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland
| |
Collapse
|
48
|
Murdoch RW, Hay AG. The biotransformation of ibuprofen to trihydroxyibuprofen in activated sludge and by Variovorax Ibu-1. Biodegradation 2015; 26:105-13. [PMID: 25663336 DOI: 10.1007/s10532-015-9719-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/03/2015] [Indexed: 11/28/2022]
Abstract
A bacterium was isolated from activated sewage sludge that has the ability to use ibuprofen as its sole carbon and energy source. Phylogenetic analysis of the 16S rRNA gene sequence placed the strain in the Variovorax genus within the β-proteobacteria. When grown on ibuprofen it accumulated a transient yellow intermediate that disappeared upon acidification, a trait consistent with meta ring-fission metabolites. GC/MS analysis of derivatized culture supernatant yielded two spectra consistent with trihydroxyibuprofen bearing all three hydroxyl groups on the aromatic ring. These metabolites were only detected when 3-fluorocatechol, a meta ring-fission inhibitor, was added to Ibu-1 cultures and the supernatant was then derivatized with aqueous acetic anhydride and diazomethane. These findings suggest the possibility of ibuprofen metabolism proceeding via a trihydroxyibuprofen meta ring-fission pathway. Identical spectra, consistent with these putative ring-hydroxylated trihydroxyibuprofen metabolites, were also obtained from ibuprofen-spiked sewage sludge, but only when it was poisoned with 3-fluorocatechol. The presence of the same trihydroxylated metabolites in both spiked sewage sludge and culture supernatants suggests that this trihydroxyibuprofen extradiol ring-cleavage pathway for the degradation of ibuprofen may have environmental relevance.
Collapse
Affiliation(s)
- Robert W Murdoch
- Graduate Program in Environmental Toxicology, Institute for Comparative and Environmental Toxicology, Cornell University, Ithaca, NY, 14850, USA,
| | | |
Collapse
|
49
|
Evgenidou EN, Konstantinou IK, Lambropoulou DA. Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 505:905-26. [PMID: 25461093 DOI: 10.1016/j.scitotenv.2014.10.021] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 05/20/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) along with illicit drugs (IDs) are newly recognized classes of environmental pollutants and are receiving considerable attention because of their environmental impacts: frequent occurrence, persistence and risk to aquatic life and humans. However, relatively little information is often available with regard to their possible biotic and abiotic transformation products (TPs). This lack of knowledge has resulted in a substantial amount of ongoing effort to develop methods and approaches that would assess their occurrence, degradability potential elimination mechanisms and efficiencies in sewage treatment plants as well as environmental and human health risks. In this article, an extensive literature survey was performed in order to present the current stage of knowledge and progress made in the occurrence of TPs of PPCPs and IDs in raw and treated wastewaters. Apart from the TPs resulting from structural transformations of the parent compound in the aquatic environment or in technological treatment facilities (e.g. sewage and drinking water treatment plants), free metabolites and drug conjugates formed during human metabolism have also been included in this review as they are also released into the aquatic environment through wastewaters. Their concentration levels were reported in influents and effluents of WWTPs, hospital effluents and their removals in the treatment plants were discussed. Finally, information on the toxicity of TPs has been compiled when available.
Collapse
Affiliation(s)
- Eleni N Evgenidou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Ioannis K Konstantinou
- Department of Environmental and Natural Resources Management, University of Patras, Seferi 2, GR 30100 Agrinio, Greece
| | - Dimitra A Lambropoulou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
50
|
Kruglova A, Ahlgren P, Korhonen N, Rantanen P, Mikola A, Vahala R. Biodegradation of ibuprofen, diclofenac and carbamazepine in nitrifying activated sludge under 12 °C temperature conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 499:394-401. [PMID: 25215408 DOI: 10.1016/j.scitotenv.2014.08.069] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 05/22/2023]
Abstract
Pharmaceuticals constitute a well-known group of emerging contaminants with an increasing significance in water pollution. This study focuses on three pharmaceuticals extensively used in Finland and which can be found in environmental waters: ibuprofen, diclofenac and carbamazepine. Biodegradation experiments were conducted in a full-scale Wastewater Treatment Plant (WWTP) and in laboratory-scale Sequencing Batch Reactors (SBRs). The SBRs were operated at 12 °C, with a sludge retention time (SRT) 10-12 d and organic loading rates (OLRs) of 0.17, 0.27 and 0.33 kg BOD7 m(-3) d(-1). Ibuprofen was found to biodegrade up to 99%. The biodegradation rate constants (k(biol)) for ibuprofen were calculated for full-scale and laboratory processes as well as under different laboratory conditions and found to differ from 0.9 up to 5.0 l g(SS)(-1) d(-1). Diclofenac demonstrated an unexpected immediate drop of concentration in three SBRs and partial recovery of the initial concentration in one of the reactors. High fluctuating in diclofenac concentration was presumably caused by removal of this compound under different concentrations of nitrites during development of nitrifying activated sludge. Carbamazepine showed no biodegradation in all the experiments.
Collapse
Affiliation(s)
- Antonina Kruglova
- Department of Civil and Environmental Engineering, Aalto University, P.O. Box 15200, Aalto, FI-00076 Espoo, Finland
| | - Pia Ahlgren
- Department of Civil and Environmental Engineering, Aalto University, P.O. Box 15200, Aalto, FI-00076 Espoo, Finland
| | - Nasti Korhonen
- Department of Civil and Environmental Engineering, Aalto University, P.O. Box 15200, Aalto, FI-00076 Espoo, Finland
| | - Pirjo Rantanen
- Department of Civil and Environmental Engineering, Aalto University, P.O. Box 15200, Aalto, FI-00076 Espoo, Finland
| | - Anna Mikola
- Department of Civil and Environmental Engineering, Aalto University, P.O. Box 15200, Aalto, FI-00076 Espoo, Finland
| | - Riku Vahala
- Department of Civil and Environmental Engineering, Aalto University, P.O. Box 15200, Aalto, FI-00076 Espoo, Finland
| |
Collapse
|