1
|
Giovannuzzi S, Supuran CT. Lactonase activity of α-carbonic anhydrases allows identification of novel inhibitors. Arch Pharm (Weinheim) 2025; 358:e2400705. [PMID: 39651798 PMCID: PMC11704026 DOI: 10.1002/ardp.202400705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/11/2024]
Abstract
Lactones, a diverse and abundant class of molecules found in nature, exhibit a wide range of bioactivities, including anti-inflammatory, anticancer, and antibacterial effects. Among them, acyl homoserine lactones (AHSLs) play a crucial role in quorum sensing, influencing bacterial pathogenicity and biofilm formation in Gram-negative bacteria. Paraoxonases (PONs), calcium-containing enzymes known for their lactonase activity, have been shown to hydrolyze AHSLs and reduce the biofilm formation of several pathogenic bacteria. In this study, we explored the potential lactonase activity of a class of zinc(II) enzymes, the carbonic anhydrases (CAs), aiming to uncover new insights into their catalytic versatility. Using LC-MS and MS/MS analyses, we investigated the lactonase activity of CAs and assessed several lactones through a stopped-flow kinetic assay as substrates/inhibitors. Our findings reveal that lactones are novel "prodrug" inhibitors of CAs, with lactones DHC and 6 showing the most promising inhibition constants (KIs) in the low micromolar range against both human and bacterial isozymes.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical SectionUniversity of FlorenceFirenzeItaly
| | - Claudiu T. Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical SectionUniversity of FlorenceFirenzeItaly
| |
Collapse
|
2
|
Rajkhowa S, Hussain SZ, Agarwal M, Zaheen A, Al-Hussain SA, Zaki MEA. Advancing Antibiotic-Resistant Microbe Combat: Nanocarrier-Based Systems in Combination Therapy Targeting Quorum Sensing. Pharmaceutics 2024; 16:1160. [PMID: 39339197 PMCID: PMC11434747 DOI: 10.3390/pharmaceutics16091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The increase in antibiotic-resistant bacteria presents a significant risk to worldwide public health, emphasizing the necessity of novel approaches to address infections. Quorum sensing, an essential method of communication among bacteria, controls activities like the formation of biofilms, the production of virulence factors, and the synthesis of secondary metabolites according to the number of individuals in the population. Quorum quenching, which interferes with these processes, emerges as a vital approach to diminish bacterial virulence and prevent biofilm formation. Nanocarriers, characterized by their small size, high surface-area-to-volume ratio, and modifiable surface chemistry, offer a versatile platform for the disruption of bacterial communication by targeting various stages within the quorum sensing pathway. These features allow nanocarriers to infiltrate biofilms, disrupt cell membranes, and inhibit bacterial proliferation, presenting a promising alternative to traditional antibiotics. Integrating nanocarrier-based systems into combination therapies provides a multi-pronged approach to infection control, enhancing both the efficacy and specificity of treatment regimens. Nonetheless, challenges related to the stability, safety, and clinical effectiveness of nanomaterial-based antimicrobial treatments remain. Continued research and development are essential to overcoming these obstacles and fully harnessing the potential of nano-antimicrobial therapies. This review emphasizes the importance of quorum sensing in bacterial behavior and highlights the transformative potential of nanotechnology in advancing antimicrobial treatments, offering innovative solutions to combat antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Sanchaita Rajkhowa
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Safrina Zeenat Hussain
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Manisha Agarwal
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Alaiha Zaheen
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Sami A. Al-Hussain
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Magdi E. A. Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| |
Collapse
|
3
|
Sepordeh S, Jafari AM, Bazzaz S, Abbasi A, Aslani R, Houshmandi S, Rad AH. Postbiotic as Novel Alternative Agent or Adjuvant for the Common Antibiotic Utilized in the Food Industry. Curr Pharm Biotechnol 2024; 25:1245-1263. [PMID: 37702234 DOI: 10.2174/1389201025666230912123849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Antibiotic resistance is a serious public health problem as it causes previously manageable diseases to become deadly infections that can cause serious disability or even death. Scientists are creating novel approaches and procedures that are essential for the treatment of infections and limiting the improper use of antibiotics in an effort to counter this rising risk. OBJECTIVES With a focus on the numerous postbiotic metabolites formed from the beneficial gut microorganisms, their potential antimicrobial actions, and recent associated advancements in the food and medical areas, this review presents an overview of the emerging ways to prevent antibiotic resistance. RESULTS Presently, scientific literature confirms that plant-derived antimicrobials, RNA therapy, fecal microbiota transplantation, vaccines, nanoantibiotics, haemofiltration, predatory bacteria, immunotherapeutics, quorum-sensing inhibitors, phage therapies, and probiotics can be considered natural and efficient antibiotic alternative candidates. The investigations on appropriate probiotic strains have led to the characterization of specific metabolic byproducts of probiotics named postbiotics. Based on preclinical and clinical studies, postbiotics with their unique characteristics in terms of clinical (safe origin, without the potential spread of antibiotic resistance genes, unique and multiple antimicrobial action mechanisms), technological (stability and feasibility of largescale production), and economic (low production costs) aspects can be used as a novel alternative agent or adjuvant for the common antibiotics utilized in the production of animal-based foods. CONCLUSION Postbiotic constituents may be a new approach for utilization in the pharmaceutical and food sectors for developing therapeutic treatments. Further metabolomics investigations are required to describe novel postbiotics and clinical trials are also required to define the sufficient dose and optimum administration frequency of postbiotics.
Collapse
Affiliation(s)
- Sama Sepordeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sara Bazzaz
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Aslani
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sousan Houshmandi
- Department of Midwifery, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Singh S, Bhatia S. Quorum Sensing Inhibitors: Curbing Pathogenic Infections through Inhibition of Bacterial Communication. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:486-514. [PMID: 34567177 PMCID: PMC8457738 DOI: 10.22037/ijpr.2020.113470.14318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Currently, most of the developed and developing countries are facing the problem of infectious diseases. The genius way of an exaggerated application of antibiotics led the infectious agents to respond by bringing a regime of persisters to resist antibiotics attacks prolonging their survival. Persisters have the dexterity to communicate among themself using signal molecules via the process of Quorum Sensing (QS), which regulates virulence gene expression and biofilms formation, making them more vulnerable to antibiotic attack. Our review aims at the different approaches applied in the ordeal to solve the riddle for QS inhibitors. QS inhibitors, their origin, structures and key interactions for QS inhibitory activity have been summarized. Solicitation of a potent QS inhibitor molecule would be beneficial, giving new life to the simplest antibiotics in adjuvant therapy.
Collapse
Affiliation(s)
- Shaminder Singh
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurugram Expressway, Faridabad - 121 001, Haryana, India
| | - Sonam Bhatia
- Department of Pharmaceutical Science, SHALOM Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Naini-211007, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
5
|
Outer Membrane Vesicles (OMVs) Produced by Gram-Negative Bacteria: Structure, Functions, Biogenesis, and Vaccine Application. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1490732. [PMID: 33834062 PMCID: PMC8016564 DOI: 10.1155/2021/1490732] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/01/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022]
Abstract
Gram-negative bacteria produce outer membrane vesicles (OMVs) with 10 to 300 nm of diameter. The contribution of OMVs to bacterial pathogenesis is a topic of great interest, and their capacity to be combined with antigens impact in the future to the development of vaccines.
Collapse
|
6
|
Kumar SB, Arnipalli SR, Ziouzenkova O. Antibiotics in Food Chain: The Consequences for Antibiotic Resistance. Antibiotics (Basel) 2020; 9:antibiotics9100688. [PMID: 33066005 PMCID: PMC7600537 DOI: 10.3390/antibiotics9100688] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Antibiotics have been used as essential therapeutics for nearly 100 years and, increasingly, as a preventive agent in the agricultural and animal industry. Continuous use and misuse of antibiotics have provoked the development of antibiotic resistant bacteria that progressively increased mortality from multidrug-resistant bacterial infections, thereby posing a tremendous threat to public health. The goal of our review is to advance the understanding of mechanisms of dissemination and the development of antibiotic resistance genes in the context of nutrition and related clinical, agricultural, veterinary, and environmental settings. We conclude with an overview of alternative strategies, including probiotics, essential oils, vaccines, and antibodies, as primary or adjunct preventive antimicrobial measures or therapies against multidrug-resistant bacterial infections. The solution for antibiotic resistance will require comprehensive and incessant efforts of policymakers in agriculture along with the development of alternative therapeutics by experts in diverse fields of microbiology, biochemistry, clinical research, genetic, and computational engineering.
Collapse
|
7
|
Hemmati F, Salehi R, Ghotaslou R, Samadi Kafil H, Hasani A, Gholizadeh P, Nouri R, Ahangarzadeh Rezaee M. Quorum Quenching: A Potential Target for Antipseudomonal Therapy. Infect Drug Resist 2020; 13:2989-3005. [PMID: 32922047 PMCID: PMC7457774 DOI: 10.2147/idr.s263196] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
There has been excessive rate of use of antibiotics to fight Pseudomonas aeruginosa (P. aeruginosa) infections worldwide, which has consequently caused the increased resistance to multiple antibiotics in this pathogen. Due to the widespread resistance and the current poor effect of antibiotics consumed to treat P. aeruginosa infections, finding some novel alternative therapeutic methods are necessary for the treatment of infections. The P. aeruginosa biofilms can cause severe infections leading to the increased antibiotic resistance and mortality rate among the patients. In this regard, there are no approaches that can efficiently manage these infections; therefore, novel and effective antimicrobial and antibiofilm agents are needed to control and treat these bacterial infections. Quorum sensing inhibitors (QSIs) or quorum quenchings (QQs) are now considered as potential therapeutic alternatives and/or adjuvants to the current failing antibiotics, which can control the virulence traits of the pathogens, so as a result, the host immune system can quickly eliminate bacteria. Thus, the aims of this review article were presenting a brief explanation of the research reports on the natural and synthetic QSIs of P. aeruginosa, and the assessment of the current understanding on the QS mechanisms and various QQ strategies in P. aeruginosa.
Collapse
Affiliation(s)
- Fatemeh Hemmati
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Reza Ghotaslou
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran.,Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Nouri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Khan F, Javaid A, Kim YM. Functional Diversity of Quorum Sensing Receptors in Pathogenic Bacteria: Interspecies, Intraspecies and Interkingdom Level. Curr Drug Targets 2020; 20:655-667. [PMID: 30468123 DOI: 10.2174/1389450120666181123123333] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 01/17/2023]
Abstract
The formation of biofilm by pathogenic bacteria is considered as one of the most powerful mechanisms/modes of resistance against the action of several antibiotics. Biofilm is formed as a structural adherent over the surfaces of host, food and equipments etc. and is further functionally coordinated by certain chemicals produced itself. These chemicals are known as quorum sensing (QS) signaling molecules and are involved in the cross talk at interspecies, intraspecies and interkingdom levels thus resulting in the production of virulence factors leading to pathogenesis. Bacteria possess receptors to sense these chemicals, which interact with the incoming QS molecules. It is followed by the secretion of virulence molecules, regulation of bioluminescence, biofilm formation, antibiotic resistance development and motility behavioral responses. In the natural environment, different bacterial species (Gram-positive and Gram-negative) produce QS signaling molecules that are structurally and functionally different. Recent and past research shows that various antagonistic molecules (naturally and chemically synthesized) are characterized to inhibit the formation of biofilm and attenuation of bacterial virulence by blocking the QS receptors. This review article describes about the diverse QS receptors at their structural, functional and production levels. Thus, by blocking these receptors with inhibitory molecules can be a potential therapeutic approach to control pathogenesis. Furthermore, these receptors can also be used as a structural platform to screen the most potent inhibitors with the help of bioinformatics approaches.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea.,Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, U.P, India
| | - Aqib Javaid
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, U.P, India
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea.,Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
9
|
Cai M, Wang X, Chen Y, Dai L. Oxidative lactonization of diethylene glycol to high-value-added product 1,4-dioxan-2-one promoted by a highly efficacious and selective catalyst ZnO-ZnCr2O4. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Zaytseva YV, Sidorov AV, Marakaev OA, Khmel IA. Plant-Microbial Interactions Involving Quorum Sensing Regulation. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719040131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Xu X, Wang S, Gao F, Li J, Zheng L, Sun C, He C, Wang Z, Qu L. Marine microplastic-associated bacterial community succession in response to geography, exposure time, and plastic type in China's coastal seawaters. MARINE POLLUTION BULLETIN 2019; 145:278-286. [PMID: 31590788 DOI: 10.1016/j.marpolbul.2019.05.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 06/10/2023]
Abstract
Microplastics have emerged as new pollutants in oceans. Nevertheless, information of the long-term variations in the composition of plastic-associated microbial communities in coastal waters remains limited. This study applied high-throughput sequencing to investigate the successional stages of microbial communities attached to polypropylene and polyvinyl chloride microplastics exposed for one year in the coastal seawater of China. The composition of plastisphere microbial communities varied remarkably across geographical locations and exposure times. The dominant bacteria in the plastisphere were affiliated with the Alphaproteobacteria class, particularly Rhodobacteraceae, followed by the Gammaproteobacteria class. Scanning electron microscopy analysis revealed that the microplastics showed signs of degradation. Microbial communities showed adaptations to plastisphere including more diverse microbial community and greater "xenobiotics biodegradation and metabolism" in metabolic pathway analysis. The findings elucidate the long-term changes in the community composition of microorganisms that colonize microplastics and expand the understanding of plastisphere microbial communities present in the marine environment.
Collapse
Affiliation(s)
- Xiyuan Xu
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Shuai Wang
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Fenglei Gao
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jingxi Li
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Li Zheng
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Chengjun Sun
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Changfei He
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zongxing Wang
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Lingyun Qu
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|
12
|
Manner S, Fallarero A. Screening of Natural Product Derivatives Identifies Two Structurally Related Flavonoids as Potent Quorum Sensing Inhibitors against Gram-Negative Bacteria. Int J Mol Sci 2018; 19:ijms19051346. [PMID: 29751512 PMCID: PMC5983823 DOI: 10.3390/ijms19051346] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 01/14/2023] Open
Abstract
Owing to the failure of conventional antibiotics in biofilm control, alternative approaches are urgently needed. Inhibition of quorum sensing (QS) represents an attractive target since it is involved in several processes essential for biofilm formation. In this study, a compound library of natural product derivatives (n = 3040) was screened for anti-quorum sensing activity using Chromobacterium violaceum as reporter bacteria. Screening assays, based on QS-mediated violacein production and viability, were performed in parallel to identify non-bactericidal QS inhibitors (QSIs). Nine highly active QSIs were identified, while 328 compounds were classified as moderately actives and 2062 compounds as inactives. Re-testing of the highly actives at a lower concentration against C. violaceum, complemented by a literature search, led to the identification of two flavonoid derivatives as the most potent QSIs, and their impact on biofilm maturation in Escherichia coli and Pseudomonas aeruginosa was further investigated. Finally, effects of these leads on swimming and swarming motility of P. aeruginosa were quantified. The identified flavonoids affected all the studied QS-related functions at micromolar concentrations. These compounds can serve as starting points for further optimization and development of more potent QSIs as adjunctive agents used with antibiotics in the treatment of biofilms.
Collapse
Affiliation(s)
- Suvi Manner
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, FI-20520 Turku, Finland.
| | - Adyary Fallarero
- Pharmaceutical Design and Discovery (PharmDD), Pharmaceutical Biology, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, FI-00014 Helsinki, Finland.
| |
Collapse
|
13
|
Zhang R, Vivanco JM, Shen Q. The unseen rhizosphere root-soil-microbe interactions for crop production. Curr Opin Microbiol 2017; 37:8-14. [PMID: 28433932 DOI: 10.1016/j.mib.2017.03.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/22/2017] [Indexed: 02/03/2023]
Abstract
The underground root-soil-microbe interactions are extremely complex, but vitally important for aboveground plant growth, health and fitness. The pressure to reduce our reliance on agrochemicals, and sustainable efforts to develop agriculture makes rhizosphere interactions' research a hotspot. Recent advances provide new insights about the signals, pathways, functions and mechanisms of these interactions. In this review, we provide an overview about recent progress in rhizosphere interaction networks in crops. We also discuss a holistic view of the root-soil-rhizomicrobiome interactions achieved through the advances of omics and bioinformatics technologies, and the potential strategies to manage the complex rhizosphere interactions for enhancing crop production.
Collapse
Affiliation(s)
- Ruifu Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jorge M Vivanco
- Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, CO 80523, United States
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
14
|
Affiliation(s)
- Marie Larousse
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Eric Galiana
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| |
Collapse
|
15
|
Lillicrap A, Macken A, Wennberg AC, Grung M, Rundberget JT, Fredriksen L, Scheie AA, Benneche T, d'Auriac MA. Environmental fate and effects of novel quorum sensing inhibitors that can control biofilm formation. CHEMOSPHERE 2016; 164:52-58. [PMID: 27574814 DOI: 10.1016/j.chemosphere.2016.08.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/05/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
The formation of bacterial biofilms can have negative impacts on industrial processes and are typically difficult to control. The increase of antibiotic resistance, in combination with the requirement for more environmentally focused approaches, has placed pressure on industry and the scientific community to reassess biofilm control strategies. The discovery of bacterial quorum sensing, as an important mechanism in biofilm formation, has led to the development of new substances (such as halogenated thiophenones) to inhibit the quorum sensing process. However, there are currently limited data regarding the biodegradability or ecotoxicity of these substances. To assess the environmental fate and effects of thiophenones capable of quorum sensing inhibition, candidate substances were first identified that have potentially high biodegradability and low ecotoxicity using quantitative structure activity relationships. Subsequent confirmatory hazard assessment of these substances, using a marine alga and a marine crustacean, indicated that these estimates were significantly under predicted with acute toxicity values more than three orders of magnitude lower than anticipated combined with limited biodegradability. Therefore, although these quorum sensing inhibitors appear a promising approach to control biofilms, they may also have environmental impacts on certain aquatic organisms.
Collapse
Affiliation(s)
- Adam Lillicrap
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.
| | - Ailbhe Macken
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.
| | | | - Merete Grung
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.
| | | | - Lene Fredriksen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.
| | - Anne Aamdal Scheie
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | - Tore Benneche
- Department of Chemistry, Faculty of Chemistry, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
16
|
Rosa B, Victor T, Ricardo VR, Alfredo M, Octavio A. Anti-biofilm activity of ibuprofen and diclofenac against some biofilm producing Escherichia coli and Klebsiella pneumoniae uropathogens. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajmr2016.8039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Polymicrobial–Host Interactions during Infection. J Mol Biol 2016; 428:3355-71. [DOI: 10.1016/j.jmb.2016.05.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 02/08/2023]
|
18
|
Pishchik VN, Vorob’ev NI, Provorov NA, Khomyakov YV. Mechanisms of plant and microbial adaptation to heavy metals in plant–microbial systems. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716030097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Roger Anderson O. Marine and estuarine natural microbial biofilms: ecological and biogeochemical dimensions. AIMS Microbiol 2016. [DOI: 10.3934/microbiol.2016.3.304] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
20
|
Kaneti G, Meir O, Mor A. Controlling bacterial infections by inhibiting proton-dependent processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:995-1003. [PMID: 26522076 DOI: 10.1016/j.bbamem.2015.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 12/15/2022]
Abstract
Bacterial resistance to antibiotics is recognized as one of the greatest threats in modern healthcare, taking a staggering toll worldwide. New approaches for controlling bacterial infections must be designed, eventually combining multiple strategies for complimentary therapies. This review explores an old/new paradigm for multi-targeted antibacterial therapy, focused at disturbing bacterial cytoplasmic membrane functions at sub minimal inhibitory concentrations, namely through superficial physical alterations of the bilayer, thereby perturbing transmembrane signals transduction. Such a paradigm may have the advantage of fighting the infection while avoiding many of the known resistance mechanisms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.
Collapse
Affiliation(s)
- Galoz Kaneti
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ohad Meir
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Amram Mor
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
21
|
Interspecific diversity reduces and functionally substitutes for intraspecific variation in biofilm communities. ISME JOURNAL 2015; 10:846-57. [PMID: 26405829 DOI: 10.1038/ismej.2015.159] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 11/08/2022]
Abstract
Diversity has a key role in the dynamics and resilience of communities and both interspecific (species) and intraspecific (genotypic) diversity can have important effects on community structure and function. However, a critical and unresolved question for understanding the ecology of a community is to what extent these two levels of diversity are functionally substitutable? Here we show, for a mixed-species biofilm community composed of Pseudomonas aeruginosa, P. protegens and Klebsiella pneumoniae, that increased interspecific diversity reduces and functionally substitutes for intraspecific diversity in mediating tolerance to stress. Biofilm populations generated high percentages of genotypic variants, which were largely absent in biofilm communities. Biofilms with either high intra- or interspecific diversity were more tolerant to SDS stress than biofilms with no or low diversity. Unexpectedly, genotypic variants decreased the tolerance of biofilm communities when experimentally introduced into the communities. For example, substituting P. protegens wild type with its genotypic variant within biofilm communities decreased SDS tolerance by twofold, apparently due to perturbation of interspecific interactions. A decrease in variant frequency was also observed when biofilm populations were exposed to cell-free effluents from another species, suggesting that extracellular factors have a role in selection against the appearance of intraspecific variants. This work demonstrates the functional substitution of inter- and intraspecific diversity for an emergent property of biofilms. It also provides a potential explanation for a long-standing paradox in microbiology, in which morphotypic variants are common in laboratory grown biofilm populations, but are rare in diverse, environmental biofilm communities.
Collapse
|
22
|
Chemical composition and disruption of quorum sensing signaling in geographically diverse United States propolis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:472593. [PMID: 25960752 PMCID: PMC4413979 DOI: 10.1155/2015/472593] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/12/2015] [Accepted: 03/25/2015] [Indexed: 12/02/2022]
Abstract
Propolis or bee glue has been used for centuries for various purposes and is especially important in human health due to many of its biological and pharmacological properties. In this work we showed quorum sensing inhibitory (QSI) activity of ten geographically distinct propolis samples from the United States using the acyl-homoserine lactone- (AHL-) dependent Chromobacterium violaceum strain CV026. Based on GC-MS chemical profiling the propolis samples can be classified into several groups that are as follows: (1) rich in cinnamic acid derivatives, (2) rich in flavonoids, and (3) rich in triterpenes. An in-depth analysis of the propolis from North Carolina led to the isolation and identification of a triterpenic acid that was recently isolated from Hondurian propolis (Central America) and ethyl ether of p-coumaric alcohol not previously identified in bee propolis. QSI activity was also observed in the second group US propolis samples which contained the flavonoid pinocembrin in addition to other flavonoid compounds. The discovery of compounds that are involved in QSI activity has the potential to facilitate studies that may lead to the development of antivirulence therapies that can be complementary and/or alternative treatments against antibiotic resistant bacterial pathogens and/or emerging pathogens that have yet to be identified.
Collapse
|
23
|
Helman Y, Chernin L. Silencing the mob: disrupting quorum sensing as a means to fight plant disease. MOLECULAR PLANT PATHOLOGY 2015; 16:316-29. [PMID: 25113857 PMCID: PMC6638422 DOI: 10.1111/mpp.12180] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bacteria are able to sense their population's density through a cell-cell communication system, termed 'quorum sensing' (QS). This system regulates gene expression in response to cell density through the constant production and detection of signalling molecules. These molecules commonly act as auto-inducers through the up-regulation of their own synthesis. Many pathogenic bacteria, including those of plants, rely on this communication system for infection of their hosts. The finding that the countering of QS-disrupting mechanisms exists in many prokaryotic and eukaryotic organisms offers a promising novel method to fight disease. During the last decade, several approaches have been proposed to disrupt QS pathways of phytopathogens, and hence to reduce their virulence. Such studies have had varied success in vivo, but most lend promising support to the idea that QS manipulation could be a potentially effective method to reduce bacterial-mediated plant disease. This review discusses the various QS-disrupting mechanisms found in both bacteria and plants, as well as the different approaches applied artificially to interfere with QS pathways and thus protect plant health.
Collapse
Affiliation(s)
- Yael Helman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
24
|
Diblasi L, Arrighi F, Silva J, Bardón A, Cartagena E. Penicillium communemetabolic profile as a promising source of antipathogenic natural products. Nat Prod Res 2015; 29:2181-7. [DOI: 10.1080/14786419.2015.1007457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Götz-Rösch C, Sieper T, Fekete A, Schmitt-Kopplin P, Hartmann A, Schröder P. Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean. FRONTIERS IN PLANT SCIENCE 2015; 6:205. [PMID: 25914699 PMCID: PMC4392610 DOI: 10.3389/fpls.2015.00205] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/15/2015] [Indexed: 05/22/2023]
Abstract
Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS). N-acyl-homoserine lactones (AHLs) are the QS signaling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signaling and AHL-dependent gene expression in plants has been confirmed, the responses of enzyme activities in the eukaryotic host upon AHLs are unknown. Since AHL are thought to be used as so-called plant boosters or strengthening agents, which might change their resistance toward radiation and/or xenobiotic stress, we have examined the plants' pigment status and their antioxidative and detoxifying capacities upon AHL treatment. Because the yield of a crop plant should not be negatively influenced, we have also checked for growth and root parameters. We investigated the influence of three different AHLs, namely N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL), and N-decanoyl- homoserine lactone (C10-HSL) on two agricultural crop plants. The AHL-effects on Hordeum vulgare (L.) as an example of a monocotyledonous crop and on the tropical leguminous crop plant Pachyrhizus erosus (L.) were compared. While plant growth and pigment contents in both plants showed only small responses to the applied AHLs, AHL treatment triggered tissue- and compound-specific changes in the activity of important detoxification enzymes. The activity of dehydroascorbate reductase in barley shoots after C10-HSL treatment for instance increased up to 384% of control plant levels, whereas superoxide dismutase activity in barley roots was decreased down to 23% of control levels upon C6-HSL treatment. Other detoxification enzymes reacted similarly within this range, with interesting clusters of positive or negative answers toward AHL treatment. In general the changes on the enzyme level were more severe in barley than in yam bean which might be due to the different abilities of the plants to degrade AHLs to metabolites such as the hydroxy- or keto-form of the original compound.
Collapse
Affiliation(s)
- Christine Götz-Rösch
- Research Unit Environmental Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, NeuherbergGermany
| | - Tina Sieper
- Research Unit Environmental Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, NeuherbergGermany
| | - Agnes Fekete
- Research Unit Environmental Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, NeuherbergGermany
| | - Philippe Schmitt-Kopplin
- Research Unit Environmental Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, NeuherbergGermany
| | - Anton Hartmann
- Research Unit Environmental Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, NeuherbergGermany
| | - Peter Schröder
- Research Unit Environmental Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, NeuherbergGermany
- *Correspondence: Peter Schröder, Research Unit Environmental Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| |
Collapse
|
26
|
Kalia VC, Wood TK, Kumar P. Evolution of resistance to quorum-sensing inhibitors. MICROBIAL ECOLOGY 2014; 68:13-23. [PMID: 24194099 PMCID: PMC4012018 DOI: 10.1007/s00248-013-0316-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/14/2013] [Indexed: 05/23/2023]
Abstract
The major cause of mortality and morbidity in human beings is bacterial infection. Bacteria have developed resistance to most of the antibiotics primarily due to large-scale and "indiscriminate" usage. The need is to develop novel mechanisms to treat bacterial infections. The expression of pathogenicity during bacterial infections is mediated by a cell density-dependent phenomenon known as quorum sensing (QS). A wide array of QS systems (QSS) is operative in expressing the virulent behavior of bacterial pathogens. Each QSS may be mediated largely by a few major signals along with others produced in minuscule quantities. Efforts to target signal molecules and their receptors have proved effective in alleviating the virulent behavior of such pathogenic bacteria. These QS inhibitors (QSIs) have been reported to be effective in influencing the pathogenicity without affecting bacterial growth. However, evidence is accumulating that bacteria may develop resistance to QSIs. The big question is whether QSIs will meet the same fate as antibiotics.
Collapse
Affiliation(s)
- Vipin C Kalia
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi, 110007, India,
| | | | | |
Collapse
|
27
|
Liaqat I, Bachmann RT, Edyvean RGJ. Type 2 quorum sensing monitoring, inhibition and biofilm formation in marine microrganisms. Curr Microbiol 2013; 68:342-51. [PMID: 24166155 DOI: 10.1007/s00284-013-0484-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 09/11/2013] [Indexed: 12/11/2022]
Abstract
The quorum sensing (QS) dependent behaviour of micro-organisms, in particular expression of virulence genes, biofilm formation and dispersal, have provided impetus for investigating practical approaches to interfere with microbial QS. This study tests Halomonas pacifica and Marinobacter hydrocarbonoclasticus, two halophilic marine micro-organism, for their AI-2 dependent QS signalling and the effect of two well-known quorum-sensing inhibitors (QSIs), patulin and penicillic acid, on biofilm formation. We report, for the first time, the successful amplification of a putative luxS gene in H. pacifica using degenerated primers and AI-2 dependent QS as well as inhibition using QSIs. Penicillic acid had a strong inhibitory effect on AI-2 induction of H. pacifica at non-growth inhibitory concentrations, while patulin has an adverse effect only at the highest concentration (25 μM). QSIs effect on biofilm forming capability was isolate specific, with maximum inhibition at 25 μM of patulin in H. pacifica. In M. hydrocarbonoclasticus, no adverse effects were noted at any tested concentration of either QSIs. Detection of bioluminescence and the presence of a putative luxS gene provide biochemical and genetic evidence for the production of a signalling molecule(s) which is the essential first step in characterizing H. pacifica QS. This study highlights the importance of AI-2 dependent QS in a marine setting, not previously reported. It further suggests that QSI compounds must be selected in the specific system in which they are to function, and they cannot easily be transferred from one QS system to another.
Collapse
Affiliation(s)
- Iram Liaqat
- Department of Zoology, Government College University, Lahore, Pakistan,
| | | | | |
Collapse
|
28
|
Erken M, Lutz C, McDougald D. The rise of pathogens: predation as a factor driving the evolution of human pathogens in the environment. MICROBIAL ECOLOGY 2013; 65:860-8. [PMID: 23354181 PMCID: PMC3637895 DOI: 10.1007/s00248-013-0189-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 01/14/2013] [Indexed: 05/08/2023]
Abstract
Bacteria in the environment must survive predation from bacteriophage, heterotrophic protists, and predatory bacteria. This selective pressure has resulted in the evolution of a variety of defense mechanisms, which can also function as virulence factors. Here we discuss the potential dual function of some of the mechanisms, which protect against heterotrophic protists, and how predation pressure leads to the evolution of pathogenicity. This is in accordance with the coincidental evolution hypothesis, which suggests that virulence factors arose as a response to other selective pressures, for example, predation rather than for virulence per se. In this review we discuss some of those environmental factors that may be associated with the rise of pathogens in the marine environment. In particular, we will discuss the role of heterotrophic protists in the evolution of virulence factors in marine bacteria. Finally, we will discuss the implications for expansion of current pathogens and emergence of new pathogens.
Collapse
Affiliation(s)
- Martina Erken
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, New South Wales 2052 Australia
| | - Carla Lutz
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, New South Wales 2052 Australia
| | - Diane McDougald
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, New South Wales 2052 Australia
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, School of Biological Sciences, Nanyang Technological University, Nanyang Avenue, Singapore, 637551 Singapore
| |
Collapse
|
29
|
Quorum sensing inhibitors: An overview. Biotechnol Adv 2013; 31:224-45. [DOI: 10.1016/j.biotechadv.2012.10.004] [Citation(s) in RCA: 474] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/24/2012] [Accepted: 10/30/2012] [Indexed: 12/28/2022]
|
30
|
Synthesis of cembranoid analogues and evaluation of their potential as quorum sensing inhibitors. Bioorg Med Chem 2013. [DOI: 10.1016/j.bmc.2012.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
More PG, Karale NN, Lawand AS, Rajmane SV, Pawar SV, Patil RH. A 4-(o-methoxyphenyl)-2-aminothiazole: an anti-quorum sensing compound. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0291-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
32
|
Truchado P, Giménez-Bastida JA, Larrosa M, Castro-Ibáñez I, Espín JC, Tomás-Barberán FA, García-Conesa MT, Allende A. Inhibition of quorum sensing (QS) in Yersinia enterocolitica by an orange extract rich in glycosylated flavanones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8885-8894. [PMID: 22533445 DOI: 10.1021/jf301365a] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Flavanones, flavonoids abundant in Citrus , have been shown to interfere with quorum sensing (QS) and affect related physiological processes. We have investigated the QS-inhibitory effects of an orange extract enriched in O-glycosylated flavanones (mainly naringin, neohesperidin, and hesperidin). The QS-inhibitory capacity of this extract and its main flavanone components was first screened using the bacteriological monitoring system Chromobacterium violaceum . We next examined the ability of the orange extract and of some of the flavanones to (i) reduce the levels of the QS mediators produced by Y. enterocolitica using HPLC-MS/MS, (ii) inhibit biofilm formation, and (iii) inhibit swimming and swarming motility. Additionally, we evaluated changes in the expression of specific genes involved in the synthesis of the lactones (yenI, yenR) and in the flagellar regulon (flhDC, fleB, fliA) by RT-PCR. The results showed that the orange extract and its main flavanone components inhibited QS in C. violaceum, diminished the levels of lactones secreted by Y. enterocolitica to the media, and decreased QS-associated biofilm maturation without affecting bacterial growth. Among the tested compounds, naringin was found to inhibit swimming motility. Exposure to the orange extract and (or) to naringin was also found to be associated with induction of the transcription levels of yenR, flhDC, and fliA. This work shows the in vitro QS-inhibitory effects of an orange extract enriched in flavanones against a human enteropathogen at doses that can be achieved through the diet and suggests that consumption of these natural extracts may have a beneficial antipathogenic effect.
Collapse
Affiliation(s)
- Pilar Truchado
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Genin S, Denny TP. Pathogenomics of the Ralstonia solanacearum species complex. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:67-89. [PMID: 22559068 DOI: 10.1146/annurev-phyto-081211-173000] [Citation(s) in RCA: 347] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ralstonia solanacearum is a major phytopathogen that attacks many crops and other plants over a broad geographical range. The extensive genetic diversity of strains responsible for the various bacterial wilt diseases has in recent years led to the concept of an R. solanacearum species complex. Genome sequencing of more than 10 strains representative of the main phylogenetic groups has broadened our knowledge of the evolution and speciation of this pathogen and led to the identification of novel virulence-associated functions. Comparative genomic analyses are now opening the way for refined functional studies. The many molecular determinants involved in pathogenicity and host-range specificity are described, and we also summarize current understanding of their roles in pathogenesis and how their expression is tightly controlled by an intricate virulence regulatory network.
Collapse
Affiliation(s)
- Stéphane Genin
- INRA, Laboratoire des Interactions Plantes-Microorganismes, UMR441, F-31326 Castanet-Tolosan, France.
| | | |
Collapse
|
34
|
Bulman Z, Le P, Hudson AO, Savka MA. A novel property of propolis (bee glue): anti-pathogenic activity by inhibition of N-acyl-homoserine lactone mediated signaling in bacteria. JOURNAL OF ETHNOPHARMACOLOGY 2011; 138:788-797. [PMID: 22063726 DOI: 10.1016/j.jep.2011.10.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/24/2011] [Accepted: 10/23/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE An alternative approach to antibiotics is the development of anti-pathogenic agents to control the bacterial virulome. Such anti-pathogenic agents could target a phenomena known as quorum sensing (QS). MATERIALS AND METHODS Six bacterial N-acyl-homoserine lactone (AHL)-dependent bioreporter strains were used to evaluate if bee hive glue also known as propolis contains constituents capable of inhibiting QS-controlled AHL signaling. In addition, the effect of propolis on the QS-dependent swarming motility was evaluated with the opportunisitic pathogen, Pseudomonas aeruginosa. RESULTS Differences in the propolis tincture samples were identified by physiochemical profiles and absorption spectra. Propolis tinctures at 0.0005% (v/v) that do not affect bacteria biosensor growth or the reporter system monitored were exposed to biosensors with and without the addition an AHL. No AHL signal mimics were found to be present in the propolis tinctures. However, when propolis and an inducer AHL signal were together exposed to five Escherichia coli and a Chromobacterium violaceum biosensor, propolis disrupted the QS bacterial signaling system in liquid- and agar-based bioassays and in C(18) reverse-phase thin-layer plate assays. Swarming motility in the opportunistic pathogen, Pseudomonas aeruginosa PAO1 and its AHL-dependent LasR- and RhlR-based QS behaviors were also inhibited by propolis. CONCLUSIONS Together, we present evidence that propolis contain compounds that suppress QS responses. In this regard, anti-pathogenic compounds from bee harvested propolis could be identified and isolated and thus will be valuable for the further development of therapeutics to disrupt QS signaling systems which regulate the virulome in many pathogenic bacteria.
Collapse
Affiliation(s)
- Zackery Bulman
- Molecular Bioscience and Biotechnology Program, School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | | | | | | |
Collapse
|
35
|
Stowe SD, Richards JJ, Tucker AT, Thompson R, Melander C, Cavanagh J. Anti-biofilm compounds derived from marine sponges. Mar Drugs 2011; 9:2010-2035. [PMID: 22073007 PMCID: PMC3210616 DOI: 10.3390/md9102010] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 09/24/2011] [Accepted: 10/12/2011] [Indexed: 12/16/2022] Open
Abstract
Bacterial biofilms are surface-attached communities of microorganisms that are protected by an extracellular matrix of biomolecules. In the biofilm state, bacteria are significantly more resistant to external assault, including attack by antibiotics. In their native environment, bacterial biofilms underpin costly biofouling that wreaks havoc on shipping, utilities, and offshore industry. Within a host environment, they are insensitive to antiseptics and basic host immune responses. It is estimated that up to 80% of all microbial infections are biofilm-based. Biofilm infections of indwelling medical devices are of particular concern, since once the device is colonized, infection is almost impossible to eliminate. Given the prominence of biofilms in infectious diseases, there is a notable effort towards developing small, synthetically available molecules that will modulate bacterial biofilm development and maintenance. Here, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms specifically through non-microbicidal mechanisms. Importantly, we discuss several sets of compounds derived from marine sponges that we are developing in our labs to address the persistent biofilm problem. We will discuss: discovery/synthesis of natural products and their analogues—including our marine sponge-derived compounds and initial adjuvant activity and toxicological screening of our novel anti-biofilm compounds.
Collapse
Affiliation(s)
- Sean D. Stowe
- Department of Molecular & Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; E-Mails: (S.D.S.); (A.T.T.); (R.T.)
| | - Justin J. Richards
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA; E-Mails: (J.J.R.); (C.M.)
| | - Ashley T. Tucker
- Department of Molecular & Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; E-Mails: (S.D.S.); (A.T.T.); (R.T.)
| | - Richele Thompson
- Department of Molecular & Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; E-Mails: (S.D.S.); (A.T.T.); (R.T.)
| | - Christian Melander
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA; E-Mails: (J.J.R.); (C.M.)
| | - John Cavanagh
- Department of Molecular & Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; E-Mails: (S.D.S.); (A.T.T.); (R.T.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-919-513-4349; Fax: +1-919-515-2047
| |
Collapse
|
36
|
Steinberg PD, Rice SA, Campbell AH, McDougald D, Harder T. Interfaces Between Bacterial and Eukaryotic "Neuroecology". Integr Comp Biol 2011; 51:794-806. [DOI: 10.1093/icb/icr115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
37
|
Vandeputte OM, Kiendrebeogo M, Rasamiravaka T, Stévigny C, Duez P, Rajaonson S, Diallo B, Mol A, Baucher M, El Jaziri M. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology (Reading) 2011; 157:2120-2132. [DOI: 10.1099/mic.0.049338-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Preliminary screening of the Malagasy plant Combretum albiflorum for compounds attenuating the production of quorum sensing (QS)-controlled virulence factors in bacteria led to the identification of active fractions containing flavonoids. In the present study, several flavonoids belonging to the flavone, flavanone, flavonol and chalcone structural groups were screened for their capacity to reduce the production of QS-controlled factors in the opportunistic pathogen Pseudomonas aeruginosa (strain PAO1). Flavanones (i.e. naringenin, eriodictyol and taxifolin) significantly reduced the production of pyocyanin and elastase in P. aeruginosa without affecting bacterial growth. Consistently, naringenin and taxifolin reduced the expression of several QS-controlled genes (i.e. lasI, lasR, rhlI, rhlR, lasA, lasB, phzA1 and rhlA) in P. aeruginosa PAO1. Naringenin also dramatically reduced the production of the acylhomoserine lactones N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) and N-butanoyl-l-homoserine lactone (C4-HSL), which is driven by the lasI and rhlI gene products, respectively. In addition, using mutant strains deficient for autoinduction (ΔlasI and ΔrhlI) and LasR- and RhlR-based biosensors, it was shown that QS inhibition by naringenin not only is the consequence of a reduced production of autoinduction compounds but also results from a defect in the proper functioning of the RlhR–C4-HSL complex. Widely distributed in the plant kingdom, flavonoids are known for their numerous and determinant roles in plant physiology, plant development and in the success of plant–rhizobia interactions, but, as shown here, some of them also have a role as inhibitors of the virulence of pathogenic bacteria by interfering with QS mechanisms.
Collapse
Affiliation(s)
- Olivier M. Vandeputte
- Plant Biotechnology Unit, BioVallée, rue Adrienne Bolland 8, B-6041 Gosselies, Belgium
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Martin Kiendrebeogo
- Laboratoire de Biochimie et de Chimie Appliquées, Université de Ouagadougou, 09 BP 848 Ouagadougou 09, Burkina Faso
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Tsiry Rasamiravaka
- Laboratoire de Physiologie Végétale, Université d'Antananarivo, BP 906 Antananarivo 101, Madagascar
| | - Caroline Stévigny
- Laboratoire de Pharmacognosie, de Bromatologie et de Nutrition Humaine, Université Libre de Bruxelles, CP 205/9, Boulevard du Triomphe, B-1050 Brussels, Belgium
| | - Pierre Duez
- Laboratoire de Pharmacognosie, de Bromatologie et de Nutrition Humaine, Université Libre de Bruxelles, CP 205/9, Boulevard du Triomphe, B-1050 Brussels, Belgium
| | - Sanda Rajaonson
- Laboratoire de Physiologie Végétale, Université d'Antananarivo, BP 906 Antananarivo 101, Madagascar
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Billo Diallo
- Plant Biotechnology Unit, BioVallée, rue Adrienne Bolland 8, B-6041 Gosselies, Belgium
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Adeline Mol
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Marie Baucher
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Mondher El Jaziri
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| |
Collapse
|
38
|
Yang Q, Han Y, Zhang XH. Detection of quorum sensing signal molecules in the family Vibrionaceae. J Appl Microbiol 2011; 110:1438-48. [PMID: 21395950 DOI: 10.1111/j.1365-2672.2011.04998.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS The aim of this study was to detect the production of three kinds of quorum sensing (QS) signal molecules, i.e. the N-acyl-homoserine lactone (AHL), the autoinducer-2 (AI-2) and the cholerae autoinducer-1-like (CAI-1-like) molecules in 25 Vibrionaceae strains. METHODS AND RESULTS The QS signal molecules in 25 Vibrionaceae strains were detected with different biosensors. Except Salinivibrio costicola VIB288 and Vibrio natriegens VIB299, all the other 23 Vibrionaceae strains could produce one or more kinds of detectable QS signal molecules. Twenty-one of the 25 strains were found to produce AHL signal molecules by using Vibrio harveyi JMH612 and Agrobacterium tumefaciens KYC55 (pJZ372; pJZ384; pJZ410) as biosensors. The AHL fingerprints of eight strains were detected by thin-layer chromatography with Ag. tumefaciens KYC55, and two of them, i.e. V. mediterranei VIB296 and Aliivibrio logei VIB414 had a high diversity of AHLs. Twenty of the 25 strains were found to have the AI-2 activity, and the luxS gene sequences in 18 strains were proved to be conserved by PCR amplification and sequencing. Only six (five Vibrio strains and A. logei VIB414) of the 25 strains possessed the CAI-1-like activity. A. logei VIB414, V. campbellii VIB285, V. furnissii VIB293, V. pomeroyi LMG20537 and two V. harveyi strains VIB571 and VIB645 were found to produce all the three kinds of QS signal molecules. CONCLUSIONS The results indicated that the QS signal molecules, especially AHL and AI-2 molecules, were widespread in the family Vibrionaceae. SIGNIFICANCE AND IMPACT OF THE STUDY In response to a variety of environmental conditions and selection forces, the family Vibrionaceae produced QS signal molecules with great diversity and complexity. The knowledge we obtained from this study will be useful for further research on the roles of different QS signal molecules in this family.
Collapse
Affiliation(s)
- Q Yang
- Key Laboratory of Marine Genetics and Breeding for Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | | | | |
Collapse
|
39
|
Kwan JC, Meickle T, Ladwa D, Teplitski M, Paul V, Luesch H. Lyngbyoic acid, a "tagged" fatty acid from a marine cyanobacterium, disrupts quorum sensing in Pseudomonas aeruginosa. MOLECULAR BIOSYSTEMS 2011; 7:1205-16. [PMID: 21258753 DOI: 10.1039/c0mb00180e] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Quorum sensing (QS) is a mechanism of bacterial gene regulation in response to increases in population density. Perhaps most studied are QS pathways mediated by acylhomoserine lactones (AHLs) in Gram-negative bacteria. Production of small molecule QS signals, their accumulation within a diffusion-limited environment and their binding to a LuxR-type receptor trigger QS-controlled gene regulatory cascades. In Pseudomonas aeruginosa, for example, binding of AHLs to their cognate receptors (LasR, RhlR) controls production of virulence factors, pigments, antibiotics and other behaviors important for its interactions with eukaryotic hosts and other bacteria. We have previously shown that marine cyanobacteria produce QS-inhibitory molecules, including 8-epi-malyngamide C (1), malyngamide C (2) and malyngolide (3). Here we isolated a new small cyclopropane-containing fatty acid, lyngbyoic acid (4), as a major metabolite of the marine cyanobacterium, Lyngbya cf. majuscula, collected at various sites in Florida. We screened 4 against four reporters based on different AHL receptors (LuxR, AhyR, TraR and LasR) and found that 4 most strongly affected LasR. We also show that 4 reduces pyocyanin and elastase (LasB) both on the protein and transcript level in wild-type P. aeruginosa, and that 4 directly inhibits LasB enzymatic activity. Conversely, dodecanoic acid (9) increased pyocyanin and LasB, demonstrating that the fused cyclopropane "tag" is functionally relevant and potentially confers resistance to β-oxidation. Global transcriptional effects of 4 in some ways replicate the gene expression changes of P. aeruginosa during chronic lung infections of cystic fibrosis patients, with reduced lasR signaling, increased biofilm and expression of the virulence locus HSI-I. Compound 4 may therefore prove to be a useful tool in the study of P. aeruginosa adaption during such chronic infections.
Collapse
Affiliation(s)
- Jason Christopher Kwan
- Department of Medicinal Chemistry, University of Florida, 1600 SW Archer Road, Gainesville, Florida 32610, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Decho AW, Frey RL, Ferry JL. Chemical challenges to bacterial AHL signaling in the environment. Chem Rev 2010; 111:86-99. [PMID: 21142012 DOI: 10.1021/cr100311q] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alan W Decho
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, USA.
| | | | | |
Collapse
|
41
|
Abstract
Bioactive natural products often possess uniquely functionalized structures with unusual modes of action; however, the natural product itself is not always the active species. We discuss molecules that draw on protecting group chemistry or else require activation to unmask reactive centers, illustrating that nature is not only a source of complex structures but also a guide for elegant chemical transformations which provides ingenious chemical solutions for drug delivery.
Collapse
Affiliation(s)
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA
| |
Collapse
|
42
|
Smith JL, Fratamico PM, Yan X. Eavesdropping by bacteria: the role of SdiA in Escherichia coli and Salmonella enterica serovar Typhimurium quorum sensing. Foodborne Pathog Dis 2010; 8:169-78. [PMID: 21034261 DOI: 10.1089/fpd.2010.0651] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many gram-negative bacteria utilize N-acyl-L-homoserine lactones (AHLs) to bind to transcriptional regulators leading to activation or repression of target genes. Escherichia coli and Salmonella enterica do not synthesize AHLs but do contain the AHL receptor, SdiA. Studies reveal that SdiA can bind AHLs produced by other bacterial species and thereby allow E. coli and S. enterica to regulate gene transcription. The Salmonella sdiA gene regulates the rck gene, which mediates Salmonella adhesion and invasion of epithelial cells and the resistance of the organism to complement. In E. coli, there is some evidence that SdiA may regulate genes associated with acid resistance, virulence, motility, biofilm formation, and autoinducer-2 transport and processing. However, there is a lack of information concerning the role of SdiA in regulating growth and survival of E. coli and Salmonella in food environments, and therefore studies in this area are needed.
Collapse
Affiliation(s)
- James L Smith
- Microbial Food Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Eastern Regional Research Center, Wyndmoor, PA 19038, USA.
| | | | | |
Collapse
|
43
|
Kwan JC, Teplitski M, Gunasekera SP, Paul VJ, Luesch H. Isolation and biological evaluation of 8-epi-malyngamide C from the Floridian marine cyanobacterium Lyngbya majuscula. JOURNAL OF NATURAL PRODUCTS 2010; 73:463-6. [PMID: 20166701 PMCID: PMC2846190 DOI: 10.1021/np900614n] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A new stereoisomer of malyngamide C, 8-epi-malyngamide C (1), and the known compound lyngbic acid [(4E,7S)-7-methoxytetradec-4-enoic acid] were isolated from a sample of Lyngbya majuscula collected near Bush Key, Dry Tortugas, Florida. The structure of 1 was determined by NMR and MS experiments. The absolute configuration of 1 was determined by selective Mitsunobu inversion of C-8 to give malyngamide C, as determined by NMR, MS, and comparison of specific rotation. Both 1 and malyngamide C were found to be cytotoxic to HT29 colon cancer cells (IC(50) 15.4 and 5.2 microM, respectively) and to inhibit bacterial quorum sensing in a reporter gene assay.
Collapse
Affiliation(s)
| | | | | | | | - Hendrik Luesch
- Corresponding author: Tel: (352) 273-7738. Fax: (352) 273-7741.
| |
Collapse
|
44
|
Choudhary S, Schmidt-Dannert C. Applications of quorum sensing in biotechnology. Appl Microbiol Biotechnol 2010; 86:1267-79. [PMID: 20306190 DOI: 10.1007/s00253-010-2521-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 01/24/2023]
Abstract
Many unicellular microorganisms use small signaling molecules to determine their local concentration. The processes involved in the production and recognition of these signals are collectively known as quorum sensing (QS). This form of cell-cell communication is used by unicellular microorganisms to co-ordinate their activities, which allows them to function as multi-cellular systems. Recently, several groups have demonstrated artificial intra-species and inter-species communication through synthetic circuits which incorporate components of bacterial QS systems. Engineered QS-based circuits have a wide range of applications such as production of biochemicals, tissue engineering, and mixed-species fermentations. They are also highly useful in designing microbial biosensors to identify bacterial species present in the environment and within living organisms. In this review, we first provide an overview of bacterial QS systems and the mechanisms developed by bacteria and higher organisms to obstruct QS communications. Next, we describe the different ways in which researchers have designed QS-based circuits and their applications in biotechnology. Finally, disruption of quorum sensing is discussed as a viable strategy for preventing the formation of harmful biofilms in membrane bioreactors and marine transportation.
Collapse
Affiliation(s)
- Swati Choudhary
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 140 Gortner Laboratory, St. Paul, MN 55108, USA
| | | |
Collapse
|
45
|
Decho AW, Norman RS, Visscher PT. Quorum sensing in natural environments: emerging views from microbial mats. Trends Microbiol 2010; 18:73-80. [PMID: 20060299 DOI: 10.1016/j.tim.2009.12.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 12/09/2009] [Accepted: 12/11/2009] [Indexed: 12/29/2022]
Abstract
Much laboratory-based information exists on quorum sensing, a type of bacterial cell-to-cell communication that depends upon exchanges of molecular signals between neighboring cells. However, little is known about how this and other microbial sensing systems operate in nature. Geochemical and biological modifications of signals probably occur in extracellular environments, and these could disrupt intended communication if signals are no longer recognized. However, as we discuss here, signal alterations might result in other outcomes: if a modified signal is able to interact with a different receptor then further environmental information can be gained by the receiving cells. We also postulate that quorum sensing occurs within cell clusters, where signal dispersion might be significantly influenced by extracellular polymers. As a model system to discuss these points we use microbial mats - highly-structured biofilm communities living under sharply-defined, fluctuating geochemical gradients.
Collapse
Affiliation(s)
- Alan W Decho
- The Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA.
| | | | | |
Collapse
|
46
|
Proteome of Gluconacetobacter diazotrophicus co-cultivated with sugarcane plantlets. J Proteomics 2009; 73:917-31. [PMID: 20026003 DOI: 10.1016/j.jprot.2009.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 11/04/2009] [Accepted: 12/08/2009] [Indexed: 11/20/2022]
Abstract
Gluconacetobacter diazotrophicus is a micro-aerobic bacterium able to fix atmospheric nitrogen in endophytic mode. A proteomic approach was used to analyze proteins differentially expressed in the presence and absence of sugarcane plantlets. Two-dimensional gel electrophoresis (2-DE) showed 42 spots with altered levels of expression. Analysis of these spots by matrix-assisted laser desorption ionization time-of-flight in tandem (MALDI-TOF-TOF) identified 38 proteins. Differentially expressed proteins were associated with carbohydrate and energy metabolism, folding, sorting and degradation processes, and transcription and translation. Among proteins expressed in co-cultivated bacteria, four belong to membrane systems; others, like a transcription elongation factor (GreA), a 60 kDa chaperonin (GroEL), and an outer membrane lipoprotein (Omp16) have also been described in other plant-bacteria associations, indicating a common protein expression pattern as a result of symbiosis. A high protein content of 60kDa chaperonin isoforms was detected as non-differentially expressed proteins of the bacteria proteome. These results allow the assessment of the physiological significance of specific proteins to G. diazotrophicus metabolism and to the pathways involved in bacteria-host endophytic interaction.
Collapse
|
47
|
Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 2009; 76:243-53. [PMID: 19854927 DOI: 10.1128/aem.01059-09] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Quorum-sensing (QS) regulates the production of key virulence factors in Pseudomonas aeruginosa and other important pathogenic bacteria. In this report, extracts of leaves and bark of Combretum albiflorum (Tul.) Jongkind (Combretaceae) were found to quench the production of QS-dependent factors in P. aeruginosa PAO1. Chromatographic fractionation of the crude active extract generated several active fractions containing flavonoids, as shown by their typical spectral features. Purification and structural characterization of one of the active compounds led to the identification of the flavan-3-ol catechin [(2R,3S)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-1(2H)-benzopyran-3,5,7-triol]. The identity of catechin as one of the active molecules was confirmed by comparing the high-pressure liquid chromatography profiles and the mass spectrometry spectra obtained for a catechin standard and for the active C. albiflorum fraction. Moreover, standard catechin had a significant negative effect on pyocyanin and elastase productions and biofilm formation, as well as on the expression of the QS-regulated genes lasB and rhlA and of the key QS regulatory genes lasI, lasR, rhlI, and rhlR. The use of RhlR- and LasR-based biosensors indicated that catechin might interfere with the perception of the QS signal N-butanoyl-l-homoserine lactone by RhlR, thereby leading to a reduction of the production of QS factors. Hence, catechin, along with other flavonoids produced by higher plants, might constitute a first line of defense against pathogenic attacks by affecting QS mechanisms and thereby virulence factor production.
Collapse
|
48
|
Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 2009; 73:407-50, Table of Contents. [PMID: 19721085 PMCID: PMC2738137 DOI: 10.1128/mmbr.00014-09] [Citation(s) in RCA: 437] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Streptococci readily colonize mucosal tissues in the nasopharynx; the respiratory, gastrointestinal, and genitourinary tracts; and the skin. Each ecological niche presents a series of challenges to successful colonization with which streptococci have to contend. Some species exist in equilibrium with their host, neither stimulating nor submitting to immune defenses mounted against them. Most are either opportunistic or true pathogens responsible for diseases such as pharyngitis, tooth decay, necrotizing fasciitis, infective endocarditis, and meningitis. Part of the success of streptococci as colonizers is attributable to the spectrum of proteins expressed on their surfaces. Adhesins enable interactions with salivary, serum, and extracellular matrix components; host cells; and other microbes. This is the essential first step to colonization, the development of complex communities, and possible invasion of host tissues. The majority of streptococcal adhesins are anchored to the cell wall via a C-terminal LPxTz motif. Other proteins may be surface anchored through N-terminal lipid modifications, while the mechanism of cell wall associations for others remains unclear. Collectively, these surface-bound proteins provide Streptococcus species with a "coat of many colors," enabling multiple intimate contacts and interplays between the bacterial cell and the host. In vitro and in vivo studies have demonstrated direct roles for many streptococcal adhesins as colonization or virulence factors, making them attractive targets for therapeutic and preventive strategies against streptococcal infections. There is, therefore, much focus on applying increasingly advanced molecular techniques to determine the precise structures and functions of these proteins, and their regulatory pathways, so that more targeted approaches can be developed.
Collapse
Affiliation(s)
- Angela H Nobbs
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, United Kingdom
| | | | | |
Collapse
|
49
|
Abstract
Marine diatoms rose to prominence about 100 million years ago and today generate most of the organic matter that serves as food for life in the sea. They exist in a dilute world where compounds essential for growth are recycled and shared, and they greatly influence global climate, atmospheric carbon dioxide concentration and marine ecosystem function. How these essential organisms will respond to the rapidly changing conditions in today's oceans is critical for the health of the environment and is being uncovered by studies of their genomes.
Collapse
Affiliation(s)
- E Virginia Armbrust
- School of Oceanography, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
50
|
Schertzer JW, Boulette ML, Whiteley M. More than a signal: non-signaling properties of quorum sensing molecules. Trends Microbiol 2009; 17:189-95. [PMID: 19375323 DOI: 10.1016/j.tim.2009.02.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/12/2009] [Accepted: 02/23/2009] [Indexed: 01/12/2023]
Abstract
Quorum sensing in bacteria serves as an example of the adaptation of single-celled organisms to engage in cooperative group behaviors. This phenomenon is much more widespread than originally thought, with many different species 'speaking' through various secreted small molecules. Despite some variation in signaling molecules, the principles of quorum sensing are conserved across a wide range of organisms. Small molecules, secreted into the environment, are detected by neighbors who respond by altering gene expression and, as a consequence, behavior. However, it is not known whether these systems evolved specifically for this purpose, or even if their role is exclusive to information trafficking. Rather, clues exist that many quorum sensing molecules function as more than just signals. Here, we discuss non-signaling roles for quorum sensing molecules in such important processes as nutrient scavenging, ultrastructure modification and competition.
Collapse
Affiliation(s)
- Jeffrey W Schertzer
- Section of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|