1
|
Wang S, Xu K, Du W, Gao X, Ma P, Yang X, Chen M. Exposure to environmental doses of DEHP causes phenotypes of polycystic ovary syndrome. Toxicology 2024; 509:153952. [PMID: 39265699 DOI: 10.1016/j.tox.2024.153952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Globally, approximately 6-20 % of women who are of reproductive age suffer from polycystic ovary syndrome (PCOS), with environmental factors believed to be significant contributors. Di-2-ethylhexyl phthalate (DEHP) is known to be an endocrine disruptor, and is also suspected of being associated with the occurrence of PCOS, but in vivo studies to verify this association are lacking. In this study, female SD rats were exposed to DEHP at levels of 0.1, 1.0, and 10 mg/kg/d, which are comparable to daily human exposure, to explore its potential role in the development of PCOS. The findings indicated that DEHP exposure reduced ovarian and uterine coefficients, decreased accumulation of primordial follicles, increased the prevalence of atretic and cystic follicles and fibrosis in ovarian tissues, altered serum hormone levels, elevated blood glucose levels and insulin resistance, disrupted the endocrine system and resulted in significant oxidative damage in the ovarian tissues. These results imply that DEHP exposure may cause lesions resembling PCOS to develop. By analyzing the differential expression of the proteome, and using GO and KEGG enrichment analyses, we found they were mainly enriched in the metabolic pathway and in the PPAR signaling pathway. We confirmed that activation of the PPARγ signaling pathway caused by DEHP exposure, is related to the emergence of PCOS-like lesions. This research provides direct in vivo experimental evidence for the association between DEHP exposure and PCOS.
Collapse
Affiliation(s)
- Shuxin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Ke Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Wanting Du
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Xiao Gao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Ping Ma
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xu Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China; Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China.
| |
Collapse
|
2
|
Adeleke VT, Ebenezer O, Lasich M, Tuszynski J, Robertson S, Mugo SM. Design and Optimization of Molecularly Imprinted Polymer Targeting Epinephrine Molecule: A Theoretical Approach. Polymers (Basel) 2024; 16:2341. [PMID: 39204561 PMCID: PMC11359759 DOI: 10.3390/polym16162341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Molecularly imprinted polymers (MIPs) are a growing highlight in polymer chemistry. They are chemically and thermally stable, may be used in a variety of environments, and fulfill a wide range of applications. Computer-aided studies of MIPs often involve the use of computational techniques to design, analyze, and optimize the production of MIPs. Limited information is available on the computational study of interactions between the epinephrine (EPI) MIP and its target molecule. A rational design for EPI-MIP preparation was performed in this study. First, density functional theory (DFT) and molecular dynamic (MD) simulation were used for the screening of functional monomers suitable for the design of MIPs of EPI in the presence of a crosslinker and a solvent environment. Among the tested functional monomers, acrylic acid (AA) was the most appropriate monomer for EPI-MIP formulation. The trends observed for five out of six DFT functionals assessed confirmed AA as the suitable monomer. The theoretical optimal molar ratio was 1:4 EPI:AA in the presence of ethylene glycol dimethacrylate (EGDMA) and acetonitrile. The effect of temperature was analyzed at this ratio of EPI:AA on mean square displacement, X-ray diffraction, density distribution, specific volume, radius of gyration, and equilibrium energies. The stability observed for all these parameters is much better, ranging from 338 to 353 K. This temperature may determine the processing and operating temperature range of EPI-MIP development using AA as a functional monomer. For cost-effectiveness and to reduce time used to prepare MIPs in the laboratory, these results could serve as a useful template for designing and developing EPI-MIPs.
Collapse
Affiliation(s)
- Victoria T. Adeleke
- Thermodynamics-Materials-Separations Research Group, Department of Chemical Engineering, Mangosuthu University of Technology, Umlazi 4031, South Africa;
| | - Oluwakemi Ebenezer
- Department of Physics, University of Alberta, Edmonton, AB T6G 2R3, Canada; (O.E.); (J.T.)
| | - Madison Lasich
- Thermodynamics-Materials-Separations Research Group, Department of Chemical Engineering, Mangosuthu University of Technology, Umlazi 4031, South Africa;
| | - Jack Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2R3, Canada; (O.E.); (J.T.)
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10128 Torino, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
| | - Scott Robertson
- Department of Physical Sciences, MacEwan University, Edmonton, AB T5J 4S2, Canada; (S.R.); (S.M.M.)
| | - Samuel M. Mugo
- Department of Physical Sciences, MacEwan University, Edmonton, AB T5J 4S2, Canada; (S.R.); (S.M.M.)
| |
Collapse
|
3
|
Ramajayam K, Ganesan S, Ramesh P, Beena M, Kokulnathan T, Palaniappan A. Molecularly Imprinted Polymer-Based Biomimetic Systems for Sensing Environmental Contaminants, Biomarkers, and Bioimaging Applications. Biomimetics (Basel) 2023; 8:245. [PMID: 37366840 DOI: 10.3390/biomimetics8020245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/20/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Molecularly imprinted polymers (MIPs), a biomimetic artificial receptor system inspired by the human body's antibody-antigen reactions, have gained significant attraction in the area of sensor development applications, especially in the areas of medical, pharmaceutical, food quality control, and the environment. MIPs are found to enhance the sensitivity and specificity of typical optical and electrochemical sensors severalfold with their precise binding to the analytes of choice. In this review, different polymerization chemistries, strategies used in the synthesis of MIPs, and various factors influencing the imprinting parameters to achieve high-performing MIPs are explained in depth. This review also highlights the recent developments in the field, such as MIP-based nanocomposites through nanoscale imprinting, MIP-based thin layers through surface imprinting, and other latest advancements in the sensor field. Furthermore, the role of MIPs in enhancing the sensitivity and specificity of sensors, especially optical and electrochemical sensors, is elaborated. In the later part of the review, applications of MIP-based optical and electrochemical sensors for the detection of biomarkers, enzymes, bacteria, viruses, and various emerging micropollutants like pharmaceutical drugs, pesticides, and heavy metal ions are discussed in detail. Finally, MIP's role in bioimaging applications is elucidated with a critical assessment of the future research directions for MIP-based biomimetic systems.
Collapse
Affiliation(s)
- Kalaipriya Ramajayam
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Selvaganapathy Ganesan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Purnimajayasree Ramesh
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Maya Beena
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Arunkumar Palaniappan
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
4
|
Lin Y, Xu W, Yang L, Chen Z, Zhai J, Zhu Q, Guo Z, Wang N, Zhang C, Deng H, Wang S, Yang G. Mechanism of testicular injury induced by Di-ethylhexyl phthalate and its protective agents. Chem Biol Interact 2023; 381:110575. [PMID: 37257576 DOI: 10.1016/j.cbi.2023.110575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/02/2023]
Abstract
Di-ethylhexyl phthalate (DEHP) is used as an important plasticizer in a wide range of products such as paints, food packaging, medical devices and children's toys. In recent years, there has been increasing interest in the toxic effects of DEHP on the male reproductive organs, the testicles. Here, we reviewed the basic pathways of testicular damage caused by DEHP. The mechanism involves oxidative stress, ferroptosis, interfering with hypothalamic-pituitary-gonadal axis (HPGA) and testosterone level. We summarized the protective agents that have been shown to be effective in repairing this type of testicular damage in recent years. This provides a new perspective and direction for future research into the health effects and molecular mechanisms of DEHP.
Collapse
Affiliation(s)
- Yuxuan Lin
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Wenqi Xu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Ling Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Zhengguo Chen
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Jianan Zhai
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Qi Zhu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Zhifang Guo
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Shaopeng Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China.
| |
Collapse
|
5
|
Application of Molecularly Imprinted Electrochemical Biomimetic Sensors for Detecting Small Molecule Food Contaminants. Polymers (Basel) 2022; 15:polym15010187. [PMID: 36616536 PMCID: PMC9824611 DOI: 10.3390/polym15010187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Environmental chemical contaminants in food seriously impact human health and food safety. Successful detection methods can effectively monitor the potential risk of emerging chemical contaminants. Among them, molecularly imprinted polymers (MIPs) based on electrochemical biomimetic sensors overcome many drawbacks of conventional detection methods and offer opportunities to detect contaminants with simple equipment in an efficient, sensitive, and low-cost manner. We searched eligible papers through the Web of Science (2000-2022) and PubMed databases. Then, we introduced the sensing mechanism of MIPs, outlined the sample preparation methods, and summarized the MIP characterization and performance. The classification of electrochemistry, as well as its advantages and disadvantages, are also discussed. Furthermore, the representative application of MIP-based electrochemical biomimetic sensors for detecting small molecular chemical contaminants, such as antibiotics, pesticides, toxins, food additives, illegal additions, organic pollutants, and heavy metal ions in food, is demonstrated. Finally, the conclusions and future perspectives are summarized and discussed.
Collapse
|
6
|
A Critical Review on the Use of Molecular Imprinting for Trace Heavy Metal and Micropollutant Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10080296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Molecular recognition has been described as the “ultimate” form of sensing and plays a fundamental role in biological processes. There is a move towards biomimetic recognition elements to overcome inherent problems of natural receptors such as limited stability, high-cost, and variation in response. In recent years, several alternatives have emerged which have found their first commercial applications. In this review, we focus on molecularly imprinted polymers (MIPs) since they present an attractive alternative due to recent breakthroughs in polymer science and nanotechnology. For example, innovative solid-phase synthesis methods can produce MIPs with sometimes greater affinities than natural receptors. Although industry and environmental agencies require sensors for continuous monitoring, the regulatory barrier for employing MIP-based sensors is still low for environmental applications. Despite this, there are currently no sensors in this area, which is likely due to low profitability and the need for new legislation to promote the development of MIP-based sensors for pollutant and heavy metal monitoring. The increased demand for point-of-use devices and home testing kits is driving an exponential growth in biosensor production, leading to an expected market value of over GPB 25 billion by 2023. A key requirement of point-of-use devices is portability, since the test must be conducted at “the time and place” to pinpoint sources of contamination in food and/or water samples. Therefore, this review will focus on MIP-based sensors for monitoring pollutants and heavy metals by critically evaluating relevant literature sources from 1993 to 2022.
Collapse
|
7
|
Arabkhani S, Pourmoslemi S, Larki Harchegani A. Rapid determination of metanil yellow in turmeric using a molecularly imprinted polymer dispersive solid-phase extraction and visible light spectrophotometry. Food Chem 2022; 380:132120. [PMID: 35077985 DOI: 10.1016/j.foodchem.2022.132120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 11/04/2022]
Abstract
The present study aimed to develop a sensitive and available method for determining metanil yellow (MY) as an adulterating agent in food samples. Solid-phase extraction was chosen for pre-concentrating metanil yellow prior to its determination using a validated UV-spectrophotometric method. The precipitation polymerization method was applied to synthesize a range of molecularly imprinted polymers (MIPs) for selective extraction of MY. Polymers were characterized by SEM and FTIR and investigated for MY extraction through batch rebinding experiments. The extraction process was optimized in the term of pH, time, capacity, and the desorbing solvent. Results of this study showed the critical role of template/functional monomer ratio in the preparation of the MIPs. The developed MIP solid-phase extraction/UV-spectrophotometric method was employed for determining MY in spiked samples and showed 88.10-92.76% recovery for turmeric samples containing 0.1-10 mg/kg MY. The developed method was shown selective for MY in the presence of another azo dye.
Collapse
Affiliation(s)
- Sahar Arabkhani
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shabnam Pourmoslemi
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amir Larki Harchegani
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Wang H, Huang C, Ma S, Bo C, Ou J, Gong B. Recent advances of restricted access molecularly imprinted materials and their applications in food and biological samples analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Ma J, Zhang Y, Sun H, Ding P, Chen DW. Fabrication of human serum albumin–imprinted photothermal nanoparticle for enhanced immunotherapy. J Mater Chem B 2022; 10:4226-4241. [DOI: 10.1039/d2tb00396a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal nanoparticles have been confirmed to induce antitumor immune response and turn “cold tumor” into “hot tumor”. However, their delivery efficacy to tumors is limited by the elimination from the...
Collapse
|
10
|
Pourtaghi A, Mohammadinejad A, Asgharian Rezaee M, Saberi MR, Motamedshariaty VS, Mohajeri SA. Application of molecularly imprinted solid‐phase extraction coupled with liquid chromatography method for detection of penicillin G in pasteurised milk samples. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Abbas Pourtaghi
- Department of Toxicology and Pharmacology, School of Pharmacy Kerman University of Medical Sciences KermanIran
| | - Arash Mohammadinejad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences MashhadIran
| | - Mitra Asgharian Rezaee
- Department of Toxicology and Pharmacology, School of Pharmacy Kerman University of Medical Sciences KermanIran
- Pharmaceutical Research Center, Institute of Neuropharmacology Kerman University of Medical Sciences KermanIran
| | - Mohammad Reza Saberi
- Department of Medical Chemistry, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Vahideh Sadat Motamedshariaty
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences MashhadIran
| |
Collapse
|
11
|
Hoji A, Muhammad T, Wubulikasimu M, Imerhasan M, Li H, Aimaiti Z, Peng X. Syntheses of BODIPY-incorporated polymer nanoparticles with strong fluorescence and water compatibility. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Díaz de León-Martínez L, Meléndez-Marmolejo J, Vargas-Berrones K, Flores-Ramírez R. Synthesis and Evaluation of Molecularly Imprinted Polymers for the Determination of Di(2-ethylhexyl) Phthalate (DEHP) in Water Samples. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:806-812. [PMID: 33057741 DOI: 10.1007/s00128-020-03023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/06/2020] [Indexed: 05/14/2023]
Abstract
A molecularly imprinted polymer for the selective determination of Di(2-ethylhexyl) phthalate (DEHP) in water was synthesized and evaluated. This was accomplished by the use of sodium methacrylate as the monomer, toluene as a porogen, ethylene glycol dimethacrylate as a crosslinker, azobisisobutyronitrile as initiator and DEHP as a template molecule to generate the selectivity of the polymer for the compound, as well as synthesizing non-imprinted polymers. Three different polymerization approaches were used, emulsion, bulk and co-precipitation, the polymers obtained by emulsion presented a high retention rate reaching 99%. The method was able to pre-concentrate DEHP in water samples up to 250 times. To evaluate the applicability of the method, concentrations in fortified and bottled water were assessed using our polymer and determining DEHP concentrations by gas chromatography with mass spectrometry. Reported concentrations in bottled water were 12.1 µg/L, well above reference values established by the U.S. Environmental Protection Agency.
Collapse
Affiliation(s)
- Lorena Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Jessica Meléndez-Marmolejo
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Karla Vargas-Berrones
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Rogelio Flores-Ramírez
- CONACYT, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
13
|
Ermolaeva TN, Farafonova OV, Chernyshova VN, Zyablov AN, Tarasova NV. A Piezoelectric Sensor Based on Nanoparticles of Ractopamine Molecularly Imprinted Polymers. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820100068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Ahmadi H, Javanbakht M, Akbari-adergani B, Shabanian M. β-cyclodextrin based hydrophilic thin layer molecularly imprinted membrane with di(2-ethylhexyl) phthalate selective removal ability. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Orowitz TE, Ana Sombo PPAA, Rahayu D, Hasanah AN. Microsphere Polymers in Molecular Imprinting: Current and Future Perspectives. Molecules 2020; 25:molecules25143256. [PMID: 32708849 PMCID: PMC7397203 DOI: 10.3390/molecules25143256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022] Open
Abstract
Molecularly imprinted polymers (MIPs) are specific crosslinked polymers that exhibit binding sites for template molecules. MIPs have been developed in various application areas of biology and chemistry; however, MIPs have some problems, including an irregular material shape. In recent years, studies have been conducted to overcome this drawback, with the synthesis of uniform microsphere MIPs or molecularly imprinted microspheres (MIMs). The polymer microsphere is limited to a minimum size of 5 nm and a molecular weight of 10,000 Da. This review describes the methods used to produce MIMs, such as precipitation polymerisation, controlled/'Living' radical precipitation polymerisation (CRPP), Pickering emulsion polymerisation and suspension polymerisation. In addition, some green chemistry aspects and future perspectives will also be given.
Collapse
|
16
|
Zhang H. Molecularly Imprinted Nanoparticles for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1806328. [PMID: 31090976 DOI: 10.1002/adma.201806328] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Molecularly imprinted polymers (MIPs) are synthetic receptors with tailor-made recognition sites for target molecules. Their high affinity and selectivity, excellent stability, easy preparation, and low cost make them promising substitutes to biological receptors in many applications where molecular recognition is important. In particular, spherical MIP nanoparticles (or nanoMIPs) with diameters typically below 200 nm have drawn great attention because of their high surface-area-to-volume ratio, easy removal of templates, rapid binding kinetics, good dispersion and handling ability, undemanding functionalization and surface modification, and their high compatibility with various nanodevices and in vivo biomedical applications. Recent years have witnessed significant progress made in the preparation of advanced functional nanoMIPs, which has eventually led to the rapid expansion of the MIP applications from the traditional separation and catalysis fields to the burgeoning biomedical areas. Here, a comprehensive overview of key recent advances made in the preparation of nanoMIPs and their important biomedical applications (including immunoassays, drug delivery, bioimaging, and biomimetic nanomedicine) is presented. The pros and cons of each synthetic strategy for nanoMIPs and their biomedical applications are discussed and the present challenges and future perspectives of the biomedical applications of nanoMIPs are also highlighted.
Collapse
Affiliation(s)
- Huiqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
17
|
Włoch M, Datta J. Synthesis and polymerisation techniques of molecularly imprinted polymers. COMPREHENSIVE ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/bs.coac.2019.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Liu W, Zhu X, Yang X, Li K, Yang Z. Preparation of highly cross-linked hydrophilic porous microspheres poly(N
,N
′-methylenebisacrylamide) and poly(N
,N
′-methylenebisacrylamide-co
-acrylic acid) with an application on the removal of cadmium. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wei Liu
- Tianjin Polytechnic University; State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes; Tianjin 300387 China
- Tianjin Polytechnic University; School of Environmental and Chemical Engineering; Tianjin 300387 China
- Tianjin Colouroad Coatings & Chemicals Co. Ltd.; Tianjin 300457 China
| | - Xiaolian Zhu
- Tianjin Polytechnic University; School of Environmental and Chemical Engineering; Tianjin 300387 China
| | - Xinlin Yang
- Nankai University; Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300071 China
| | - Ke Li
- Tianjin Polytechnic University; School of Environmental and Chemical Engineering; Tianjin 300387 China
| | - Zupeng Yang
- Tianjin Polytechnic University; School of Environmental and Chemical Engineering; Tianjin 300387 China
| |
Collapse
|
19
|
Pei Y, Fan F, Wang X, Feng W, Hou Y, Pei Z. Fabrication of Hypericin Imprinted Polymer Nanospheres via Thiol-Yne Click Reaction. Polymers (Basel) 2017; 9:E469. [PMID: 30965772 PMCID: PMC6418589 DOI: 10.3390/polym9100469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 01/18/2023] Open
Abstract
To fabricate molecularly imprinted polymer nanospheres via click reaction, five different clickable compounds were synthesized and two types of click reactions (azide-alkyne and thiol-yne) were explored. It was found that molecularly imprinted polymer nanospheres could be successfully synthesized via thiol-yne click reaction using 3,5-diethynyl-pyridine (1) as the monomer, tris(3-mercaptopropionate) (tri-thiol, 5) as the crosslinker, and hypericin as the template (MIP⁻NSHs). The click polymerization completed in merely 4 h to produce the desired MIP⁻NSHs, which were characterized by FTIR, SEM, DLS, and BET, respectively. The reaction conditions for adsorption capacity and selectivity towards hypericin were optimized, and the MIP⁻NSHs synthesized under the optimized conditions showed a high adsorption capacity (Q = 6.03 μmol•g-1) towards hypericin. The imprinting factors of MIP⁻NSHs towards hypericin, protohypericin, and emodin were 2.44, 2.88, and 2.10, respectively.
Collapse
Affiliation(s)
- Yuxin Pei
- Shanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Fengfeng Fan
- Shanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xinxin Wang
- Shanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Weiwei Feng
- Shanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yong Hou
- Shanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Zhichao Pei
- Shanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
20
|
Ji W, Wang T, Liu W, Liu F, Guo L, Geng Y, Wang X. Water-compatible micron-sized monodisperse molecularly imprinted beads for selective extraction of five iridoid glycosides from Cornus officinalis fructus. J Chromatogr A 2017; 1504:1-8. [DOI: 10.1016/j.chroma.2017.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
|
21
|
Solid phase extraction using molecular imprinted polymers for phthalate determination in water and wine samples by HPLC-ESI-MS. Microchem J 2017. [DOI: 10.1016/j.microc.2017.02.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Rapid and sensitive determination of tartrazine using a molecularly imprinted copolymer modified carbon electrode (MIP-PmDB/PoPD-GCE). J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.12.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Roland RM, Bhawani SA. Synthesis and Characterization of Molecular Imprinting Polymer Microspheres of Piperine: Extraction of Piperine from Spiked Urine. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2016; 2016:5671507. [PMID: 28018704 PMCID: PMC5150118 DOI: 10.1155/2016/5671507] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/18/2016] [Indexed: 05/26/2023]
Abstract
Molecularly imprinted polymer (MIP) microspheres for Piperine were synthesized by precipitation polymerization with a noncovalent approach. In this research Piperine was used as a template, acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, and 2,2'-azobisisobutyronitrile (AIBN) as an initiator and acetonitrile as a solvent. The imprinted and nonimprinted polymer particles were characterized by using Fourier transform infrared spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). The synthesized polymer particles were further evaluated for their rebinding efficiency by batch binding assay. The highly selected imprinted polymer for Piperine was MIP 3 with a composition (molar ratio) of 0.5 : 3 : 8, template : monomer : cross-linker, respectively. The MIP 3 exhibits highest binding capacity (84.94%) as compared to other imprinted and nonimprinted polymers. The extraction efficiency of highly selected imprinted polymer of Piperine from spiked urine was above 80%.
Collapse
Affiliation(s)
- Rachel Marcella Roland
- Department of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
| | - Showkat Ahmad Bhawani
- Department of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
24
|
Zhang H, Zhao S, Zhang L, Han B, Yao X, Chen W, Hu Y. Preparation of ellagic acid molecularly imprinted polymeric microspheres based on distillation-precipitation polymerization for the efficient purification of a crude extract. J Sep Sci 2016; 39:3098-104. [PMID: 27311588 DOI: 10.1002/jssc.201600355] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/05/2016] [Accepted: 06/06/2016] [Indexed: 01/12/2023]
Abstract
Molecularly imprinted polymeric microspheres with a high recognition ability toward the template molecule, ellagic acid, were synthesized based on distillation-precipitation polymerization. The as-obtained polymers were characterized by scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. Static, dynamic, and selective binding tests were adopted to study the binding properties and the molecular recognition ability of the prepared polymers for ellagic acid. The results indicated that the maximum static adsorption capacity of the prepared polymers toward ellagic acid was 37.07 mg/g and the adsorption equilibrium time was about 100 min when the concentration of ellagic acid was 40 mg/mL. Molecularly imprinted polymeric microspheres were also highly selective toward ellagic acid compared with its analogue quercetin. It was found that the content of ellagic acid in the pomegranate peel extract was enhanced from 23 to 86% after such molecularly imprinted solid-phase extraction process. This work provides an efficient way for effective separation and enrichment of ellagic acid from complex matrix, which is especially valuable in industrial production.
Collapse
Affiliation(s)
- Hua Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Shangge Zhao
- Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Lu Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Xincheng Yao
- Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Wen Chen
- Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Yanli Hu
- Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| |
Collapse
|
25
|
Khalilian F, Ahmadian S. Molecularly imprinted polymer on a SiO2-coated graphene oxide surface for the fast and selective dispersive solid-phase extraction of Carbamazepine from biological samples. J Sep Sci 2016; 39:1500-8. [DOI: 10.1002/jssc.201501392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Faezeh Khalilian
- Department of Chemistry, College of Basic Science, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch; Islamic Azad University; Tehran Iran
| | - Setareh Ahmadian
- Department of Chemistry, College of Basic Science, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch; Islamic Azad University; Tehran Iran
| |
Collapse
|
26
|
Zahedi P, Ziaee M, Abdouss M, Farazin A, Mizaikoff B. Biomacromolecule template-based molecularly imprinted polymers with an emphasis on their synthesis strategies: a review. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3754] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering; University of Tehran; PO Box 11155-4563 Tehran Iran
| | - Morteza Ziaee
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering; University of Tehran; PO Box 11155-4563 Tehran Iran
| | - Majid Abdouss
- Department of Chemistry; Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
| | - Alireza Farazin
- Department of Chemistry, Faculty of Science; University of Tehran; Tehran Iran
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry; University of Ulm; 89081 Ulm Germany
| |
Collapse
|
27
|
Pardeshi S, Singh SK. Precipitation polymerization: a versatile tool for preparing molecularly imprinted polymer beads for chromatography applications. RSC Adv 2016. [DOI: 10.1039/c6ra02784a] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Minireview on recent advances of application of MIPs prepared by precipitation polymerization for recognition of target analytes in complex matrices.
Collapse
Affiliation(s)
- Sushma Pardeshi
- Department of Forensic Chemistry
- Institute of Forensic Science
- Nagpur-440001
- India
| | - Sunit Kumar Singh
- Environmental Materials Division
- CSIR-National Environmental Engineering and Research Institute
- Nagpur-440020
- India
| |
Collapse
|
28
|
Benito-Peña E, Navarro-Villoslada F, Carrasco S, Jockusch S, Ottaviani MF, Moreno-Bondi MC. Experimental mixture design as a tool for the synthesis of antimicrobial selective molecularly imprinted monodisperse microbeads. ACS APPLIED MATERIALS & INTERFACES 2015; 7:10966-10976. [PMID: 25942541 DOI: 10.1021/acsami.5b02238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The effect of the cross-linker on the shape and size of molecular imprinted polymer (MIP) beads prepared by precipitation polymerization has been evaluated using a chemometric approach. Molecularly imprinted microspheres for the selective recognition of fluoroquinolone antimicrobials were prepared in a one-step precipitation polymerization procedure using enrofloxacin (ENR) as the template molecule, methacrylic acid as functional monomer, 2-hydroxyethyl methacrylate as hydrophilic comonomer, and acetonitrile as the porogen. The type and amount of cross-linker, namely ethylene glycol dimethacrylate, divinylbenzene or trimethylolpropane trimethacrylate, to obtain monodispersed MIP spherical beads in the micrometer range was optimized using a simplex lattice design. Particle size and morphology were assessed by scanning electron microscopy, dynamic light scattering, and nitrogen adsorption measurements. Electron paramagnetic resonance spectroscopy in conjunction with a nitroxide as spin probe revealed information about the microviscosity and polarity of the binding sites in imprinted and nonimprinted polymer beads.
Collapse
Affiliation(s)
- Elena Benito-Peña
- †Chemical Optosensors and Applied Photochemistry Group, Dept. of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense, E-28040 Madrid, Spain
| | - Fernando Navarro-Villoslada
- †Chemical Optosensors and Applied Photochemistry Group, Dept. of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense, E-28040 Madrid, Spain
| | - Sergio Carrasco
- †Chemical Optosensors and Applied Photochemistry Group, Dept. of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense, E-28040 Madrid, Spain
| | - Steffen Jockusch
- ‡Department of Chemistry, Columbia University, New York, 3000 Broadway, New York, New York 10027, United States
| | - M Francesca Ottaviani
- §Department of Earth, Life and Environment Sciences (DiSTeVA), Loc. Crocicchia, I 61029 Urbino, Italy
| | - Maria C Moreno-Bondi
- †Chemical Optosensors and Applied Photochemistry Group, Dept. of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense, E-28040 Madrid, Spain
| |
Collapse
|
29
|
Sun H, Lai JP, Chen F, Zhu DR. Molecularly imprinted microspheres synthesized by a simple, fast, and universal suspension polymerization for selective extraction of the topical anesthetic benzocaine in human serum and fish tissues. Anal Bioanal Chem 2015; 407:1745-52. [DOI: 10.1007/s00216-014-8420-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 11/27/2022]
|
30
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
31
|
Narula P, Kaur V, Singh R, Kansal SK. Development of molecularly imprinted microspheres for the fast uptake of 4-cumylphenol from water and soil samples. J Sep Sci 2014; 37:3330-8. [DOI: 10.1002/jssc.201400719] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/20/2014] [Accepted: 08/26/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Priyanka Narula
- Department of Chemistry; Panjab University; Chandigarh India
| | - Varinder Kaur
- Department of Chemistry; Panjab University; Chandigarh India
| | | | - Sushil Kumar Kansal
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology; Panjab University; Chandigarh India
| |
Collapse
|
32
|
Zia AI, Mukhopadhyay SC, Yu PL, Al-Bahadly IH, Gooneratne CP, Kosel JR. Rapid and molecular selective electrochemical sensing of phthalates in aqueous solution. Biosens Bioelectron 2014; 67:342-9. [PMID: 25218198 DOI: 10.1016/j.bios.2014.08.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
Reported research work presents real time non-invasive detection of phthalates in spiked aqueous samples by employing electrochemical impedance spectroscopy (EIS) technique incorporating a novel interdigital capacitive sensor with multiple sensing thin film gold micro-electrodes fabricated on native silicon dioxide layer grown on semiconducting single crystal silicon wafer. The sensing surface was functionalized by a self-assembled monolayer of 3-aminopropyltrietoxysilane (APTES) with embedded molecular imprinted polymer (MIP) to introduce selectivity for the di(2-ethylhexyl) phthalate (DEHP) molecule. Various concentrations (1-100 ppm) of DEHP in deionized MilliQ water were tested using the functionalized sensing surface to capture the analyte. Frequency response analyzer (FRA) algorithm was used to obtain impedance spectra so as to determine sample conductance and capacitance for evaluation of phthalate concentration in the sample solution. Spectrum analysis algorithm interpreted the experimentally obtained impedance spectra by applying complex nonlinear least square (CNLS) curve fitting in order to obtain electrochemical equivalent circuit and corresponding circuit parameters describing the kinetics of the electrochemical cell. Principal component analysis was applied to deduce the effects of surface immobilized molecular imprinted polymer layer on the evaluated circuit parameters and its electrical response. The results obtained by the testing system were validated using commercially available high performance liquid chromatography diode array detector system.
Collapse
Affiliation(s)
- Asif I Zia
- School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand; Department of Physics, COMSATS Institute of Information Technology, Islamabad, Pakistan.
| | | | - Pak-Lam Yu
- School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - I H Al-Bahadly
- School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Chinthaka P Gooneratne
- Sensing, Magnetism and Microsystems Group, King Abdullah University of Science and Technology, Saudi Arabia
| | - J Rgen Kosel
- Sensing, Magnetism and Microsystems Group, King Abdullah University of Science and Technology, Saudi Arabia
| |
Collapse
|
33
|
Seifi M, Hassanpour Moghadam M, Hadizadeh F, Ali-Asgari S, Aboli J, Mohajeri SA. Preparation and study of tramadol imprinted micro-and nanoparticles by precipitation polymerization: microwave irradiation and conventional heating method. Int J Pharm 2014; 471:37-44. [PMID: 24792981 DOI: 10.1016/j.ijpharm.2014.04.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
Abstract
In the present work a series of tramadole imprinted micro- and nanoparticles were prepared and study their recognition properties. Methacrylic acid (MAA), as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linker and different solvents (chloroform, toluene and acetonitrile (ACN)) were used for the preparation of molecularly imprinted polymers (MIPs) and non-imprinted polymers (NIPs). Several factors such as template/monomer molar ratio, volume of polymerization solvent, total monomers/solvent volume ratio, polymerization condition (heating or microwave irradiation) were also investigated. Particle size of the polymers, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), rebinding, selectivity tests and release study were applied for evaluation of the polymers. The optimized polymers with smaller particle size and superior binding properties were obtained in acetonitrile under heating method. MIPA4 with a size of 42.6 nm and a binding factor (BF) of 6.79 was selected for selectivity and release tests. The polymerization was not successful in acetonitrile and toluene under microwave irradiation. The MIPA4 could selectively adsorb tramadol, compared to imipramine, naltrexone and gabapentin. The data showed that tramadol release from MIPA4 was significantly slower than that of its non-imprinted polymer. Therefore, MIP nanoparticles with high selectivity, binding capacity and ability to control tramadol release could be obtained in precipitation polymerization with optimized condition.
Collapse
Affiliation(s)
- Mahmoud Seifi
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Maryam Hassanpour Moghadam
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safa Ali-Asgari
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Jafar Aboli
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
34
|
Lai JP, Chen F, Sun H, Fan L, Liu GL. Molecularly imprinted microspheres for the anticancer drug aminoglutethimide: Synthesis, characterization, and solid-phase extraction applications in human urine samples. J Sep Sci 2014; 37:1170-6. [DOI: 10.1002/jssc.201400008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Jia-Ping Lai
- School of Chemistry and Environment; South China Normal University; Guangzhou Guangdong China
| | - Fang Chen
- School of Chemistry and Environment; South China Normal University; Guangzhou Guangdong China
| | - Hui Sun
- College of Environmental Science and Engineering; Guangzhou University; Guangzhou Guangdong China
| | - Li Fan
- School of Chemistry and Environment; South China Normal University; Guangzhou Guangdong China
| | - Gui-Ling Liu
- School of Chemistry and Environment; South China Normal University; Guangzhou Guangdong China
| |
Collapse
|
35
|
Surface molecularly imprinted polymers with synthetic dummy template for simultaneously selective recognition of nine phthalate esters. J Chromatogr A 2014; 1330:6-13. [DOI: 10.1016/j.chroma.2014.01.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 12/15/2022]
|
36
|
Irshad M, Iqbal N, Mujahid A, Afzal A, Hussain T, Sharif A, Ahmad E, Athar MM. Molecularly Imprinted Nanomaterials for Sensor Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2013; 3:615-637. [PMID: 28348356 PMCID: PMC5304596 DOI: 10.3390/nano3040615] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/14/2013] [Accepted: 11/14/2013] [Indexed: 11/16/2022]
Abstract
Molecular imprinting is a well-established technology to mimic antibody-antigen interaction in a synthetic platform. Molecularly imprinted polymers and nanomaterials usually possess outstanding recognition capabilities. Imprinted nanostructured materials are characterized by their small sizes, large reactive surface area and, most importantly, with rapid and specific analysis of analytes due to the formation of template driven recognition cavities within the matrix. The excellent recognition and selectivity offered by this class of materials towards a target analyte have found applications in many areas, such as separation science, analysis of organic pollutants in water, environmental analysis of trace gases, chemical or biological sensors, biochemical assays, fabricating artificial receptors, nanotechnology, etc. We present here a concise overview and recent developments in nanostructured imprinted materials with respect to various sensor systems, e.g., electrochemical, optical and mass sensitive, etc. Finally, in light of recent studies, we conclude the article with future perspectives and foreseen applications of imprinted nanomaterials in chemical sensors.
Collapse
Affiliation(s)
- Muhammad Irshad
- Institute of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| | - Naseer Iqbal
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, Defence Road, Lahore 54000, Pakistan.
| | - Adnan Mujahid
- Institute of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| | - Adeel Afzal
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, Defence Road, Lahore 54000, Pakistan.
- Affiliated Colleges in Hafr Al-Batin, King Fahd University of Petroleum and Minerals, P.O. Box 1803, Hafr Al-Batin 31991, Saudi Arabia.
| | - Tajamal Hussain
- Institute of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| | - Ahsan Sharif
- Institute of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| | - Ejaz Ahmad
- Institute of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| | - Muhammad Makshoof Athar
- Institute of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
37
|
Recent Progress, Challenges and Prospects in Monitoring Plastic-Derived Xenoestrogens Using Molecularly Imprinted Sorbents. Chromatographia 2013. [DOI: 10.1007/s10337-013-2596-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Pardeshi S, Dhodapkar R, Kumar A. Molecularly imprinted microspheres and nanoparticles prepared using precipitation polymerisation method for selective extraction of gallic acid from Emblica officinalis. Food Chem 2013; 146:385-93. [PMID: 24176358 DOI: 10.1016/j.foodchem.2013.09.084] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/30/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
Abstract
This paper reports the preparation of gallic acid (GA) molecularly imprinted polymers (MIPs) by the precipitation polymerisation and highlights the effect of porogen on particle size and specific molecular recognition properties. MIP, M-100 prepared in the porogen acetonitrile and MIP, M-75 prepared in a mixture of acetonitrile-toluene (75:25 v/v), resulted in the formation of microspheres with approximately 4μm particle size and surface area of 96.73m(2)g(-1) and nanoparticles (0.8-1000nm) and a surface area of 345.9m(2)g(-1), respectively. The Langmuir-Freundlich isotherm study revealed that M-75 has comparatively higher number of binding sites which are homogenous and has higher affinity for GA. The MIPs selectively recognised GA in presence of its structural analogues. Pure GA with percent recovery of 75 (±1.6) and 83.4 (±2.2) was obtained from the aqueous extract of Emblica officinalis by M-100 and M-75, respectively and hot water at 60°C served as the eluting solvent.
Collapse
Affiliation(s)
- Sushma Pardeshi
- Chemistry Department, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | | | | |
Collapse
|
39
|
Jin YF, Zhang YP, Huang MX, Bai LY, Lee ML. A novel method to prepare monolithic molecular imprinted polymer fiber for solid-phase microextraction by microwave irradiation†. J Sep Sci 2013; 36:1429-36. [DOI: 10.1002/jssc.201201082] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Ya-Feng Jin
- Henan Institute of Science and Technology; Xinxiang; P. R. China
| | | | - Ming-Xian Huang
- Henan Institute of Science and Technology; Xinxiang; P. R. China
| | - Lian-Yang Bai
- Pesticide Research Institute; Hunan Agricultural University; Changsha; P. R. China
| | - Milton L. Lee
- Department of Chemistry and Biochemistry; Brigham Young University; Provo; USA
| |
Collapse
|
40
|
Lai JP, Xie L, Sun H, Chen F. Synthesis and evaluation of molecularly imprinted polymeric microspheres for highly selective extraction of an anti-AIDS drug emtricitabine. Anal Bioanal Chem 2013; 405:4269-75. [DOI: 10.1007/s00216-013-6818-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/02/2013] [Accepted: 02/04/2013] [Indexed: 11/29/2022]
|
41
|
Synthesis and Evaluation of Molecularly Imprinted Polymer for the Determination of the Phthalate Esters in the Bottled Beverages by HPLC. J CHEM-NY 2013. [DOI: 10.1155/2013/903210] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A molecularly imprinted polymer (MIP) was prepared in acetonitrile by bulk polymerization, using di-n-octylphthalate (DOP) as a template molecular,α-methacrylic acid (MAA) as a functional monomer, and ethylene dimethacrylate (EDMA) as a crosslinker. Characterization and evaluation of the prepared MIP were carried out by scanning electron microscope (SEM), infrared absorption spectroscopy (IR), and the Scatchard analysis, respectively. Through the optimization of washing solvent, eluting solvent amount, flow rate of loading solution, and loading sample volume, an analysis method was established for DOP related compounds with high selectivity and sensitivity by using the selective molecularly imprinted solid-phase extraction (MI-SPE) technique. Moreover, under the optimal conditions, the extraction effects were comparatively investigated by using MIP cartridge, NIP cartridge, and the commercial PLS cartridge used especially for phthalic acid esters (PAEs), respectively. The results showed that the recoveries of spiked PAEs are in the range of 90.4%–97.8% with the relative standard deviation (RSD) of 1.6%–3.8% on the resulted MIP cartridge, whilst lower recoveries were obtained ranging from 80.2% to 88.9% with an RSD of 1.4%–5.2% on the commercial PLS cartridge.
Collapse
|
42
|
Liu X, Wei ZH, Huang YP, Yang JR, Liu ZS. Molecularly imprinted nanoparticles with nontailing peaks in capillary electrochromatography. J Chromatogr A 2012; 1264:137-42. [PMID: 23062974 DOI: 10.1016/j.chroma.2012.09.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 09/15/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
Abstract
The combination of microparticles of molecularly imprinted polymers (MIPs) with partial filling capillary electrochromatography (CEC) has previously been demonstrated for the enantiomer separation. In this paper, precipitation polymerization was used to prepare d-zopiclone imprinted nanoparticles (50-80 nm) by a strategy of the dilution of pre-polymerization mixtures. The influence of some important parameters on the preparation of MIPs nanoparticles, including template to monomer ratio, type and amount of cross-linking monomer, and functional monomer composition ratio were investigated. In addition, the effect of separation condition, e.g., organic modifier content, pH value and salt concentration of buffer, on the electrochromatographic behavior of the MIP nanoparticles were studied. In spite of lower selectivity factor (1.11), high column performance (theoretical plates 41,400) of template was obtained and the resolution of enantiomers separation was 4.75 under the optimized conditions. Compared to the previously reported MIP microparticles, the MIP nanoparticles showed good peak symmetry and an ability of high speed separation (<15 min) in CEC mode.
Collapse
Affiliation(s)
- Xiao Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | | | | | | | | |
Collapse
|
43
|
Fadida T, Lellouche JP. Poly-N-(4-benzoylphenyl)methacrylamide nanoparticles: preparation, characterization, and photoreactivity features. JOURNAL OF POLYMER RESEARCH 2012. [DOI: 10.1007/s10965-012-0023-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Meier F, Schott B, Riedel D, Mizaikoff B. Computational and experimental study on the influence of the porogen on the selectivity of 4-nitrophenol molecularly imprinted polymers. Anal Chim Acta 2012; 744:68-74. [DOI: 10.1016/j.aca.2012.07.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/11/2012] [Accepted: 07/13/2012] [Indexed: 11/16/2022]
|
45
|
Zang D, Yan M, Zhao P, Ge L, Liu S, Yu J. A novel high selectivity chemiluminescence sensor for fenvalerate based on double-sided hollow molecularly imprinted materials. Analyst 2012; 137:4247-53. [PMID: 22852133 DOI: 10.1039/c2an35738k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel fenvalerate double-sided hollow molecularly imprinted microspheres (fenvalerate-DHMIMs) were fabricated by in situ polymerization with the help of mesoporous silica microspheres (MSMs) in this paper for the very first time. Scanning electron microscope was employed to characterize the surface morphology of the fenvalerate-DHMIMs. Taking advantage of the quenching effect of fenvalerate on the luminol-H(2)O(2)-NaOH chemiluminescence system, a new model was established to determine fenvalerate by a highly selective flow injection chemiluminescence method. The traditional flow-through cell was replaced by a novel Y-shaped column. The chemiluminescence intensity was linear with fenvalerate concentration over the range of 5.0 × 10(-8) to 2.0 × 10(-5) g mL(-1) and the detection limit was 2.2 × 10(-8) g mL(-1). The relative standard deviation (RSD) for the determination of 2.0 × 10(-6) g mL(-1) fenvalerate was 1.4% (n = 11). The proposed method was applied to the determination of fenvalerate in real samples with satisfactory results.
Collapse
Affiliation(s)
- Dejin Zang
- School of Chemistry and Chemical Engineering, University of Jinan, PR China.
| | | | | | | | | | | |
Collapse
|
46
|
Preparation and characterization of molecularly imprinted polymer for di(2-ethylhexyl) phthalate: Application to sample clean-up prior to gas chromatographic determination. J Chromatogr A 2012; 1247:125-33. [DOI: 10.1016/j.chroma.2012.05.056] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/09/2012] [Accepted: 05/14/2012] [Indexed: 11/23/2022]
|
47
|
Chen Z, Ye L. Controlling size and uniformity of molecularly imprinted nanoparticles using auxiliary template. J Mol Recognit 2012; 25:370-6. [DOI: 10.1002/jmr.2161] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhiyong Chen
- Division of Pure and Applied Biochemistry; Lund University; Box 124; 22100; Lund; Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry; Lund University; Box 124; 22100; Lund; Sweden
| |
Collapse
|
48
|
Porous polymer particles—A comprehensive guide to synthesis, characterization, functionalization and applications. Prog Polym Sci 2012. [DOI: 10.1016/j.progpolymsci.2011.07.006] [Citation(s) in RCA: 381] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
|
50
|
Synthesis and evaluation of uniformly sized carbamazepine-imprinted microspheres and nanospheres prepared with different mole ratios of methacrylic acid to methyl methacrylate for analytical and biomedical applications. J Appl Polym Sci 2012. [DOI: 10.1002/app.36288] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|